2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Cut Your Design Time In Half
with Higher Abstraction

Organizer: Adam Sherer — Accellera Systems Initiative
Speakers: Frederic Doucet - Qualcomm
Mike Meredith — Cadence Design Systems, Inc.
Peter Frey — Mentor Graphics Corp.
Bob Condon — Intel Corp.
Dirk Seynhaeve — Intel Corp.

IIIIIIIIIIIIIIIIIIIIIII

DvCon Agenda

* Introduction — How High-Level Synthesis (HLS) works
targeted for hardware designers

* The Proposed Accellera SystemC Synthesizable Subset
* High-Level Synthesis and Verification

e HLS in the Wild — Intel Experience

e HLS for the FPGA/Programmable Market

e SystemC Synthesis Standard: Which Topics for the Next
Round?

-
2/29/2016 Cut Your Design Time in Half with Higher Abstraction 2

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

How High-level Synthesis Works:
An Intro for Hardware Designers

Frederic Doucet
Qualcomm Atheros, Inc.

2016

DESIGN AND VERIFICATION™

DvC:ON High-level Synthesis

* HLS tool transforms synthesizable
SystemC code into RTL Verilog

1. Precisely characterizes delay/area
of all operations in a design

2. Schedules all the operation over the
available clock cycles

3. Can optionally increase latency
(clock cycles) to get positive slack
and increase resource sharing
(reduces area)

4. Generate RTL that is equivalent to
iInput SystemC

* Pipe depths / latencies decided by HLS
scheduler

SystemC
design

Synthesis
directives

High-level
SWUUESS

RTL
Verilog

-
2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc

2016

DESIGN AND VERIFICATION™

DvC:ON High-level Synthesis

e SystemC HLS has been used in many large semiconductors companies
for years, on both control/datapath heavy designs

 Main SystemC HLS usage:

— Encode and verify all high-level control-flow and datapath functions in
SystemC

— Use HLS tool automatically generate all pipelines and decide latencies
resulting in RTL is optimized for specified clk period / tech node

- . __
2/29/2016

Frederic Doucet, Qualcomm Atheros, Inc

2016

DESIGN AND VERIFICATION™

DVC.OIN SystemC: Hardware Model in C++

e SystemC: syntax for hardware modeling framework in C++

— Modules clk
ant—*l

— Ports ., DUT

— Connections TS N —
d—

— Processes

* Inside a process is C++ code describing the functionality
— DSP processing

— Control logic
— Etc.

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 6

2016

DESIGN AND VERIFICATION™

DvCOIN Example: Synthesizable SystemC

SC_MODULE (DUT)

sc_in <bool> clk;
sc_in <bool> nrst;
sc_in <int> a;

sc_in <int> b;
sc_in <int> «c;
sc_in <int> d;
sc_out<int> z;

void process() {

Z = 0;

RESET:

wait(); hAlM_LiC

MAIN_LOOP:

while (true) {
int vl = a * b;
int v2 = ¢ * d;
int v3 = vl + v2;
COMPUTE_LATENCY: v3
wait();
zZ = v3; M&IN_LODF I”I'I"E_E:I"ld

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 7

2016

DESIGN AND VERIFICATION™

DvCOIN Example: High-level synthesis

Synthesis directives:

{7 » clk period: 5ns kel

* tech node: 65Ip
MAIN_L Ei le_begir

* no micro-arch directive ,
MAIN_L IIiIe_begin OIRO
Scheduling/resource vi v2
cnmpuﬂn NCY
cnwuﬂrﬂww Op delays:

allocation/binding
e mul:4ns

i e add:2ns vi y2
ya AN LOPE fehile en ﬁ
il Iuhile_end . - —"” -

MAIN_LD

Scheduler moved the addition across the state to get positive slack

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 8

2016

DESIGN AND VERIFICATION™

DV

DvCOIN Example: High-level synthesis

Tool generates FSM, datapath
and allocates the registers

ok [> RIEZET_teg ctlOr_In3s
R D_' o Al1:0 z
— 0L (
RST COMPUTE_LATENCY _reg
D
- e CL
RST Z_reg
umul_32 mul_In37_reg & €2 E z[31:0]
AT add_
a[31:0] =2 7310 - A[Z10] z_buf —a
b[31:0] B[a1:0 - _ Z[a1:0] A[am]{:’: Z[31:0] D[a1]
=LK - R3T_M
RST_N
umul_32_0 mul_In38_reg
: A[310
c[31:0] S o
d[31:0] S >CL'K
RST_N
2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc

oo Example: High-level synthesis,
CONFERENCE AND EXHIBITION secon d run

Bl

Synthesis directives:

e clk period: 5ns
[C
Hﬁ e tech node: 65lp , | 2] o] I%I
L Ml _LOY lile_kecin
* minimize resources ()
vl

Scheduling/resource Ewpuﬂn

MAIN_L I:ile_begir
_ > NCY
allocation/binding E /
cnmpuﬂrf NCY

v2
Op delayS: exp@m p
= e mul:4ns

e add: 2ns vl v2
z
Malt_LOpP luhile_end ﬁ

Scheduler added a state to share the multiplier

taln_|L OpP_fvhile_end

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 10

oo Example: High-level synthesis,
second run

CONFERENCE AND EXHIBITION

EEEEEEEE

dddddddddddd

ctrlOr_In36 \
A, t4
COMPUTE_LATENCY reg
O I=}
Lol — Lo
nst Rs1

* Notice that there is only one multiplier

* Sharing mux/registers are automatically allocated and bound to
the generated FSM

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 11

2016

DESIGN AND VERIFICATION™

DVCON HLS and Abstraction

* The tool automatically generates the micro-architecture details
— latencies, muxes, registers, FSMs
- this is what can be abstracted out in the SystemC code

e Starting from SystemC code, HLS tool does:

Map arithmetic/logical operations to resources

Allocate resources and try to share them as much as possible
Automatically generate FSM and sharing logic

Allocate registers and try to share them as much as possible
Optionally add clock cycles to get positive slack and maximize sharing
Generate RTL

o0k wbdE

-
2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 12

2016

DV SystemC to Describe Hardware

* Input SystemC code still needs to capture hardware architecture

— What is the high-level control, data flow and I/O protocols
— What are the necessary concurrent processes

— Which are the abstract datapath functions for the tool to refine

—> Best done by hardware designer

e Fast turnaround is a big benefit

— Small changes in the SystemC/synthesis directives can quickly generate new
RTL with new and very different micro-architecture

— Impossible to do with RTL design

- ___
2/29/2016

Frederic Doucet, Qualcomm Atheros, Inc 13

2016

DESIGN AND VERIFICATION™

DVvCOIN SystemC Language

e Designers can use many of the nice C++ features to help write the code

— Structs/classes, templates, arrays/pointers, functions, fixed/complex
classes, etc.

— Coding patterns/guidelines to separate signal processing code from
/O, etc.

e A standard interpretation of SystemC will help energize the SystemC HLS
marketplace and accelerate adoption

- . __
2/29/2016

Frederic Doucet, Qualcomm Atheros, Inc 14

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Thank You!

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

The Proposed Accellera
SystemC Synthesizable Subset

Mike Meredith

Vice Chair — Accellera Synthesis Working Group
Cadence Design Systems

cadence

DDDDDD

DV
CONFERENCE AND EXHIBITION WO r k
* Development of a * Many contributors
description of a over a number of years
synthesizable subset of e Broadcom, Cadence,
SystemC Calypto, Forte, Fujitsu,
e Started in the OSCI Freescale, Global Unichip,
Synthesis Working Group Intel, ITRI, Mentor, NEC,
e Current work is in Accellera NXP, Offis, Qualcomm,
Systems Initiative Synthesis Sanyo, Synopsys

Working Group

Draft has been proposed for
approval as a new standard

-
2/29/2016 Mike Meredith Cadence Design Systems 2

2016

DESIGN AND VERIFICATION™

DV General Principles

* Define a meaningful minimum subset

— Establish a baseline for transportability of code between
HSL tools

— Leave open the option for vendors to implement larger
subsets and still be compliant

* Include useful C++ semantics if they can be known
statically — e.g., templates

.
2/29/2016 Mike Meredith Cadence Design Systems

CONFERENCE AND EXHIBITION St an d ar d Behavioral Maodel

High Level
e Defined within IEEE 1666-2011

e Covers behavioral model in SystemC for :

synthesis LR/TL/_UJ

e Synthesizable SystemC

— SC_MODULE, SC CTHREAD, v
SC THREAD | |
 Covers RTL model in SystemC for : _
: Gate Level Netlist
synthesis l
— SC_MODULE, SC METHOD | |
* Main emphasis of the document is on |
behavioral model synthesizable subset for GDSII

high-level synthesis

-
2/29/2016 Mike Meredith Cadence Design Systems 4

2016

DESIGN AND VERIFICATION™

DV N Scope of the Planned Standard

SystemC Elements C++ Elements
 Modules e C++ datatypes
* Processes * Expressions

— SC_CTHREAD e Functions

= S UIAIREAD e Statements

e « Namespaces
* Reset P

. Classes
e Signals, ports, exports _

e Overloading
e SystemC datatypes
e Templates

.
2/29/2016 Mike Meredith Cadence Design Systems 5

DV

CONFERENCE AND EXHIBITION

SystemC modules or threads

20, Behavioral Synthesis in the

DESIGN AND VERIFICATION™

 Design

e Testbench

— Insertion of signal-level

interfaces o systemC b
— Insertion of reset behavior . LoCULE
— Conversionto SC_CTHREADs
— Insertion of signal-level Bseyhn"’iﬁié’sr?s'

interfaces

— Reused at each

2/29/2016

abstraction level
e Behavioral

e RTL

e Gate

Design Flow

e Design and testbench converted to

Model

Behavioral
Simulation

Optimize

A

4{

Functional l

M M

SystemC
Testbench

LT OO0

Simulation J‘

Logic

Synthesis

Mike Meredith Cadence Design Systems

2016

DESIGN AND VERIFICATION™

DV Module Structure for Synthesis

required for | Blreset
SC_CTHREAD,

SC—THREAD [SC_CTHREAD}] [SC_THREAD}] [SC_METHOD}]

Signal-level =
ports for

: [

reading o

data

Ports { »iclock SC_MODULE

Signal-level
na
- }ports for
- writing

data

amm

LTTTL]
11101

submodule

LTI

submodule

Signals

| |
Member J Data members
functions (Storage)

2/29/2016 Mike Meredith Cadence Design Systems 7

2016

DESIGN AND VERIFICATION™

DVCON Module Declaration

// A module declaration
SC_MODULE(C my modullel) {

 Module definition sc_in< bool> X, Y, Cin;
— SC MODULE macro sc_out< bool > Cout, Sum;
or SC_CTOR(my_modulel) {.}
}:

— Derived from sc_module

e class or struct // A module declaration
SC_MODULE(C my modullel) {
sc_in< bool> X, Y, Cin;

— SC_CTOR sc_out< bool > Cout, Sum;
or SC_HAS_PROCESS(my modulel);
— SC_HAS PROCESS my modulel(const sc_module name
name)
- sc_modulle(name)
{.}
}s

2/29/2016 Mike Meredith Cadence Design Systems 8

2016

DESIGN AND VERIFICATION™

DVCON Derived Modules

SC_MODULE(BaseModule) {
e Derived sc_in< bool > reset;

sc_in_clk clock;
modules OK BaseModule (const sc_module name name)

> sc_modulle(name_) {

}
};

class DerivedModule : public BaseModule {
void newProcess();
SC_HAS PROCESS(DerivedModule);
DerivedModulle(sc_module_name name_)
- BaseModule(name_) {
SC_CTHREAD(newProcess, clock.pos(Q));
reset _signal _is(reset, true);

}
};

-
2/29/2016 Mike Meredith Cadence Design Systems

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

212.SC_THREAD & SC_CTHREAD

Reset Semantics

e At start of simulation each SC_THREAD and
SC_CTHREAD function is called

— It runs until it hits a wait()

e When an SC_THREAD or SC_ CTHREAD is
restarted after any wait()

— |If reset condition is false

e execution continues

— |If reset condition is true

e stack is torn down and function is called
again from the beginning

 This means
— Everything before the first wait will be

2/29/2016

executed while reset is asserted

Mike Meredith Cadence Design Systems

/SC_CTHREAD
or SC_THREAD

~

reset behavior

walit();

post-reset
Initialization

while (true) {

main loop

}

"

/

Note that every path through

main loop must contain a wait()

or simulation hangs with an

infinite loop

10

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

212.SC_THREAD & SC_CTHREAD

reset behavior

Process Structure

void process() {

/SC_(C)THREAD\//// reset behavior must be

// executable 1In a single cycle
reset _behavior();

l

walt();

post-reset
Initialization

while (true) {

main loop

2/29/2016

}

"

wait();

// initialization may contain
// any number of wait()s.

// This part i1s only executed
// once after a reset.
initialization();

// infinite loop
while (true) {
rest_of _behavior();

S
}

Mike Meredith Cadence Design Systems

11

IIIIIIIIIIIIIIIIIIIIIII

DV Process Structure Options
e SC_THREAD and pteC 1)
SC_CTHREAD

processes must follow Y{Vh;'e(true)

one of the forms shown

* Note that there must be ?vﬁi]{e}(1);
a wait() in every path of |, 4
the Infinite loops to while (true);
avoid simulator hangup |, ¢ : :)
{3}

2/29/2016 Mike Meredith Cadence Design Systems

2016

DESIGN AND VERIFICATION™

DV N Specifying Clock and Reset

Simple signal/port and level
SC _CTHREAD(func, clock.pos(Q);
reset _signal _i1s(reset, true);
areset _signal 1s(areset, true);

For synthesis,
SC_THREAD
can only have a
single sensitivity
to a clock edge

SC_THREAD(func);

=~ sensitive << clk.pos();

reset _signal i1s(reset, true);
areset _signal 1s(areset, true);

reset _signal i1s(const sc _in<bool> &port, bool level)

reset _signal i1s(const sc _signal<bool> &signal, bool level)
async_reset signal _i1s(const sc _in<bool> &port, bool level)
async_reset _signal _i1s(const sc _signal<bool> &signal, bool level)

.
2/29/2016 Mike Meredith Cadence Design Systems 13

2016

DESIGN AND VERIFICATION™

DV Use of walt()

* For synthesis, walit(...) can only reference the clock edge
to which the process is sensitive

 For SC CTHREADs

— walit()
e For synthesis of
— wait(int) SC_¥HREADS
e For SC THREADs wait(event) must
" match the sensitivity
— wait() of the clock edge
— wait(int)

— wait(clk.posedge_event())
— wait(clk.negedge_event())

2/29/2016 Mike Meredith Cadence Design Systems 14

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

* C++ types
* SC_Int, sc_uint

*sCc_bv, s

* sc_bigint, sc_biguint

c_lv

Types and Operators

e All SystemC arithmetic,
bitwise, and comparison

operators supported
* Note that shift operand

should be unsigned to allow

* sc_logic minimization of hardware
e sc_fixed, sc_ufixed
Supported SystemC integer functions
bit select [] | part select (i,J) | concatenate (,)
to_int() to_long() to_int64() to_uint() to_uint64() | to_ulong()
Iszero() sign() bit() range() length()
reverse() test() set() clear() invert()

2/29/2016

Mike Meredith Cadence Design Systems

15

2016

DESIGN AND VERIFICATION™

DVCON Data Types

e C++ Integral types e Forsc lv

— All C++ Integral types — “X"Is not supported

except wchar_t — “Z” is not supported
— char is sighed

(undefined in C++)
e C++ operators

— a>>b
Sign bit shifted inif a is
signed

— ++ and -- not supported
for bool

2/29/2016 Mike Meredith Cadence Design Systems 16

2016

DESIGN AND VERIFICATION™

DVCON Pointers

e Supported for synthesis ¢ Not supported

— “this” pointer — Pointer arithmetic

— “Pointers that are — Testing that a pointer is
statically determinable are Zero
supported. Otherwise, —The use of the pointer
they are not supported.” value as data

— If a pointer points to an e e.g., hashing on a pointer is
array, the size of the array not supported for synthesis

must also be statically
determinable.

2/29/2016 Mike Meredith Cadence Design Systems 17

2016

DESIGN AND VERIFICATION™

DVCON Other C++ Constructs

e Supported * Not supported

— Templates — sizeof()

— const — new()

— volatile e Except for instantiating modules
— hamespace — delete()

— enum — typeid()

— class and struct — extern

* private, protected, public — asm

— Arrays —
— Overloaded operators —

Non-const global variables
Non-const static data members
unions

-
2/29/2016 Mike Meredith Cadence Design Systems 18

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Thank You!

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

High-Level Synthesis
and
Verification

Peter Frey, HLS Technologist

2016

DESIGN AND VERIFICATION™

DVCON Problem Statement

* Designing your RTL is hard

— Complex architectures

— Specifications open to interpretation

— Many constraints (Power, Linting, DFT, Synthesis)
* Fully debugging your RTL is impossible

— Massive vector sets for HW and SW
— Massive integrated SoCs

— Design cycles under pressure
 Each year

— Major advances in verification technology, but...
— The problems still get worse

-
2/29/2016 Peter Frey, Mentor Graphics

- ___
2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

High-Level Synthesis

-
2/29/2016 Peter Frey, Mentor Graphics

2016

DESIGN AND VERIFICATION™

DvCON High-Level Synthesis

e Synthesizes “Accellera SystemC Synthesizable TN
Subset” to production-quality RTL

' void func (short a[N],
i<N; i

for (int i=0; i ++) {

* Arithmetic optimizations and bit-width trimming

* User control over the micro-architecture 1
Implementation — i —
— Parallelism, Throughput, Area, Latency K
(loop unrolling & pipelining)
— Memories (DPRAM/SPRAM/split/bank) vs. =l =l |||
Registers (Resource allocation) =l
e Multi-objective scheduling)
— Power, Performance, Area

 Hardware exploration is accomplished by i,,,,,,,;

applying different constraints —~ FEEEEEEEE

2/29/2016 Peter Frey, Mentor Graphics 4

CONFERENCE AND EXHIBITION

High-Level Synthesis?

1. Mapping from abstract transactions to pin-accurate

protocols
Control i/f EU:‘WIIM
B A L HLS =l
= x inmsinw
| | ——— = "‘—_—

2. Optimizing for performance & area in the target
technology

TP=1
HLS
o —ITii-
i —> \ —> |

2/29/2016 Peter Frey, Mentor Graphics 5

2016 it '
acocsae Traditional Design Flow vs.

CONFERENCE AND EXHIBITION I II S FIOW

> Archi_t_ectqral " Architecture High Level
Specification

Constraints Synthesis
M RTL Coding and == Power Analysis
Micro-architecture A Automatic Opt.
-> Optimization

RTL & Formal
HLS Tool Verification

RTL Verification

Power Analysis il

2/29/2016 Peter Frey, Mentor Graphics

—.oioic- HLS Delivers QofR & Crushes

DV O

 Examples of video, imaging and communication projects
* Generated RTL matches power, performance and area
* Projects complete in 10% to 50% of time needed for RTL

Area
100 -

50
“HLS

- 98% of RTL area

= Hand Design & Verification Time
100 -
Coded

. .
RTL _. 27% of RTL design

& verification time

Vertical
Scaler
Viterbi
Decoder

~ Equalizer

2/29/2016 Peter Frey, Mentor Graphics 7

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

HLS-enabled Verification

-
2/29/2016 Peter Frey, Mentor Graphics 8

2016 : py .
VSIS Advances in Verification

CONFERENCE AND EXHIBITION Te C h Nno I O g y

l, Algorithm

Specification
Document

TLM

Assertions Directed
Testbench

Coverage

Points UvM
RTL

- Constrained

l Random

Export for SoC integration

2/29/2016 Peter Frey, Mentor Graphics

2016 '
el Review of Hardware

CONFERENCE AND EXHIBITION A b St r aCt i O n S

* Algorithmic Model

— No timing or architecture

I,s—> —_>

_ e

e Transaction-Level Model s > ST W
— Partitioned for hardware i M N > 0

architecture - - =)

* RTL Implementation s —>
— Synthesizable to gates i —

-
2/29/2016 Peter Frey, Mentor Graphics 10

2016

DESIGN AND VERIFICATION™

DVCON Verification 1n ESL Platform

* Algorithmic Model can be used as a reference model
— Can be embedded in SV/UVM environment

* Enables early software development
— Software-driven testing

e <10 minutes simulation vs. 1 month simulation in RTL

Algorithmic

ESL Platform

TLM Fabric

2/29/2016 Peter Frey, Mentor Graphics 11

2016

DESIGN AND VERIFICATION™

DVCON Synthesizable TLM Verification

e Can be simulated effectively with UVM
— Early start on UVM environment

e Leverage functional testing

e Based on Algorithmic Model, but partitioned for hardware
* Additional testing for internal control

e Limited performance testing

e Simulation ~100x faster than RTL

Register
Model _ _
Analysis Components, Scoreboard, Functional Coverage

2/29/2016 Peter Frey, Mentor Graphics 12

o020 COVErage-Driven TLM

Q¥CE AND EXHIBITION - - -
Verlfl Ca-tl O n intl8 alu(uintl6é a, uintl6é b, uint3 opcode)
o :
_ _ . intl8 r;
e Assertions and Cover Points _
) + switch(opcode) {
— Functional | case ADD:
i r = atb; break;
- SyStemC case SUB:
r = a-b; break;
! case MUL: !
° Testplan Coverage | r = (OX00FF & a)*(Ox00ff & b); break;!
: i case DIV: ;
— Based on cover assertions | r = a/b; break;
. : case MOD:
— Some tests require RTL 5 r = a%b: break:
| default:
E r = 0; break:
* Code Coverage 3
- FunCthn, Llne, Cond|t|0n/DeC|S|0n ; assert(opcode<5);
_ i cover ((opcode==ADD));
Man)_/ C++ based tOOIS 5 cover ((opcode==SUB));
— Nothing specialized for hardware @ cover((opcode==MuL));

cover((opcode==DI1V));
cover ((opcode==MOD)) ;

return r;

2/29/2016 Peter Frey, Mentor Graphics 13

2016

DESIGN AND VERIFICATION™

DVCON RTL Coverage

e RTL Generated from TLM model
by HLS

* Reuse SystemC Vectors
— Will give functional coverage
— Some gaps in branch/FSM
 Add RTL tests to cover RTL
— FSM reset transitions
— Stall tests
e Gives nearly 100% coverage
— Line, branch, condition

Hits BC
X
v v
+ 2
A v
v 2
Xe X
Xs
v
X
A v
v
v v
+ F]
e X 213s Bl begin
Xg, 2136 result = input 0:
2137 end
2138 endcase
s 2130 MIX v 9 2 2 = reanlr:
Y11nstance |Design unit |Design un|T0taI co\re| Stmt cn:iSimts 'Stmts ‘Stmt % |Stmtgraph |
=+l scverify_top scverify_top ScModule
|“¢ k2 sc_core:sc... ScHierC...
[¢ clk sc_coreiisc... ScHierC...
=+ edge_detec... Module 66.6% 742 621 121 33.7% [N |
++ 8l k_cns_pipe mgc_pipe_r... Module 542% 391 277 114 7%
+- @l linebuffer_inst linebuffer(f... Module 91.0% 264 260 4 98.5% |
=F &l sobel_inst sobel(fast) Module 74.3% 87 84 3 96.6% NN
=+l sobel_core_inst...sobel_core(... Module 74.3% 87 B84 3 96.6% NN

| o MuxX_v_10_...

sobel_core(... Function

-
2/29/2016 Peter Frey, Mentor Graphics

14

2016

DESIGN AND VERIFICATION™

DVCON HLS Verification

Algorithm

Assertions

Coverage
v Points

Specification Synthesizable Directed
Document TLM Testbench

Uvm
Formal

Equivalence ~ Constrained

Random

Export for SoC integration

2/29/2016 Peter Frey, Mentor Graphics

Testplan

15

2016

DESIGN AND VERIFICATION™

DVCON Summary

* Increasing design complexity & shorter design cycles
— RTL simulation based debug & verification is the bottleneck
— Faster simulation (or emulation) is not enough on its own

* Moving to higher levels of abstraction for design & debug
— Focus on verifying functionality, not implementation details
— Significant simulation performance & debug improvement

 Requiring automated generation of RTL from TLMs
— Technology targeting

— Power Performance Area analysis & optimization
— Verifiably correct by construction

* Adopting HLS methodology shortens verification timescales
— Majority of functional verification at algorithmic/TLM levels

— Minimal RTL simulation and/or formal equivalence checks to prove RTL is
correct

-
2/29/2016 Peter Frey, Mentor Graphics 16

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Thank You!

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

HLS in the Wild
-- Intel's Experience

Bob Condon, Intel DTS

2016

DESIGN AND VERIFICATION™

n
CONFERENCE AND EXHIBITION I II L

 Bob Condon - past 5 years at Intel

— (Past life HLS, FV, Logic Synthesis at Mentor and Exemplar)
— Coach new teams adopting HLS adoption
— HLS-specific tools and libraries

* Disclaimers
— | won't talk about specific vendor tools
— | won't talk about specific Intel products

— “Customers” are internal Intel product groups designing
RTL IP which will get integrated into a full SOC

e
2/29/2016 Bob Condon Intel DTS

IIIIIIIIIIIIIIIIIIIIIII

DV Spoiler Alert...

CONFERENCE AND EXHIBITION

 Many production teams at Intel are using SystemC-based
High-Level Synthesis to produce the RTL we ship in product
* These designs include both algorithm dominated designs and
control dominated designs
* The groups who are happiest report:
“The HLS flow got us to meetthe _ RTL readiness
milestone _ weeks faster than we estimate with our
hand-written RTL approach”

- __
3

2/29/2016 Bob Condon Intel DTS

2016

DESIGN AND VERIFICATION™

DvCON\Why Adopt HLS?

Marketing pitch gives lots of reasons:

— Retarget new process technology

— Automatic (or rapid) design exploration

— Free simulation

— Faster time to validated RTL

— Code is easier to modify

— Eliminates the need for hardware designers

— Provides single source with the VP/Functional model
— Design is “correct by construction”

e
2/29/2016 Bob Condon Intel DTS 4

2016

DESIGN AND VERIFICATION™

DVC O Reality Check

— Faster time to validated RTL (the big one)

— Code is easier to modify (pretty big)

— Retarget new process technology (somewhat)

— Provides single source with the VP/Functional model (not really)
* You can share code but these teams are often very disjoint

(Not worth it....)

— Automatically do design exploration (not much)

— Free simulation (nope)

— Eliminates the need for hardware designers (nope)
— Design is “correct by construction” (myth)

e
2/29/2016 Bob Condon Intel DTS 5

2016

DESIGN AND VERIFICATION™

DVCONHLS Increases Test Velocity

Find bugs with “cheapest” test possible

* HLS designs ready before full SV test ready

 Some flavor of model (vectors, c++ code, matlab exists) — use it

* Find (as many) algo bugs as possible in the fast SystemC simulation

* Mixed language sim to find final communication bugs (and spec changes)

O O u
0O SystemC O (S)Vlog [bO
O Testbench O Testbench 2
O O u
. <
E SystemC g E SystemC g
d Module 5 g Module [[1 [
O (1 Thread) o (k Threads)n [] SystemC []
Module [Viog
d:abS:gst% ~100x RTL [(QoR)] E MOSU le
PA, can use Vlo
vectors : |: :|

L L L L

Huge area
~100x RTL
PA, good area

2/29/2016 Bob Condon Intel DTS

2016

DESIGN AND VERIFICATION™

DV Plan for Success...

CONFERENCE AND EXHIBITION

* Project

e Under time pressure

* Has a significant amount of new code

* Has line of sight to a derivative

* A C/C++ model of some flavor exists

e The project size corresponds to the “testability” size
* Team

e >=4 people with skin in the game

* At least one of them has decent C++ skills

* Lined up HLS support

* Verification and Product build team involved

e The first deliverable is a DOA test Verification team and Build team
IS Involved early

e
2/29/2016 Bob Condon Intel DTS 7

2016

DESIGN AND VERIFICATION™

DVCON \Who Does the Work?

e 3 Pools of people
— Verilog coders moving up a level of abstraction
e Ask them to anticipate a “dreaded” change
e C++is often a hurdle
e Symptom — they write an SC_METHOD in their first design
— Architects — Our sweet spot
* “Is overall design better if we tradeoff bus traffic for a bigger RAM?”
— Algorithm specialists (we don't really see them doing much HLS)
 Hardware knowledge is still critical
e Some software technigues work against HLS

e
2/29/2016 Bob Condon Intel DTS 8

2016

DESIGN AND VERIFICATION™

DVCCOIN DataPath vs. Control

We do both and HLS is a win for both
e DataPath designs rely a lot on the HLS tools —
* Automatic pipelining
 Common subexpression extraction
e Control based designs rely on lots of use of C++ idioms
* operator[], Template,
* Use language to make sure each decision is represented exactly once
e Things that are hard get implemented as library components
e Start to think of reuse (IP?) differently
» DataPath: A FIR filter with three taps (traditional “algorithm” IP)

* Control: A unknown block with Streaming Input, Streaming output, reading
coefficients from a RAM and the ability to flush FIFOS on an interrupt

2/29/2016 Bob Condon Intel DTS 9

EGN\}ND\,,m?;;:’,lﬂéoNmHow Do | Integrate to My

CONFERENCE AND EXHIBITION B aC ken d Fl OW?

HLS output is “generated” RTL (gRTL)
* Use the same flows as for your h(and)RTL (we relax some lint rules)

May need a RTL wrapper to leave exactly the same pins as before
Including things like scan

The gRTL is uglier -- Minimize the amount of debugging there

* You do get a waveform and all your vendor tools support mixed
language

e GDB augmented with SC viewers

e Keep your SystemC test complete on algo-functionality
Add monitors if you need them
What about ECOs?

— We see very few -- ECO modes of the tools are satisfactory

e
2/29/2016 Bob Condon Intel DTS 10

IIIIIIIIIIIIIIIIIIIIIII

DvCON How Do | Verify?

e Same as today

— Really, the same way you validated the architectural
model against your current RTL

— RTL still needed for final verification

— The source is (usually) multi-threaded and not cycle-
accurate

* Formal only works in restricted domains (and with formal
expertise)

HLS lets you find and fix your bugs faster but you still need
a full testplan to release quality silicon.

e
2/29/2016 Bob Condon Intel DTS 11

IIIIIIIIIIIIIIIIIIIIIII

DV Déja Vu All Over Again...

CONFERENCE AND EXHIBITION

 Many production teams at Intel are using SystemC-based
High-Level Synthesis to produce the RTL we ship in product
* These designs include both algorithm dominated designs and
control dominated designs
* The groups who are happiest report:
“The HLS flow got us to meetthe _ RTL readiness
milestone _ weeks faster than we estimate with our
hand-written RTL approach”

- __
12

2/29/2016 Bob Condon Intel DTS

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Thank You!

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

HLS for the
FPGA/Programmable Market

Dirk Seynhaeve (Altera — now part of Intel)
Product Planning

[NO[SRYA,

now part of Intel

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

« How does this affect
Il standardization

B -

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-)

2016

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

| What are FPGASs

. Who wants to use
' them

| Why is HLS important

-..| How does this affect
standardization

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-)

2016

DESIGN AND VERIFICATION™

DvCon Compromise

CPU/GPU/DSP ASIC

High power consumption Low power consumption
Low performance, high latency High performance, low latency
Low cost cow cost at high volume
Many low cost spins Spins to be avoided
In field updates (remote) No flexibility
Easy functionality Specialized functionality

(program)

Alera

FPGAs and SoCs

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 4

2016

DESIGN AND VERIFICATION™

Dvcord Parallel Everything

hared_anith_in cry_in
Lombrnaional’ I
Memery ALUTO
ﬂlllm—v—-l 4 |
e l-uwlm wderd |
daaa ——{ b s
dalab - !
! \ariable Precision
| DSP Blocks with
datac — Hardened ————==1 T
diis- . e | Floating Point —— Transceiver Channels
dataet —{ | E-mput LUT| 1 |
datafl — -l | .
Combinational! M20K Internal — == Coomm Hard IP Per Transceiver,
AT Memory Blocks 8b/10b PCS, B4b/GED
Memery] \
s + 5 PCS, 10GBase-KR FEC,
shared s _out g —— >0 e | acdressii] Interdaken PCS
—p
[weus BN N SRRESE
Fractional PLLs
. . .
. . .
. . .
Hard Memary PCI Express Gen3
Controllers, General —p==—p——a——=— Hard IP
It Purpase 10 Cells, -
addrass[N] D1|_0 " ™ VDS
T Core Logic Fabric
addressstal 4
dock

Systolic
Register

5
&
£
3
E

Input Registers

Output Register

32
|—b IEEE 754 Single
Precision FP

Register

Pipeline Register
Pipeline

Qutput Register

Input Registers

IEEE 754 Single
Precision FP

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-)

2016

DESIGN AND VERIFICATION™

DVCON NMassive...

D voltage levels supported (V)

5, 1.35 1.8 25 3.0¢

by 3V IVTTL, 2.5V CMO5
ial POD12, Differential PO 0, LVDS, RSDS, mini-LvDS, LVPECL

Product Line
GX 570 GX &6 G 200 GX 1150
Part numbsr reference 10AEDST 104X 066 N0 5 TilAxi15
LEs (K} 570 Ba0 S 1,150
Adaptive logic modules (ALMs) 217,080 250,540 339,620 427,700
E Registers 868 320 1,002,160 1,358 480 1,708,800
g M2 0K memaory blocks 1,800 2133 2413 FIIE
M20K memaory (Mhb) 35 i 47 53
MLAE memary (Mb) 5.0 5.7 932 127
Hardened single-precision loating-point multiplersfadders 1,523,523 1,688M 683 1,518,518 1,518M1,518
18 x 19 multipliers 3,045 3,376 3.036 3,036
Peak GMALCS 3,351 3174 3,340 3340
GFLOPS 131 1.519 1,366 1366
Global clodk netwaorks 32 32 3z 32
Regional clodks) 16 6 6

=

2 £ | 10 standards supported

E ﬁ 151l .E_md 11}, H5TL-12 {1 and I!], HEI_.II:-1.I, Differential 55-TL—1_35, Differemial S5TL-125, Dafferential 55T

=< iferential HSTL-15 (1 and M}, Differential H5TL-12 (1 and N}, Differemtial HEUL-12

E E Maximum YD channels (1.6 G) 270 270 384 384

E 'E Magmum user D pins b2d b2d 768 7648

.H L Transceiver count (17.4 Gbps) dd df 96 96

= Transceiver count (28,3 Ghps) - - - -
PCle hard IP blocks {Gen3) 2 2 d d
bagimum 3V /0 pins di di - -
Memary devices suppartad Xtreme, LFDDR3, LPDDRZ, RLDRAM 3, RLDRAM (I, LLDRAM 11, HMC

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-)

- ___
2016

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

| What are FPGAs

| Who wants to use

| Why is HLS important

-..| How does this affect
standardization

1

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-)

2016

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

2/29/2016

Problem

[wommeewsam sweswnssmem

data locality, burst, memory
alignment, cache coherence, false
sharing, thread, pinned memory,
coalesced access, NUMA,

privatization,...

ANEIAEAEER SN EENEEEEE

rate clocks, registers, maximum
frequency, place&route, timing
analysis, pipelining, congestion,
setup violation

Hard Processor System (HPS)
ARM Cortex-A9 [l ARM Cortex-A9
NEONFPU NEONFPU ”5‘[3 ons E":‘:?"J‘e‘
L1 Cache L1 Cache
JTAG 64-KB Timers se1
DebugTrace | RAM (x11) (x2)
NAND asP v . ART
Fashih® | Flash Gt S%%%Q oMA U:xzn
Shared Multiport DDR HPSto FPGA o FPGA
SODRAM Controllera FPGA HPS Configuration
ot ! 1 |
specify, simulate, synthesize, multi-

e LR e e e e SR e e e D e

Dirk Seynhaeve (Altera -now part of Intel-)

N AT E T

7

2016

DESIGN AND VERIFICATION™

DVCON Opservation

[F | o | ex mem EIGH
[F | o | ex Q=N

[F | o |
G

l ! Data Parallelism
i

.....

0 [0 Bepeees
"ITITT]

%
@y (=) N

Dirk Seynhaeve (Altera -now part of Intel-)

Aggregation
Task

2/29/2016

2016

DESIGN AND VERIFICATION™

DVCOIN Scenarios

Path to acceleration Faster path to verified RTL
 Enablement * Productivity

Intel’ Xeon®
E5-2600 v2
Product Family

=

0 x8
I
0 x8

a2 e
gy
' '

PCle
PCle

<ECIe‘ 30 x§>

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-)

- ___
2016

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

| What are FPGAs

. Who wants to use
' them

~ Why is HLS important

-..| How does this affect
standardization

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-) 11

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Bridging the Gap

Program Language
to
Platform Specification

L

Program Language Kernel

to & Memory
Hardware Abstraction Layer Management

=\
—

i

FPGA

Program Language
to

SN
—

Hardware Design Language

Module
Accelerator
Kernel

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-)

12

2016

DESIGN AND VERIFICATION™

DvCon Current Approach

FPGA
N
Vv
:::Lscom""er l > (g;mES’Pﬂme

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 13

- ___
2016

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

| What are FPGAs

. Who wants to use
' them

| Why is HLS important

! How does this affect
standardization

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-) 14

2016

DESIGN AND VERIFICATION™

DVCON Eyolution

1980 Glue logic (flexible 10
management, protocol
bridges,...)

Customizable functions
(telecommunication filters)

2010 Data processing systems
(video processing, cloud
computing,...)

~ STATUS

soRa

2/29/2016

Dirk Seynhaeve (Altera -now part of Intel-)

15

2016

DESIGN AND VERIFICATION™

DvCOn Requirements

FPGA Hardware HLS Standard

Parallel Directives to introduce parallelism in

seqguential code
Streaming Self-synchronizing Channels

Low Power Arbitrary Precision

FIFO

FIFO

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 16

2016

DESIGN AND VERIFICATION™

FORTRAN W

DvCOn Requirements ovthon |

FPGA PROGRAMMER _
* Register/Wire e Scalar/Return €
* FIFO * Pointer/Reference
* Memory Mapped * Array
(MEMIF/CSR)

INtle_t foo (
uint8 t control,

FIFO} INtlé_t *data_in,
INtl6_t scratch_pad[128]) {
unsigned char c;
1T (control)
for(i=0;1<8;i1++)
scratch_pad[i1] = *data_in++;

return(scratch_pad[128]);
¥

-
2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 17

2016

DESIGN AND VERIFICATION™

Q¥CEAND EXHIBITION Req u I rem en tS
FPGA PROGRAMMER
* Minimize bits * Fast execution

— Faster e Comprehensive

— Lower Power (signed/unsigned)

— Smaller (more functionality) * Flexible (slice/range)
hls_Int<129> message = “0x100007";
hls_fixed<7,3,true,HLS _RND> one_way;

Task 2 hls_fixed<7,3,HLS RND> another_way;
hls _i1nt<13> X,Y,2Z;
%essage(129,127):one_way(7,5);
message.set _slc(124,another_way.slc<3>(5));
2 = x<<k + y;
2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 18

2016

DESIGN AND VERIFICATION™

DvCOn Requirements

FPGA PROGRAMMER
* FIFO (finite, point-to-point) e STL deque
 Empty/Full * Blocking/non-blocking

hls _channel<hls_i1nt<l17>> channel;

Taskl: {
FIFO .
while (Ichannel .write(value));
+
Task2: {

while (channel.read(value));
+

-
2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 19

2016

DESIGN AND VERIFICATION™

DvCOn Requirements

FPGA PROGRAMMER
» Parallel Compute Units * Threads

e SIMD (vectorization)

> Task —

—
)

> Task —
__

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 20

2016

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

 WHAT
— Hardware-centric platform with

* WHO

— Designers for productivity
e WHY

— HLS bridge from to
hardware specification

 HOW

— Standards that let the FPGA be
an FPGA, and yet respect

e

2/29/2016 Dirk Seynhaeve (Altera -now part of Intel-) 21

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Thank You!

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

SystemC Synthesis Standard:
Which Topics for Next Round?

Frederic Doucet
Qualcomm Atheros, Inc

2016

DESIGN AND VERIFICATION™

DVCON \What to Standardize Next...

e Benefit of current standard:

— Provides clear guidelines for synthesizability for C++/SystemC
— Set clear subset for synthesis tools

* We are currently discussing the options for the next standard

* ADig list of topics...
— What is important to us designers?
— What is valuable to EDA vendors?
— What are the priorities?
— Did we think of everything?

Join the discussion!
Join the SWG calls!

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 2

2016

DESIGN AND VERIFICATION™

DvC:ON C++ Language and Math Libraries

e C++/C++11
— Unions
— Constructor arguments
— Automatic port naming VCD tracing for all ports for all ports
— Safe array class
— Type handling advances (auto, decl)
— Many other features of interest ...

e Math libraries
— AC datatypes and SystemC datatypes
— sc_complex
— sc_float

-
2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 3

2016

DESIGN AND VERIFICATION™

DVCOIN Channel Libraries

* Which elements :
— FIFOs
— point-to-point
— pulse
— ring buffer
— line buffers
— CDC
— etc.
e Standard interpretation of the TLM interface in synthesis
— Must blocking vs. may-block vs. non-blocking
— Use TLM 1.0 as reference or not (need add reset)

-
2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 4

2016

DESIGN AND VERIFICATION™

DV

DVCON Micro-architecture Directives

e Standard list of directives :

Loop handling:

* unroll, partial unroll, pipeline, sequential

Function handling

» Sequential function, pipelined, parallel, map to custom resource, etc.
Array handling:

* flatten, map-to-memory, map-to-reg-file, split, combine, resize, etc.
Custom resource:

* pipelined, combinational

Inputs:

» stable, delay

Latencies:

* Min latency, max-latency

Etc.

2/29/2016

Frederic Doucet, Qualcomm Atheros, Inc 5

2016

DESIGN AND VERIFICATION™

DVCON Micro-architecture Directives

 How to specify the directives:
— Pragma in the code

— Tcl commands in synthesis directive file
— Directive in code (empty functions or variables with specific meaning)

 How to apply the directives

— How to “label” and “find” structures in the code
* “The loop filter_kernel, unroll it”

- __
2/29/2016

Frederic Doucet, Qualcomm Atheros, Inc

2016

DESIGN AND VERIFICATION™

DVC N Synthesis Structures

How to interpret the SystemC CDFG and synthesis directive
— The generated RTL behaves equivalently in all tools
— Consistent interpretation across tools
 How to write a pipeline
— Where to freeze, where to free the I/O
— Where to expand the pipeline
e Cycle-accurate, cycle close and super-cycle modes
— Clearly define and implement the scheduling mode
e How to specify and create custom resources
— Specified as C++ functions or C++ scopes
— What interfaces to they implement
— Specify to characterize the custom resource or not with logic synthesis

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 7

2016

DESIGN AND VERIFICATION™

DVCON Memories

 Where are the memories in the SystemC code:
— Mapping of C++ array into memories (implicit)
— Using memory channel (explicit)

 How to describe the memory macro to the HLS tool

— Memory ports, timing, simulation model file, lib file, etc.
— Standard format

e Using the memory macro in the design (architecture model)

— Memory port sharing by more than one process in a module
— Memory port sharing by sub-modules
— Multi-clock memories

— Memories inside or outside the module

- . __
2/29/2016

Frederic Doucet, Qualcomm Atheros, Inc

2016

DESIGN AND VERIFICATION™

DVCON Tools and Flows

e Standard interpretation of module hierarchy

— How to set up project with submodules

* Many modules and processes to synthesize, process them one by one or all
at once

— Where are the memories instantiated

e Standard minimal wrapper generation

— Tool to provide wrapper for input SystemC in SystemVerilog context
— Tool to provide wrapper for generated Verilog in SystemC

— Mostly about datatype conversions

— Make the wrapper lightweight enough so it can be used with various
HDL simulators

— Help ease flow migration

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 9

IIIIIIIIIIIIIIIIIIIIIII

DV Summary

NNNNNNNNNNNNNNNNNNNNNNN

e HLS is rapidly growing in adoption and proving Iits
value for multiple users (design, verification,
accelerated software...)

e Accellera SystemC synthesis subset standardization
helps focus so the ecosystem can grow around it

* There are great areas for “what’s next” to
standardize to complete the ecosystem for HLS

Join the discussion!
Join the SWG calls!
Drive what you need in the standard!

2/29/2016 Frederic Doucet, Qualcomm Atheros, Inc 10

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Thank You!

	part1_doucet
	Cut Your Design Time in Half with Higher Abstraction
	Agenda
	How High-level Synthesis Works: �An Intro for Hardware Designers
	High-level Synthesis
	High-level Synthesis
	SystemC: Hardware Model in C++
	Example: Synthesizable SystemC
	Example: High-level synthesis
	Example: High-level synthesis
	Example: High-level synthesis, second run
	Example: High-level synthesis, second run
	HLS and Abstraction
	SystemC to Describe Hardware
	SystemC Language
	Thank You!

	part2_meredith
	The Proposed Accellera SystemC Synthesizable Subset
	SystemC Synthesizable Subset Work
	General Principles
	Scope of the Proposed �Standard
	Scope of the Planned Standard
	Behavioral Synthesis in the Design Flow
	Module Structure for Synthesis
	Module Declaration
	Derived Modules
	SC_THREAD & SC_CTHREAD �Reset Semantics
	SC_THREAD & SC_CTHREAD�Process Structure
	Process Structure Options
	Specifying Clock and Reset
	Use of wait()
	Types and Operators
	Data Types
	Pointers
	Other C++ Constructs
	Thank You!

	part3_frey
	High-Level Synthesis �and �Verification
	Problem Statement
	High-Level Synthesis
	High-Level Synthesis
	Properties of�High-Level Synthesis?
	Traditional Design Flow vs. �HLS Flow
	HLS Delivers QofR & Crushes RTL Design Time
	HLS-enabled Verification
	Advances in Verification Technology
	Review of Hardware Abstractions
	Verification in ESL Platform
	Synthesizable TLM Verification
	Coverage-Driven TLM Verification
	RTL Coverage
	HLS Verification
	Summary
	Thank You!

	part4_condon.
	HLS in the Wild �-- Intel's Experience
	Hi…
	Spoiler Alert…
	Why Adopt HLS?
	Reality Check
	HLS Increases Test Velocity
	Plan for Success…
	Who Does the Work?
	DataPath vs. Control
	How Do I Integrate to My Backend Flow?
	How Do I Verify?
	Déjà Vu All Over Again…
	Thank You!

	part5_seynhaeve
	HLS for the FPGA/Programmable Market
	Slide Number 2
	Slide Number 3
	Compromise
	Parallel Everything
	Massive…
	Slide Number 7
	Problem
	Observation
	Scenarios
	Slide Number 11
	Bridging the Gap
	Current Approach
	Slide Number 14
	Evolution
	Requirements
	Requirements
	Requirements
	Requirements
	Requirements
	Slide Number 21
	Thank You!

	part6_doucet
	SystemC Synthesis Standard:�Which Topics for Next Round?
	What to Standardize Next…
	C++ Language and Math Libraries
	Channel Libraries
	Micro-architecture Directives
	Micro-architecture Directives
	Synthesis Structures
	Memories
	Tools and Flows
	Summary
	Thank You!

