
Cut Your Design Time in Half
with Higher Abstraction

Organizer: Adam Sherer – Accellera Systems Initiative
Speakers: Frederic Doucet - Qualcomm

Mike Meredith – Cadence Design Systems, Inc.
Peter Frey – Mentor Graphics Corp.
Bob Condon – Intel Corp.
Dirk Seynhaeve – Intel Corp.

Agenda
• Introduction – How High-Level Synthesis (HLS) works

targeted for hardware designers
• The Proposed Accellera SystemC Synthesizable Subset
• High-Level Synthesis and Verification
• HLS in the Wild – Intel Experience
• HLS for the FPGA/Programmable Market
• SystemC Synthesis Standard: Which Topics for the Next

Round?

2/29/2016 Cut Your Design Time in Half with Higher Abstraction 2

How High-level Synthesis Works:
An Intro for Hardware Designers

Frederic Doucet
Qualcomm Atheros, Inc.

High-level Synthesis

• HLS tool transforms synthesizable
SystemC code into RTL Verilog
1. Precisely characterizes delay/area

of all operations in a design
2. Schedules all the operation over the

available clock cycles
3. Can optionally increase latency

(clock cycles) to get positive slack
and increase resource sharing
(reduces area)

4. Generate RTL that is equivalent to
input SystemC

• Pipe depths / latencies decided by HLS
scheduler

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 4

High-level
synthesis

RTL
Verilog

SystemC
design

Synthesis
directives Tech.

node
spec

High-level Synthesis

• SystemC HLS has been used in many large semiconductors companies
for years, on both control/datapath heavy designs

• Main SystemC HLS usage:
– Encode and verify all high-level control-flow and datapath functions in

SystemC
– Use HLS tool automatically generate all pipelines and decide latencies

resulting in RTL is optimized for specified clk period / tech node

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 5

SystemC: Hardware Model in C++

• SystemC: syntax for hardware modeling framework in C++
– Modules
– Ports
– Connections
– Processes

• Inside a process is C++ code describing the functionality
– DSP processing
– Control logic
– Etc.

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 6

DUTa
b
c
d

z

nrst
clk

Example: Synthesizable SystemC

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 7

SC_MODULE(DUT)
{

sc_in <bool> clk;
sc_in <bool> nrst;
sc_in <int> a;
sc_in <int> b;
sc_in <int> c;
sc_in <int> d;
sc_out<int> z;
...
void process() {
z = 0;
RESET:
wait();

MAIN_LOOP:
while (true) {
int v1 = a * b;
int v2 = c * d;
int v3 = v1 + v2;

COMPUTE_LATENCY:
wait();

z = v3;
}

}
};

* *

+

a b c d

v3

z

v3

Example: High-level synthesis

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 8

* *

+

a b c d

v3

z

v3

Op delays:
• mul: 4ns
• add: 2ns

Synthesis directives:
• clk period: 5ns
• tech node: 65lp
• no micro-arch directive

* *

a b c d

v2v1

z

+

v2v1

Scheduler moved the addition across the state to get positive slack

Scheduling/resource
allocation/binding

Example: High-level synthesis

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 9

Tool generates FSM, datapath
and allocates the registers

Example: High-level synthesis,
second run

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 10

* *

+

a b c d

v3

z

v3

Op delays:
• mul: 4ns
• add: 2ns

Synthesis directives:
• clk period: 5ns
• tech node: 65lp
• minimize resources *

a b c d

v1

z

+

v2v1

*

v2

Scheduler added a state to share the multiplier

Scheduling/resource
allocation/binding

Example: High-level synthesis,
second run

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 11

• Notice that there is only one multiplier
• Sharing mux/registers are automatically allocated and bound to

the generated FSM

HLS and Abstraction

• The tool automatically generates the micro-architecture details
– latencies, muxes, registers, FSMs
 this is what can be abstracted out in the SystemC code

• Starting from SystemC code, HLS tool does:
1. Map arithmetic/logical operations to resources
2. Allocate resources and try to share them as much as possible
3. Automatically generate FSM and sharing logic
4. Allocate registers and try to share them as much as possible
5. Optionally add clock cycles to get positive slack and maximize sharing
6. Generate RTL

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 12

SystemC to Describe Hardware

• Input SystemC code still needs to capture hardware architecture
– What is the high-level control, data flow and I/O protocols
– What are the necessary concurrent processes
– Which are the abstract datapath functions for the tool to refine

 Best done by hardware designer

• Fast turnaround is a big benefit
– Small changes in the SystemC/synthesis directives can quickly generate new

RTL with new and very different micro-architecture
– Impossible to do with RTL design

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 13

SystemC Language

• Designers can use many of the nice C++ features to help write the code
– Structs/classes, templates, arrays/pointers, functions, fixed/complex

classes, etc.
– Coding patterns/guidelines to separate signal processing code from

I/O, etc.

• A standard interpretation of SystemC will help energize the SystemC HLS
marketplace and accelerate adoption

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 14

Thank You!

The Proposed Accellera
SystemC Synthesizable Subset

Mike Meredith
Vice Chair – Accellera Synthesis Working Group

Cadence Design Systems

SystemC Synthesizable Subset
Work

• Development of a
description of a
synthesizable subset of
SystemC

• Started in the OSCI
Synthesis Working Group

• Current work is in Accellera
Systems Initiative Synthesis
Working Group

• Draft has been proposed for
approval as a new standard

• Many contributors
over a number of years

• Broadcom, Cadence,
Calypto, Forte, Fujitsu,
Freescale, Global Unichip,
Intel, ITRI, Mentor, NEC,
NXP, Offis, Qualcomm,
Sanyo, Synopsys

22/29/2016 Mike Meredith Cadence Design Systems

General Principles

• Define a meaningful minimum subset
– Establish a baseline for transportability of code between

HSL tools
– Leave open the option for vendors to implement larger

subsets and still be compliant
• Include useful C++ semantics if they can be known

statically – e.g., templates

2/29/2016 Mike Meredith Cadence Design Systems 33

Scope of the Proposed
Standard

• Synthesizable SystemC
• Defined within IEEE 1666-2011
• Covers behavioral model in SystemC for

synthesis
– SC_MODULE, SC_CTHREAD,

SC_THREAD
• Covers RTL model in SystemC for

synthesis
– SC_MODULE, SC_METHOD

• Main emphasis of the document is on
behavioral model synthesizable subset for
high-level synthesis

42/29/2016 Mike Meredith Cadence Design Systems

Scope of the Planned Standard

SystemC Elements
• Modules
• Processes

– SC_CTHREAD
– SC_THREAD
– SC_METHOD

• Reset
• Signals, ports, exports
• SystemC datatypes

C++ Elements
• C++ datatypes
• Expressions
• Functions
• Statements
• Namespaces
• Classes
• Overloading
• Templates

52/29/2016 Mike Meredith Cadence Design Systems

Behavioral Synthesis in the
Design Flow

• Design and testbench converted to
SystemC modules or threads

• Design
– Insertion of signal-level

interfaces
– Insertion of reset behavior
– Conversion to SC_CTHREADs

• Testbench
– Insertion of signal-level

interfaces
– Reused at each

abstraction level
• Behavioral
• RTL
• Gate

6

Logic
Synthesis

Behavioral
Simulation

Model

RTL
Functional
Simulation

OptimizeBehavioral
Synthesis

SystemC
Module

SystemC
Testbench

2/29/2016 Mike Meredith Cadence Design Systems

SC_MODULE

Module Structure for Synthesis

clock
reset

Ports
required for

SC_CTHREAD,
SC_THREAD

Signal-level
ports for
reading

data

Signal-level
ports for
writing
data

SC_CTHREAD SC_METHOD

Member
functionsMember

functions

Data members
(Storage)Data members

(Storage)

submodule submodule
Signals

7

SC_THREAD

2/29/2016 Mike Meredith Cadence Design Systems

Module Declaration

• Module definition
– SC_MODULE macro

or
– Derived from sc_module

• class or struct

– SC_CTOR
or

– SC_HAS_PROCESS

8

// A module declaration
SC_MODULE(my_module1) {
sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_CTOR(my_module1) {…}

};

// A module declaration
SC_MODULE(my_module1) {
sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_HAS_PROCESS(my_module1);
my_module1(const sc_module_name
name)
: sc_module(name)

{…}
};

2/29/2016 Mike Meredith Cadence Design Systems

Derived Modules

• Derived
modules OK

9

SC_MODULE(BaseModule) {
sc_in< bool > reset;
sc_in_clk clock;
BaseModule (const sc_module_name name)
: sc_module(name_) {

}
};

class DerivedModule : public BaseModule {
void newProcess();
SC_HAS_PROCESS(DerivedModule);
DerivedModule(sc_module_name name_)
: BaseModule(name_) {
SC_CTHREAD(newProcess, clock.pos());
reset_signal_is(reset, true);

}
};

2/29/2016 Mike Meredith Cadence Design Systems

SC_THREAD & SC_CTHREAD
Reset Semantics

• At start_of_simulation each SC_THREAD and
SC_CTHREAD function is called
– It runs until it hits a wait()

• When an SC_THREAD or SC_CTHREAD is
restarted after any wait()
– If reset condition is false

• execution continues
– If reset condition is true

• stack is torn down and function is called
again from the beginning

• This means
– Everything before the first wait will be

executed while reset is asserted

SC_CTHREAD
or SC_THREAD

reset behavior

while (true) {
main loop

}

post-reset
initialization

wait();

Note that every path through
main loop must contain a wait()
or simulation hangs with an
infinite loop

2/29/2016 Mike Meredith Cadence Design Systems 10

SC_(C)THREAD

reset behavior

while (true) {
main loop

}

post-reset
initialization

wait();

SC_THREAD & SC_CTHREAD
Process Structure

void process() {
// reset behavior must be
// executable in a single cycle
reset_behavior();

wait();

// initialization may contain
// any number of wait()s.
// This part is only executed
// once after a reset.
initialization();

// infinite loop
while (true) {
rest_of_behavior();

}
}

112/29/2016 Mike Meredith Cadence Design Systems

Process Structure Options

• SC_THREAD and
SC_CTHREAD
processes must follow
one of the forms shown

• Note that there must be
a wait() in every path of
the infinite loops to
avoid simulator hangup

while(1)
{ }

while(true)
{ }

do { }
while (1);

do { }
while (true);

for (; ;)
{ }

122/29/2016 Mike Meredith Cadence Design Systems

Specifying Clock and Reset
Simple signal/port and level
SC_CTHREAD(func, clock.pos());

reset_signal_is(reset, true);
areset_signal_is(areset, true);

SC_THREAD(func);
sensitive << clk.pos();
reset_signal_is(reset, true);
areset_signal_is(areset, true);

reset_signal_is(const sc_in<bool> &port, bool level)
reset_signal_is(const sc_signal<bool> &signal, bool level)
async_reset_signal_is(const sc_in<bool> &port, bool level)
async_reset_signal_is(const sc_signal<bool> &signal, bool level)

13

For synthesis,
SC_THREAD

can only have a
single sensitivity
to a clock edge

2/29/2016 Mike Meredith Cadence Design Systems

Use of wait()

• For synthesis, wait(...) can only reference the clock edge
to which the process is sensitive

• For SC_CTHREADs
– wait()
– wait(int)

• For SC_THREADs
– wait()
– wait(int)
– wait(clk.posedge_event())
– wait(clk.negedge_event())

14

For synthesis of
SC_THREADs

wait(event) must
match the sensitivity

of the clock edge

2/29/2016 Mike Meredith Cadence Design Systems

Types and Operators

• C++ types
• sc_int, sc_uint
• sc_bv, sc_lv
• sc_bigint, sc_biguint
• sc_logic
• sc_fixed, sc_ufixed

• All SystemC arithmetic,
bitwise, and comparison
operators supported

• Note that shift operand
should be unsigned to allow
minimization of hardware

2/29/2016 Mike Meredith Cadence Design Systems 15

Supported SystemC integer functions
bit select [] part select (i,j) concatenate (,)

to_int() to_long() to_int64() to_uint() to_uint64() to_ulong()
iszero() sign() bit() range() length()

reverse() test() set() clear() invert()

Data Types

• C++ integral types
– All C++ integral types

except wchar_t
– char is signed

(undefined in C++)
• C++ operators

– a>>b
Sign bit shifted in if a is
signed

– ++ and -- not supported
for bool

• For sc_lv
– “X” is not supported
– “Z” is not supported

162/29/2016 Mike Meredith Cadence Design Systems

Pointers

• Supported for synthesis
– “this” pointer
– “Pointers that are

statically determinable are
supported. Otherwise,
they are not supported.”

– If a pointer points to an
array, the size of the array
must also be statically
determinable.

• Not supported
– Pointer arithmetic
– Testing that a pointer is

zero
– The use of the pointer

value as data
• e.g., hashing on a pointer is

not supported for synthesis

172/29/2016 Mike Meredith Cadence Design Systems

Other C++ Constructs

• Supported
– Templates
– const
– volatile
– namespace
– enum
– class and struct

• private, protected, public
– Arrays
– Overloaded operators

• Not supported
– sizeof()
– new()

• Except for instantiating modules
– delete()
– typeid()
– extern
– asm
– Non-const global variables
– Non-const static data members
– unions

182/29/2016 Mike Meredith Cadence Design Systems

Thank You!

High-Level Synthesis
and

Verification

Peter Frey, HLS Technologist

Problem Statement

• Designing your RTL is hard
– Complex architectures
– Specifications open to interpretation
– Many constraints (Power, Linting, DFT, Synthesis)

• Fully debugging your RTL is impossible
– Massive vector sets for HW and SW
– Massive integrated SoCs
– Design cycles under pressure

• Each year
– Major advances in verification technology, but…
– The problems still get worse

2/29/2016 Peter Frey, Mentor Graphics 2

High-Level Synthesis

2/29/2016 Peter Frey, Mentor Graphics 3

High-Level Synthesis

• Synthesizes “Accellera SystemC Synthesizable
Subset” to production-quality RTL

• Arithmetic optimizations and bit-width trimming
• User control over the micro-architecture

implementation
– Parallelism, Throughput, Area, Latency

(loop unrolling & pipelining)
– Memories (DPRAM/SPRAM/split/bank) vs.

Registers (Resource allocation)
• Multi-objective scheduling

– Power, Performance, Area

• Hardware exploration is accomplished by
applying different constraints

void func (short a[N],
for (int i=0; i<N; i++) {

if (cond)
z+=a[i]*b[i];

else

RTL

2/29/2016 Peter Frey, Mentor Graphics 4

Properties of
High-Level Synthesis?

1. Mapping from abstract transactions to pin-accurate
protocols

2. Optimizing for performance & area in the target
technology

Control i/f
A
X
I

A
X
I

HLS

o = f(i,s)i o

TP=1
L<100

300MHz

Control i/f
HLS

2/29/2016 Peter Frey, Mentor Graphics 5

Traditional Design Flow vs.
HLS Flow

HLS Tool

SystemC
Executable Design

Logic Synthesis

RTL & Formal
Verification

Architecture
Constraints

High Level
Synthesis

Power Analysis
Automatic Opt.

Functional
Specification
Architectural
Specification

RTL Coding and
Micro-architecture

Optimization

Logic Synthesis

RTL Verification

Power Analysis
Manual Opt.

2/29/2016 Peter Frey, Mentor Graphics 6

0

50

100

Su
b

sy
s

SA
O

H
EV

C
 fi

lte
r

Q
P

ct
l

V
er

tic
a

l
Sc

a
le

r

A
ut

o-
co

rr

V
ite

rb
i

D
ec

od
er

M
IM

O
su

b
sy

s

Eq
ua

liz
er FF
T

O
FD

M
su

b
sy

s

Vid (H 264 H 265)/I i C i ti

Catapult

Hand
Coded
RTL

 Hand
Coded
RTL

 HLS

HLS Delivers QofR & Crushes
RTL Design Time

• Examples of video, imaging and communication projects
• Generated RTL matches power, performance and area
• Projects complete in 10% to 50% of time needed for RTL

0

50

100
Area

Design & Verification Time

98% of RTL area

27% of RTL design
& verification time

2/29/2016 Peter Frey, Mentor Graphics 7

HLS-enabled Verification

2/29/2016 Peter Frey, Mentor Graphics 8

Advances in Verification
Technology

Algorithm

Specification
Document Testplan

RTL

Directed
Testbench

Coverage
Points

Constrained
Random

TLM

UVM

Assertions

Export for SoC integration

2/29/2016 Peter Frey, Mentor Graphics 9

Review of Hardware
Abstractions

• Algorithmic Model
– No timing or architecture

• Transaction-Level Model
– Partitioned for hardware

architecture

• RTL Implementation
– Synthesizable to gates

o = f(i,s)i,s o

i

s

o

Control i/f

i

s

o

Control i/f

2/29/2016 Peter Frey, Mentor Graphics 10

Verification in ESL Platform

• Algorithmic Model can be used as a reference model
– Can be embedded in SV/UVM environment

• Enables early software development
– Software-driven testing

• <10 minutes simulation vs. 1 month simulation in RTL

CPU

TLM Fabric

Algorithmic
Model
w/TLM

TLM
Memory

ESL Platform

2/29/2016 Peter Frey, Mentor Graphics 11

Synthesizable TLM Verification
• Can be simulated effectively with UVM

– Early start on UVM environment
• Leverage functional testing
• Based on Algorithmic Model, but partitioned for hardware
• Additional testing for internal control
• Limited performance testing
• Simulation ~100x faster than RTL

Control i/fAgent

Agent Agent

Analysis Components, Scoreboard, Functional Coverage

Stimulus

Register
Model

2/29/2016 Peter Frey, Mentor Graphics 12

Coverage-Driven TLM
Verification

• Assertions and Cover Points
– Functional
– SystemC

• Testplan Coverage
– Based on cover assertions
– Some tests require RTL

• Code Coverage
– Function, Line, Condition/Decision
– Many C++ based tools
– Nothing specialized for hardware

int18 alu(uint16 a, uint16 b, uint3 opcode)
{
int18 r;

switch(opcode) {
case ADD:

r = a+b; break;
case SUB:

r = a-b; break;
case MUL:

r = (0x00ff & a)*(0x00ff & b); break;
case DIV:

r = a/b; break;
case MOD:

r = a%b; break;
default:

r = 0; break;
}

assert(opcode<5);
cover((opcode==ADD));
cover((opcode==SUB));
cover((opcode==MUL));
cover((opcode==DIV));
cover((opcode==MOD));

return r;
}

2/29/2016 Peter Frey, Mentor Graphics 13

RTL Coverage

• RTL Generated from TLM model
by HLS

• Reuse SystemC Vectors
– Will give functional coverage
– Some gaps in branch/FSM

• Add RTL tests to cover RTL
– FSM reset transitions
– Stall tests

• Gives nearly 100% coverage
– Line, branch, condition

2/29/2016 Peter Frey, Mentor Graphics 14

HLS Verification

Algorithm

Specification
Document

TestplanSynthesizable
TLM

Export for SoC integration

Coverage
Points

Assertions

RTL

HLS

Directed
Testbench

Constrained
Random

UVM
Formal

Equivalence

2/29/2016 Peter Frey, Mentor Graphics 15

Summary
• Increasing design complexity & shorter design cycles

– RTL simulation based debug & verification is the bottleneck
– Faster simulation (or emulation) is not enough on its own

• Moving to higher levels of abstraction for design & debug
– Focus on verifying functionality, not implementation details
– Significant simulation performance & debug improvement

• Requiring automated generation of RTL from TLMs
– Technology targeting
– Power Performance Area analysis & optimization
– Verifiably correct by construction

• Adopting HLS methodology shortens verification timescales
– Majority of functional verification at algorithmic/TLM levels
– Minimal RTL simulation and/or formal equivalence checks to prove RTL is

correct

2/29/2016 Peter Frey, Mentor Graphics 16

Thank You!

HLS in the Wild
-- Intel's Experience

Bob Condon, Intel DTS

Hi…

• Bob Condon - past 5 years at Intel
– (Past life HLS, FV, Logic Synthesis at Mentor and Exemplar)
– Coach new teams adopting HLS adoption
– HLS-specific tools and libraries

• Disclaimers
– I won’t talk about specific vendor tools
– I won’t talk about specific Intel products
– “Customers” are internal Intel product groups designing

RTL IP which will get integrated into a full SOC

2/29/2016 Bob Condon Intel DTS 2

Spoiler Alert…

• Many production teams at Intel are using SystemC-based
High-Level Synthesis to produce the RTL we ship in product

• These designs include both algorithm dominated designs and
control dominated designs

• The groups who are happiest report:
“The HLS flow got us to meet the ___ RTL readiness
milestone ___ weeks faster than we estimate with our
hand-written RTL approach”

2/29/2016 Bob Condon Intel DTS 3

Why Adopt HLS?

Marketing pitch gives lots of reasons:
– Retarget new process technology
– Automatic (or rapid) design exploration
– Free simulation
– Faster time to validated RTL
– Code is easier to modify
– Eliminates the need for hardware designers
– Provides single source with the VP/Functional model
– Design is “correct by construction”

2/29/2016 Bob Condon Intel DTS 4

Reality Check

– Faster time to validated RTL (the big one)
– Code is easier to modify (pretty big)
– Retarget new process technology (somewhat)
– Provides single source with the VP/Functional model (not really)

• You can share code but these teams are often very disjoint

(Not worth it….)
– Automatically do design exploration (not much)
– Free simulation (nope)
– Eliminates the need for hardware designers (nope)
– Design is “correct by construction” (myth)

2/29/2016 Bob Condon Intel DTS 5

HLS Increases Test Velocity
Find bugs with “cheapest” test possible
• HLS designs ready before full SV test ready
• Some flavor of model (vectors, c++ code, matlab exists) – use it
• Find (as many) algo bugs as possible in the fast SystemC simulation
• Mixed language sim to find final communication bugs (and spec changes)

2/29/2016 Bob Condon Intel DTS 6

SystemC
Module

(1 Thread)

SystemC
Testbench

SystemC
Module

(k Threads)
Vlog

Module
()

~fast as C
debugs TB ~100x RTL

PA, can use Vlog
vectors
Huge area

~100x RTL
PA, good area

SystemC
Module
(QoR)

(S)Vlog
Testbench

Plan for Success…
• Project

• Under time pressure
• Has a significant amount of new code
• Has line of sight to a derivative
• A C/C++ model of some flavor exists
• The project size corresponds to the “testability” size

• Team
• >= 4 people with skin in the game
• At least one of them has decent C++ skills
• Lined up HLS support
• Verification and Product build team involved

• The first deliverable is a DOA test Verification team and Build team
is involved early

2/29/2016 Bob Condon Intel DTS 7

Who Does the Work?

• 3 Pools of people
– Verilog coders moving up a level of abstraction

• Ask them to anticipate a “dreaded” change
• C++ is often a hurdle
• Symptom – they write an SC_METHOD in their first design

– Architects – Our sweet spot
• “Is overall design better if we tradeoff bus traffic for a bigger RAM?”

– Algorithm specialists (we don’t really see them doing much HLS)
• Hardware knowledge is still critical
• Some software techniques work against HLS

2/29/2016 Bob Condon Intel DTS 8

DataPath vs. Control

We do both and HLS is a win for both
• DataPath designs rely a lot on the HLS tools –

• Automatic pipelining
• Common subexpression extraction

• Control based designs rely on lots of use of C++ idioms
• operator[], Template,
• Use language to make sure each decision is represented exactly once

• Things that are hard get implemented as library components
• Start to think of reuse (IP?) differently
• DataPath: A FIR filter with three taps (traditional “algorithm” IP)
• Control: A unknown block with Streaming Input, Streaming output, reading

coefficients from a RAM and the ability to flush FIFOS on an interrupt

2/29/2016 Bob Condon Intel DTS 9

How Do I Integrate to My
Backend Flow?

• HLS output is “generated” RTL (gRTL)
• Use the same flows as for your h(and)RTL (we relax some lint rules)

• May need a RTL wrapper to leave exactly the same pins as before
including things like scan

• The gRTL is uglier -- Minimize the amount of debugging there
• You do get a waveform and all your vendor tools support mixed

language
• GDB augmented with SC viewers
• Keep your SystemC test complete on algo-functionality

• Add monitors if you need them
• What about ECOs?

– We see very few -- ECO modes of the tools are satisfactory

2/29/2016 Bob Condon Intel DTS 10

How Do I Verify?

• Same as today
– Really, the same way you validated the architectural

model against your current RTL
– RTL still needed for final verification
– The source is (usually) multi-threaded and not cycle-

accurate
• Formal only works in restricted domains (and with formal

expertise)

HLS lets you find and fix your bugs faster but you still need
a full testplan to release quality silicon.

2/29/2016 Bob Condon Intel DTS 11

Déjà Vu All Over Again…

• Many production teams at Intel are using SystemC-based
High-Level Synthesis to produce the RTL we ship in product

• These designs include both algorithm dominated designs and
control dominated designs

• The groups who are happiest report:
“The HLS flow got us to meet the ___ RTL readiness
milestone ___ weeks faster than we estimate with our
hand-written RTL approach”

2/29/2016 Bob Condon Intel DTS 12

Thank You!

HLS for the
FPGA/Programmable Market

Dirk Seynhaeve (Altera – now part of Intel)
Product Planning

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 2

What are FPGAs

Who wants to use
them

Why is HLS important

How does this affect
standardization

Agenda

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 3

What are FPGAs

Who wants to use
them

Why is HLS important

How does this affect
standardization

Agenda

Compromise
CPU/GPU/DSP ASIC

High power consumption Low power consumption

Low performance, high latency High performance, low latency

Low cost Low cost at high volume

Many low cost spins Spins to be avoided

In field updates (remote) No flexibility

Easy functionality
(program)

Specialized functionality
(design)

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 4

FPGA

Parallel Everything

Dirk Seynhaeve (Altera -now part of Intel-) 52/29/2016

Massive…

62/29/2016 Dirk Seynhaeve (Altera -now part of Intel-)

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 7

What are FPGAs

Who wants to use
them

Why is HLS important

How does this affect
standardization

Agenda

Problem

Dirk Seynhaeve (Altera -now part of Intel-) 82/29/2016

Observation

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 9

Scenarios

Path to acceleration
• Enablement

Faster path to verified RTL
• Productivity

C++

RTL

C++

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 10

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 11

What are FPGAs

Who wants to use
them

Why is HLS important

How does this affect
standardization

Agenda

Bridging the Gap

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 12

Kernel
& Memory

Management

Program Language
to

Hardware Abstraction Layer

Program Language
to

Hardware Design Language

Module
Accelerator

Kernel

FPGA

Program Language
to

Platform Specification

Current Approach

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 13

FPGA

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 14

What are FPGAs

Who wants to use
them

Why is HLS important

How does this affect
standardization

Agenda

Evolution
Era FPGA deployment

1980 Glue logic (flexible IO
management, protocol
bridges,…)

1990 Customizable functions
(telecommunication filters)

2010 Data processing systems
(video processing, cloud
computing,…)

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 15

Requirements
FPGA Hardware HLS Standard

Parallel Directives to introduce parallelism in
sequential code

Streaming Self-synchronizing Channels

Low Power Arbitrary Precision

Dirk Seynhaeve (Altera -now part of Intel-) 16

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

2/29/2016

Requirements

FPGA
• Register/Wire
• FIFO
• Memory Mapped

(MEMIF/CSR)

PROGRAMMER
• Scalar/Return
• Pointer/Reference
• Array

Dirk Seynhaeve (Altera -now part of Intel-) 17

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

FORTRAN

C

Python

C++

int16_t foo (
uint8_t control,
int16_t *data_in,
int16_t scratch_pad[128]) {
unsigned char c;
if (control)
for(i=0;i<8;i++)
scratch_pad[i] = *data_in++;

…
return(scratch_pad[128]);

}

2/29/2016

Requirements

FPGA
• Minimize bits

– Faster
– Lower Power
– Smaller (more functionality)

PROGRAMMER
• Fast execution
• Comprehensive

(signed/unsigned)
• Flexible (slice/range)

Dirk Seynhaeve (Altera -now part of Intel-) 18

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

hls_int<129> message = “0x10000”;
hls_fixed<7,3,true,HLS_RND> one_way;
hls_fixed<7,3,HLS_RND> another_way;
hls_int<13> x,y,z;
…
message(129,127)=one_way(7,5);
message.set_slc(124,another_way.slc<3>(5));
…
z = x<<k + y;

2/29/2016

Requirements

FPGA
• FIFO (finite, point-to-point)
• Empty/Full

PROGRAMMER
• STL deque
• Blocking/non-blocking

Dirk Seynhaeve (Altera -now part of Intel-) 19

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

hls_channel<hls_int<17>> channel;
Task1: {
…
while (!channel.write(value));
…
}
Task2: {
…
while (channel.read(value));
…
}

2/29/2016

Requirements

FPGA
• Parallel Compute Units

PROGRAMMER
• Threads
• SIMD (vectorization)

Dirk Seynhaeve (Altera -now part of Intel-) 20

Task FIFO

Task Task

Task

FIFO

FIFO FIFO

FIFO

FIFO

FIFO

2/29/2016

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 21

Summary

• WHAT
– Hardware-centric platform with

software-centric benefits
• WHO

– Programmers for execution speed
– Designers for productivity

• WHY
– HLS bridge from functionality to

hardware specification
• HOW

– Standards that let the FPGA be
an FPGA, and yet respect
programmer paradigms

Thank You!

SystemC Synthesis Standard:
Which Topics for Next Round?

Frederic Doucet
Qualcomm Atheros, Inc

What to Standardize Next…

• Benefit of current standard:
– Provides clear guidelines for synthesizability for C++/SystemC
– Set clear subset for synthesis tools

• We are currently discussing the options for the next standard

• A big list of topics…
– What is important to us designers?
– What is valuable to EDA vendors?
– What are the priorities?
– Did we think of everything?

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 2

Join the discussion!
Join the SWG calls!

C++ Language and Math Libraries

• C++ / C++11
– Unions
– Constructor arguments
– Automatic port naming VCD tracing for all ports for all ports
– Safe array class
– Type handling advances (auto, decl)
– Many other features of interest …

• Math libraries
– AC datatypes and SystemC datatypes
– sc_complex
– sc_float

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 3

Channel Libraries

• Which elements :
– FIFOs
– point-to-point
– pulse
– ring buffer
– line buffers
– CDC
– etc.

• Standard interpretation of the TLM interface in synthesis
– Must blocking vs. may-block vs. non-blocking
– Use TLM 1.0 as reference or not (need add reset)

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 4

Micro-architecture Directives

• Standard list of directives :
– Loop handling:

• unroll, partial unroll, pipeline, sequential
– Function handling

• Sequential function, pipelined, parallel, map to custom resource, etc.
– Array handling:

• flatten, map-to-memory, map-to-reg-file, split, combine, resize, etc.
– Custom resource:

• pipelined, combinational
– Inputs:

• stable, delay
– Latencies:

• Min latency, max-latency
– Etc.

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 5

Micro-architecture Directives

• How to specify the directives:
– Pragma in the code
– Tcl commands in synthesis directive file
– Directive in code (empty functions or variables with specific meaning)

• How to apply the directives
– How to “label” and “find” structures in the code

• “The loop filter_kernel, unroll it”

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 6

Synthesis Structures

• How to interpret the SystemC CDFG and synthesis directive
– The generated RTL behaves equivalently in all tools
– Consistent interpretation across tools

• How to write a pipeline
– Where to freeze, where to free the I/O
– Where to expand the pipeline

• Cycle-accurate, cycle close and super-cycle modes
– Clearly define and implement the scheduling mode

• How to specify and create custom resources
– Specified as C++ functions or C++ scopes
– What interfaces to they implement
– Specify to characterize the custom resource or not with logic synthesis

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 7

Memories

• Where are the memories in the SystemC code:
– Mapping of C++ array into memories (implicit)
– Using memory channel (explicit)

• How to describe the memory macro to the HLS tool
– Memory ports, timing, simulation model file, lib file, etc.
– Standard format

• Using the memory macro in the design (architecture model)
– Memory port sharing by more than one process in a module
– Memory port sharing by sub-modules
– Multi-clock memories
– Memories inside or outside the module

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 8

Tools and Flows

• Standard interpretation of module hierarchy
– How to set up project with submodules

• Many modules and processes to synthesize, process them one by one or all
at once

– Where are the memories instantiated

• Standard minimal wrapper generation
– Tool to provide wrapper for input SystemC in SystemVerilog context
– Tool to provide wrapper for generated Verilog in SystemC

– Mostly about datatype conversions
– Make the wrapper lightweight enough so it can be used with various

HDL simulators
– Help ease flow migration

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 9

Summary
• HLS is rapidly growing in adoption and proving its

value for multiple users (design, verification,
accelerated software…)

• Accellera SystemC synthesis subset standardization
helps focus so the ecosystem can grow around it

• There are great areas for “what’s next” to
standardize to complete the ecosystem for HLS

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 10

Join the discussion!
Join the SWG calls!

Drive what you need in the standard!

Thank You!

	part1_doucet
	Cut Your Design Time in Half with Higher Abstraction
	Agenda
	How High-level Synthesis Works: �An Intro for Hardware Designers
	High-level Synthesis
	High-level Synthesis
	SystemC: Hardware Model in C++
	Example: Synthesizable SystemC
	Example: High-level synthesis
	Example: High-level synthesis
	Example: High-level synthesis, second run
	Example: High-level synthesis, second run
	HLS and Abstraction
	SystemC to Describe Hardware
	SystemC Language
	Thank You!

	part2_meredith
	The Proposed Accellera SystemC Synthesizable Subset
	SystemC Synthesizable Subset Work
	General Principles
	Scope of the Proposed �Standard
	Scope of the Planned Standard
	Behavioral Synthesis in the Design Flow
	Module Structure for Synthesis
	Module Declaration
	Derived Modules
	SC_THREAD & SC_CTHREAD �Reset Semantics
	SC_THREAD & SC_CTHREAD�Process Structure
	Process Structure Options
	Specifying Clock and Reset
	Use of wait()
	Types and Operators
	Data Types
	Pointers
	Other C++ Constructs
	Thank You!

	part3_frey
	High-Level Synthesis �and �Verification
	Problem Statement
	High-Level Synthesis
	High-Level Synthesis
	Properties of�High-Level Synthesis?
	Traditional Design Flow vs. �HLS Flow
	HLS Delivers QofR & Crushes RTL Design Time
	HLS-enabled Verification
	Advances in Verification Technology
	Review of Hardware Abstractions
	Verification in ESL Platform
	Synthesizable TLM Verification
	Coverage-Driven TLM Verification
	RTL Coverage
	HLS Verification
	Summary
	Thank You!

	part4_condon.
	HLS in the Wild �-- Intel's Experience
	Hi…
	Spoiler Alert…
	Why Adopt HLS?
	Reality Check
	HLS Increases Test Velocity
	Plan for Success…
	Who Does the Work?
	DataPath vs. Control
	How Do I Integrate to My Backend Flow?
	How Do I Verify?
	Déjà Vu All Over Again…
	Thank You!

	part5_seynhaeve
	HLS for the FPGA/Programmable Market
	Slide Number 2
	Slide Number 3
	Compromise
	Parallel Everything
	Massive…
	Slide Number 7
	Problem
	Observation
	Scenarios
	Slide Number 11
	Bridging the Gap
	Current Approach
	Slide Number 14
	Evolution
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Slide Number 21
	Thank You!

	part6_doucet
	SystemC Synthesis Standard:�Which Topics for Next Round?
	What to Standardize Next…
	C++ Language and Math Libraries
	Channel Libraries
	Micro-architecture Directives
	Micro-architecture Directives
	Synthesis Structures
	Memories
	Tools and Flows
	Summary
	Thank You!

