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How High-level Synthesis Works: 
An Intro for Hardware Designers

Frederic Doucet
Qualcomm Atheros, Inc.



High-level Synthesis

• HLS tool transforms synthesizable 
SystemC code into RTL Verilog
1. Precisely characterizes delay/area 

of all operations in a design 
2. Schedules all the operation over the 

available clock cycles
3. Can optionally increase latency 

(clock cycles) to get positive slack 
and increase resource sharing 
(reduces area)

4. Generate RTL that is equivalent to 
input SystemC

• Pipe depths / latencies decided by HLS 
scheduler
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High-level Synthesis

• SystemC HLS has been used in many large semiconductors companies 
for years, on both control/datapath heavy designs

• Main SystemC HLS usage:
– Encode and verify all high-level control-flow and datapath functions in 

SystemC
– Use HLS tool automatically generate all pipelines and decide latencies 

resulting in RTL is optimized for specified clk period / tech node
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SystemC: Hardware Model in C++

• SystemC: syntax for hardware modeling framework in C++
– Modules
– Ports
– Connections
– Processes

• Inside a process is C++ code describing the functionality
– DSP processing
– Control logic
– Etc.
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Example: Synthesizable SystemC
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SC_MODULE(DUT) 
{

sc_in <bool> clk; 
sc_in <bool> nrst;
sc_in <int>  a;
sc_in <int>  b;
sc_in <int>  c;
sc_in <int>  d;
sc_out<int>  z;
...
void process() {
z = 0;
RESET: 
wait();

MAIN_LOOP: 
while (true) {
int v1 = a * b;
int v2 = c * d;
int v3 = v1 + v2;

COMPUTE_LATENCY:    
wait();

z = v3;
}

}
}; 

* *

+

a b c d

v3

z

v3



Example: High-level synthesis
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* *

+

a b c d

v3

z

v3

Op delays: 
• mul: 4ns 
• add: 2ns

Synthesis directives:
• clk period: 5ns
• tech node: 65lp
• no micro-arch directive

* *

a b c d

v2v1

z

+

v2v1

Scheduler moved the addition across the state to get positive slack

Scheduling/resource 
allocation/binding



Example: High-level synthesis

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 9

Tool generates FSM, datapath 
and allocates the registers



Example: High-level synthesis, 
second run
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* *

+

a b c d

v3

z

v3

Op delays: 
• mul: 4ns 
• add: 2ns

Synthesis directives:
• clk period: 5ns
• tech node: 65lp
• minimize resources *

a b c d

v1

z

+

v2v1

*

v2

Scheduler added a state to share the multiplier

Scheduling/resource 
allocation/binding



Example: High-level synthesis, 
second run
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• Notice that there is only one multiplier
• Sharing mux/registers are automatically allocated and bound to 

the generated FSM 



HLS and Abstraction

• The tool automatically generates the micro-architecture details 
– latencies, muxes, registers, FSMs 
 this is what can be abstracted out in the SystemC code

• Starting from SystemC code, HLS tool does: 
1. Map arithmetic/logical operations to resources
2. Allocate resources and try to share them as much as possible
3. Automatically generate FSM and sharing logic
4. Allocate registers and try to share them as much as possible
5. Optionally add clock cycles to get positive slack and maximize sharing
6. Generate RTL
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SystemC to Describe Hardware

• Input SystemC code still needs to capture hardware architecture
– What is the high-level control, data flow and I/O protocols
– What are the necessary concurrent processes
– Which are the abstract datapath functions for the tool to refine

 Best done by hardware designer

• Fast turnaround is a big benefit
– Small changes in the SystemC/synthesis directives can quickly generate new 

RTL with new and very different micro-architecture
– Impossible to do with RTL design
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SystemC Language

• Designers can use many of the nice C++ features to help write the code
– Structs/classes, templates, arrays/pointers, functions, fixed/complex 

classes, etc.
– Coding patterns/guidelines to separate signal processing code from 

I/O, etc.

• A standard interpretation of SystemC will help energize the SystemC HLS 
marketplace and accelerate adoption
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Thank You!



The Proposed Accellera 
SystemC Synthesizable Subset

Mike Meredith
Vice Chair – Accellera Synthesis Working Group

Cadence Design Systems



SystemC Synthesizable Subset 
Work

• Development of a 
description of a 
synthesizable subset of 
SystemC

• Started in the OSCI 
Synthesis Working Group

• Current work is in Accellera 
Systems Initiative Synthesis 
Working Group

• Draft has been proposed for 
approval as a new standard

• Many contributors 
over a number of years

• Broadcom, Cadence, 
Calypto, Forte, Fujitsu, 
Freescale, Global Unichip, 
Intel, ITRI, Mentor, NEC, 
NXP, Offis, Qualcomm, 
Sanyo, Synopsys 
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General Principles

• Define a meaningful minimum subset
– Establish a baseline for transportability of code between 

HSL tools
– Leave open the option for vendors to implement larger 

subsets and still be compliant
• Include useful C++ semantics if they can be known 

statically – e.g., templates
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Scope of the Proposed 
Standard

• Synthesizable SystemC
• Defined within IEEE 1666-2011
• Covers behavioral model in SystemC for 

synthesis
– SC_MODULE, SC_CTHREAD, 

SC_THREAD
• Covers RTL model in SystemC for 

synthesis
– SC_MODULE, SC_METHOD

• Main emphasis of the document is on 
behavioral model synthesizable subset for 
high-level synthesis
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Scope of the Planned Standard

SystemC Elements
• Modules
• Processes

– SC_CTHREAD
– SC_THREAD
– SC_METHOD

• Reset
• Signals, ports, exports
• SystemC datatypes

C++ Elements
• C++ datatypes 
• Expressions
• Functions
• Statements
• Namespaces
• Classes
• Overloading
• Templates
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Behavioral Synthesis in the 
Design Flow

• Design and testbench converted to 
SystemC modules or threads

• Design
– Insertion of signal-level 

interfaces
– Insertion of reset behavior
– Conversion to SC_CTHREADs

• Testbench
– Insertion of signal-level 

interfaces
– Reused at each 

abstraction level
• Behavioral
• RTL
• Gate

6
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2/29/2016 Mike Meredith Cadence Design Systems



SC_MODULE

Module Structure for Synthesis

clock
reset

Ports
required for

SC_CTHREAD,
SC_THREAD

Signal-level
ports for
reading

data

Signal-level
ports for
writing
data

SC_CTHREAD SC_METHOD

Member 
functionsMember 

functions

Data members
(Storage)Data members

(Storage)

submodule submodule
Signals

7

SC_THREAD

2/29/2016 Mike Meredith Cadence Design Systems



Module Declaration

• Module definition
– SC_MODULE macro

or
– Derived from sc_module

• class or struct

– SC_CTOR
or 

– SC_HAS_PROCESS

8

// A module declaration
SC_MODULE( my_module1 ) {
sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_CTOR( my_module1 ) {…}

};

// A module declaration
SC_MODULE( my_module1 ) {
sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_HAS_PROCESS( my_module1 );
my_module1(const sc_module_name 
name )
: sc_module(name)

{…}
};
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Derived Modules

• Derived 
modules OK

9

SC_MODULE( BaseModule ) {
sc_in< bool > reset;
sc_in_clk clock;
BaseModule ( const sc_module_name name )
: sc_module( name_ ) { 

}
};

class DerivedModule : public BaseModule {
void newProcess();
SC_HAS_PROCESS( DerivedModule );
DerivedModule( sc_module_name name_ ) 
: BaseModule( name_ ) {
SC_CTHREAD( newProcess, clock.pos() );
reset_signal_is( reset, true );

}
};
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SC_THREAD & SC_CTHREAD 
Reset Semantics

• At start_of_simulation each SC_THREAD and 
SC_CTHREAD function is called
– It runs until it hits a wait()

• When an SC_THREAD or SC_CTHREAD is 
restarted after any wait() 
– If reset condition is false

• execution continues
– If reset condition is true 

• stack is torn down and function is called 
again from the beginning

• This means
– Everything before the first wait will be 

executed while reset is asserted

SC_CTHREAD
or SC_THREAD

reset behavior

while (true)  {
main loop

}

post-reset 
initialization

wait();

Note that every path through 
main loop must contain a wait() 
or simulation hangs with an 
infinite loop
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SC_(C)THREAD

reset behavior

while (true)  {
main loop

}

post-reset 
initialization

wait();

SC_THREAD & SC_CTHREAD
Process Structure

void process() {
// reset behavior must be 
// executable in a single cycle 
reset_behavior();

wait();

// initialization may contain 
// any number of wait()s. 
// This part is only executed
// once after a reset. 
initialization();     

// infinite loop
while (true) {
rest_of_behavior(); 

}
}
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Process Structure Options

• SC_THREAD and 
SC_CTHREAD 
processes must follow 
one of the forms shown

• Note that there must be 
a wait() in every path of 
the infinite loops to 
avoid simulator hangup

while( 1 ) 
{ }

while( true ) 
{ }

do { } 
while ( 1 );

do { } 
while ( true );

for ( ; ; ) 
{ }
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Specifying Clock and Reset
Simple signal/port and level 
SC_CTHREAD( func, clock.pos() );

reset_signal_is( reset, true );
areset_signal_is( areset, true );

SC_THREAD( func );
sensitive << clk.pos();
reset_signal_is( reset, true );
areset_signal_is( areset, true );

reset_signal_is( const sc_in<bool> &port, bool level )
reset_signal_is( const sc_signal<bool> &signal, bool level )
async_reset_signal_is( const sc_in<bool> &port, bool level )
async_reset_signal_is( const sc_signal<bool> &signal, bool level )

13

For synthesis, 
SC_THREAD 

can only have a 
single sensitivity 
to a clock edge
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Use of wait()

• For synthesis, wait(...) can only reference the clock edge 
to which the process is sensitive

• For SC_CTHREADs
– wait()
– wait(int)

• For SC_THREADs
– wait()
– wait(int)
– wait(clk.posedge_event())
– wait(clk.negedge_event())

14

For synthesis of 
SC_THREADs 

wait(event) must 
match the sensitivity 

of the clock edge
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Types and Operators

• C++ types
• sc_int, sc_uint
• sc_bv, sc_lv
• sc_bigint, sc_biguint
• sc_logic
• sc_fixed, sc_ufixed

• All SystemC arithmetic, 
bitwise, and comparison 
operators supported

• Note that shift operand 
should be unsigned to allow 
minimization of hardware
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Supported SystemC integer functions
bit select [] part select (i,j) concatenate (,)

to_int() to_long() to_int64() to_uint() to_uint64() to_ulong()
iszero() sign() bit() range() length()

reverse() test() set() clear() invert()



Data Types

• C++ integral types
– All C++ integral types 

except wchar_t
– char is signed 

(undefined in C++)
• C++ operators

– a>>b
Sign bit shifted in if a is 
signed

– ++ and -- not supported 
for bool

• For sc_lv
– “X” is not supported
– “Z” is not supported
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Pointers

• Supported for synthesis
– “this” pointer 
– “Pointers that are 

statically determinable are 
supported. Otherwise, 
they are not supported.”

– If a pointer points to an 
array, the size of the array 
must also be statically 
determinable.

• Not supported
– Pointer arithmetic
– Testing that a pointer is 

zero
– The use of the pointer 

value as data 
• e.g., hashing on a pointer is 

not supported for synthesis
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Other C++ Constructs

• Supported
– Templates
– const
– volatile
– namespace
– enum
– class and struct

• private, protected, public
– Arrays
– Overloaded operators

• Not supported
– sizeof()
– new()

• Except for instantiating modules
– delete()
– typeid()
– extern
– asm
– Non-const global variables
– Non-const static data members
– unions
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Thank You!



High-Level Synthesis 
and 

Verification

Peter Frey, HLS Technologist



Problem Statement

• Designing your RTL is hard
– Complex architectures
– Specifications open to interpretation
– Many constraints (Power, Linting, DFT, Synthesis)

• Fully debugging your RTL is impossible
– Massive vector sets for HW and SW
– Massive integrated SoCs
– Design cycles under pressure

• Each year
– Major advances in verification technology, but…
– The problems still get worse
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High-Level Synthesis
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High-Level Synthesis

• Synthesizes “Accellera SystemC Synthesizable 
Subset” to production-quality RTL

• Arithmetic optimizations and bit-width trimming
• User control over the micro-architecture 

implementation
– Parallelism, Throughput, Area, Latency 

(loop unrolling & pipelining)
– Memories (DPRAM/SPRAM/split/bank) vs. 

Registers (Resource allocation)
• Multi-objective scheduling 

– Power, Performance, Area

• Hardware exploration is accomplished by 
applying different constraints

void func (short a[N], 
for (int i=0; i<N; i++) {

if (cond)
z+=a[i]*b[i];

else

RTL
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Properties of
High-Level Synthesis?

1. Mapping from abstract transactions to pin-accurate 
protocols

2. Optimizing for performance & area in the target 
technology

Control i/f
A
X
I

A
X
I

HLS

o = f(i,s)i o

TP=1
L<100

300MHz

Control i/f
HLS
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Traditional Design Flow vs. 
HLS Flow

HLS Tool

SystemC
Executable Design

Logic Synthesis

RTL & Formal 
Verification

Architecture 
Constraints

High Level 
Synthesis

Power Analysis 
Automatic Opt.

Functional 
Specification
Architectural 
Specification

RTL Coding and 
Micro-architecture 

Optimization

Logic Synthesis

RTL Verification

Power Analysis
Manual Opt.
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Coded 
RTL
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HLS Delivers QofR & Crushes 
RTL Design Time

• Examples of video, imaging and communication projects
• Generated RTL matches power, performance and area
• Projects complete in 10% to 50% of time needed for RTL
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Area

Design & Verification Time

98% of RTL area

27% of RTL design
& verification time
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HLS-enabled Verification
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Advances in Verification 
Technology

Algorithm

Specification
Document Testplan

RTL

Directed
Testbench

Coverage
Points

Constrained 
Random

TLM

UVM

Assertions

Export for SoC integration
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Review of Hardware 
Abstractions

• Algorithmic Model
– No timing or architecture

• Transaction-Level Model
– Partitioned for hardware 

architecture

• RTL Implementation
– Synthesizable to gates

o = f(i,s)i,s o

i

s

o

Control i/f

i

s

o

Control i/f
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Verification in ESL Platform

• Algorithmic Model can be used as a reference model
– Can be embedded in SV/UVM environment

• Enables early software development
– Software-driven testing

• <10 minutes simulation vs. 1 month simulation in RTL

CPU

TLM Fabric

Algorithmic
Model
w/TLM

TLM
Memory

ESL Platform
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Synthesizable TLM Verification
• Can be simulated effectively with UVM

– Early start on UVM environment
• Leverage functional testing
• Based on Algorithmic Model, but partitioned for hardware
• Additional testing for internal control
• Limited performance testing 
• Simulation ~100x faster than RTL

Control i/fAgent

Agent Agent

Analysis Components, Scoreboard, Functional Coverage

Stimulus

Register
Model
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Coverage-Driven TLM 
Verification

• Assertions and Cover Points
– Functional 
– SystemC

• Testplan Coverage
– Based on cover assertions
– Some tests require RTL

• Code Coverage
– Function, Line, Condition/Decision
– Many C++ based tools
– Nothing specialized for hardware

int18 alu(uint16 a, uint16 b, uint3 opcode)
{
int18 r;

switch(opcode) {
case ADD:

r = a+b;  break;
case SUB:

r = a-b;  break;
case MUL:

r = (0x00ff & a)*(0x00ff & b);  break;
case DIV:

r = a/b;  break;
case MOD:

r = a%b;  break;
default:

r = 0;    break;
}

assert(opcode<5);
cover((opcode==ADD));
cover((opcode==SUB));
cover((opcode==MUL));
cover((opcode==DIV));
cover((opcode==MOD));

return r;
}
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RTL Coverage

• RTL Generated from TLM model 
by HLS

• Reuse SystemC Vectors
– Will give functional coverage
– Some gaps in branch/FSM

• Add RTL tests to cover RTL
– FSM reset transitions
– Stall tests

• Gives nearly 100% coverage
– Line, branch, condition
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HLS Verification

Algorithm

Specification
Document

TestplanSynthesizable 
TLM

Export for SoC integration

Coverage
Points

Assertions

RTL

HLS

Directed
Testbench

Constrained 
Random

UVM
Formal 

Equivalence
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Summary
• Increasing design complexity & shorter design cycles

– RTL simulation based debug & verification is the bottleneck
– Faster simulation (or emulation) is not enough on its own

• Moving to higher levels of abstraction for design & debug
– Focus on verifying functionality, not implementation details
– Significant simulation performance & debug improvement

• Requiring automated generation of RTL from TLMs
– Technology targeting
– Power Performance Area analysis & optimization
– Verifiably correct by construction 

• Adopting HLS methodology shortens verification timescales 
– Majority of functional verification at algorithmic/TLM levels
– Minimal RTL simulation and/or formal equivalence checks to prove RTL is 

correct

2/29/2016 Peter Frey, Mentor Graphics 16
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HLS in the Wild 
-- Intel's Experience

Bob Condon, Intel DTS



Hi…

• Bob Condon - past 5 years at Intel 
– (Past life HLS, FV, Logic Synthesis at Mentor and Exemplar)
– Coach new teams adopting HLS adoption
– HLS-specific tools and libraries

• Disclaimers 
– I won’t talk about specific vendor tools
– I won’t talk about specific Intel products
– “Customers” are internal Intel product groups designing 

RTL IP which will get integrated into a full SOC
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Spoiler Alert…

• Many production teams at Intel are using SystemC-based 
High-Level Synthesis to produce the RTL we ship in product

• These designs include both algorithm dominated designs and 
control dominated designs

• The groups who are happiest report:
“The HLS flow got us to meet the ___ RTL readiness 
milestone ___ weeks faster than we estimate with our 
hand-written RTL approach”
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Why Adopt HLS?

Marketing pitch gives lots of reasons:
– Retarget new process technology
– Automatic (or rapid) design exploration 
– Free simulation 
– Faster time to validated RTL 
– Code is easier to modify 
– Eliminates the need for hardware designers 
– Provides single source with the VP/Functional model 
– Design is “correct by construction”
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Reality Check

– Faster time to validated RTL (the big one)
– Code is easier to modify (pretty big)
– Retarget new process technology (somewhat )  
– Provides single source with the VP/Functional model (not really)

• You can share code but these teams are often very disjoint

(Not worth it….)
– Automatically do design exploration (not much)
– Free simulation (nope)
– Eliminates the need for hardware designers (nope)
– Design is “correct by construction” (myth)
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HLS Increases Test Velocity
Find bugs with “cheapest” test possible
• HLS designs ready before full SV test ready
• Some flavor of model (vectors, c++ code, matlab exists) – use it
• Find (as many) algo bugs as possible in the fast SystemC simulation
• Mixed language sim to find final communication bugs (and spec changes)
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Plan for Success…
• Project

• Under time pressure
• Has a significant amount of new code
• Has line of sight to a derivative
• A C/C++ model of some flavor exists
• The project size corresponds to the “testability” size

• Team 
• >= 4 people with skin in the game
• At least one of them has decent C++ skills
• Lined up HLS support
• Verification and Product build team involved

• The first deliverable is a DOA test Verification team and Build team 
is involved early
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Who Does the Work?

• 3 Pools of people
– Verilog coders moving up a level of abstraction

• Ask them to anticipate a “dreaded” change
• C++ is often a hurdle
• Symptom – they write an SC_METHOD in their first design

– Architects – Our sweet spot
• “Is overall design better if we tradeoff bus traffic for a bigger RAM?”

– Algorithm specialists (we don’t really see them doing much HLS)
• Hardware knowledge is still critical
• Some software techniques work against HLS

2/29/2016 Bob Condon      Intel DTS 8



DataPath vs. Control

We do both and HLS is a win for both
• DataPath designs rely a lot on the HLS tools –

• Automatic pipelining
• Common subexpression extraction

• Control based designs rely on lots of use of C++ idioms
• operator[], Template, 
• Use language to make sure each decision is represented exactly once

• Things that are hard get implemented as library components
• Start to think of reuse (IP?) differently
• DataPath: A FIR filter with three taps (traditional “algorithm” IP) 
• Control: A unknown block with Streaming Input, Streaming output, reading 

coefficients from a RAM and the ability to flush FIFOS on an interrupt
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How Do I Integrate to My 
Backend Flow?

• HLS output is “generated” RTL (gRTL)
• Use the same flows as for your h(and)RTL (we relax some lint rules)

• May need a RTL wrapper to leave exactly the same pins as before 
including things like scan

• The gRTL is uglier -- Minimize the amount of debugging there
• You do get a waveform and all your vendor tools support mixed 

language
• GDB augmented with SC viewers
• Keep your SystemC test complete on algo-functionality

• Add monitors if you need them
• What about ECOs?

– We see very few -- ECO modes of the tools are satisfactory
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How Do I Verify?

• Same as today 
– Really, the same way you validated the architectural 

model against your current RTL
– RTL still needed for final verification
– The source is (usually) multi-threaded and not cycle-

accurate
• Formal only works in restricted domains (and with formal 

expertise)

HLS lets you find and fix your bugs faster but you still need 
a full testplan to release quality silicon.

2/29/2016 Bob Condon      Intel DTS 11



Déjà Vu All Over Again…

• Many production teams at Intel are using SystemC-based 
High-Level Synthesis to produce the RTL we ship in product

• These designs include both algorithm dominated designs and 
control dominated designs  

• The groups who are happiest report:
“The HLS flow got us to meet the ___ RTL readiness 
milestone ___ weeks faster than we estimate with our 
hand-written RTL approach”

2/29/2016 Bob Condon      Intel DTS 12
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HLS for the 
FPGA/Programmable Market

Dirk Seynhaeve (Altera – now part of Intel)
Product Planning
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Compromise
CPU/GPU/DSP ASIC

High power consumption Low power consumption

Low performance, high latency High performance, low latency

Low cost Low cost at high volume

Many low cost spins Spins to be avoided

In field updates (remote) No flexibility

Easy functionality
(program)

Specialized functionality
(design)
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FPGA



Parallel Everything
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Massive…
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Problem
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Observation
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Scenarios

Path to acceleration
• Enablement

Faster path to verified RTL
• Productivity

C++

RTL

C++
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Bridging the Gap

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 12

Kernel
& Memory

Management

Program Language
to 

Hardware Abstraction Layer

Program Language
to 

Hardware Design Language

Module
Accelerator

Kernel

FPGA

Program Language
to 

Platform Specification



Current Approach
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Evolution
Era FPGA deployment

1980 Glue logic (flexible IO 
management, protocol 
bridges,…)

1990 Customizable functions 
(telecommunication filters)

2010 Data processing systems 
(video processing, cloud 
computing,…)
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Requirements
FPGA Hardware HLS Standard

Parallel Directives to introduce parallelism in 
sequential code

Streaming Self-synchronizing Channels

Low Power Arbitrary Precision

Dirk Seynhaeve (Altera -now part of Intel-) 16

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO
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Requirements

FPGA
• Register/Wire
• FIFO
• Memory Mapped 

(MEMIF/CSR)

PROGRAMMER
• Scalar/Return
• Pointer/Reference
• Array

Dirk Seynhaeve (Altera -now part of Intel-) 17

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

FORTRAN

C

Python

C++

int16_t foo (
uint8_t control,
int16_t *data_in,
int16_t scratch_pad[128]) {
unsigned char c;
if (control)
for(i=0;i<8;i++)
scratch_pad[i] = *data_in++;

… 
return(scratch_pad[128]);

}

2/29/2016



Requirements

FPGA
• Minimize bits

– Faster
– Lower Power
– Smaller (more functionality)

PROGRAMMER
• Fast execution
• Comprehensive 

(signed/unsigned)
• Flexible (slice/range)

Dirk Seynhaeve (Altera -now part of Intel-) 18

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

hls_int<129> message = “0x10000”;
hls_fixed<7,3,true,HLS_RND> one_way;
hls_fixed<7,3,HLS_RND> another_way;
hls_int<13>                 x,y,z;
…
message(129,127)=one_way(7,5);
message.set_slc(124,another_way.slc<3>(5));
…
z = x<<k + y;

2/29/2016



Requirements

FPGA
• FIFO (finite, point-to-point)
• Empty/Full

PROGRAMMER
• STL deque
• Blocking/non-blocking

Dirk Seynhaeve (Altera -now part of Intel-) 19

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

hls_channel<hls_int<17>> channel;
Task1: {
…
while (!channel.write(value));
…
}
Task2: {
…
while (channel.read(value));
…
}

2/29/2016



Requirements

FPGA
• Parallel Compute Units

PROGRAMMER
• Threads
• SIMD (vectorization)
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Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO
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Summary

• WHAT
– Hardware-centric platform with 

software-centric benefits
• WHO

– Programmers for execution speed
– Designers for productivity

• WHY
– HLS bridge from functionality to 

hardware specification
• HOW

– Standards that let the FPGA be 
an FPGA, and yet respect 
programmer paradigms



Thank You!



SystemC Synthesis Standard:
Which Topics for Next Round?

Frederic Doucet
Qualcomm Atheros, Inc



What to Standardize Next…

• Benefit of current standard: 
– Provides clear guidelines for synthesizability for C++/SystemC
– Set clear subset for synthesis tools

• We are currently discussing the options for the next standard

• A big list of topics… 
– What is important to us designers?
– What is valuable to EDA vendors? 
– What are the priorities?
– Did we think of everything?

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 2

Join the discussion!  
Join the SWG calls! 



C++ Language and Math Libraries

• C++ / C++11
– Unions 
– Constructor arguments
– Automatic port naming VCD tracing for all ports for all ports
– Safe array class
– Type handling advances (auto, decl)
– Many other features of interest …

• Math libraries
– AC datatypes and SystemC datatypes
– sc_complex
– sc_float
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Channel Libraries

• Which elements : 
– FIFOs
– point-to-point
– pulse
– ring buffer
– line buffers
– CDC
– etc.

• Standard interpretation of the TLM interface in synthesis
– Must blocking vs. may-block vs. non-blocking
– Use TLM 1.0 as reference or not (need add reset)
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Micro-architecture Directives

• Standard list of directives : 
– Loop handling: 

• unroll, partial unroll, pipeline, sequential
– Function handling

• Sequential function, pipelined, parallel, map to custom resource, etc.
– Array handling:

• flatten, map-to-memory, map-to-reg-file, split, combine, resize, etc. 
– Custom resource:

• pipelined, combinational
– Inputs: 

• stable, delay
– Latencies: 

• Min latency, max-latency 
– Etc.
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Micro-architecture Directives

• How to specify the directives: 
– Pragma in the code
– Tcl commands in synthesis directive file
– Directive in code (empty functions or variables with specific meaning)

• How to apply the directives
– How to “label” and “find” structures in the code

• “The loop filter_kernel, unroll it”
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Synthesis Structures

• How to interpret the SystemC CDFG and synthesis directive
– The generated RTL behaves equivalently in all tools 
– Consistent interpretation across tools

• How to write a pipeline
– Where to freeze, where to free the I/O
– Where to expand the pipeline

• Cycle-accurate, cycle close and super-cycle modes
– Clearly define and implement the scheduling mode

• How to specify and create custom resources 
– Specified as C++ functions or C++ scopes
– What interfaces to they implement
– Specify to characterize the custom resource or not with logic synthesis

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 7



Memories

• Where are the memories in the SystemC code: 
– Mapping of C++ array into memories (implicit)
– Using memory channel (explicit) 

• How to describe the memory macro to the HLS tool
– Memory ports, timing, simulation model file, lib file, etc.
– Standard format

• Using the memory macro in the design (architecture model)
– Memory port sharing by more than one process in a module
– Memory port sharing by sub-modules 
– Multi-clock memories
– Memories inside or outside the module
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Tools and Flows

• Standard interpretation of module hierarchy
– How to set up project with submodules

• Many modules and processes to synthesize, process them one by one or all 
at once

– Where are the memories instantiated

• Standard minimal wrapper generation 
– Tool to provide wrapper for input SystemC in SystemVerilog context
– Tool to provide wrapper for generated Verilog in SystemC

– Mostly about datatype conversions
– Make the wrapper lightweight enough so it can be used with various 

HDL simulators
– Help ease flow migration

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 9



Summary
• HLS is rapidly growing in adoption and proving its 

value for multiple users (design, verification, 
accelerated software…)

• Accellera SystemC synthesis subset standardization 
helps focus so the ecosystem can grow around it

• There are great areas for “what’s next” to 
standardize to complete the ecosystem for HLS
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Join the discussion!  
Join the SWG calls!

Drive what you need in the standard! 



Thank You!
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