2019

DESIGM AMND VERIFICATION™ ﬂ\'

DV ,

COMFERENCE AMD EXHIBITION S u n bu rsf DGSIg n
~—

IEEE 1800.2 UVM - Changes

Useful UVM Tricks & Techniques
Part 1

Clifford E. Cummings
World Class Verilog, SystemVerilog & UVM Training

Life is too short for bad
or boring training!

1639 E 1320 S, Provo, UT 84606
Voice: 801-960-1996

Email: cliffc@sunburst-design.com l Conni?t I:Vict:lhﬂ;l:"ﬁ l
on Linke
Web: www.sunburst-design.com

SYSTEMS INITIATIVE

o0 New IEEE UVM Features

DESIGMN ARD VERIFICATIOMN™

DVCOIN Agenda

COMFERENCE AMD EXHIBITION

« |[EEE UVM 1800.2 Topics

— Quick Introduction

— Resources & References

— Most Obvious IEEE UVM 2017 Question & Answer
— Virtual classes & the UVM Factory

— “uvm _do macro replacement

— UVM comparators - status

SYSTEMS INITIATIVE

o0 Introduction

DESIGMN ARD VERIFICATIOMN™

DV

COMFERENCE AMD EXHIBITION

 |If you were born after 1993 -

Please raise your hand I

Do not exist !!

 UVM Best Known Methods (BKMs) ... -

* Frequently Asked Question: What will replace UVM? «~—

BUT ... there will be modifications, simplifications
and enhancements to UVM

Complementary methodologies will emerge
(such as PSS)

SYSTEMS INITIATIVE

(At least not all)

In my opinion, Nothing!
(At least for a very long time)

IEEE 1800.2 is the first set of IEEE
standardized enhancements to UVM

PSS will help generate
UVM sequences

UCIS (Unified Coverage Interoperability Standard)
helps with collection of coverage data

o0 References

DESIGMN ARD VERIFICATIOMN™

DVECINN You need free video registrations & two free logins

« DVCon 2018 Tutorial - IEEE-Compatible UVM Reference Implementation and
Verification Components - To watch this presentation, go to:

videos.accellera.org/videos.html

« DVCon 2017 Tutorial - Introducing IEEE 1800.2 The Next Step for UVM

To watch this presentation, go to:
videos.accellera.org/videos.html

* forums.accellera.org/ - Access the SystemVerilog and UVM Forums I
Linked from
1800.2-2017 - IEEE UVM I www.accellera.org/downloads/ieee

* https://ieeexplore.ieee.org/document/7932212 |

Downloading PDF documents requires IEEE login
1800-2017 - IEEE SystemVerilog I (You can create a free IEEE login account)

* https://ieeexplore.ieee.org/document/8299595 |

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

2019

Tom Alsop
Slides 14-19

Srivatsa Vasudevan
Slides 28-41

DVCon 2017 - UVM Features Described

Reference Slides at End of Presentation

Reference
Material

Srivatsa Vasudevan
Slides 43-58

ore vty "C]

accellera)

s DVCon 2017 - UVM Features Described

40 - uvm_recorder - new methods
41- |Summary of core utility policies

DVCon 2017 - UVM Features Described

2019
BVESH' Thomas Alsop - Intel Corp. —m"" BVESH' srivatsa Vasudevan - Synopsys, Inc.
Slide # [siide # [
14 - |Introduction to IEEE and Backward Compatibility 28 -
15 - |BCL compliance to the IEEE 1800.2 spec policy classes
16 - |Implementations artifacts and additive but non-IEEE APls 29-
17 - | Deprecation policy and roadmap accessor methods e
18 - |Removal of pre-1.2 deprecated code - Motion pending 30- Juvm packer - new pack / unpack capabilities
19 - |APIs that changed from 1.2 to IEEE - Motion pending

=3
UVM Policy Classes - copy, compare, print, pack, record all have
uvm_policy - users can apply different printer or compare policy + many
31-32 -|uvm_copier - signature of copy () has changed to allow uvm copier

33-34 -|uvm_comparer - provides new accessor methods

35-36 -|uvm_printer - new printer knobs & accessor methods
37-39 -luvm_line_printer [uvm_table printer /uvm tree_printer

v DVCon 2017 - UVM Features Described m

Srivatsa Vasudevan - Synopsys, Inc.

43-45 -|UVM factory now supports abstract objects (virtual classes)

47 - uvm_component - can turn off apply_config_settings ()
49- |uvm_object - small modifications & new methods
50- |minor uvm_transaction modifications

51- Removed from IEEE 1800.2 - Deemed as not standard worthy
uvm_ comparator

uvm—alqorithmic comparator

uvm:i n_order_c u;para tor

53-54 -|uvm_report_object - minor modifications

uvm _report server - UVM FILE type change
uvm_report_catcher - minor modifictions

Callbacks now extend from uvm_callback - functions documented

accellera

SYSTEMS INITIATIVE

Mark Glasser
Slides 63-70

79 DVCon 2017 - UVM Features Described

=) Mark Glasser - NVIDIA Corporation

63 - | Summary of TLM Mantis Items

68 - | Register models - documentation enhanced / system level / dynamic
69 - | Reg model unlock - models can now be unlocked & re-locked

70 - | Register changes - virtual and non-virtual classes

Srinivasan Venkataramanan
Slides 76-105

]

2015

81-105 -|Description of VerifWorks Go2UVM package and capabilities

DVCon 2017 - UVM Features Described -
Srinivasan Venkataramanan - CVC Pwt,, Lid.
Details regarding Typical UVM Architecture
Description of UVM Mechanics

2019

DESIGMN ARD VERIFICATION

DVCOIN

COMFERENCE AMD EXHIBITION

DVCon 2018 - UVM Features Described

Reference Slides at End of Presentation

Justin Refice
Slides 3-13

Reference
Material

Mark Strickland & Mark Peryer
Slides 17-31

Mark Strickland & Mark Peryer
Slides 17-31

example

200 DVCon 2018 - UVM Features Described —a.m.,.e. 200 DVCon 2018 - UVM Features Described —a...f.,.e. 209 DVCon 2018 - UVM Features Described —n.,.f.,.e.
DVLOIN jystin Refice - Nvidia DVLOIN Mark Strickland - Cisco Systems Mark Peryer - Mentor, a Siemens Busi DVLOIIN pMark Strickland - Cisco Systems Mark Peryer - Mentor, a Siemens Busi =l
Slide # Slide # l Slide #
3-7 - |Accellera & IEEE UVM responsibilities 17 - uvm_object - New UVM seeding / new methods for configuration and 32- Scoreboards need to compare objects of differing types
8- Transitioning from UVM 1.2 to |IEEE 1800.2 UVM policies 33-35-| compare() /do_compare() / uvm_comparer /do_execute_op () With
8- ‘UVM_ENABLE DEPRECATED API to keep using UVM 1.2 18 - do_execute op - call-back to add flexibility in field operations scoreboard example
9-12 - Depr;ca(ion notes and trangmonmg considerations 19- Configuration considerations - field macros execute do_execute_op 36 - pack () /unpack () -small enhancements
13- |Recommended Steps of Updating to IEEE 1800.2 21- UVM Policy Classes - copy, compare, print, pack, recoxd all have 37- UVM printer policies now use uvm_printer_element &
policy classes that extend from uvm policy uvm_printer_element_ proxy
22- Policy extensions and methods 38-43 -| JSON printer example with details
23- do_method () use model changes
24 - Standard method changes: compare () calls do_execute_op() calls
do_compare ()
26-28 -| copy () /do_copy () / copy_object () /uvm copier example
29-31-| record() /do_record() /detail extension /uvm recorder

accellera

SYSTEMS INITIATIVE

Uwe Simm
Slides 45-63

Srivatsa Vasudevan
Slides 65-77

DVCon 2018 - UVM Features Described

Uwe Simm - Cadence Design Systems

UVM abstract factory - can now register and override virtual classes
Abstract UVM factory examples

Pre-IEEE 1800.2 UVM initialization

New |IEEE 1800.2 reliable UVM initialization - describes
uvm_coresevice_t ::get() /uvm_init() /run_test()

UVM deferred initialization examples

uvm run_test callback /pre_run_test () !post_run_test() /
pre_abort()

uvm_reg_block.lock_model () / unlock_model ()
Miscellaneous uvm_reg notes & changes including uvm_door_e

DVCon 2018 - UVM Features Described

Srivatsa Vasudevan - Synopsys

apply_config_settings() for “uvm_field_* macros user controllable
set_local() replaces set_* local() methods

Callbacks now extend from uvm_callback - users can call
all_callbacks| $]

Report severity is now UvM _NONE for uvm_report error
‘uvm_do replaces all earlier “uvm_do_* macros
‘uvm_do_* deprecation notes

oo Where to Get Latest UVM BCL

DESIGMN ARD VERIFICATIOMN™

DV Accellera Base Class Library

 Download the latest Base Class Library from Accellera web site -

http://www.accellera.org/downloads/standards/uvm

« Latestrelease is: UVM 2017-1.0 Reference Implementation

Date Modified: 2018-11 | «———| Just released! |

SYSTEMS INITIATIVE

Nologh1requhed|

oo Most Obvious IEEE UVM 2017 Question

DESIGMN ARD VERIFICATIOMN™

DVEDN http://forums.accellera.org/

 From the UVM 2017 - Methodology and BCL Forum

 Question from Brian Hunter:

"Who can provide a summary of what is new and what has changed?" I

« Response from Justin Refice - Accellera UVM Group Chair |

"Wow, starting the questions off with a (not entirely unexpected) doozy!" I

"Unfortunately there's no single document which states ‘Here's a full list of
everything that changed'. This is because a large number of changes were
performed by the Accellera UVM WG prior to the IEEE UVM WG ..."

SYSTEMS INITIATIVE

oo Most Obvious IEEE UVM 2017 Question

DESIGMN ARD VERIFICATIOMN™

DVECIN http://forums.accellera.org/ - Justin Refice's Summary - Part 1

"User Guide” material removed

0) Removal of the User Guide - - It's not standard-worthy"
- DVCon 2017 - Slide 10

1) Added more set /get accessor methods to replace some current knobs

Knobs still work but accessor methods
are a better coding practice

2) Users can insert code into the UVM core services

Allows users to make custom version of
libraries without hacking existing UVM

Advanced topic - example:
create factory debugger

3) Library initialization ordering

Advanced topic - but might allow "parameterized
classes participating in the name-based factory"

SYSTEMS INITIATIVE

oo Most Obvious IEEE UVM 2017 Question

DESIGMN ARD VERIFICATIOMN™

DVECIN http://forums.accellera.org/ - Justin Refice's Summary - Part 2

Justin's words I

4) |"Removing the Black Magic" | - Field macros had undocumented behavior

Users COULD now implement their
own field macros more safely

5) Policy class changes

All policy classes now
extend uvm policy

New policy class for
copy () operations

New printer policy class extensions
to implement new printers

6) Registers - "Surprisingly few changes here" < Justin's words |

Most obvious change: can now unlock and re-lock
models to remove/replace registers at runtime

Helps support hot-plugging and
re-configuration designs

7) Deprecation - new methodologies / practices for ‘handling deprecated code\

Between UVM versions
accellera

SYSTEMS INITIATIVE

2019

DESIGMN ARD VERIFICATIOMN™

DV

COMFERENCE AMD EXHIBITION

Accellera DVCon Resources

http://www.accellera.org/resources/videos -« the videos is FREE!

Registration & viewing

Justin - "At DVCon 2017 & 2018, there were tutorials which covered all of the above and
more, with detailed examples."

« U.S. DVCon 2018 Presentation by:

Justin Refice -
Nvidia
Mark Strickland -
Cisco Systems
Mark Peryer -
Mentor, a Siemens Business
Uwe Simm -
Cadence Design Systems
Srivatsa Vasudevan -
Synopsys

 U.S. DVCon 2017 Presentation by:

Thomas Alsop -
Intel
Srivatsa Vasudevan -
Synopsys
Mark Glasser -
Nvidia
Srinivasan Venkataramanan -
CVC Pvt., Ltd.
Krishna Thottempudi - Qualcomm

#1 Added more set /get accessor methods
to replace some current knobs

o
accellera
\\--._____.-f

SYSTEMS INITLIATI

Justin - "Aside from #1, most of those changes are for advanced use cases, or providers
of infrastructure. Day-to-day users shouldn’t necessarily see a drastic change."

11

oo DVCon 2017 & 2018 Tutorials

DESIGMN ARD VERIFICATIOMN™

DV

COMFERENCE AMD EXHIBITION

« Multiple features shared but most were very -

complex corner-case enhancements

(Complex) examples in the
DVCon presentation slides

* Personally, | never tried to implement the corner-case functionality:

Many examples were very
difficult to understand

| could re-show:

Except to the
presenter!

| personally barely followed the
complex examples

— Excellent examples from DVCon presentations
— And show advanced corner-case topics that most would barely understand

to do that

enhancement examples

| am not going | want to show you more mainstream

SYSTEMS INITIATIVE

oo DVCon 2017 & 2018 Tutorials

DESIGMN ARD VERIFICATIOMN™

CDQ¥MSE AMD EXHIBITICN
« Justin's list of 1800.2 features shows topics - ’Z?,QL?E.‘ZLZ°L£ZZT.Z;°§?§
covered in the DVCon presentations ' '
. Doi thi trick lex? - Please review the excellent examples that
oing anyining tricky or compiex: you will find in the DVCon presentations

« See the slides and hear the explanations by the actual presenters

Presentation audio always includes If you are doing anything complex,
more than the presentation slides it is worth a listen

SYSTEMS INITIATIVE 13

00 New UVM Features Will Be Shown

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

... and ClIiff is
really average!

This is Cliff's way of saying these guys are really smart! ~———

To Be Shown: Enhancement features that the average UVM coder can use

Where appropriate: List DVCon slides where you can find more info

To make your attendance
worth while

| will also show you a few of my favorite tricks -

sssssssssssssssssss 14

o0 Virtual Classes

DESIGMN ARD VERIFICATIOMN™

DVEEINY Purpose and Usage

 virtual classes - only intended to be a base class

Not enough functionality to use as
stand-alone constructed objects

Most UVM components must be extended to
be useful - so they are virtual classes

 wvirtual class methods can be virtual or non-virtual
— non-virtual methods means extended class can override and change the prototype

Prototype = function/task
header

Polymorphism not possible
with non-virtual methods

— wvirtual methods create placeholders with required prototype

Same function/task
header

SYSTEMS INITIATIVE

Can include default implementation if the extended
class does not override the method.

15

o0 Virtual Classes

DESIGMN ARD VERIFICATIOMN™

DVEEINN Purpose and Usage

* You want virtual classes to have virtual methods

virtual methods make upcasting
and polymorphism possible

« SystemVerilog-2009 added pure virtual methods

Just like virtual methods -
Requires the same prototype

Unlike virtual methods -
There can be no default method implementation

 pure virtual methods REQUIRE extended classes to override the method

Extended class must provide
an implementation

pure keyword is only legal
in a virtual class

SYSTEMS INITIATIVE

16

oo Pure Virtual Methods

DESIGMN ARD VERIFICATIOMN™

DV Two important purposes

virtual class vcla;
bit [7:0] a;

pure virtual method I

endclass

pure virtual function void seta(bit [7:0] wval);

(1) pure virtual methods can only be
a method prototype

No method body allowed I

No endfunction / endtask allowed I

class exla extends vcla;

(2) pure virtual methods must be overridden

virtual function void seta(bit [7:0] wval); <

a = val;
endfunctioﬂk\\‘ -
endclass exla MUST override seta ()

in a non-virtual class

(must provide an implementation)

SYSTEMS INITIATIVE

NOTE: pure keyword is only legal in virtual classes

17

oo Pure Virtual Methnds_\
E?}NWEHFWMN virtual classes

COMFERENCE AMD EXHIBITION

virtual class vcla;
bit [7:0] a;

pure virtual method I

pure virtual function void seta(bit [7:0] wval);
endclass

virtual class veclb;
bit [7:0] a;

pure virtual method

pure virtual function void seta(bit [7:0] wval);
endclass

virtual class vc2a extends vcla;

vc2a does NOT override
seta () method

&
<

endclass

virtual class vec2b extends vclb;

virtual function void seta(bit [7:0] wval);

a = val; —
endfunction

seta () method

ve2b DOES override |
endclass

non-virtual classes I

class exla extends vc2a;

virtual function void seta(bit [7:0] wval);

a = val;
endfunctioﬂk\\\ _
endclass exla MUST override seta ()

(must provide an implementation)

class exlb extends wvc2b;

// optional override of seta()

endclass —

exlb can OPTIONALLY
override seta ()

18

o0 Prior to Pure Virtual?

DESIGMN ARD VERIFICATIOMN™

DVECINN How was the pure-virtual functionality implemented?

* Engineers would code virtual methods with a simple implementation

To display a fatal message that the
method had not been overridden

virtual class uvm_subscriber ...
extends uvm_ component;

VMM had some of these
non-pure virtual methods

« Comparing virtual -vs- pure virtual:

virtual function void write (T t);

"uvm_fatal ("ERR", "Must implement write()")
endfunction
endclass UVM-like non-pure virtual method

with Fatal message

L

— wvirtual methods -«

Missing implementations were
discovered at run-time

Very late to discover the
missing implementation

— pure virtual methods «—

Problems are found sooner
and resolved quicker

Missing implementations are
discovered at compile-time

SYSTEMS INITIATIVE

19

2019

DESIGMN ARD VERIFICATIOMN™

L _Ji™d

COMFERENCE AMD EXHIBITION

Two Common Testbench Base Classes

Common User-Defined Base Classes

» User-defined classes that should not be directly created:

‘ — test base I

class test_base extends uvm_test;

Common test functionality I<

‘ — vseq_base I

 |In UVM, these cannot be virtual classes -

SYSTEMS INITIATIVE

Declares subsequecer handles and
retrieves / checks the handles
from the virtual sequencer

class testl extends test_base;

class vseq base extends uvm_sequence;

—

class vseql extends vseq base;

Virtual classes cannot be
factory-created

\

UVM compilation errors
if put in the factory

Typical error: "An abstract class cannot be instantiated .."

20

2019

DESIGMN ARD VERIFICATIOMN™

Virtual Classes in the Factory

DVECIN UVM 1800.2 Enhancement - For uvm_objects
« Utils-macros for Classes: Utils-macros for Virtual Classes:
"define uvm object utils(T) "define uvm object abstract utils(T)
"define uvm object utils begin(T) "define uvm object abstract utils begin(T)
"define uvm object utils end "define uvm object abstract utils end
"define uvm object param utils(T) "define uvm object abstract param utils(T)
"define uvm object param utils begin (T) "define uvm object abstract param utils begin(T)
"define uvm object param utils end "define uvm object abstract utils end

SYSTEMS INITIATIVE

Now virtual base classes for transactions
and sequences can be stored in the factory

NOTE: Now you can store virtual classes
with pure virtual methods in the factory

21

oo Virtual Classes in the Factory
DVECCIN UVM 1800.2 Enhancement - For uvm_components
 Utils-macros for Classes: Utils-macros for Virtual Classes:
"define uvm component utils(T) "define uvm_ component abstract utils(T)
"define uvm component utils begin(T) "define uvm_ component abstract utils begin(T)
"define uvm component utils end "define uvm_component abstract utils end
"define uvm component param utils(T) "define uvm_ component abstract param utils(T)
"define uvm_ component param utils begin(T) "define uvm_component abstract param utils begin (T)
"define uvm_component param utils end "define uvm_ component abstract utils end

SYSTEMS INITIATIVE

Now virtual base classes for tests and other
components can be stored in the factory

NOTE: Many of the UVM virtual base classes are now
factory enabled using the abstract_utils macros

22

oo lTestbench & Factory Access

DESIGMN ARD VERIFICATIOMN™

DVCOIN UvyM 1.1d

« UVM 1.1d allowed access to the factory handle

class test_base extends uvm_test;

start of simulation phase
(after the testbench is built and connected)

super.start of simulation phase (phase) ;

function void start of simulation_ phase (uvm phase phase) ;

this.print(); P

Add this code to print out the testbench structure

factory.print () ;
endfunction *‘-——__ﬁ__——__ﬁ_———__ﬁ_———_

Add this code to print out the factory
entries and overrides

endclass

SYSTEMS INITIATIVE

23

oo lTestbench & Factory Access

DESIGMN ARD VERIFICATIOMN™

DVCOIN yvyM 1.2 & 1800.2

« UVM 1.2 & 1800.2 require declaration of the factory handle

Declare factory handle and use uvm factory: :get ()
static method to return the handle

class test base extends uvm_testi///////

uvm_ factory factory=uvm factory::get()

function void start of simulation phase (uvm phase phase);
super.start of simulation phase (phase) ;

start of simulation phase
(after the testbench is built and connected)

this.print (), <«

endclass

factory.print () ; ‘-—_"‘““‘—-—~—~_~_~_~_~__ I
endfunction Add this code to print out the factory

Add this code to print out the testbench structure

entries and overrides

SYSTEMS INITIATIVE

24

o0 uvm_do Macros

DESIGMN ARD VERIFICATIOMN™

DVCOIN JyM 1.2 -vs- UVM 1800.2

"uvm_do sequence

‘uvm;do
| actions

Oor sequence item |

Macro Inputs UVM actions

- — =

= = = — (]

[=] 2 g | <« (0]

| H o | o | P

H] R —~ +H N -
| O 0'd = | s |

e = F U] Il € | <

o | m nfP|P| o] w

| B Z e | s | 0|

a | o ofo|lwm| g | &

H | & ofl 9| P| 0| A

n | v ~f o]l w]| 4a]|w

\/ ‘uvm_do (I) X X| X[X]X

ConWEon

r Deprecated X XX | X | X | X

Comifidn Deprecated X | X X[X | X]| X
vsequecer Deprecated X | X XIX|X|[X]|X
X Deprecated X X X[X | X]| X
Le& Deprecated X XXX |[X]|X]|X
Comigon Deprecated X | X | X X | X[X]| X
accellera X Deprecated X[X[X[XIX]|X]|[X]|X

SYSTEMS INITIATIVE

ol uvm_create, ‘'uvm_send, uvm_rand Macros

DESIGMN ARD VERIFICATIOMN™

DVCOIN JyM 1.2 -vs- UVM 1800.2

‘uvm _macro sequence
Oor sequence item |

‘uvm_macro
actions

Macro Inputs UVM actions

r'd

XIX|IX|X|[X]|X]|X]|X]|SEQ OR ITEM
X

Less frequently
used macros

SEQUENCER
{CONSTRAINTS}
start item()
randomize ()
finish item()

‘uvm_create (I)

X | X | create ()

Deprecated

"uvm_send (I)

R R IS I NG 3N

Deprecated X
"uvm_rand send(I)

Deprecated X

Deprecated X

Deprecated X | X

SYSTEMS INITIATIVE

0o New 1800.2 uvm_do Commands

DESIGMN ARD VERIFICATIOMN™

DV “uvm_do “uvm_create ‘uvm_send ‘uvm_rand_send

"uvm_do (SEQ OR ITEM, SEQR=get sequencer (), PRIORITY=-1, CONSTRAINTS={})

UVM 1.2 usage examples I UVM 1800.2 usage examples
"uvm_do_on(ahb _seq, ahb sqr) 4 "uvm do (ahb seq, ahb sqgr) « Virtual I
"uvm_do_on(eth seq, eth sqr) "uvm_do (eth _seq, eth sqr) Irtual sequences

Transaction

‘uvm_do with(tr, {rw_ type==WRITE;}) wiconstraint

A

A

‘uvm do(tr, . {rw fypp——WRT"I"F'.;})

... AND before
you ask !

‘uvm_do (.SEQ OR ITEM(tr), .CONSTRAINTS ({rw type==WRITE;}))

NO ... you cannot pass values by argument name I

‘uvm_create (SEQ OR ITEM, SEQR=get sequencer())
) uvm_s end (SEQ_OR_I TEM, PRIORITY=-1)
‘uvm_rand send (SEQ OR ITEM, PRIORITY=-1, CONSTRAINTS={})

27

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

sremcmosmemes DV CON 2017 - Slide 5

UVM Comparator Classes

1

« Removed from P1800.2

uvm_comparator

uvm _algorithmic comparator

uvm_in order comparator

A

SYSTEMS INITIATIVE

NOT Deprecated:
The Source files are still there

Deemed as not standard-worthy"
DVCon 2017 - Slide 51

These are some of my favorite
UVM 1800.2 new features

28

o0 Some of Cliff's favorite UVM topics

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

« Cliff's favorite UVM topics

— UVM transaction - why is it a class?

— UVM do methods -vs- field macros

— start item() / finish item() -vs- "uvm do
— UVM messaging macros, tricks & guidelines

— UVM factory & factory.print ()

— Analysis paths

SYSTEMS INITIATIVE

29

oo Why Is UVM Hard To Learn?

DESIGMN ARD VERIFICATIOMN™

DV

COMFERENCE AMD EXHIBITION

J—

Teaches Cadence recommended methods I

* UVM User Guide was written by Cadence—__

Uses a large number of UVM macros I

 UVM tutorials by Mentor on :

Teaches Mentor recommended methods I

$

VerificationAcademy.org

Fewer UVM macros / more UVM method calls I

 OVM Cookbook written by Mentor employees «~—

Based on earlier versions of OVM I

 User Guide, tutorials and Cookbook do not . |

Users think one or more sources have bugs I

acknowledge alternate methods

« Authors of UVM materials are really, really

Authors assume everyone knows
SV, OO0 and polymorphism

smart software engineers

Authors don't know how to teach
the concepts to beginners

30

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

UVM Transaction Base Classes

Good reference paper:
UVM Transactions - Definitions, Methods and Usage
www . sunburst-design.com/papers/CummingsSNUG2014SV_UVM Transactions.pdf

SYSTEMS INITIATIVE

00 Transactions & Sequences

DESIGMN ARD VERIFICATIOMN™

DVCON : e Basic transactions are extended
recmomearen VDAt Is Their Composnlon’;?//// from s scouence. 4 tom
« Transactions are driven into the dut_if m—'

. Sequences can be built from:
e sequence
— Multlple transactlons

sequence

trl tr2

SYSTEMS INITIATIVE

32

o0 Transaction Data

DESIGMN ARD VERIFICATIOMN™

DV Why use classes? Why not use structs?
« Classes - dynamic « Structs - static
v/ Multiple fields v/ Multiple fields
v’ rand fields % NO rand fields
v/ Randomization constraints X NO randomization constraints
v Built-in methods X NO built-in methods
v/ Generate as many as needed at run time X Must anticipate & statically declare all
structs at the beginning of the simulation
v’ Classes can be extended X Structs must be copied
Allows more than one transaction Copies are modified if more than
type with a common base type one transaction type is desired
v Canbeina factory for run-time substitution X No factories for structs
Classes are basically dynamic, ultra flexible structs that can
* be easily randomized The default transaction type used by UVM
 easily control the randomization components is uvm sequence item

ad ° be created whenever they are needed
S —

SYSTEMS INITIATIVE

33

oo Passing Transactions & Signals

DESIGMN ARD VERIFICATIOMN™

DV Block Diagram

Predictor top Comparator
ignores trans ignores trans
ECRNE outputs inputs

env

tb agent

tb sequencer

tb monitor

vif

Drive DUT

tb_s coreboard

Sample DUT
inputs &

inputs

outputs

Ignore trans
outputs

Do not randomize

You do not need different

input and output
transaction classes !!
trans outputs

34

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

SSSSSSSSSSSSSSS

Standardized UVM Formatting

35

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFEREMCE AMND EXHIBITION

Standard UVM Coding Style

Cliff's preferred styles

 UVM testbench components and UVM transaction definitions

(0)
(1)

Declare transaction variables <

Register class with factory

If field macros are used I

Optional: declare field macros <+— | Mostly in transactions I

If any I

(2)
(3)
(4)

Declare variables & covergroups

‘ Declare virtual interface

Declare ports & components

Components only

(3)

Standard new() constructor

If any I

(6)
(7)
(8)
(9)
(10)
(11)

build phase ()
connect phase ()
Other pre-run phases

run_phase ()

Other post-run phases

Components only

Common class methods

SYSTEMS INITIATIVE

36

oo UVM Transactions Styles

DESIGMN ARD VERIFICATIOMN™

DVEEIN do_methods() -vs- field macros

* Using do_methods ()

(1) Register with factory

(2) Declare vars/eceovergroups
(5) new() constructor

(11) Common trans methods
convert2string()
do_copy() / do_compare ()
other do _methods ()

SYSTEMS INITIATIVE

« Using field macros

(0) Declare trans vars

(1) Register with factory
Optional: field macros

(2) Declare vars/ecowvergroups

(5) new() constructor

(11) Common trans methods

convert2string ()

37

oo uvm_object_utils Macro Usage

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

* Using do_methods ()

I
"uvm_object utils()
before declarations

class transl extends uvm sequence item;

&

‘uvm_object utils(transl) -
<declare variables> *“““--‘_~____~_§ I
<standard constructor> Variables declared after
<override do methods ()> ‘uvm object utils ()

« Using field macros
Variables declared before

class transl extends HW ‘uvm_object_utils()
<declare variables> '

"uvm_object utils()
after declarations

‘uvm_object utils begin(transl) <
<declare field macros for variables> |

‘uvm_object utils end Field macros declared after
<standard constructor> ‘uvm_object utils()

SYSTEMS INITIATIVE 38

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

Standard Transaction Methods

SSSSSSSSSSSSSSS

o0 Standard Transaction Methods

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

Defined in uvm object ()
base class

11 Standard Transaction Methods

copy () , <

copy () & compare () are very important I

compare (),

print (), sprint (),

Somewhat important I

pack(), pack_bytes(), pack_ints(), Used for serial-to-parallel
unpack () , unpack bytes (), unpack ints(), applications

record () —

For debugging transactions

3 more transaction methods

create (), ¢

Auto-generated by "uvm object utils() macro

clone(),<~—___§_____

convert2string ()

Creates and copies a transaction I

convert2string () is very important I

SYSTEMS INITIATIVE

40

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

copy() & compare() Usage

Common Usage

test1~\‘

env .

tb agent

Output calculator
takes tr.copy ()
of trans

top

tb sequencer

tb_s coreboard EE

Sample DUT
inputs &

outputs

Compares expected output
to actual output

exp tr.compare (out tr)
—— C—

41

0o Implementing Transaction Methods

DESIGMN ARD VERIFICATIOMN™

DV For User-Defined sequence_items

COMFERENCE AMD EXHIBITION

« Each transaction should include important methods

* Two ways to implement important transaction methods:

Simple - but

— Field macros -«

These are shown in
the UVM User Guide

inefficient (simulations)

Mentor recommends
avoiding these macros

Cadence recommends
using these macros

Not too difficult -

— Manual coding -«

These are shown on
Verification Academy

more efficient (simulations)

SYSTEMS INITIATIVE

Mentor recommends

coding the methods
(using user-defined hooks - next slides)

42

Standard Transaction Standard Transaction Methods S

Methods using do _methods ()

DVCON
Override Never call the
these || do methods () |

‘uvm_object utils()

do_copy ()

v

v

do compare ()

do _print() <i:

do pack () <E

v

do_record()

Override and call this I =

call field-macro-created code

tandard Transaction Methods

Call Never override these
these Standard Transaction Methods
copy ()

Field macros contribute
to these methods

pack ()

pack bytes() «
pack ints()

unpack ()

unpack bytes ()
unpack ints()

‘uvm_object utils begin()
"uvm_field int(..)
"uvm_field int(..)
‘uvm_field enum(..)

"uvm_ field string(..)

‘uvm_object utils end

Field macros do not build
convert2string ()

convert2string ()« |

43

2019

DESIGMN ARD VERIFICATION

DVCOIN

COMFERENCE AMD EXHIBITION

Why Not Override
- compare() Method?

— Insert your compare code on line 58 or line 59

Are you kidding me ?? I

uvm_object compare () method

function bit uvm _object::compare (uvm object rhs,
uvm_comparer comparer=null);

bit t, dec;
static int style;
bit done;
done = 0;
if (comparer '= null)
__m uvm status_container.comparer = comparer;
else
_ m uvm_status_container.comparer = uvm default comparer;
comparer = _ m_uvm status_container.comparer;

if(!__m uvm status_container.scope.depth()) begin L]
comparer.compare_map.clear(); 69 L I n es
comparer.result = 0;
comparer.miscompares = "";

comparer.scope = __m uvm_status_container.scope; Of COd e ! !

if (get_name() == "")

_ m uvm_status_container.scope.down("<object>");
else

functio

n bit uvm object: :compare (uvm object rhs,

| status_container.scope.down(this.get_name());

& (rhs == null)) begin
| status_container.scope.depth()) begin
r.print_msg_object(this, rhs);

57 lines of pre-compare() code I

in

ler .print_msg_object (this, rhs);

[port_info ("MISCMP",

sformatf ("$0d Miscompare(s) for object %s@%0d vs. null",

Line 58 - Call the

dc

omparer.result,

| m_uvm_status_container.scope.get(),

this.get inst id()),

| m uvm_status_container.comparer.verbosity) ;
1

do compare (rhs, comparer);

\ Line 59 - Call the

endfunc

do compare () code

10 lines of post-compare() code I

tion

/ field-macros compare() code | |
& (comparer.compare_map.get(rhs) != null)) begin

m uvm field automation(rhs, UVM COMPARE, "");

It would be too complex to override

the compare () base method !!

rer.compare_map.get(rhs) != this) begin
ler .print_msg_object (this, comparer.compare map.get(rhs));

//don't do any more work after this case, but do cleanup

& comparer.check type && (rhs != null) &&

le_name () '= rhs.get_type name())) begin

status_container.stringv = { "lhs type = \"", get type_name(),
"\" : rhs type = \"", rhs.get_type name(), "\""};

.print msg(__m uvm_status_container.stringv);

begin

.compare_map.set(rhs, this);

field automation(rhs, UVM COMPARE, ""); // LINE 58-field macros
compare (rhs, comparer) ; // LINE 59-do_compare ()

| status_container.scope.depth()==1) begin
status_container.scope.up();

this, rhs);
== 0 && dc == 1);

o0 uvm_object utils(T)

DESIGMN ARD VERIFICATIOMN™

DVCOIN

recsmesmemen NACIrOS/uvm_object _defines.svh

"define uvm object utils(T) \

‘uvm_object utils begin(T) \

‘uvm_object utils end

"define uvm object utils begin(T)

‘'m_uvm object registry internal(T,T)

‘'m_uvm object create func(T)

‘'m_uvm _get type name func (T)

"uvm_ field utils begin (T) >

"define uvm object utils end\

end

endfunction

SYSTEMS INITIATIVE

\
——

Register the transaction
class with the factory

Define the create () method I

Define the get type name()

method

function void

Defines first 20 lines of method:
__m uvm field automation ()

begin \
\

\\
\

™ end \

endfunction \

Defines last 2 lines of method:
m uvm field automation()

m uvm field automation (..)\

Each field macro adds
more code here

Each ‘uvm_field int
adds 59 lines -

big case statement

45

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

SSSSSSSSSSSSS

Overriding do_methods()

46

COMFEREMC

Defining Standard Transaction Method
behavior using do_methods ()

Override

these || do_methods ()

‘uvm_object utils()

Never call the ‘

Standard Transaction Methods

do_copy ()

v

do compare ()

do _print() <i:

v

do_record()

do pack () <

Override and call this |

Call Never override these
these Standard Transaction Methods
copy ()

compare ()

print ()
sprint ()

pack ()
pack bytes()
pack ints()

unpack ()
unpack bytes ()
unpack ints()

convert2string ()

Field macros will
be shown later

47

o0 User-Defined Transaction Class

DESIGMN ARD VERIFICATIOMN™

DVECN Derivative of uvm_object

uvm_object is the top-level
base class in UVM

rand bit

transl tr;

endclass

dout = tr.
din = tr.
1ld = tr.
inc = tr.
rst n = tr.
endfunction

class transl extends uvm sequence item;
"uvm_object utils(transl)

logic [15:0] dout;
rand bit [15:0] din;

1d, inc, rst n;

function void do_copy (uvm object rhs);

if('$Scast(tr, rhs))
"uvm_fatal ("transl", "FAIL: do_ copy ()
super.do_copy (rhs) ;

dout;
din;
14d;
inc;
rst n;

cast") ;

l

uvm _object

JAN

uvm;transaction

JAN

uvm_sequence item

I

uvm sequence

transl

The user transaction type is
a derivative of uvm object

48

oo Transaction Class do_copy() Method

DESIGMN ARD VERIFICATIOMN™

DV Upcasting & Downcasting

transl t object

Assume transl trl object with five variables
class transl extends uvm sequence item;

‘uvm object utils (transl) - trl.copy (t); t |@r—|dout = 0000
calls .. r - din = RAAA

logic [15:0]| dout; 1d =1

W din; P = ’ transl t object ine =1

nd bi 1 inc, rst n: converted to —
/ and bit < C. Ieh @ uvm_object rhs zstn °

function void do_copy(uvm object rhs);

el (s < - o |rst lines
if('Scast(tr, rhs)) uvm object rhs F S

\ Cannot access variables I
super.do_copy (rhs) ; Downcast |

d?Ut ~ tr.dc_>ut; Declare transl tr handle I
\ dg.n =|tr.din;

1d tr.1d;
) = $cast uvm object rhs

\ 4

inc =|tr.inc;
| = Y handle to transl tr handle tr |@=—p |dout = 0000
endfunction = ; ; : / din = AARA
do copy () is a virtual meth Now copy tr S|gngls to | 1d -1
endclass must keep the same protot] local trl transl signals 3§ e
rst n =0

2019

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

Transaction Class do_copy() Method

Example Usage from Scoreboard Predictor

trl transl object I

class transl extends uvm sequence item;
"uvm_object utils(transl)

The sb_calc exp () function is
called with transl t handle

logic [15:0]| dout;

The scoreboard predictor has

rand bit [15:0]|din; 4—_____5\\\\\ sb_calc_exp () function |
rand bit e, THE, EEE RS ~~function transl ... sb calc exp (transl_t);
function void do_copy (uvm object rhs); 1 trl = transl:: 1d: :create ("trl");
transl tr; -
if (!'$cast(tr, rhs)) .
! trl.co t) i i
“uvm_fatal ("transl", "..."); Py (t) Local trans1 trl object is created I
super.do_copy (rhs) ; return(:;zyj\\\\\\\\
dout - 220G IS, endfunction ™ All fields of the + object are copied
S = et to the fields of the local tr1 object
1d =|tr.1d;
inc =|tr.inc;
rst n|=|tr.rst n; The sb _calc exp () function
endfunction _ _ returns the tr1l handle
copy () method calls do copy () is a virtual method -
endclass do copy () method must keep the same prototype

50

oo Upcasting & Downcasting Variable Names

DESIGMN ARD VERIFICATIOMN™

DV Avoid Confusing Names

Previous slide - We named
the local transl1 handle tr

Many industry examples name the local transaction handlel?:hs_ |

Using rhs means that casting is done in the form $cast (rhs , rhs);

This is confusing and therefore
a poor practice

Causes fields to be referenced as rhs .field 1 , ...

Easy to confuse the uvm object rhs handle
with the transaction class rhs handle

Better practice: Use a transaction handle name like tr

Or another name that is visually distinct I

Guideline: Declare local transaction handles using distinct names such as tr and

avoid local transaction handle names such as rhs
accellera

SYSTEMS INITIATIVE 51

oo do_copy() & do_compare()

DESIGMN ARD VERIFICATIOMN™

DV Template Methods

function void do copy(uvm object rhs); 4/1—'” Required prototype code I

transl tr; This is just overhead code I
Scast(tr, rhs); |

a = tr.a; « — _ This is the added
(copy remaining variables)- copy code
endfunction

Overhead code |

Required prototype code

function bit do_compare (uvm object rhs, uvm comparer comparer) ;
transl tr;

bit eq; - . .

This is just overhead code
Scast(tr, rhs);] I
eq = super.do compare (rhs, comparer) ; I

eq &= (a == tr.a); - _ This is the added
.. (compare remaining variables) <« compare code

return (eq) ; I
accellera) endfunction

Overhead code |

SYSTEMS INITIATIVE || 52

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

Using Field Macros

SYSTEMS INITIATIVE 53

2019

DESIGMN ARD VERIFICATIOMN™

DVCON

Standard Transaction Methods | Defining Standard Transaction Method

do _methods() were
shown earlier

behavior using field macros

Call
"1 these ‘ Standard Transaction Methods

Never override these

copy ()

Field macros contribute
to these methods

sprint ()\ ‘uvm_object_utils begin()
"uvm_field int(..)

pack ()

. pack bytes () «

pack ints()

unpack ()

O
(3]
-
3
ct

unpack bytes ()
unpack ints()

"uvm_field int(..)

‘uvm_field enum(..)

"uvm_ field string(..)

‘uvm_object utils end

. Field macros do not build

convert2string() — | convert2string()

54

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

Using Field Macros

Requirements

What is required to use field macros?

SYSTEMS INITIATIVE

1. Declare all the transaction variables -«

3.

Declare before
"uvm_object utils()

—> 2. "uvm_object utils begin(transl)

—
‘uvm_field * (for each variable) <

Re-declare variables
using ‘uvm field *

\

Set "uvm field * FLAGS -

Set FLAG values
for each variable

q

— 5. "uvm _object utils end

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

Transaction with Field Macros

Rules

class trans2 extends uvm sequence item;
rand bit [7:0] a, b, c; <

"uvm_object utils begin(trans2)

Same type and size:
variables can be
declared as a list

A

"uvm_field int(a, UVM ALL ON)

A

‘uvm_field int(b, UVM ALL ON)

A

"uvm_field int(c, UVM ALL ON)
‘uvm_object utils end

endclass

Same field macro flags:
variables MUST be
declared separately

"uvm_field int(a(g), UVM ALL ON) «

ILLEGAL to group variables
in the same field macro

‘uvm_field int({@} , UVM ALL ON)-«

STILL ILLEGAL
to concatenate variables
in the same field macro

56

o0 uvm_field Macros

DESIGMN ARD VERIFICATIOMN™

DV

COMFERENCE AMD EXHIBITION

Data declaration field types

‘uvm_field int g (ARG, FLAG)

int field macros are for any
integral number-type

‘uvm_field enum (T,ARG, FLAG)

Includes most signals
and buses (vectors)

"uvm_field object (ARG, FLAG)
"uvm_field string (ARG, FLAG)
"uvm field real (ARG, FLAG)

"uvm_field event (ARG, FLAG)

"uvm field sarray int (ARG, FLAG)
"uvm field sarray enum (ARG, FLAG)
"uvm_field sarray object (ARG, FLAG)
"uvm field sarray string (ARG, FLAG)

Most commonly
used field macros

Static array
field macros

"uvm field array int (ARG, FLAG)
"uvm field array enum (ARG, FLAG)
"uvm_field array object (ARG, FLAG)
"uvm_field array string (ARG, FLAG)

1-dimensional dynamic
array field macros

"uvm field queue_ int (ARG, FLAG)
"uvm field queue_ enum (ARG, FLAG)
"uvm_field queue_ object (ARG, FLAG)
"uvm_field queue string (ARG, FLAG)

Queue field macros I

57

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFEREMCE AMND EXHIBITION

SYSTEMS INITIATIVE

‘'uvm field Macros ‘Associativearray\
- field macros

1st argument =
data-field type

Data declaration fifig/tipes

2nd argument =
array index type

=

"uvm _field aa s tr:if;g (ARG, FLAG) String
; uvm_field_aa_s tring (ARG ’ FLAG) associative arrays
m|

"uvm field aa object (ARG, FLAG) Obiject
‘uvm_field aa_ object (ARG, FLAG) | associative arrays
"uvm_field aa int ARG, FLAG)

"uvm_field aa int ARG, FLAG)

"uvm_field aa int ARG, FLAG)

"uvm_field aa int ARG, FLAG)

"uvm_field aa int ARG, FLAG)

"uvm_field aa int ARG, FLAG)

"uvm_field aa int ARG, FLAG) Integral-number

"uvm_field aa int
"uvm_field aa int
"uvm_field aa int
‘uvm_field aa int

‘uvm;field;aa_int
‘uvm_field;aa_int

FLAG) | associative arrays
FLAG)
FLAG)
FLAG)

FLAG)
FLAG)

58

oo UVM Field Macro Flags

DESIGMN ARD VERIFICATIOMN™

P;{EEPEI:;}! Other macro flags
on the next slide

S
« UVM ALL ON - Automatically creates the following important core data

methods:

copy () & compare ()
pack () & unpack()

record ()
print() & sprint()

accellera
59

SYSTEMS INITIATIVE

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

« UVM Field Macro Flags~——

SYSTEMS INITIATIVE

UVM ALL ON
UVM DEFAULT

UVM_NOCOPY
UVM_NOCOMPARE
UVM_NOPRINT
UVM_NODEFPRINT
UVM_ NOPACK

UVM_ PHYSICAL
UVM_ABSTRACT
UVM_READONLY

UVM Field Macro Flags

Multiple flags can be
bitwise OR-ed together

Set all operations on (default)
Use the default flag settings

Do not copy this field Can also add the flags together

but bitwise or'ed is safer

Do not compare this field (avoids double incrementing)

Do not print this field
(not documented in User Guide or Reference Manual)
Do not pack or unpack this field

Treat as a physical field. Use physical setting in policy class for this field
Treat as an abstract field. Use the abstract setting in the policy class for this field
Do not allow setting of this field from the set_* local methods

Mentor warns about Users like the
inefficiencies ease of use

60

oo UVM Macro Flags

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

NODEFPRINT removed from
uvm-1.1c documentation

Unused
— = (commented out)

f—

/7
UVM Ij)aram
'

These flags do
_| the same thing

-
/’>\‘
AEIEIEIE
A IR I 2 E 2 >
F— 2|8 |8 a3 (8] & S & A: By
ggmgfﬂﬁnm 3 G g O
%ﬁﬂmﬁm O
L N FAN FAN FAIN Fd N K

UVM_DEFAULT |

1

o
o
o
o
o
o
o
[
o
[
o
[
o
[
o
[

UVM_ALL_ON

4

A

10|0(0|0O(O0O|O0O(O0O|O0O}2|0O}2|O0O}|2(O0}|1(0]|1

Cliff prefers
"All On"

SYSTEMS INITIATIVE

Equivalentts® / /

UVM_PACK | UVM_RECORD | UVM_PRINT | UVM_COMPARE | UVM_COPY

5i0)

61

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

Field Macro Flags

Adding Multiple Flags

class trans3 extends uvm sequence item;
rand bit [7:0] a, b, c;

"uvm_object utils begin(trans3)

Creates ALL standard transaction
methods for these variables

‘uvm field int(a, UVM ALL ON) 7
"uvm field int(b, UVM ALL ON)

‘uvm field int(c, UVM ALL ON | UVM NOCOPY)

"uvm_object utils end

AN

function new (string name="
super .new (name) ;
endfunction

Creates ALL standard transaction
methods for this variable
EXCEPT copy ()

"include "print” trans.sv"
endclass

e Legal Exception FLAGS:
UVM NOCOPY UVM NOCOMPARE UVM NOPRINT

UVM NOPACK UVM NORECORD

OFF-FLAGS have precedence
over ON-FLAGS

62

2019

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

Adding Field Macro Flags

Multiple Flags Using | or +

Setting multiple flags with | separation is preferred

"uvm_object utils begin(trans3) Mistakenly OR-ing UVM NOCOPY
‘uvm field int(a, UVM ALL ON) twice still yields no-copy operation

"uvm_field int(b, UVM ALL ON)
"uvm_field int(c, UVM NOCOPY | UVM ALL ON | UVM NOCOPY)
‘uvm_object utils end

Setting multiple flags with + separation is legal

"uvm_object utils begin(trans3) Mistakenly adding UVM NOCOPY
"uvm field int(a, UVM ALL ON) twice clears the no-copy bit

"uvm field int(b, UVM ALL ON)
‘uvm_field int(c, UVM NOCOPY + UVM ALL ON + UVM NOCOPY)
‘uvm_object utils en

c variable will be copied |

63

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

Efficiency Benchmarks

SYSTEMS INITIATIVE 64

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

Benchmarking Methodology

From test1.sv File

* testl component with a tight loop:
— Transactions repeatedly: (1) randomize () (2) copy () (3) compare ()

SYSTEMS INITIATIVE

task run_phase (uvm_phase phase) ;

‘ transl trl = transl::type id::create("trl");

transl x1 = transl: :type_id: :create("x1") ;

Create trl and x1
transactions

phase.raise objection (this);

“include CNT value
from separate file

trl.randomize () I

Copy trl to x1 I

| repeat(\CNTT begin «
if (!'trl.randomize()) "uvm fatal(...);
Tight | 1 . copy (trl) ;)
loop | ;¢ (xl.compar;7;;IYY\EK§§‘Ttr}%+~\“‘\§\
| else R(trl, x1); —
end
phase.drop objection(this) ;
endtask

Compare trl to x1 I

65

oo Benchmarking Methodology

DESIGMN ARD VERIFICATIOMN™

DVLCOIN From trans1.sv Files

 How to setup transactions is always tricky -

All benchmark code is
in Annex B of the paper

\

e transl transactions benchmarks:

You can try it! I

— 5 rand inputs <

All inputs randomized I

— 5 rand outputs

— 5non-rand outputs

Penalty for unnecessary
randomization of outputs??

— do_copy () &do_compare ()

— Field macros <«

Penalty for using
field macros??

— do_copy () with & without super.do copy ()

— do compare () with & without super.do compare ()

Penalty for unnecessary calls
to super-base methods??

SYSTEMS INITIATIVE

66

oo Benchmark Results

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

2018 Benchmarks

Penalty Benchmark

Simulator A

Simulator B

Simulator C

Unnecessary rand-outputs

-vs- non-randomized outputs
(Using do_methods())

CNT=100M

16.5% slower

CNT=100M

11.3% slower

CNT=100M

13.8% slower

Unnecessary rand-outputs -vs-

non-randomized outputs
(Using Field Macros)

Penalty for using Field Macros
-vs- using do_methods|)

Penalty for calling unnecessary

super.do_methods()
accellera

SYSTEMS INITIATIVE

12.1% slower

6.0% slower

2.4% slower

5.3% slower

13.8% slower

3.3% slower

11.8% slower

3.9% slower

2.2% slower

Do NOT randomize

transaction output fields

4

Using Field Macros
has a penalty

Calling
super.do methods ()
has a small-ish penalty

67

oo UVM Basic Transaction Objects

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

 On the next slides, we will build:

— transl-

— read sequence, write sequence

P

Basic transaction type built
from uvm_sequence item

<

Example uvm sequence code I

— wri te_read <

SYSTEMS INITIATIVE

Example sequence of sequences I

68

oo UVM Transaction

DESIGMN ARD VERIFICATIOMN™

DVEOIN (Built from uvm_sequence_item)

Extend uvm sequence itemto
build the base transaction

class transl extends uvm sequence_item;

"uvm_object utils(transl) NOTE: 'uvm object utils
NOT "uvm_sequence utils

 * Randomizable

data members

Register the transl object
— in the UVM factory

rand bit rw n, cs_n;
rand data_t data;
rand addr_t addr;

A Ar

typedef enum {READ, WRITE} rw_e; <« Randomization
rand rw_e rw_type; <« "knob"
constraint cl {(rw _type == READ) -> rw n == 'l; < Randomization
(rw_type == WRITE) -> rw n == '0;}* constraints
function new(string name="transl£) ; Common transaction
super .new (name) ; constructor (no parent)
endfunction
Optional: add convert2string () Guideline: create transactions by
< and post randomize () methods extending uvm_sequence item
(next slide) (it is common to create sequences of transactions)

69

oo UVM Transaction

DESIGMN ARD VERIFICATIOMN™

DVECIN Add convert2string() & post_randomize()

class transl (cont)l

Returns a formatted

/’ string for this object
function string convert2string() ;

return ($sformatf (" addr=%3h data=%2h rw n=%b cs n=%b",
addr, data, rw n, cs _n)});

endfunction
Prints the formatted string

after randomize ()

function void post randomize () ; <
‘uvm_info("transl", this.convert2string(), UVM HIGH) ;
endfunction
endclass

70

oo Sequence: read_sequence

DESIGMN ARD VERIFICATIOMN™

DV (Read sequence definition)

Extend uvm sequence to build a
sequence of transactions

uvm_sequence is a parameterized class
(passes transl transactions)

super .new (name) ;

class read sequence extends uvm sequence #(transl);
"uvm_object utils(read sequence) <«

Register the read sequence

in the UVM factory
(object type)

. -] | " . o
function new(string name="read sequence"); « Common constructor

endfunction

body method

task body;*””//f’#f///’/”/’

transl tr;

start item (tr);

finish item (tr);

tr = transl::type id::create("tr");

if (! (tr.randomize() with {rw type==READ;}))
"uvm_error ("RAND", "Failed randomization")

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer
(4) randomizes the tr data
with added constraint (READ sequence)

(5) finish communication with the sequencer

endtask
endclass

71

oo Sequence: write_sequence

DESIGMN ARD VERIFICATIOMN™

DV (Write sequence definition)

Extend uvm sequence to build a
sequence of transactions

uvm_sequence is a parameterized class
(passes transl transactions)

super .new (name) ;

class write sequence extends uvm sequence # (transl);
"uvm_object utils(write_ sequence)«

Register the write sequence

in the UVM factory
(object type)

. - | | : " . o
function new(string name="write sequence") ; < Common constructor

endfunction

body method

task body;"””*//’/’/’/’*/’*

transl tr;

start item (tr);

finish item (tr);

tr = transl::type id::create("tr");

‘uvm_error ("RAND", "Failed randomization")

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory

if (1 (tr.randomize() with {rw type==WRITE;})) (3) start communication with the sequencer

(4) randomizes the tr data

(5) finish communication with the sequencer

endtask
endclass

with added constraint (WRITE sequence)

72

o0 Sequence: write_read

DESIGMN ARD VERIFICATIOMN™

DVCOIN

mrecesmemen(S€QUeENce defined using other sequences)

Extend uvm sequence to build a
sequence of sequences
47\

uvm_sequence is a parameterized class
(passes transl1 transactions)

class write read extends uvm sequence # (transl);

"uvm_object utils(write read) <«

rand int cnt; <«

Register the write read
in the UVM factory

constraint loop cnt {cnt inside {[3:5]};} <«

function new(string name="write read");
super .new (name) ;
endfunction

Common constructor I

task body;

Setup and constrain
randomizable cnt

write sequence wseq;i;__________________———————”‘
read sequence rseq; "_,,,————””””—
wseq = write_ sequence::type id::create("wseq");
rseq = read sequence::type id::create("rseq");

Standard steps:
Declare and create write sequence (wseq)
and read sequence (rseq)

repeat (cnt)igégin

Randomized repeat (cnt) I

wseq.start (m_sequencer); «
rseq.start (m_sequencer) ;

end ‘\\““-\\\\\\\\\\\\\
endtask

endclass

Start write sequence (wseq)
onm_sequencer

Start read sequence (rseq)
ONm_sequencer

73

o0 uvm_do Macros

DESIGMN ARD VERIFICATIOMN™

DVI

COMFERENCE AMD EXHIBITION

| h uvm_do

uvm_do sequence actions

Oor sequence item |

Macro Inputs UVM actions

- — -

= = S|~ | E

<] Z gE | - | 0

E a4 H Q Q +

H [g ~ | ¥ N L
Il O a4 ~ | A - I

x| = S B Il g€ | =

O F 0N + + (¢} 0

|) = © H o) s

QR QR O () L) o =

F F O H L © e

n ()] — 0 0 S H

I‘uvm_do(I) X X X | X | X

Common |

‘uvm_do_with (I, {C}) X XIx|[x]|x]|x

. I‘uvm_do_on(I,S) X| X XX | X|[X
vsequencer | yym do on with(I,S,{C}) X | X X x|[x]|x|x
| “uvm_do_pri (1, ") X X X[x|[x|x

Less | uvm do_pri with(I,”,{C}) X X[x| x|x|x]|x
Common | uvm do_on_pri(I,s,") X | X|x X | X|[x]|Xx
ol | uvm_do_on_pri_with(I,s,~,{c}) | X [X [X [X | x| X |X|X

SYSTEMS INITIATIVE

oo Summary of Rules

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

* do_methods () rule: you mustuse "uvm object utils()
« Field macros rule: declare the transaction variables before calling field macros

« Field macros rule: declare variables before registering the transaction with the
factory

* Field macros rule: you must use:
"uvm_object utils begin() / ‘uvm object utils end

* Field macros rule: each variable in a separate field macro

Variables cannot be grouped into
a common field macro definition

SYSTEMS INITIATIVE

2019 Summary of Important Guidelines

DESIGMN ARD VEH FICA‘I‘IGN

DVL

COMFERENCE AND HEmDN

« Guideline: do not directly override standard trans methods

copy (), compare (), etc. | Get a life !!

« Guideline: never manually implement the create () method

Call "uvm object utils() to automatically implement create ()

« Guideline: Transactions should include a convert2string () method

Always !! I

* Guideline: Avoid using the print () and sprint () methods

The outputs are verbose

« Guideline: If you must, use sprint () over print ()

sprint () can be called
acce//q from messaging macros

Better yet ... use
convert2string ()

SYSTEMS INITIATIVE

convert2string () iS more simulation
and more print-space efficient

76

.................... —_ﬂ/—
EEEEEEEEEEEEEEEEEE S unbursf DGSign
~

Thank you!

Please continue with Part 2

accellera)

SSSSSSSSSSSSS

2019

DESIGM AMND VERIFICATION™ ﬂ\'

DV ,

COMFERENCE AMD EXHIBITION S u n bu rsf DGSIg n
~—

IEEE 1800.2 UVM - Changes

Useful UVM Tricks & Techniques
Part 2

Clifford E. Cummings
World Class Verilog, SystemVerilog & UVM Training

Life is too short for bad
or boring training!

1639 E 1320 S, Provo, UT 84606
Voice: 801-960-1996

Email: cliffc@sunburst-design.com l Conni?t I:Vict:lhﬂ;l:"ﬁ l
on Linke
Web: www.sunburst-design.com

SYSTEMS INITIATIVE

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

UVM Basic Message Commands

Same techniques apply to OVM

Good reference paper:
UVM Message Display Commands - Capabilities, Proper Usage and Guidelines
www . sunburst-design.com/papers/CummingsSNUG2014AUS UVM Messages.pdf

SYSTEMS INITIATIVE

oo Introduction Why the UVM

DESIGMN ARD VERIFICATIOMN™

DVEOIN messages paper ??

« UVM verbosity settings are NOT message priority settings!

UVM Verbosity # Message Priority !!

UVM Verbosity = /(Message Priority)

UVM_LOW is not a low priority message
UVM LOW is one of the highest priority messages !!

_) UVM User Guide
Reference sources and public examples ... get it wrong !! | uvm cClass Reference
+2 recent UVM books

The paper offers guidelines on proper usage
The paper shows useful messaging tricks

oo UVM Basic Printing Guidelines

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

* Printing command types
— Verilog $display commands -«

Guideline: quit using $display
(quit using $display / Swrite / Sstrobe)

— Messages & messaging macros [guideline: replace $display commands with:
‘uvm_info ("id", "msg", UVM MEDIUM)

UVM LOW should almost

. | NEVERbeused
— UVM LOW
- ‘ Widely misused in books

and examples

< Guideline: override convert2string

B convertZStr:Lng method in all data/transaction classes
User-defined formatting

(like $Sdisplay) convert2string becomes a built-in
"show_my contents” method
accellera

o0 UVM Message Facilities

DESIGMN ARD VERIFICATIOMN™

DVCOIN

Good messaging reference:
A Practical Guide to Adopting the
EONFERENCE AND EXHIBTION Universal Verification Methodology (UVM)
Rosenberg & Meade

 S$display - does not allow easy message filtering

- uvm report info/fatal* methods allow message filtering

— byid -or- e —

— Dby verbosity settings

uvm report info/fatal* methods include:

uvm_report info

uvm_report warning(..
uvm_report error
uvm_report fatal

* ‘uvm info/fatal* macros: -
— Further simplify usage of uvm report info/fatal®
— Include automatic file and line number reporting

“uvm_info/fatal* macros include:

) uvm_info

(..

‘uvm_warning(. ..

‘uvm_error
"uvm_fatal

(
(

-)

)
)
)

— Are more simulation efficient than uvm report info/fatal * methods

These macros
recommended
by all vendors

\

Macros avoid $sformat processing

SYSTEMS INITIATIVE

o0 uvm_report_info/fatal* Messages

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

« UVM has reporting services built into all uvm component(s)

 UVM messages take up to 5 arguments (last 3 have defaults)

string id < Two string values:

string message <« "id" and "message”

_ _ Default verbosities:

int Verbos1ty=<default_Value> < uvm report info: UVM MEDIUM
uvm_report warning: UVM MEDIUM
uvm_report error: UVM_LOW
uvm_report fatal: UVM_NONE

string filename=""

\ Optional: user can list file name and line number

int line=0 * (for debug purposes)

task run;

uvm_report info("run", "env still running", UVM HIGH) ;
accellera endtask

SYSTEMS INITIATIVE

oo uvm_info/fatal* Macros

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

 UVM macros are more simulation efficient than messages

Explanation on the next slide

 UVM macros take 2-3 arguments, depending on macro type

string id < Two string values:
string message "id" and "message”

A

Only "uvm info allows
a verbosity setting

int verbosity

A

Default macro verbosities that cannot be changed:

‘uvm warning: UVM NONE Macros automatically include

file name and line number

‘uvm_error: UVM NONE d for deb)
‘uvm_fatal: UVM NONE (9ood for debugging)
task run;

‘uvm_info("run", " env still running", UVM HIGH)
accellera endtask

SYSTEMS INITIATIVE

0o UVM Messaging Macro Advantages

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

 UVM message macros: LGP T sACisIortE

/ calls in an if-statement

— Are more simulation efficient
More efficient than \ Removes expensive string processing

uvm_report methods if the verbosity setting would exclude
the uvm report * calls

SystemVerilog-2009 I
— Include|’_FILE__and '__LINE_ _|arguments

A Automatically reports file and line

numbers - good for debugging

To turn off FILE During Compilation: use command line switch
and LINE info +define+UVM REPORT DISABLE FILE LINE

— ‘uvm warning/error/ fatal include pre-defined default UVM VERBOSITY settings

Avoids new-user mistakes

(like setting uvm report error verbosity to UVM HIGH)
accellera = = —

SYSTEMS INITIATIVE

v

o0 convert2string()

DESIGMN ARD VERIFICATIOMN™

DVCOIN
COMFERENCE AMD EXHIBITHON Default retu rns nww I

* convert2string () is a virtual function defined in uvm object

« convert2string () is user-defined in the data/transaction class
— This virtual function is a user-definable hook < From uvm_object base class |

— Called directly by the user - Simple & simulation efficient |

: : : : : Fields declared in "uvm field * macros
— | Users provide object info in the form of a string will not automatically appear in calls

to convert2string()

— Nouvm printer policy objectrequired «—
Unlike sprint

A

— Format is fully user-customizable Good for applications that do not require

consistent formatting offered by:
Guideline: add convert2string () to all print/sprint/do print

data/transaction classes
accellera

SYSTEMS INITIATIVE

oo $sformat, $sformatf & $psprintf Commands

DESIGMN ARD VERIFICATIOMN™

DV LI \What Are The Differences?

« $sformat is used to generate a formatted string

Stand-alone |

String to be

written

Formatted string or variables

that represent strings

Arguments that satisfy
format specifiers

command I

$sformat (stri;;g_var, "formattc;.'d_string" [, Iist_of_argum‘énts]);

« Ssformatf behaves like $sformat except:

— Function that returns a string
— Therefore - no first string_var argument

Function that
returns string

(Can be integral or unpacked array of byte) I

Formatted string or variables
that represent strings

Arguments that satisfy
format specifiers

string_var =|$sformatf ("formatted_string" [, list_of _arguments])

NON-standard

v

v

.
14

°|$psprin

tf \- same as Ssformatf -

Appears to be implemented by all vendors

10

oo UVM Message Verbosity

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFEREMCE AMND EXHIBITION

 What is verbosity?
— Highly verbose simulations would show lots of messages
— Minimally verbose simulations would only show important messages

<sim_cmd> +UVM_VERBOSITY=UVM HIGH |

500 = UVM_DEBUG Print if selected verbosity is UVM DEBUG

Print if selected verbosity is UvM FULL or lower
Print if selected verbosity is UVM HIGH or lower
Print if selected verbosity is UVvM MEDIUM or lower

Print if selected verbosity is UVM LOW or lower Cannot be disabled by
Print always <« verbosity level setting

verbosity without recompiling!

@s im cmd> +UVM VERBOSITY=UVM DEBUG “II"IFFVE Run-time command - run with a different
dccelier.

SYSTEMS INITIATIVE

11

oo UVM Message Verbosity

DESIGMN ARD VERIFICATIOMN™

DV Equivalent Verbosity Values

* UVM built-in uvm_verbosity enumerated values:

UVM DEBUG = 500 <« Prints level 500 and lower I
UVM FULL = 400

UVM HIGH = 300

UVM_MEDIUM = 200 - Prints level 200 and lower |
UVM LOW = 100

UVM NONE = 0

« Two ways to change the verbosity for debugging:

<sv_sim cmd> +UVM VERBOSITY=UVM LOW < Does not require re-compilation

set report verbosity level hier (UVM LOW) ; « Can be put in a test I

SYSTEMS INITIATIVE 12

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

Useful Debugging Trick

SYSTEMS INITIATIVE 13

oo Testbench & Factory Debugging

DESIGMN ARD VERIFICATIOMN™

DV Unconditional Printing

« Good technique to view testbench and factory setup

class test_base extends uvm_test;

uvm_factory factory=uvm factory::get()

start of simulation phase
(after the testbench is built and connected)

super.start of simulation phase (phase) ;

function void start of simulation_ phase (uvm phase phase) ;

this.print(); -

Add this code to print out the testbench structure

factory.print () ;
endfunction <

Add this code to print out the factory
entries and overrides

endclass | pROBLEM: these printouts are unconditional I

(not controlled by verbosity) |

Could use “uvm_info (.. this.sprint() ..) |

35‘6‘8//8!‘3 There is no factory.sprint ()

SYSTEMS INITIATIVE

14

oo Testbench & Factory Debugging

DESIGMN ARD VERIFICATIOMN™

DV Verbosity-Controlled Printing

Cool
Trick

« Better technique to view testbench and factory setup

class test_base extends uvm_test;

uvm _factory factory=uvm factory::get();

super.start of simulation_ phase (phase) ;

_

start of simulation phase
(after the testbench is built and connected)

function void start of simulation phase (uvm _phase phase);

if (uvm _report enabled(UVM HIGH)) begin

Conditionally execute *.print () commands
when verbosity= UVM HIGH or higher

this.print (), <

&

factory.print () ;
end
e
endfunction

endclass

Print testbench structure
and factory entries

SYSTEMS INITIATIVE

Allows conditional printing
based on verbosity

15

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

SSSSSSSSSSSSSS

UVM Documentation Errors

16

oo EXisting Documentation Problems

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

UVM_LOW is pervasive in References, Books & Examples

UVM User Guide

 Uses $display once

No wonder the UVM books get it wrong! I

* Uses 3 "uvm_info macros with bugs in the examples
¢ Uses 5 "uvm_info macro examples with UVM LOW - wrong verbosity

¢ Uses 2 "uvm_info macro examples without UVM LOW - correct!

UVM Class Reference
¢ Uses 1 "uvm_info macro with bugs in the example
¢ Uses 3 "uvm_info macro examples with UVM LOW - wrong verbosity

¢ Uses 2 "uvm_info macro examples without UVM LOW - correct!
Popular UVM Book published in 2013

* More than 20 examples improperly use UVM_LOW \

Popular UvM Beginner's Guide pUthhed in 2013 For low-priority messages
* More than 30 examples improperly use UVM_LOW —

17

o0 Summary of Important Guidelines

DESIGMN ARD VERIFICATIOMN™

DV Sunburst Design Usage Guidelines

Think of "uvm info as your new $display command

Macro Type/Verbosity ‘ Usage Guideline |
- Non-maskable* l
vm_fatal (..)

‘u fatal - test-aborting errors

‘uvm_error (..) non-aborting simulation errors

‘uvm_warning (..) error-inject warnings < Use sparingly! |
‘uvm_info (.. UVM NONE) for final reports -
‘uvm_info (.. UVM LOW) high priority messages - @l
‘uvm_info (.. UVM MEDIUM) | normal messages - replaces $display

----------------------------- Above messages print by default --------====s=eecemmeaeeaua--

18

oo Section Agenda

DESIGMN ARD VERIFICATIOMN™

DV Using UVM Analysis Ports & Paths

+ Basic queues, mailboxes and TLM FIFOs - 1%t pass |

« Subscriber satellite TV analogy

* Analysis paths & analysis ports, exports, and imps

e TLM FIFOs - More detaill
* Importance of the copy () method

 How analysis port connections work - write () method

« Summary & Conclusions

The paper has more details
and more examples

UVM Analysis Port Functionality and Using Transaction Copy Commands
www . sunburst-design.com/papers/CummingsSNUG2018AUS UVMAnalysisCopy.pdf

SYSTEMS INITIATIVE

19

oo Important SystemVerilog Features

DESIGMN ARD VERIFICATIOMN™

D

=2 PAY ATTENTION !

Queues will be used to store component handles I

- Can store class handles -
* QUGUGS . great for storing connected components

— push back () method to put a handle into the queue
— foreach () method to walk through all stored handles
— Does not have blocking get () method - Not too useful for scoreboards I

Mailboxes will be used to store fransaction handles I

. : - Can store class handles -
Mailboxes - great for storing transactions
— Has nonblocking try put () method
— Has blocking get () method -« Important for scoreboards I
» Analysis path considerations: Must include write () method |

— Must start with uvm analysis port and end with vm_analysis_imp I
»— uvm tlm fifo cannotterminate an analysis path |

— uvm_tlm analysis fifo CAN terminate an analysis path | Built using mailboxes |
- |

acce//era Very useful for scoreboards !!

SYSTEMS INITIATIVE

o0 Subscriber Satellite TV Analogy

DESIGMN ARD VERIFICATIOMN™

DV

COMFERENCE AMD EXHIBITION

Vian
4

NV

Van
4

Two ways to watch a broadcast satellite TV program
— Watch the program live)
— Record the program to a DVR to view later

NV

{

J— There might be 1,000's of viewers I

\

Satellite programs are broadcast as scheduled

There might be NO viewers I

No way to restart a broadcast program «—{ No way to communicate back to the satellite |
\

Other viewers would object to restarting the program

Subscribers not allowed to change_the live program

\

SYSTEMS INITIATIVE 21

With the right equipment, you can modify your copy

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

Analysis Port Connections

and TLM FIFOs

SSSSSSSSSSSSSS

2019

DESIGMN ARD VERIFICATIOMN™

DVCON

COMFEREMCE AMND EXHIBITION

SYSTEMS INITIATIVE

Common UVM Components

Overview Block Diagram

top

testl

e

tb _scoreboard

1

... the monitor becomes the
broadcast source for the transaction

Analysis (broadcast) port I

tb_monitor

After the monitor samples

signals from the DUT ...

23

oo UVM Testbench Analysis Port Paths

DESIGMN ARD VERIFICATIOMN™

DV Common Paths - Monitor to Multiple Subscribers

1 broadcast port to
3 termination imps

uvm_analysis imp
(required termination imp)

uvm_analysis imp
(required termination imp)

tb agent ___

tb_s coreboard

sb _comparator

tb monitor

uvm_analysis port
(broadcast source)

> outfifo
> A

uvm_analysis port
(transfer port)

SYSTEMS INITIATIVE

uvm_analysis_export(s)
(transfer exports)

uvm_analysis imp
(required termination imp)

24

oo UVM Testbench Analysis Port Paths

DESIGMN ARD VERIFICATIOMN™

DV Common Paths - Predictor to Expected Transaction FIFO

1 broadcast port to
1 termination imp

SYSTEMS INITIATIVE

uvm_analysis port
(broadcast source)

/

tb_s coreboard

sb _comparator

] o) _predictor

/

[
>

:

/

uvm_analysis_export(s)

(transfer exports)

uvm_analysis imp
(required termination imp)

25

oo UVM Analysis Port Paths

DESIGMN ARD VERIFICATIOMN™

DVLCCOIN | EGAL Paths

o

uvm_analysis port
(broadcast source)

The most simple analysis path is a
uvm_analysis port (broadcast source)

with no subscribers

A 4
y

write ()
method

uvm_analysis_imp
(termination imp)

uvm_analysis port
(broadcast source)

SYSTEMS INITIATIVE

uvm_analysis_ port(s)
(optional transfer ports)

uvm_analysis_export(s)
(optional transfer exports)

uvm_analysis imp
(required termination imp)

26

oo UVM Analysis Port Paths

DESIGMN ARD VERIFICATIOMN™

DVCOIN |LLEGAL Paths

uvm_analysis port
(broadcast source)

Not automatically called from
auvm_analysis export

axpl

wini teA)
method

uvm_analysis export

uvm_analysis export
(transfer export)

BAD: uvm analysis imp

(imp must be last in the chain) L........cccevieicssnecssneassnnnnnnnss .

A 4

uvm_analysis port
(broadcast source)

SYSTEMS INITIATIVE

write ()
method

BAD: uvm analysis port(s)
(ports cannot follow exports)

BAD: uvm_analysis_export

(export cannot terminate the chain)

27

o0 UVM Analysis Ports

DESIGMN ARD VERIFICATIOMN™

DV Recommended Usage

Outgoing
transactions

Use uvm _analsys port(s)

uvm_analysis port (s)
(optional transfer ports)

uvm_analysis port
(broadcast source)

SYSTEMS INITIATIVE

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

Incoming
transactions

UVM Analysis Exports & Imps

Recommended Usage

Use uvm_analsys export(s)
& uvm_analysis imp

SYSTEMS INITIATIVE

—

uvm_analysis_export(s)
(optional transfer exports)

I uvm_analysis imp

| (required termination imp)

[

Requires
write () method

29

oo Common Analysis Port Connections

DESIGMN ARD VERIFICATIOMN™

DVCOIN Recommended Connections

Predictor extends
uvm_subscriber

uvm_tlm analysis fifo
blocks

Comparator extends
uvm_component

uvm _analysis_ imp inherited from
uvm_subscriber - the handle . tb scoreboard
name is analysis_export write ()
sb_predictor method sb_comparator

task run phase(...);

transl exp tr, out tr;
function forever begin B
O <> O e ~~ > expfifo.get(exp_tr);

uvm_analysis export I ~outfifo.get (out_tr);
~~ g
> O tlm fifo

uvm_analysis port

uvm_tlm analysis fifo
get () method interface

uvm_analysis port I

write () method built into
uvm_tlm analysis fifo

uvm_analysis_ export I

tb monitor —— :
- uvm_analysis imp declared in

uvm_tlm analysis fifo -the
handle name is analysis export
SYSTEMS INITIATIVE 30

DESIGMN ARD VERIFICATIOMN™

COMFEREMCE AMND EXHIBITION

TLM FIFOs - Definitions & Usage

SSSSSSSSSSSSSSS

oo TLM FIFOs & Scoreboards

DESIGMN ARD VERIFICATIOMN™

DV SystemVerilog Queues & Mailboxes

« Scoreboards typically store expected and actual transactions
« SystemVerilog has queues and mailboxes - Which should be used? |

awrite () function

I VERY
Do not use useful \
Cannot be called from \\ N Blocking tasks (wait until success) I

X ¥
| —puttEr) I mbx.get (exp_tr) I
Nonblocking functions
(these do not wait - complete in 0-time) |
q.push front (tr) I q.pop_back (exp tr) I mbx . try put(tr) I mbx—try get{exp—tr) I
* 4 <
\ \
Queue example: Not very Mailbox example:
transl q [$]; useful mailbox #(transl) mbx; Do not use |
j - onbut]
EL‘L‘E//E!‘E Called from a write () function but Used by
Hard to use in a scoreboard I throw away the return status TLM FIFOs !!
SYSTEMS INITIATIVE 32

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

uvm_tim_fifo

Most Common Usage

uvm_tlm fifo
local mailbox #(T) m

Although there are 2 non-analysis imp ports
and 2 analysis ports on the uvm tlm fifo,

exp fifo=new("exp fifo", this, O0);

0 means
unbounded

The uvm tlm fifo, will be constructed
to be unbounded. Example:

< |

they typically are not used
try put () method stores
into the mailbox

local mailbox #(T) m

get () method retrieves
from the mailbox

-
|

The uvm analysis imp write(tr) method
will call void' (try put(tr))

|

The scoreboard comparator will call the
blocking get (tr) method and wait to

|

retrieve a uvm_tlm fifo transaction

void-cast to throw away the try put () return-status
(try put () always succeeds on unbounded fifo's mailbox)

SYSTEMS INITIATIVE

33

uvm_tlm analysis fifo

o0 uvm_tlm_analysis_fifo

DESIGMN ARD VERIFICATIOMN™

DVESLY Most Common Usage <analysis_export>

local mailbox #(T) m

Although there are 2 non-analysis imp ports
and 2 analysis ports on the uvm tlm fifo, The uvm tlm analysis fifo
they typically are not used is unbounded by default

N\

uvm_tlm analysis fifo

_ _ _,| get() method retrieves

/« from the mailbox

uvm_analysis imp with handle name [
analysis_export is almost always used The scoreboard comparator still calls blocking
T get (tr) method and waits to retrieve a
uvm_tlm analysis_ fifo transaction

Termination of an analysis-path

imp already has write (t)
method built-in

I

Internally executes: |
EQ\LE void' (this.try put(t));

SYSTEMS INITIATIVE 34

oo Typical Scoreboard

DESIGMN ARD VERIFICATIOMN™

DVEOIN Using uvm_tim_fifos

uvm_tlm fifo[s] do not have
uvm_analysis impl[s]

Uniquely named
write () methods

Uniquely named
analysis tb scoreboard
imp[lementations]

fifao .
\\ vFunction Write_prd(.. .) J‘ ta:k run_p;as? (.. .) ;
\ ... expfifo.try put() "7~ ‘ tlm_flfO;I _ ‘torever begin

) 4

. -~ > expfifo.get(exp tr);
function write out(...) -" __—» outfifolget(out_tr);

. outfifo.try put() =~~~ ‘ tlm fifo \

) 4

Requires two run phase () calls blocking
‘uvm_analysis imp decl (SFX) get () methods

tb _agent A
—
ports uvm_ tlm £ifo[s] must be

This macro and its usage constructed to be unbounded
are described in the paper

tb_moni tor

SYSTEMS INITIATIVE 35

oo Typical Scoreboard

DESIGMN ARD VERIFICATIOMN™

DVECIN Using uvm_tim_analysis_fifos

Predictor extends
uvm_subscriber

uvm_tlm analysis fifo [s] have built-in
uvm analysis imp [s] with write ()-methods

analysis

port
tb_scoreboard /

Built-in analysis
imp[lementation]

sb_comparator

expfifo/[| task run phase(...);

»function write(...)]
analysis ‘\ ...ap.write() "~~~ > <> <) tlm fifo forever begin

sb predictor

export T expfifo.get(exp tr);

‘ __voutfifo/.get(out tr);
///'

{) tlm fifo |
analysis

exports run phase () calls blocking

get () methods
tb _agent :
Built-in analysis
P imp[lementations]

tb_moni tor

SYSTEMS INITIATIVE 36

oo Creating & Copying Transactions

DESIGMN ARD VERIFICATIOMN™

DVCON .
CONFERENCE AND EXHISITION Predictor write () method creates Pointers to etr #1
new etr and copies trans_____ o
These are just — / ““““““ \ _____
pointers to tr #1 _~letr #1 ‘,:::——‘—’—'- ::: etr #1'e> | T exp_tr (etr ¥l e)
copy () etr #2 | etr #2 o> exp tr (etr ¥2e>)
b ()
fif .
function ite...) expriro task run_phas§(...),
O . DR - forever begin
...ap.write(-< i
> expfifo.get(exp tr);
e __voutfifo.get(out tr);
tr #1 o> | tr #1-e> out tr (tr_#1 e>»)
- tr #2 e —— tr_#2e> |----— out tr (tr_#2e>)
- |JmasIsThe actual tx #1) o o-eeeeem o

y-==—-" __==="T ==

forever begin -
sample dut(tr);* Create n.e‘.N trans and sample DUT signals

aport.write (tr); «<— Broadcast this new transaction
task run phase(...); end]

endtask

tb_monitor

SYSTEMS INITIATIVE

oo Comparing TLM FIFOs

DESIGMN ARD VERIFICATIOMN™

DVEOIN uvm_tim_fifo -vs- uvm_tim_analysis_fifo

Scoreboard :

Requires write () method
with try put() command

uvm_tlm fifo, must be constructed to be unbounded I

/ \
/ \ /
/ \
/ \

_ _ _,| get() method retrieves

4
= kb

uvm_analysis imp I

uvm_tlm analysis fifo, is unbounded by default

L

uvm_ tlm analysis fifo

uvm_analysis export I

»
»

get () method retrieves

local mailbox #(T) m from the mailbox

write () method
built-in

Scoreboard makes
connection

SYSTEMS INITIATIVE

oo Ports & Exports

DESIGMN ARD VERIFICATIOMN™

DV |s the Naming Backwards?

 How to think about Ports and Exports

* Automobile features:
— Steering wheel
— Accelerator pedal
— Brake pedal

— Hands-free Bluetooth-phone connection

SYSTEMS INITIATIVE

39

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

Analysis Path Basics

In the software world, this is known
as the "Observer Pattern”

How do analysis port-paths work?

SYSTEMS INITIATIVE

oo How Does UVM Work?

DESIGMN ARD VERIFICATIOMN™

E!M.:EMEKH.EW You now know how to use:
On previous slides I (ST EIEL RS PeEE
uvm_analysis export
* We have learned about analysis ports & TLM FIFOs «— wuvm analysis imp
uvm _tlm fifo
uvm_ tlm analysis fifo

You now have enough knowledge
to use analysis components

 You do not have to know how UVM works -

* The best engineers want to have some understanding on how UVM works

* The remaining slides show how UVM makes subscribers work

This is NOT
UVM code !!

AN

SYSTEMS INITIATIVE

These slides show how UVM uses queues and foreach
loops to call each subscriber's write () method

This is a basic version of what
UVM does internally

This is a high-level tutorial on how
monitors and subscribers work

This is not exactly how UVM works,
butitis close

oo Monitor with Multiple Subscribers

DESIGMN ARD VERIFICATIOMN™

DVCON

Goal |

« Create a Monitor that can connect to any number of subscribers and can call a
write () method from each subscriber without modifying the Monitor code

— Version #1 <— top module must know subscriber handle names in the Monitor I X

The monitor ... I

Must declare each
subscriber handle

— Version #2 <«—— Monitor w/ generic connect () method to hide subscriber handle names \/
The monitor ... I

v

% Has no connect () method X Must call write () method
Must copy handles by name for each subscriber

X

Has queue of
subscriber handles

SYSTEMS INITIATIVE 42

‘/ Defines common connect () ‘/ Uses foreach loop to call write () methods
method for all subscribers using queued subscriber handles

oo Monitor & Subsc| viztuar

DESIGMN ARD VERIFICATIOMN™

analysis if

DVCOIN Version 1 - No connect() method base class

Extended classes
must implement
write () method

[analysis if ap2;_

. . K
virtual class analysis

» pure virtual task writeltransIN\t);
endclass
\

\

class subscriberl extends ankl sis_if;

™ virtual task write(transl t);

subl

I $display("subscriberl: ",
"received ...", ...);

endtask
endclass

class monitorl;

[[analysis_if apl; <« subscriberl subl to apl

[analysis_if ap3; | subscriber2 sub2 to ap2

™~

subscriber3 sub3 to ap3

subl sub2

sub3

Each subscriber handle is copied
to the ap1-3 handles in monitorl

task run() ;

mon

sub2

Any extended
to a base ¢

mon. apl subl; copied
mon . ap2 sub2;‘g)

mon.ap3 = sub3;

In top module IJ

I
la s\§ubscriber2 extends anallysis if;
. virtual task write(...))

b3 1ass‘§ubscriber3 extends analysis if;
su ... virtual task write(...) ...

transl t = new();
repeat(5) begin

"**BROADCAST* *
apl.write(t);
ap2.write(t) ;
ap3.write(t) ;

end
endtask
endclass

void' (t.randomize()) ;
S$display("monitor: ,

" .
. ¥4 ooo),

o0 Monitor & Subscribers

DVICO Version 1 - No connect()

new () —construct mon and subl-3 | m\pdule top;

class monitorl;

analysis if apl;

analysis if ap3;

method —] analysis if ap2;
| Declare monitorl and subscriberl-3 handles I/ -

Monitor must declare
each analysis if

import tb pkg::*;
Copy subl-3 handles to ap1-3

handles in monitorl

monitorl mon;
ubscriberl subl;
scriber2 sub2;
- top i sub3;

e

subl sub2 sub3

Call the mon. run () task

subl = new();

Q @) 7\/: sub2 = new ()~

sub3 =n () :

< : /

v

With no connect () method in monitorl,
the top module must reference
names declared in monitorl

7

Version 2 will add an analysis if queue,

a connect () method and use a foreach
‘/ loop to call the write () methods
mon (next slide)

N

task run() ;
transl t = new(ti/////////
repeat(5) begin

void' (t.randomize ()) ;

Sdisplay ("monitor: "
"**BROADCAST** ...

end
endmodule

™ apl.write(t);
ap2.write(t) ;
ap3.write(t);

Repeat 5 times I

randomize ()
transaction

" .
V4

Separately call each
ap[#].write () method

end

endtask
endclass

oo Monitor & Subscribers — |

class monitor2; Monitor decl fl
DESIGMN ARND VERIFICATION™ . . . analysis_if ap[$] ; onitor eC areS queue (o) |
DVESI Version 2 - Adds analysis_if queue BED analysis_if ports
. 7 : Each call to connect () method will
Queue of analysis if handles \/ I/ No change from Version 1 *NEW* I push_back another analysis if

module top;

import tb_pkg:+*- ——

function void connect (analysis if port);
monitor2 mon ; ap'puSI_l—baCk (port) ;
ubscriberl subl; endfunction
1 sub2;
sub3;

onto the ap-queue

Common connect () method \/ l

foreach calls write () methods \/ L

Common connect () method

task run();
transl t = new();
repeat(5) begin
void' (t.randomize ()) ;
This is what UVM does! vdisplay ("monitor: *,

You don't have to do this in your UVM testbenches BROADCAST** ... ", ...}/

subl sub2

foreach (ap[i]) ap[i] .write(t);

Common connect () mon . connect (subl) ; end Each subscriber's write () method
method to connect |+ mon.connect (sub2) ; endtask is called from the ap-queue
mon = Goal achieved! endclass
| Monitor code does not require modifications
fo add more subscribers! More subscribers could be added to top

| eTrenToTrer=" module without modifying monitor2 code

45

Monitor & Subscribers

DESIGMN ARD VEH%QJTEN"
DV Simulation Output
- top
subl sub2 sub3
Q O
mon

SYSTEMS INITIATIVE

Randomized transl values
monitor: **BROADCAST* *
subscriberl: received
subscriber2: received
subscriber3: received

Randomized transl wvalues
monitor: **BROADCAST* *
subscriberl: received
subscriber2: received
subscriber3: received

addr=£9
addr=£9
addr=£9
addr=£9
addr=£9

addr=e9
addr=e9
addr=e9
addr=e9
addr=e9

data=50
data=50
data=50
data=50
data=50

data=27
data=27
data=27
data=27
data=27

Each subscriber has seen the exact
same addr and data values that were

broadcast to all subscribers

46

Subscriber2 BUG

DESIGMN ARD VEHQFQJTEN"
DVL:CIN Version 3 - modifies transaction values
subscriberl has the original transaction
class subscriberl extends analysis if; addr & data values
virtual task write(transl t);
$display ("subscriberl: ", "received addr=%2h data=%2h", t.addr, t.data);
endtask
endclass
sub3 sees corrupted class subscriber2 extends analysis if;
transaction virtual task write(transl t);
\ $display ("subscriber2: ", "received addr=%2h data=%2h", t.addr, t.data);
- top) i .
\ ifdef BUG BUC;. 1‘s:ubsi'.:c;::'.‘z.k;)erZdmodtlfil:es the ta:ddr &
— Q1 . ata o e proadcast transaction
subl sub2 sub3 t.addr = 8'hFF;
t.data = 8'h00;
BUG $display("subscriber2: ", "set addr=%2h data=%2h", t.addr, t.data);
Q Q “endif))
NEVER modify the broadcast transaction !!
endtask
endclass
subscriber3 now sees the modified
class subscriber3 extends analysis if; transaction addr & data values
mon virtual task write(transl t);
Sdisplay("subscriber3: ", "received addr=%2h data=%2h", t.addr, t.data);
endtask
endclass

47

2019

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

Monitor & Subscribers

BUG: Simulation Output

sub3 sees corrupted
transaction

\

y

subl sub2

BUG

sub3

mon

SYSTEMS INITIATIVE

|

Randomized transl wvalues

monitor:

BROADCAST
subscriberl:
subscriber?2:
subscriber?2:
subscriber3:

received
received
set

received

Randomized transl wvalues

monitor:

BROADCAST
subscriberl:
subscriber?2:
subscriber?2:
subscriber3:

received
received
set

received

addr=£9
addr=£9
addr=£9
addr=£9
addr=ff
addr=ff

addr=e9
addr=e9
addr=e9
addr=e9
addr=ff
addr=ff

data=50
data=50
data=50
data=50
data=00
data=00

data=27
data=27
data=27
data=27
data=00
data=00

Depending on how the subscribers are pushed onto
the ap - queue, subl might also see the bug

48

oo Transaction Copy() Method

DESIGMN ARD VERIFICATIOMN™

COMFERENCE AMD EXHIBITION

* All subscribers receive a handle to the same broadcast transaction
« A subscriber should NEVER modify contents of the received transaction

* Any subscriber that modifies transaction contents MUST take a copy before
making modifications

IIIIIIIIIIIIIIIII

49

oo Summary & Conclusions

DESIGMN ARD VERIFICATIOMN™

DVI

COMFERENCE AMD EXHIBITION

» Analysis ports are ports that broadcast transactions to O or more destinations
 Each subscriber chain terminates with a uvm analysis imp and

corresponding write () method

« Subscribers should NEVER modify the broadcast transaction

 Subscribers need to use the transaction in O-time
OR

« Subscribers need to take a local copy
« |If a component has multiple imp-inputs, use the macro:

‘uvm_analysis imp decl (SFX) <

This is described in the paper I

* Theuvm_ tlm analysis_£ifo has a built-in uvm_analysis imp port

* Prove that the scoreboard analysis paths are working

SYSTEMS INITIATIVE

DO NOT ASSUME that the analysis
paths are working correctly !!

Great feature for terminating an
analysis path in a scoreboard

50

oo Resources Summary

DESIGMN ARD VERIFICATIOMN™

DVCOIN

COMFERENCE AMD EXHIBITION

* (o go Accellera website
Www.accellera.org <« Many great resources on this web site I

* Register for free access to the DVCon 2017 and DVCon 2018 videos
| To watch these presentations, go to:

videos.accellera.org/videos.html

« forums.accellera.org/ - Access the SystemVerilog and UVM Forums I
 Get a free IEEE login Linked from
" | 1800.2-2017 - IEEE UVM I www.accellera.org/downloads/ieee

* https://ieeexplore.ieee.org/document/7932212 |

Downloading PDF documents requires IEEE login
1800-2017 - IEEE SystemVerilog I (You can create a free IEEE login account)

* https://ieeexplore.ieee.org/document/8299595 |

51

................... *_&,—
EEEEEEEEEEEEEEEEE S unburstqsign
i

Reference Material

DVCon 2018 Tutorial: IEEE-Compatible UVM Reference
Implementation and Verification Components

DVCon 2017 Tutorial: Introducing IEEE 1800.2 - The Next
Step for UVM

To watch these presentations, go to:
videos.accellera.org/videos.html

SYSTEMS INITIATIVE 52

lllllllllllllllllllll Material
DVLCOIMN Thomas Alsop - Intel Corp.

Slide #

o0 DVCon 2017 - UVM Features Described || reference l

14 - |Introduction to IEEE and Backward Compatibility

15 - |BCL compliance to the IEEE 1800.2 spec

16 - |Implementations artifacts and additive but non-IEEE APlIs
17 - |Deprecation policy and roadmap

18 - |Removal of pre-1.2 deprecated code - Motion pending
19 - |APls that changed from 1.2 to IEEE - Motion pending

IIIIIIIIIIIIIIIII

SYSTEMS INITIATIVE

EEEEEEEEEEE oo DVCon 2017 - UVM Features Described || reference l
DVLCOIMN gSrivatsa VVasudevan - Synopsys, Inc. Matera
28 - UVM Policy Classes - copy, compare, print, pack, record all have
policy classes
29 - uvm_policy - users can apply different printer or compare policy + many
accessor methods
30 - uvm_packer - new pack / unpack capabilities
31-32 -|uvm_copier - signature of copy () has changed to allow uvm copier
33-34 -|uvm_comparer - provides new accessor methods
35-36 -|uvm_printer - new printer knobs & accessor methods
37-39 -|luvm_line printer /uvm table printer /uvm tree printer
40 - |uvm recorder - new methods
41 - Summary of core utility policies

54

2019

DESIGMN ARD VERIFICATIOMN™

| slide # I i

43-45 -
47 -
49 -
50 -
59 -

53-54 -
595 -
56 -

58 -

SYSTEMS INITIATIVE

DVCon 2017 - UVM Features Described

Srivatsa Vasudevan - Synopsys, Inc.

UVM factory now supports abstract objects (virtual classes)
uvm_component - can turn off apply config settings ()
uvm_object - small modifications & new methods

minor uvm_transaction modifications

Removed from |IEEE 1800.2 - Deemed as not standard worthy
uvm_comparator
uvm algorithmic comparator
uvm _in order comparator

uvm_report object - minor modifications
uvm report server - UVM FILE type change
uvm_report catcher - minor modifictions

Reference
Material

Callbacks now extend from uvm callback - functions documented

55

o0 DVCon 2017 - UVM Features Described || Rreference

DESIGMN ARD VERIFICATIOMN™

DVLOIN Mark Glasser - NVIDIA Corporation Material

Slide #

t

63 - | Summary of TLM Mantis Items

68 - | Register models - documentation enhanced / system level / dynamic
69 - | Reg model unlock - models can now be unlocked & re-locked
70 - | Register changes - virtual and non-virtual classes

SYSTEMS INITIATIVE

56

EEEEEEEEEEE oo DVCon 2017 - UVM Features Described || reference l

< Srinivasan Venkataramanan - CVC Pvt., Ltd. Waterial
Slide #
76 - Detalils regarding Typical UVM Architecture
77 - Description of UVM Mechanics

81-105 -|Description of VerifWorks Go2UVM package and capabilities

IIIIIIIIIIIIIIIII

2019

DESIGMN ARD VERIFICATIOMN™

IIIIIIIIIIIIIIIII

DVCon 2018 - UVM Features Described

Justin Refice - Nvidia

Accellera & IEEE UVM responsibilities

Transitioning from UVM 1.2 to IEEE 1800.2 UVM
"UVM_ENABLE DEPRECATED API to keep using UVM 1.2

Deprecation notes and transitioning considerations
Recommended Steps of Updating to IEEE 1800.2

Reference
Material

58

2019

DESIGMN ARD VERIFICATIOMN™

DVCON
Slide # |

17 -

18 -
19 -
21 -

22 -
23 -
24 -

26-28 -
29-31 -

IIIIIIIIIIIIIIIIII

DVCon 2018 - UVM Features Described || Rreference l

Mark Strickland - Cisco Systems Mark Peryer - Mentor, a Siemens Busi Waterial

uvm_object - New UVM seeding / new methods for configuration and
policies

do execute op - call-back to add flexibility in field operations
Configuration considerations - field macros execute do execute op

UVM Policy Classes - copy, compare, print, pack, record all have
policy classes that extend from uvm policy

Policy extensions and methods
do method () use model changes

Standard method changes: compare () calls do_execute op () calls
do compare ()

copy () / do_copy () / copy object() /uvm copier example

record () / do_record() / detail extension /uvm recorder
example

59

2019

DESIGMN ARD VERIFICATIOMN™

DVCON
Slide # |

32 -

33-35 -

36 -
37-

38-43 -

IIIIIIIIIIIIIIIII

DVCon 2018 - UVM Features Described || Rreference

Mark Strickland - Cisco Systems Mark Peryer - Mentor, a Siemens Busi Material

Scoreboards need to compare objects of differing types

compare () / do_compare () / uvm comparer / do_execute op () With
scoreboard example

pack () / unpack () - small enhancements

UVM printer policies now use uvm printer element &
uvm _printer element proxy

JSON printer example with details

60

2019

DESIGMN ARD VERIFICATIOMN™

45 -
46-50 -
59 -
52 -

53-56 -
57-58 -

59-62 -
63 -

| slide # I i

IIIIIIIIIIIIIIIIII

DVCon 2018 - UVM Features Described || Rreference

Uwe Simm - Cadence Design Systems LB

UVM abstract factory - can now register and override virtual classes
Abstract UVM factory examples

Pre-IEEE 1800.2 UVM initialization

New IEEE 1800.2 reliable UVM initialization - describes

uvm _coresevice t ::get()/uvm init() / run test()
UVM deferred initialization examples

uvm_run_test callback/pre run test() /post run test() /
pre abort ()

uvm _reg block.lock model () / unlock model ()
Miscellaneous uvm reg notes & changes including uvm door e

61

EEEEEEEEEEE oo DVCon 2018 - UVM Features Described || reference l

- Material
= e T Srivatsa Vasudevan - Synopsys
iae

65-66 -| apply config settings () for "uvm field * macros user controllable
6/-68 -| set local() replaces set * local() methods

69-71 -| Callbacks now extend from uvm callback - users can call
all callbacks[$]

72-74 -| Report severity is now UVM NONE for uvm report error
76 - “uvm_do replaces all earlier *uvm do * macros
77 - ‘uvm_do_* deprecation notes

SYSTEMS INITIATIVE

mmmmmmmmmmmmmmmmm _—.\ﬁl‘/—
SOt Pl —Sunburst Design_

Thank you!

accellera

SYSTEMS INITIATIVE

	uvm_2019_part1
	uvm_2019_part2

