
DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

This document has been submitted to, and reviewed and posted by, the editors of DAC.com. Please recycle if printed.

SystemC AMS Extensions: Solving the Need for
Speed

Martin Barnasconi
AMS Working Group Chairman

Open SystemC Initiative, San Jose, CA USA

Notice of Copyright

This material is protected under the copyright laws of the U.S.
and other countries and any uses not in conformity with the
copyright laws are prohibited. Copyright for this document is
held by the creator — authors and sponsoring organizations —
of the material, all rights reserved.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 2 of 8

WHITE PAPER: AMS Modeling Standard

SystemC AMS Extensions: Solving the Need for Speed

Martin Barnasconi

AMS Working Group Chairman
Open SystemC Initiative, San Jose, CA USA

Abstract–—In March 2010, the Open SystemC™ Initiative (OSCI) released the SystemC
Analog/Mixed-signal (AMS) 1.0 standard, introducing AMS language constructs and semantics
as natural extensions to SystemC. This new standard fulfills the need for a unified system-level
modeling language to design and verify real heterogeneous applications composed of AMS and
digital HW/SW systems. In addition, it allows modeling at higher levels of abstraction, which
significantly improves the simulation performance (speed) and efficiency.

Similar to Transaction-level Modeling (TLM), the SystemC AMS extensions introduce smart methods
to abstract time and uses known techniques to abstract signal properties. However, analog behavior
is continuous in time and continuous in value, captured in an equation system and often seen as
difficult to abstract. Any abstraction method applied would result in a less accurate description of the
analog behavior. This is not necessarily a problem, as long as the abstracted behavior does not
impact the essential characteristics or functionality of the AMS system for the intended application.
So, when applying these abstraction methods in a smart manner, a major improvement in simulation
speed is obtained, enabling totally new AMS analysis and verification methods through simulation,
which have never been exercised before.

Index Terms—embedded systems, analog/mixed-signal, SystemC, system-level design

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 3 of 8

I. SystemC AMS in Virtual Prototyping: The Missing Link

Virtual prototyping is a well known technique applied in digitally-oriented ESL design
methodologies. The objective is to create a reference platform of the complete system or IC
architecture (the “prototype” part) in an executable description captured in an abstract model
(the “virtual” part), which is then simulated. In this way, virtual prototyping provides software
developers and system architects with an environment for software development,
architecture exploration, or HW/SW co-design.

However, virtual prototypes based on purely digital models and model descriptions may not
offer an efficient way to capture analog behavior, which is often an integral part of the
embedded system. This can be a serious drawback, as the interfaces to the outside world –
which are analog in nature – are thus not adequately modeled or even not modeled at all.
Examples of these analog interfaces are sensors and actuators, wireless or wired physical
layer (PHY) blocks of a communication system, or the power supply and management unit
of an integrated circuit. Furthermore, for optimized system architectures containing analog,
digital, and software functionality, the software or firmware often directly interacts with AMS
hardware. Therefore, the correctness and robustness of the system in terms of its
architecture, functional aspects, and timing aspects cannot be validated in the analog or
digital domain only, and mixed-signal simulations may be needed.

The biggest constraint of introducing AMS descriptions in a virtual prototype is that they
should not result in degradation of the simulation speed. For example, this can be an issue
with mixed-signal simulation if the AMS description is at the wrong level of abstraction.
They should offer sufficient accuracy to describe the (abstracted) analog behavior for the
intended use case [1]. For this reason AMS descriptions at a high level of abstraction are
more suitable to combine AMS subsystems with HW/SW subsystems in a virtual prototype.

II. SystemC AMS Abstractions: The Art of Simplification

SystemC AMS extensions introduce three different models of computation to support AMS
behavioral modeling at different levels of abstraction. These models of computation are
Electrical Linear Networks (ELN), Linear Signal Flow (LSF), and Timed Data Flow (TDF).
ELN and LSF descriptions are used to model continuous-time behavior, for which
simulations only require a simple linear analog solver. TDF descriptions are processed at
discrete points in time. As depicted in Table 1, four abstraction methods can be applied for
each model of computation:

 abstraction of the behavior

 abstraction of the structure

 abstraction of the communication

 abstraction of the time and frequency

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 4 of 8

Structure Behavior Communication Time/Frequency

Functional blocks
(non‐conservative system)

Algorithmic descriptions,
transfer functions

Sequence of samples
of arbitrary type

(Over)sampling,
baseband modeling

Structural representation
of linear equations

(non‐conservative system)

Linear functional
descriptions

Directed signals,
continuous value

No abstraction
(continuous time)

Simplified network
(conservative system)

Macro modeling with
linear primitives and

ideal switches

No abstraction
(physical quantities)

No abstraction
(continuous time)

Timed Data
Flow (TDF)

Linear Signal
Flow (LSF)

Electrical
Linear

Networks
(ELN)

Model of
Computation

Imposed abstractions

Table 1: Abstractions in relation to the SystemC AMS models of computation [2].

Abstraction of the behavior will change the actual functionality of a representation, as it
focuses on what and what not to model. Behavioral abstraction is often seen as difficult, due
to the fact that the criteria to decide what can or cannot be left out of a behavioral
description are highly application-specific and use-case dependent. This requires some
thinking (and specification) from the AMS designer together with the architect to evaluate
and define the relevant functionality only, which is then captured in a behavioral model.

Abstraction of the behavior can be applied at different structural levels and using different
formats. In case of an electrical network, macro modeling is applied. Macro modeling uses
electrical primitives to replace the physical representation with an ideal equivalent circuit.
Behavioral abstraction applied to blocks (such as amplifiers) may use a Laplace transfer
function with poles and zeros to capture the dynamic linear behavior, or could be replaced
by an abstract static non-linear description in a TDF model. A behavioral abstraction of a
look-up table means that the table is further condensed.

Abstraction of the structure is the most obvious method used to simplify the composition
and thus architecture of a design, without changing its behavior. It decouples the
implementation details (how it is modeled) from the actual functional description (what is
modeled). It describes the system in (a set of) models, where for each model the outputs are
defined as a function of the inputs.

This method heavily influences the granularity of the system, which could impact the
simulation performance. Especially when using electrical primitives, the number of models
used will define the size of the overall equation system. It is expected that a fine-grained
description will result in reduced simulation speed compared to a course-grained description.

The need for a particular level of structural detail strongly depends on the system properties
or characteristics being specified or analyzed. For example, in case the value of an
electrical component needs to be defined, a network of electrical primitives needs to be
resolved with an analog solver, taking into account the conservative behavior of the

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 5 of 8

electrical network. As soon as the system can be partitioned using independent entities,
each defining a specific functionality, a non-conservative system description using directed
signals is sufficient. This will help to speed up simulations.

Abstraction of the communication allows the use of different data types to abstract the
signals used for communication. Figure 1 provides an example of different abstraction
methods for analog signals related to the model of computation used (see also Table 1).
Although for completeness the signal amplitude as function of time is depicted, the relevant
element for this abstraction method is the amplitude value of the signal.

b) Linear Signal Flowa) Electrical Linear Networks

t

v(t), i(t)

t

x(t)

c) Timed Data Flow

t

x(t)

abstractionabstractionv(t)

i(t)

Figure 1: Abstraction of communication and time using the SystemC AMS models of
computation.

For conservative system descriptions (such as electrical networks) there are two dependent
quantities: the voltage v(t) at each node (known as the across value) and the current i(t)
through each electrical primitive. An equation solver has to calculate all across values
(voltages) and all through values (currents) in a way that the Kirchhoff’s Laws are fulfilled.
For signal flow and data flow descriptions, which describe the network as a non-
conservative system, no such dependency exists between these quantities. A single
quantity x(t) is used, which then represents, for example, either the voltage or the current.

For electrical networks and signal flow descriptions, the analog signal representation is
continuous in value and time. No data type is available in the SystemC AMS extensions to
provide direct access to this value, due to the fact that this signal is an integral part of the
analog equation system. For Timed Data Flow, the values of the signal representation are
available at discrete points in time and may use any arbitrary data type to represent the
signal value. For example, the data type double can be used to represent a continuous
value for the amplitude of the signal.

Abstraction of time and frequency is the most powerful -- but also the most tricky -- part
of the SystemC AMS extensions. This seems impossible for analog signals, as the
continuous-time property of a signal is a fundamental part of the analog description.
However, such an abstraction method is extremely useful to improve efficiency in AMS
system-level modeling. In fact, concepts similar to those applied to TLM have been
introduced for AMS, enabling the abstraction of time.

The first method is to apply (over)sampling to the analog signal, resulting in a discrete-time
sampled signal. The main advantage of using the TDF model of computation is that the

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 6 of 8

sampled values are processed efficiently. Time annotation (“tagging”) is applied to define
the exact time stamp for each sample. Note that this sampling technique should be applied
with care. When dealing with radio frequency (RF) signals, the sampled discrete-time signal
should comply with the Nyquist-Shannon Sampling Theorem, which defines that the signal
is preserved when it is sampled with at least the Nyquist frequency, being at least twice the
maximum signal frequency. In order to apply this method on analog signals and to avoid
aliasing, a sufficiently high oversampling ratio is needed.

When modeling RF systems with very high carrier frequencies (in the order of GHz), a
significant simulation speedup can be achieved by applying abstraction of the frequency,
known as baseband modeling. This second abstraction method is based on the fact that
digital modulation techniques used in modern communication systems use the amplitude
and the phase of the analog signal to transmit information. In this case the information itself
is independent from the (usually high) carrier frequency. The idea of baseband modeling is
to map the RF carrier frequency to zero hertz. The resulting signal is called the complex low-
pass equivalent or the complex envelope. The required sampling rate then only depends on
the bandwidth of the modulated signal.

III. SystemC AMS Simulations: Speed Vs. Accuracy Tradeoff

The introduction of these AMS abstraction methods, which are facilitated by the models of
computation of the SystemC AMS extensions, addresses the need to significantly improve
simulation speed and efficiency of the AMS descriptions. This marks the beginning of a new
era in which AMS and digital HW/SW systems can finally be simulated together.

In terms of simulation accuracy, the objective is to capture basic functionality relevant for the
intended use case and to validate this against the specification, including AMS behavior. As
these AMS system aspects are evaluated as part of a virtual prototype that uses a high-level
(e.g., TLM) description of the digital HW/SW system, it is not expected that analog physical
effects (e.g., parasitics and substrate noise) should become part of the AMS system model.
Instead, dynamic linear and static non-linear behavior related to amplification, mixing,
filtering, and so on of analog signals can be captured quite naturally and easily, without
having a major impact on the simulation performance.

To enable inclusion of AMS descriptions in virtual prototypes, simulation speed should be
comparable to the simulation performance when using TLM. Note that the abstraction and
associated accuracy for the AMS description at the system level and circuit level are
completely different, because different use cases are served and thus a true one-to-one
comparison of the results cannot be given. This being said, Figure 2 gives first-order
indications toward selection of the most applicable modeling strategy and modeling
language.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 7 of 8

1 10 100 1000 10000 100000

SystemC AMS
extensions

Verilog‐AMS,
VHDL‐AMS

Verilog‐A

Fast‐SPICE

SPICE

real‐
number

electrical

electrical
signal
flow

ELN LSF TDF

Expected simulation speed improvement

day(s) hour(s) minute(s) second(s)week(s)

1000000

circuit/block
verification

virtual
prototyping

top‐level
verification

Figure 2: Expected simulation speed for different modeling languages compared to SPICE

simulation.

Fast-SPICE solutions available in the market today show an improvement of a factor of

5-50 (compared to SPICE) and thus are very valuable for circuit/block verification. The
simulation speed improvement offered by Fast-SPICE solutions makes them unsuitable for
integration into a virtual prototype. The use of conventional AMS behavioral modeling
techniques (e.g., Verilog-A, Verilog-AMS, and VHDL-AMS) including real-number modeling
is beneficial for top-level verification, bringing a simulation speed improvement between

100 and 10,000. However, this is still not sufficient for virtual prototyping (e.g., to boot an
operating system and to control a software-defined radio baseband processor and analog
front-end).

The TDF model of computation offered by the SystemC AMS extensions facilitates a very
efficient simulation approach, as TDF models are processed at discrete time points without
using the dynamic scheduling of the discrete-event kernel of SystemC. This makes TDF the
most powerful modeling style for the creation of AMS descriptions in virtual prototypes.

For a wireline communication system [3], a Fast-SPICE simulation for the analog front-end
takes approximately 15 hours to simulate 1ms of real time. By creating an abstracted
description using the SystemC AMS extensions, the simulation takes 1.5 hours to simulate
1 second of real time. Although a true comparison cannot be made because a different

abstraction and accuracy have been applied, the values show a ratio of 10,000 in
simulation speed.

In the case of applying baseband modeling, a dedicated data type is defined as a
specialized class to store the complex envelope for the individual carrier frequencies. This
abstraction method is applied with success in a case study presented at the DATE

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 8 of 8

Conference 2010 [4]. The simulation results show that the transient simulation up to a
bandwidth of 2.4 GHz for the transmission of 1,000 bits takes 63 seconds. When replacing
the signal type double with the specialized data type for baseband modeling, the simulation
bandwidth is reduced according to the bandwidth of the complex envelope, resulting in a
simulation time of 36ms. This brings a speed improvement of a factor of 1,750.

IV. SystemC AMS Standard: A Bright Future

After the release of the AMS 1.0 standard, the OSCI AMS working group has continued to
promote the use of the SystemC AMS extensions. In addition, they will further advance the
AMS standard, addressing additional important topics as defined in the AMS requirements
specification [2].

In order to get started with the SystemC AMS extensions, please visit the AMS Working
Group page [5] to find more information on the released SystemC AMS standard and
industry support. The SystemC AMS User’s Guide [2] is part of the standard and offers a
good starting point for exploring the capabilities of this new modeling language. The User’s
Guide will further explain the modeling fundamentals and abstraction methods as presented
in this paper, and also offers many code and application examples.

We encourage the SystemC and AMS community to learn more about the simulation power
and speed offered by the SystemC AMS extensions. And, if you need some guidance in this
journey, feel free to contact us via the AMS forum on www.systemc.org.

V. Acknowledgments

The author wishes to thank Karsten Einwich of Fraunhofer IIS/EAS Dresden, Gerhard
Nössing of Lantiq Austria GmbH, and François Pecheux of the Université Pierre et Marie
Curie in Paris for sharing their simulation benchmark results using the SystemC AMS
extensions.

 VI. References

[1] C. Grimm, M. Barnasconi, A. Vachoux and K. Einwich, “An Introduction to Modeling
Embedded Analog/Mixed-Signal Systems Using SystemC AMS Extensions,” Open SystemC
Initiative, June 2008.
[2] Open SystemC Initiative, SystemC AMS 1.0 Standard, including AMS Language
Reference Manual, User’s Guide, and requirements specification,
http://www.systemc.org/downloads/standards/ams10/
[3] K. Einwich, C. Grimm, M. Barnasconi and A. Vachoux, “Introduction to the SystemC AMS
DRAFT Standard”, embedded tutorial, Proc. IEEE Intl. SOC Conf., 2009.
[4] K. Einwich, C. Grimm, F. Pecheux, and M. Barnasconi, “Application of the SystemC AMS
Standard”, tutorial, Proc. DATE Conference, 2010.
[5] Open SystemC Initiative, AMS working group page,
http://www.systemc.org/apps/group_public/workgroup.php?wg_abbrev=amswg

