
UVM 1.0 Errata Documentation

This errata document details the Natural Doc (API) changes found in the
latest Base Class Library (BCL) release relative to the officially approved

Accellera UVM 1.0 spec. The intention of this document is to aid developers
utilizing this version of the release so that a very clear set of changes are

described.

The UVM committee within Accellera provides four documents for the
community.

1. An officially sanctioned and Accellera approved standards document,

also known as our API Reference Guide which describes the UVM
feature by feature in API format. This is considered a specification

document for the UVM and anyone can use it to create their own

implementation (should they choose).
2. A BCL implementation of the UVM. This is implemented in

SystemVerilog and is a set of base classes and utilities put together to
enable the creation of test environments.

3. A User‟s Guide. This details an overview of the UVM, what it contains,
how it should be used, and methodology recommendations to enable

VIP reuse.
4. An Errata document. Describes API changes made in the current

release of the BCL relative to the officially approved standard.

We decided as a committee to release the BCL, UG, and Errata document
more often than the standards document. This would allow the UVM

implementation and User‟s Guide to be more nimble, responsive, and fluid
according to end user needs. This also required however that we detail any

changes in the API Natural Docs relative to the approved standard so that

EDA companies, 3rd party vendors, and end user developers understood the
differences.

For this version of errata it is based on the Accellera approved UVM 1.0

version approved on February 18th, 2011. This API spec can be found here:

http://www.accellera.org/activities/vip/

And is called the “Class Reference Manual”.

The formatting for this Errata document is as follows:

http://www.accellera.org/activities/vip/

Text shown crossed and red removes existing material. Text shown

underlined and blue adds new material without disturbing the existing
material.

This document is organized according to the main chapters found in

the API UVM spec.

Base:

CHANGE SET #1: Add to uvm_transaction.

BCL LOCATION: distrib/src/base/uvm_transaction.svh

PDF LOCATION: page 22

The uvm_transaction class is the root base class for UVM transactions. Inheriting all the

methods of uvm_object, uvm_transaction adds a timing and recording interface.

Use of the class uvm_transaction as a base for user-defined transactions is deprecated. Its

subtype, uvm_sequence_item, shall be used as the base class for all user-defined transaction

types.

CHANGE SET #2: Add default values to uvm_phase::new()

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 55

new

function new(string name = "uvm_phase",

 uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,

 uvm_phase parent = null)

CHANGE SET #3: Change uvm_phase::find()

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 56

find

function uvm_phase find(uvm_phase phase string name,

file:///D:/users/UVM/uvm-10-ref_final/html/files/seq/uvm_sequence_item-svh.html%23uvm_sequence_item

 bit stay_in_scope = 1)

Locate the phase node with the specified phase IMP and return its handle. With

stay_in_scope set, searches only within this phase‟s schedule or domain.

Locate a phase node with the specified name and return its handle. Look first within the

current schedule, then current domain, then global

CHANGE SET #4: Replace uvm_phase::add_phase() and add_schedule() with

add()

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 57

add

function void add(uvm_phase phase,

 uvm_phase with_phase = null,

 uvm_phase after_phase = null,

 uvm_phase before_phase = null)

Build up a schedule structure inserting phase by phase, specifying linkage

Phases can be added anywhere, in series or parallel with existing nodes

phase handle of singleton derived imp containing actual functor. by default

the new phase is appended to the schedule

with_phase specify to add the new phase in parallel with this one

after_phase specify to add the new phase as successor to this one

before_phase specify to add the new phase as predecessor to this one

add_schedule

function void add_schedule(uvm_phase schedule,

 uvm_phase with_phase = null,

 uvm_phase after_phase = null,

 uvm_phase before_phase = null)

 Build up schedule structure by adding another schedule flattened within it.

file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/src/base/uvm_phases.svh

 Inserts a schedule structure hierarchically within the enclosing schedule's

 graph. It is essentially flattened graph-wise, but the hierarchy is preserved

 by the 'm_parent' handles which point to that schedule's begin node.

 schedule - handle of new schedule to insert within this one

 with_phase - specify to add the schedule in parallel with this phase node

 after_phase - specify to add the schedule as successor to this phase node

 before_phase - specify to add the schedule as predecessor to this phase node

add_phase

function void add_phase(uvm_phase phase,

 uvm_phase with_phase = null,

 uvm_phase after_phase = null,

 uvm_phase before_phase = null)

Build up a schedule structure inserting phase by phase, specifying linkage

Phases can be added anywhere, in series or parallel with existing nodes

phase handle of singleton derived imp containing actual functor.

by default the new phase is appended to the schedule

 with_phase specify to add the new phase in parallel with this one

 after_phase specify to add the new phase as successor to this one

 before_phase specify to add the new phase as predecessor to this one

CHANGE SET #5: Add ‘hier’ arg with default value=0 to

uvm_phase::get_schedule()

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 58

get_schedule

function uvm_phase get_schedule(bit hier = 0)

Returns the topmost parent schedule node, if any, for hierarchical graph traversal

CHANGE SET #6: Add ‘hier’ arg with default value=0 to

uvm_phase::get_schedule_name() plus additional changes

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 58

get_schedule_name

file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/src/base/uvm_phases.svh
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/src/base/uvm_phases.svh

function string get_schedule_name(bit hier = 0)

Returns the schedule name associated with this phase node

Accessor to return the schedule name associated with this schedule

CHANGE SET #7: Add the following methods in uvm_phases:

- find_by_name()

- get_full_name()

- get_domain()

- get_imp()

- get_domain_name()

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: N/A

find_by_name

function uvm_phase find_by_name(string name,

 bit stay_in_scope = 1)

Locate a phase node with the specified name and return its handle. With stay_in_scope set,

searches only within this phase‟s schedule or domain.

get_full_name

virtual function string get_full_name()

Returns the full path from the enclosing domain down to this node. The singleton IMP

phases have no hierarchy.

get_domain

function uvm_domain get_domain()

Returns the enclosing domain

get_imp

function uvm_phase get_imp()

Returns the phase implementation for this this node. Returns null if this phase type is not a

UVM_PHASE_LEAF_NODE.

get_domain_name

function string get_domain_name()

Returns the domain name associated with this phase node

CHANGE SET #8: Add to sync and unsync relationship to uvm_phase before the

description of the sync function. Change sync and unsync API’s:

LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 59

sync and unsync

Add soft sync relationships between nodes

Summary of usage

target::sync(.source(domain)

 [,.phase(phase)[,.with_phase(phase)]]);

target::unsync(.source(domain)

 [,.phase(phase)[,.with_phase(phase)]]);

Components in different schedule domains can be phased independently or in sync with

each other. An API is provided to specify synchronization rules between any two domains.

Synchronization can be done at any of three levels:

 the domain‟s whole phase schedule can be synchronized

 a phase can be specified, to sync that phase with a matching counterpart

 or a more detailed arbitrary synchronization between any two phases

Each kind of synchronization causes the same underlying data structures to be managed.

Like other APIs, we use the parameter dot-notation to set optional parameters.

When a domain is synced with another domain, all of the matching phases in the two

domains get a „with‟ relationship between them. Likewise, if a domain is unsynched, all of

the matching phases that have a „with‟ relationship have the dependency removed. It is

possible to sync two domains and then just remove a single phase from the dependency

relationship by unsyncing just the one phase.

sync

function void sync(uvm_domain target,

 uvm_phase phase = null,

 uvm_phase with_phase = null)

Synchonize two domains, fully or partially

target handle of target domain to synchronize this one to

phase optional single phase in this domain to synchronize, otherwise sync all

with_phase optional different target-domain phase to synchronize with, otherwise
use phase in the target domain

unsync

function void unsync(uvm_domain target,

 uvm_phase phase = null,

 uvm_phase with_phase = null)

Remove synchronization between two domains, fully or partially

target handle of target domain to remove synchronization from

phase optional single phase in this domain to un-synchronize, otherwise
unsync all

with_phase optional different target-domain phase to un-synchronize with,
otherwise use phase in the target domain

CHANGE SET #9: Add to uvm_domain.

BCL LOCATION: distrib/src/base/uvm_phases.svh

PDF LOCATION: page 61

uvm_domain

Phasing schedule node representing an independent branch of the schedule. Handle used to

assign domains to components or hierarchies in the testbench

Summary

uvm_domain

Phasing schedule node representing an independent branch of the schedule.

Class Hierarchy

uvm_void

uvm_object

uvm_phase

uvm_domain

Class Declaration

class uvm_domain extends uvm_phase

Methods

get_domains Provies a list of all domains in the provided domains argument.

get_uvm_schedule

get_common_domain Get the “common” domain, which consists of the common phases that all

components execute in sync with each other. Get the common domain
objection which consists of the common phases that all components executed
together (build, connect, ..., report, final).

add_uvm_phases Appends to the given schedule the built-in UVM phases.

get_uvm_domain Get a handle to the singleton uvm domain

new Create a new instance of a phase domain.

METHODS

get_domains

static function void get_domains(output uvm_domain domains[string])

Provies a list of all domains in the provided domains argument.

get_uvm_schedule

static function uvm_phase get_uvm_schedule()

get_common_domain

file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/src/base/uvm_phases.svh
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_misc-svh.html%23uvm_void
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_object-svh.html%23uvm_object
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_phase
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.Methods
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.get_domains
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.get_uvm_schedule
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.add_uvm_phases
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.get_uvm_domain
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.new

static function uvm_domain get_common_domain()

Get the “common” domain, which consists of the common phases that all components

execute in sync with each other. Phases in the “common” domain are build, connect,

end_of_elaboration, start_of_simulation, run, extract, check, report, and final. Get the

common domain objection which consists of the common phases that all components

executed together (build, connect, ..., report, final).

add_uvm_phases

static function void add_uvm_phases(uvm_phase schedule)

Appends to the given schedule the built-in UVM phases.

get_uvm_domain

static function uvm_domain get_uvm_domain()

Get a handle to the singleton uvm domain

new

function new(string name)

Create a new instance of a phase domain.

TLM:

CHANGE SET #11: Change uvm_pair as follows:

BCL LOCATION: distrib/src/comps/uvm_pair.svh

PDF LOCATION: page 347

uvm_pair classes

This section defines container classes for handling value pairs.

Contents

uvm_pair classes This section defines container classes for handling value pairs.

uvm_class_pair uvm_pair
#(T1,T2)

Container holding handles to two objects whose types are specified by
the type parameters, T1 and T2.

uvm_built_in_pair #(T1,T2) Container holding two variables of built-in types (int, string, etc.)

http://wwwin/src/comps/uvm_pair.svh
http://wwwin/~janick/UVM/files/comps/uvm_pair-svh.html#uvm_pair_classes

uvm_class_pair uvm_pair #(T1,T2)

Container holding handles to two objects whose types are specified by the type parameters,

T1 and T2.

Summary

uvm_class_pair uvm_pair #(T1,T2)

Container holding handles to two objects whose types are specified by the type parameters, T1 and

T2.

Class Hierarchy

uvm_void

uvm_object

uvm_class_pair#(T1,T2)

Class Declaration

class uvm_class_pair #(

 type T1 = int,

 T2 = T1

) extends uvm_object

Variables
T1 first The handle to the first object in the pair

T2 second The handle to the second object second variable in the pair
Methods
new Creates an instance that holds a handle to two objects of uvm_pair that holds two

built-in type values.

VARIABLES

T1 first

T1 first

The handle to the first object in the pair

T2 second

T2 second

The handle to the second object second variable in the pair

METHODS

http://wwwin/src/comps/uvm_pair.svh
http://wwwin/~janick/myUVM/files/base/uvm_misc-svh.html#uvm_void
http://wwwin/~janick/myUVM/files/base/uvm_object-svh.html#uvm_object
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_class_pair#(T1,T2).Variables
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_class_pair#(T1,T2).T1_first
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_class_pair#(T1,T2).T2_second
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_class_pair#(T1,T2).Methods
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_class_pair#(T1,T2).new
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh

new

function new (string name = "",

 T1 f = null,

 T2 s = null)

Creates an instance that holds a handle to two objects of uvm_pair that holds two built-in

type values. The optional name argument gives a name to the new pair object.

uvm_built_in_pair #(T1,T2)

Container holding two variables of built-in types (int, string, etc.). The types are specified

by the type parameters, T1 and T2.

Summary

uvm_built_in_pair #(T1,T2)

Container holding two variables of built-in types (int, string, etc.)

Class Hierarchy

uvm_void

uvm_object

uvm_transaction

uvm_built_in_pair#(T1,T2)

Class Declaration

class uvm_built_in_pair #(

 type T1 = int,

 T2 = T1

) extends uvm_object uvm_transaction

Variables
T1 first The first value in the pair
T2 second The second value in the pair
Methods

new Creates an instance that holds two built-in type values of uvm_pair that holds a handle
to two elements, as provided by the first two arguments.

VARIABLES

T1 first

T1 first

http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_built_in_pair#(T1,T2)
http://wwwin/~janick/myUVM/files/base/uvm_misc-svh.html#uvm_void
http://wwwin/~janick/myUVM/files/base/uvm_object-svh.html#uvm_object
http://wwwin/~janick/UVM/files/base/uvm_transaction-svh.html#uvm_transaction
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_built_in_pair#(T1,T2).Variables
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_built_in_pair#(T1,T2).T1_first
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_built_in_pair#(T1,T2).T2_second
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_built_in_pair#(T1,T2).Methods
http://wwwin/~janick/myUVM/files/comps/uvm_pair-svh.html#uvm_built_in_pair#(T1,T2).new
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh

The first value in the pair

T2 second

T2 second

The second value in the pair

METHODS

new

function new (string name = "")

Creates an instance that holds two built-in type values of uvm_pair that holds two built-in

type values. The optional name argument gives a name to the new pair object.

CHANGE SET #12: Change uvm_tlm_generic_payload as follows.

BCL LOCATION: distrib/src/tlm2/tlm2_generic_payload.svh

PDF LOCATION: page 243, 244

The elements in the byte enable array shall be interpreted as follows. A value of 8‟h00 0

shall indicate that that corresponding byte is disabled, and a value of 8‟hFF 1 shall indicate

that the corresponding byte is enabled.

(…)

If the byte enable pointer is not empty is non-null, the target shall either implement the

semantics of the byte enable as defined below or shall generate a standard error response.

The recommended response status is UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE.

CHANGE SET #13: Change uvm_component as follows.

BCL LOCATION: distrib/src/base/uvm_component.svh

PDF LOCATION: starting on page 289

Phasing Interface These methods implement an interface which allows all components to

step through a standard schedule of phases, or a customized schedule,
and also an API to allow independent phase domains which can jump like
state machines to reflect behavior e.g.

build_phase The Pre-Defined Phases::uvm_build_phase phase implementation

http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/src/comps/uvm_pair.svh
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.build_phase

method.

connect_phase The Pre-Defined Phases::uvm_connect_phase phase implementation
method.

end_of_elaboration_phase The Pre-Defined Phases::uvm_end_of_elaboration_phase phase

implementation method.
start_of_simulation_phase The Pre-Defined Phases::uvm_start_of_simulation_phase phase

implementation method.
run_phase The Pre-Defined Phases::uvm_run_phase phase implementation method.
pre_reset_phase The Pre-Defined Phases::uvm_pre_reset_phase phase implementation

method.
reset_phase The Pre-Defined Phases::uvm_reset_phase phase implementation

method.
post_reset_phase The Pre-Defined Phases::uvm_post_reset_phase phase implementation

method.
pre_configure_phase The Pre-Defined Phases::uvm_pre_configure_phase phase

implementation method.
configure_phase The Pre-Defined Phases::uvm_configure_phase phase implementation

method.
post_configure_phase The Pre-Defined Phases::uvm_post_configure_phase phase

implementation method.
pre_main_phase The Pre-Defined Phases::uvm_pre_main_phase phase implementation

method.
main_phase The Pre-Defined Phases::uvm_main_phase phase implementation

method.

post_main_phase The Pre-Defined Phases::uvm_post_main_phase phase implementation
method.

pre_shutdown_phase The Pre-Defined Phases::uvm_pre_shutdown_phase phase
implementation method.

shutdown_phase The Pre-Defined Phases::uvm_shutdown_phase phase implementation
method.

post_shutdown_phase The Pre-Defined Phases::uvm_post_shutdown_phase phase

implementation method.
extract_phase The Pre-Defined Phases::uvm_extract_phase phase implementation

method.
check_phase The Pre-Defined Phases::uvm_check_phase phase implementation

method.
report_phase The Pre-Defined Phases::uvm_report_phase phase implementation

method.
final_phase The Pre-Defined Phases::uvm_final_phase phase implementation

method.
phase_started Invoked at the start of each phase.
phase_ended Invoked at the end of each phase.

(…)

build_phase

virtual function void build_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_build_phase phase implementation method.

(…)

connect_phase

http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.connect_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.end_of_elaboration_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.start_of_simulation_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.run_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.pre_reset_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.reset_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.post_reset_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.pre_configure_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.configure_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.post_configure_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.pre_main_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.main_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.post_main_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.pre_shutdown_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.shutdown_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.post_shutdown_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.extract_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.check_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.report_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.final_phase
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.phase_started
http://wwwin/~janick/UVM/files/base/uvm_component-svh.html#uvm_component.phase_ended
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh

virtual function void connect_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_connect_phase phase implementation method.

(…)

end_of_elaboration_phase

virtual function void end_of_elaboration_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_end_of_elaboration_phase phase implementation method.

(…)

start_of_simulation_phase

virtual function void start_of_simulation_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_start_of_simulation_phase phase implementation method.

(…)

run_phase

virtual task run_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_run_phase phase implementation method.

(…)

pre_reset_phase

virtual task pre_reset_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_pre_reset_phase phase implementation method.

(…)

reset_phase

virtual task reset_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_reset_phase phase implementation method.

(…)

post_reset_phase

http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh

virtual task post_reset_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_post_reset_phase phase implementation method.

(…)

pre_configure_phase

virtual task pre_configure_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_pre_configure_phase phase implementation method.

(…)

configure_phase

virtual task configure_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_configure_phase phase implementation method.

(…)

post_configure_phase

virtual task post_configure_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_post_configure_phase phase implementation method.

(…)

pre_main_phase

virtual task pre_main_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_pre_main_phase phase implementation method.

(…)

main_phase

virtual task main_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_main_phase phase implementation method.

(…)

post_main_phase

http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh

virtual task post_main_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_post_main_phase phase implementation method.

(…)

pre_shutdown_phase

virtual task pre_shutdown_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_pre_shutdown_phase phase implementation method.

(…)

shutdown_phase

virtual task shutdown_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_shutdown_phase phase implementation method.

(…)

post_shutdown_phase

virtual task post_shutdown_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_post_shutdown_phase phase implementation method.

(…)

extract_phase

virtual function void extract_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_extract_phase phase implementation method.

(…)

check_phase

virtual function void check_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_check_phase phase implementation method.

(…)

http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh

report_phase

virtual function void report_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_report_phase phase implementation method.

(…)

final_phase

virtual function void final_phase(uvm_phase phase)

The Pre-Defined Phases::uvm_final_phase phase implementation method.

Components:

CHANGE SET #14: Change uvm_component::set_domain()

BCL LOCATION: distrib/src/base/uvm_component.svh

PDF LOCATION: page 301

set_domain

function void set_domain(uvm_domain domain,

 int hier = 1)

Apply a phase domain to this component and, if hier is set, recursively to all its children (by

default, also to it's children).

Calls the virtual define_domain method, which derived components can override to augment

or replace the domain definition of ita base class.

Get a copy of the schedule graph for this component base class as defined by virtual

define_phase_schedule(), and add an instance of that to our domain branch in the master

phasing schedule graph, if it does not already exist.

CHANGE SET #15: Delete uvm_component::get_schedule()

BCL LOCATION: distrib/src/base/uvm_component.svh

PDF LOCATION: page 301

get_schedule

http://wwwin/src/base/uvm_component.svh
http://wwwin/src/base/uvm_component.svh
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.define_domain

function uvm_domain get_schedule()

Return handle to the phase schedule graph that applies to this component

CHANGE SET #16: Replace uvm_component::define_phase_schedule() with

define_domain()

BCL LOCATION: distrib/src/base/uvm_component.svh

PDF LOCATION: page 301

define_domain

virtual protected function void define_domain(uvm_domain domain)

Builds custom phase schedules into the provided domain handle.

This method is called by set_domain, which integrators use to specify this component

belongs in a domain apart from the default „uvm‟ domain.

Custom component base classes requiring a custom phasing schedule can augment or

replace the domain definition they inherit by overriding <defined_domain>. To augment,

overrides would call super.define_domain(). To replace, overrides would not call

super.define_domain().

The default implementation adds a copy of the uvm phasing schedule to the given domain,

if one doesn‟t already exist, and only if the domain is currently empty.

Calling set_domain with the default uvm domain (see <uvm_domain::get_uvm_domain>)

on a component with no define_domain override effectively reverts the that component to

using the default uvm domain. This may be useful

If a branch of the testbench hierarchy defines a custom domain, but some child sub-branch

should remain in the default uvm domain, call set_domain with a new domain instance

handle with hier set. Then, in the sub-branch, call set_domain with the default uvm domain

handle, obtained via uvm_domain::get_uvm_domain().

Alternatively, the integrator may define the graph in a new domain externally, then call

set_domain to apply it to a component.

define_phase_schedule

virtual protected function uvm_phase

define_phase_schedule(uvm_domain domain,

string name

Builds and returns the required phase schedule subgraph for this component base

Here we define the structure and organization of a schedule for this component base

file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.set_domain
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.set_domain
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.set_domain
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.set_domain
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_domain.get_uvm_domain
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.set_domain

type (uvm_component). We give that schedule a name (default „uvm‟) and return a

handle to it to the caller (either the set_domain() method, or a subclass‟s

define_phase_schedule() having called super.define_phase_schedule(), ready to be added

into the main schedule graph.

Custom component base classes requiring a custom phasing schedule to augment or

replace the default UVM schedule can override this method. They can inherit the parent

schedule and build on it by calling super.define_phase_schedule(MYNAME) or they can

create a new schedule from scratch by not calling the super method.

CHANGE SET #17: Change uvm_component::stop() to stop_phase() as follows:

BCL LOCATION: distrib/src/base/uvm_component.svh

PDF LOCATION: page 303

stop_phase

virtual task stop_phase(uvm_phase phase string ph_name)

The stop_phase task is called when this component‟s enable_stop_interrupt bit is set and

<global_stop_request> is called during a task-based phase, e.g., run.

Before a phase is abruptly ended, e.g., when a test deems the simulation complete, some

components may need extra time to shut down cleanly. Such components may implement

stop_phase to finish the currently executing transaction, flush the queue, or perform other

cleanup. Upon return from stop_phase, a component signals it is ready to be stopped.

The stop_phase method will not be called if enable_stop_interrupt is 0.

The default implementation is empty, i.e., it will return immediately.

This method should never be called directly.

CHANGE SET #18: Add new method uvm_component::phase_ready_to_end() after

phase_started() and before phase_ended().

BCL LOCATION: distrib/src/base/uvm_component.svh

PDF LOCATION: page 300

phase_ready_to_end

virtual function void phase_ready_to_end (uvm_phase phase)

Invoked when all objections to ending the given phase have been dropped, thus indicating

that phase is ready to end. All this component‟s processes forked for the given phase will

be killed upon return from this method. Components needing to consume delta cycles or

advance time to perform a clean exit from the phase may raise the phase‟s objection.

file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.enable_stop_interrupt
file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_component-svh.html%23uvm_component.enable_stop_interrupt

phase.raise_objection(this,"Reason");

This effectively resets the wait-for-all-objections-dropped loop for phase. It is the

responsibility of this component to drop the objection once it is ready for this phase to end

(and processes killed).

Macros:

CHANGE SET #19: Remove macros related to new uvm_sequence_library class,

which are not yet part of the approved standard.

BCL LOCATION: distrib/macros/uvm_sequence_defines.svh

PDF LOCATION: page 378

SEQUENCE LIBRARY
 `uvm_add_to_sequence_library Adds the given sequence TYPE to the given

sequence library LIBTYPE
 `uvm_sequence_library_utils Declares the infrastructure needed to define extensions

to the <uvm_sequence_library> class.

Globals:

CHANGE SET #20: Replace Enumerates for uvm_phase_type in GLOBALS:

BCL LOCATION: distrib/src/base/uvm_object_globals.svh

PDF LOCATION: page 603

uvm_phase_type

This is an attribute of a uvm_phase object which defines the phase type.

UVM_PHASE_IMP The phase object is used to traverse the component

hierarchy and call the component phase method as well as

the phase_started and phase_ended callbacks. These

nodes are created by the phase macros,

`uvm_builtin_task_phase, `uvm_builtin_topdown_phase,

and `uvm_builtin_bottomup_phase. These nodes

represent the phase type, i.e. uvm_run_phase,

uvm_main_phase.

file:///C:/Users/talsop/Documents/VIP%20TSC/UVM%20Documentation/UVM%20Reference%20HTML/uvm-10-ref_022411/html/files/base/uvm_phases-svh.html%23uvm_phase

UVM_PHASE_NODE The object represents a simple node instance in the graph.

These nodes will contain a reference to their corresponding

IMP object.

UVM_PHASE_SCHEDULE The object represents a portion of the phasing graph,

typically consisting of several NODE types, in series,

parallel, or both.

UVM_PHASE_TERMINAL This internal object serves as the termination NODE for a

SCHEDULE phase object.

UVM_PHASE_DOMAIN This object represents an entire graph segment that

executes in parallel with the „run‟ phase. Domains may

define any network of NODEs and SCHEDULEs. The built-in

domain, uvm, consists of a single schedule of all the run-

time phases, starting with pre_reset and ending with

post_shutdown.

Every phase we define has a type. It is used only for information, as the type behavior

is captured in three derived classes uvm_task/topdown/bottomup_phase.

 UVM_PHASE_TASK - The phase is a task-based phase, a fork is done for

 each participating component and so the traversal order is arbitrary

 UVM_PHASE_TOPDOWN - The phase is a function phase, components are

 traversed from top-down, allowing them to add to the component tree

 as they go.

 UVM_PHASE_BOTTOMUP - The phase is a function phase, components are

 traversed from the bottom up, allowing roll-up / consolidation

 functionality.

 UVM_PHASE_SCHEDULE_NODE - The phase is not an imp, but a dummy phase

 graph node representing the beginning of a VIP schedule of phases.

 UVM_PHASE_ENDSCHEDULE_NODE - The phase is not an imp, but a dummy

 phase graph node representing the end of a VIP schedule of phases

 UVM_PHASE_DOMAIN_NODE - The phase is not an imp, but a dummy phase

 graph node representing an entire domain branch with schedules beneath

