
OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

July 2009

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Software version: TLM 2.0.1

Document version: JA32

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI)

All rights reserved

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) iii

Contributors

The TLM-2.0 standard was created under the leadership of the following individuals:

Bart Vanthournout, CoWare, TLM Working Group Chair

James Aldis, Texas Instruments, TLM Working Group Vice-Chair

Previous TLM Working Group Chairs:

Trevor Wieman, Intel

Frank Ghenassia, ST Microelectronics

Mark Burton, GreenSocs

This document was authored by:

 John Aynsley, Doulos

The following is a list of active technical participants in the OSCI TLM Working Group at the time of release

of this standard:

Tom Aernoudt, CoWare

James Aldis, Texas Instruments

Guillaume Audeon, ARM

John Aynsley, Doulos

David Black, XtremeEDA

Mark Burton, GreenSocs

Jerome Cornet, ST Microelectronics

Ross Dickson, Virtutech

Jakob Engblom, Virtutech

Alan Fitch, Doulos

Robert Guenzel, GreenSocs

Andrea Kroll, Jeda

Laurent Maillet-Contoz, ST Microelectronics

Kiyoshi Makino, Mentor Graphics

Marcelo Montoreano, Synopsys

Bart Vanthournout, CoWare

Yossi Veller, Mentor Graphics

Trevor Wieman, Intel

Charles Wilson, XtremeEDA

The following people have also contributed to the development of this standard within the OSCI TLM

Working Group:

Mike Andrews, Mentor Graphics

Matthew Ballance, Mentor Graphics

Geoff Barrett, Broadcom

Ryan Bedwell, Freescale

Bishnupriya Bhattacharya, Cadence

Bobby Bhattacharya, ARM

Axel Braun, University of Tuebingen

Herve Broquin, ST Microelectronics

Bill Bunton, ESLX

Jack Donovan, XtremeEDA

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) iv

Adam Erickson, Cadence

Othman Fathy, Mentor Graphics

George Frazier, Cadence

Michel Genard, Virtutech

Frank Ghenassia, ST Microelectronics

Mark Glasser, Mentor Graphics

Andrew Goodrich, Forte Design

Serge Goosens, CoWare

Thorsten Groetker, Synopsys

Karthick Gururaj, NXP

Kamal Hashmi, SpiraTech

Gino Van Hauwermeiren, NXP

Atsushi Kasuya, Jeda

Holger Keding, Synopsys

Devon Kehoe, Mentor Graphics

Anna Keist, ESLX

Wolfgang Klingauf, GreenSocs

Tim Kogel, CoWare

David Long, Doulos

Mike Meredith, Forte Design

Rishiyur Nikhil, Bluespec

David Pena, Cadence

Victor Reyes, NXP

Nizar Romdhane, ARM

Adam Rose, Mentor Graphics

Olaf Scheufen, Synopsys

Stefan Schmermbeck, Chipvision

Kolja Schneider, Fraunhofer

Shiri Shem-Tov, Freescale

Jean-Philippe Strassen, ST Microelectronics

Alan Su, ITRI & Springsoft

Stuart Swan, Cadence

Tsutomu Takei, STARC

Jos Verhaegh, NXP

Maurizio Vitale, Philips Semiconductors

Vincent Viteau, Summit Design

Thomas Wilde, Infineon

Hiroyuki Yagi, STARC

Kaz Yoshinaga, STARC

Eugene Zhang, Jeda

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) v

Contents

1 OVERVIEW ... 1

1.1 Scope .. 2

1.2 Source code and documentation .. 2

2 REFERENCES .. 4

2.1 Bibliography .. 4

3 INTRODUCTION ... 5

3.1 Background ... 5

3.2 Transaction-level modeling, use cases and abstraction ... 5

3.3 Coding styles ... 6
3.3.1 Untimed coding style .. 7

3.3.2 Loosely-timed coding style and temporal decoupling .. 7
3.3.3 Synchronization in loosely-timed models... 8

3.3.4 Approximately-timed coding style ... 9
3.3.5 Characterization of loosely-timed and approximately-timed coding styles 9

3.3.6 Switching between loosely-timed and approximately-timed modeling .. 9
3.3.7 Cycle-accurate modeling ...10

3.3.8 Blocking versus non-blocking transport interfaces..10
3.3.9 Use cases and coding styles ...11

3.4 Initiators, targets, sockets, and transaction bridges ...11

3.5 DMI and debug transport interfaces ...13

3.6 Combined interfaces and sockets ...13

3.7 Namespaces ..14

3.8 Header files and version numbers ..14
3.8.1 Software version information ..14

3.8.1.1 Definitions ...14
3.8.1.2 Rules ..15

4 TLM-2.0 CORE INTERFACES .. 16

4.1 Transport interfaces ..16

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) vi

4.1.1 Blocking transport interface ..16

4.1.1.1 Introduction ...16
4.1.1.2 Class definition ..17
4.1.1.3 The TRANS template argument ..17
4.1.1.4 Rules ..17
4.1.1.5 Message sequence chart – blocking transport ..18

4.1.1.6 Message sequence chart – temporal decoupling ..19
4.1.1.7 Message sequence chart – the time quantum ...20

4.1.2 Non-blocking transport interface ...21
4.1.2.1 Introduction ...21
4.1.2.2 Class definition ..21

4.1.2.3 The TRANS and PHASE template arguments ..22
4.1.2.4 The nb_transport_fw and nb_transport_bw calls ...22

4.1.2.5 The trans argument ..23

4.1.2.6 The phase argument ...23

4.1.2.7 The tlm_sync_enum return value ..24
4.1.2.8 tlm_sync_enum summary ..25
4.1.2.9 Message sequence chart – using the backward path ..26

4.1.2.10 Message sequence chart – using the return path ..27
4.1.2.11 Message sequence chart – early completion ..28

4.1.2.12 Message sequence chart – timing annotation ...29
4.1.3 Timing annotation with the transport interfaces ..30

4.1.3.1 The sc_time argument ...30

4.1.4 Migration path from TLM-1 ..34

4.2 Direct memory interface ...35
4.2.1 Introduction ...35
4.2.2 Class definition ..35

4.2.3 get_direct_mem_ptr method ..36
4.2.4 template argument and tlm_generic_payload class ...38
4.2.5 tlm_dmi class ...39

4.2.6 invalidate_direct_mem_ptr method ...42
4.2.7 DMI versus transport ...42

4.2.8 DMI and temporal decoupling ...43
4.2.9 Optimization using a DMI hint ..43

4.3 Debug transport interface ...45
4.3.1 Introduction ...45

4.3.2 Class definition ..45
4.3.3 TRANS template argument and tlm_generic_payload class ...45
4.3.4 Rules ..46

5 GLOBAL QUANTUM .. 48

5.1 Introduction ...48

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) vii

5.2 Header file ..48

5.3 Class definition...48

5.4 Class tlm_global_quantum ...49

6 COMBINED INTERFACES AND SOCKETS .. 50

6.1 Combined interfaces ..50
6.1.1 Introduction ...50
6.1.2 Class definition ..50

6.2 Initiator and target sockets ...51
6.2.1 Introduction ...51

6.2.2 Class definition ..51
6.2.3 Classes tlm_base_initiator_socket_b and tlm_base_target_socket_b ..55

6.2.4 Classes tlm_base_initiator_socket and tlm_base_target_socket ..55
6.2.5 Classes tlm_initiator_socket and tlm_target_socket ..57

7 GENERIC PAYLOAD.. 61

7.1 Introduction ...61

7.2 Extensions and interoperability ...61
7.2.1 Use the generic payload directly, with ignorable extensions ...62

7.2.2 Define a new protocol traits class containing a typedef for tlm_generic_payload63

7.2.3 Define a new protocol traits class and a new transaction type ...63

7.3 Generic payload attributes and methods ...64

7.4 Class definition...64

7.5 Generic payload memory management ...67

7.6 Constructors, assignment, and destructor ...71

7.7 Default values and modifiability of attributes ...72

7.8 Command attribute ...74

7.9 Address attribute ...75

7.10 Data pointer attribute ...75

7.11 Data length attribute ...76

7.12 Byte enable pointer attribute ..77

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) viii

7.13 Byte enable length attribute ..78

7.14 Streaming width attribute...78

7.15 DMI allowed attribute ...79

7.16 Response status attribute ..79
7.16.1 The standard error response ...81

7.17 Endianness ...86
7.17.1 Introduction ...86
7.17.2 Rules ..86

7.18 Helper functions to determine host endianness ..90
7.18.1 Introduction ...90
7.18.2 Definition ...90
7.18.3 Rules ..90

7.19 Helper functions for endianness conversion ..91
7.19.1 Introduction ...91
7.19.2 Definition ...92

7.19.3 Rules ..92

7.20 Generic payload extensions ...94
7.20.1 Introduction ...94

7.20.1.1 Ignorable extensions ..94

7.20.1.2 Non-ignorable and mandatory extensions ...94
7.20.2 Rationale ..94
7.20.3 Extension pointers, objects and transaction bridges ..95

7.20.4 Rules ..95

8 BASE PROTOCOL AND PHASES ... 101

8.1 Phases ...101
8.1.1 Introduction ...101
8.1.2 Class definition ..101

8.1.3 Rules ..102

8.2 Base protocol ..103
8.2.1 Introduction ...103
8.2.2 Class definition ..104
8.2.3 Base protocol phase sequences ..104
8.2.4 Permitted phase transitions ..107
8.2.5 Ignorable phases ..110

8.2.6 Base protocol timing parameters and flow control ..112
8.2.7 Base protocol rules concerning timing annotation...117

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) ix

8.2.8 Base protocol rules concerning b_transport ...118

8.2.9 Base protocol rules concerning request and response ordering ...119
8.2.10 Base protocol rules for switching between b_transport and nb_transport120
8.2.11 Other base protocol rules ...120
8.2.12 Summary of base protocol transaction ordering rules ...121
8.2.13 Guidelines for creating base-protocol-compliant components ..122

8.2.13.1 Guidelines for creating a base protocol initiator ..122
8.2.13.2 Guidelines for creating an initiator that calls nb_transport ...122
8.2.13.3 Guidelines for creating a base protocol target ...123
8.2.13.4 Guidelines for creating a target that calls nb_transport ...123
8.2.13.5 Guidelines for creating a base protocol interconnect component ..124

9 UTILITIES ... 125

9.1 Convenience sockets ..126
9.1.1 Introduction ...126

9.1.1.1 Summary of standard and convenience socket types ...126
9.1.1.2 Socket binding table ..127

9.1.2 Simple sockets ...128
9.1.2.1 Introduction ...128

9.1.2.2 Class definition ..128
9.1.2.3 Header file ...130
9.1.2.4 Rules ..130

9.1.2.5 Simple target socket b/nb conversion ..132
9.1.3 Tagged simple sockets ...135

9.1.3.1 Introduction ...135
9.1.3.2 Header file ...135

9.1.3.3 Class definition ..135
9.1.3.4 Rules ..137

9.1.4 Multi-sockets ...138

9.1.4.1 Introduction ...138
9.1.4.2 Header file ...138
9.1.4.3 Class definition ..138
9.1.4.4 Rules ..140

9.2 Quantum keeper ..145
9.2.1 Introduction ...145

9.2.2 Header file ...145
9.2.3 Class definition ..145
9.2.4 General guidelines for processes using temporal decoupling ..146
9.2.5 Class tlm_quantumkeeper ..148

9.3 Payload event queue ..150
9.3.1 Introduction ...150
9.3.2 Header file ...150
9.3.3 Class definition ..150

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) x

9.3.4 Rules ..151

9.4 Instance-specific extensions ..153
9.4.1 Introduction ...153
9.4.2 Header file ...153
9.4.3 Class definition ..153

10 TLM-1 AND ANALYSIS PORTS .. 156

10.1 TLM-1 core interfaces ...156

10.2 TLM-1 fifo interfaces ..158

10.3 tlm_fifo ...159

10.4 Analysis interface and analysis ports ...161
10.4.1 Class definition ..161

10.4.2 Rules ..163

11 GLOSSARY ... 167

12 INDEX .. 177

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 1

1 Overview

This document is the Reference Manual for the OSCI Transaction Level Modeling standard, version 2.0. This

version of the standard supersedes versions 2.0-draft-1 and 2.0-draft-2, and is not generally compatible with

either. This version of the standard includes the core interfaces from TLM-1.

TLM-2.0 consists of a set of core interfaces, the global quantum, initiator and target sockets, the generic

payload and base protocol, and the utilities. The TLM-1 core interfaces, analysis interface and analysis ports

are also included, although they are separate from the main body of the TLM-2.0 standard. The TLM-2.0 core

interfaces consist of the blocking and non-blocking transport interfaces, the direct memory interface (DMI),

and the debug transport interface. The generic payload supports the abstract modeling of memory-mapped

buses, together with an extension mechanism to support the modeling of specific bus protocols whilst

maximizing interoperability.

The TLM-2.0 classes are layered on top of the SystemC class library as shown in the diagram below. For

maximum interoperability, and particularly for memory-mapped bus modeling, it is recommended that the

TLM-2.0 core interfaces, sockets, generic payload and base protocol be used together in concert. These

classes are known collectively as the interoperability layer. In cases where the generic payload is

inappropriate, it is possible for the core interfaces and the initiator and target sockets, or the core interfaces

alone, to be used with an alternative transaction type. It is even technically possible for the generic payload to

be used directly with the core interfaces without the initiator and target sockets, although this approach is not

recommended.

It is not strictly necessary to use the utilities to achieve interoperability between bus models. Nonetheless,

these classes should be used where possible for consistency of style and are documented and maintained as

part of the TLM-2.0 standard.

TLM-1 core interfaces

tlm_fifo

Analysis interface

Analysis ports

TLM 2.0 Classes

IEEE 1666™ SystemC

Figure 1

Utilities:

Interoperability layer

TLM-2 core interfaces:

Blocking transport interface

Non-blocking transport interface

Direct memory interface

Debug transaction interface

Initiator & target sockets

Generic payload & base protocol

Global quantum

TLM-1:

Convenience sockets

Payload event queues

Quantum keeper

Instance-specific extensions

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 2

The generic payload is primarily intended for memory-mapped bus modeling, but may also be used to model

other non-bus protocols with similar attributes. The attributes and phases of the generic payload can be

extended to model specific protocols, but such extensions may lead to a reduction in interoperability

depending on the degree of deviation from the standard non-extended generic payload.

A fast, loosely-timed model is typically expected to use the blocking transport interface, the direct memory

interface, and temporal decoupling. A more accurate, approximately-timed model is typically expected to use

the non-blocking transport interface and the payload event queues. These statements are just coding style

suggestions, however, and are not a normative part of the TLM-2.0 standard.

1.1 Scope

This document is the definitive reference manual for the TLM-2.0 standard. The main focus of this document

is the key concepts and semantics of the TLM-2.0 classes, including the utilities. It does not describe all the

supporting code, examples, and unit test. It lists the TLM-1 core interfaces, but does not define their

semantics.

1.2 Source code and documentation

The TLM-2.0 release has a hierarchical directory structure as follows:

include/tlm The C++ source code of the TLM-2.0 standard, with readme files and release notes

 ./tlm_h TLM-2.0 interoperability layer

 ./tlm_h/tlm_2_interfaces TLM-2 core interfaces

 ./tlm_h/tlm_generic_payload TLM-2 generic payload

 ./tlm_h/tlm_sockets TLM-2 sockets

 ./tlm_h/tlm_quantum TLM-2 global quantum

 ./tlm_1 TLM-1 and analysis

 ./tlm_1/tlm_req_rsp The TLM-1 standard

 ./tlm_1/tlm_req_rsp/tlm_1_interfaces TLM-1 core interfaces

 ./tlm_1/tlm_req_rsp/tlm_channels TLM-1 fifo and req-rsp channels

 ./tlm_1/tlm_req_rsp/tlm_ports TLM-1 non-blocking ports with event finders

 ./tlm_1/tlm_req_rsp/tlm_adapters TLM-1 slave-to-transport & transport-to-master adapters

 ./tlm_1/tlm_analysis Analysis interface and ports

 ./tlm_utils TLM-2 standard utility classes not essential for interoperability

docs Documentation, including User Manual, white papers, and Doxygen

examples A set of application-oriented examples with their own documentation

unit_test A set of regression tests

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 3

The docs directory includes HTML documentation for the C++ source code created with Doxygen. This gives

comprehensive text-based and graphical views of the code structured by class and by file. The entry point for

this documentation is the file docs/doxygen/html/index.html.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 4

2 References

This standard shall be used in conjunction with the following publications:

ISO/IEC 14882:2003, Programming Languages—C++

IEEE Std 1666-2005, SystemC Language Reference Manual

Requirements Specification for TLM 2.0, Version 1.1, September 16, 2007

2.1 Bibliography

The following books may provide useful background information:

Transaction-Level Modeling with SystemC, TLM Concepts and Applications for Embedded Systems, edited

by Frank Ghenassia, published by Springer 2005, ISBN 10 0 387-26232-6(HB), ISBN 13 978-0-387-26232-

1(HB)

Integrated System-Level Modeling of Network-on-Chip enabled Multi-Processor Platforms, by Tim Kogel,

Rainer Leupers, and Heinrich Meyr, published by Springer 2006, ISBN 10 1-4020-4825-4(HB), ISBN 13

978-1-4020-4825-4(HB)

ESL Design and Verification, by Brian Bailey, Grant Martin and Andrew Piziali, published by Morgan

Kaufmann/Elsevier 2007, ISBN 10 0 12 373551-3, ISBN 13 978 0 12 373551-5

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 5

3 Introduction

3.1 Background

The TLM-1 standard defined a set of core interfaces for transporting transactions by value or const reference.

This set of interfaces is being used successfully in some applications, but has three shortcomings with respect

to the modeling of memory-mapped buses and other on-chip communication networks:

a) TLM-1 has no standard transaction class, so each application has to create its own non-standard classes,

resulting in very poor interoperability between models from different sources. TLM-2.0 addresses this

shortcoming with the generic payload.

b) TLM-1 has no support for timing annotation, so no standard way of communicating timing information

between models. TLM-1 models would typically implement delays by calling wait, which slows down

simulation. TLM-2.0 addresses this shortcoming with the addition of timing annotation to the blocking

and non-blocking transport interface.

c) The TLM-1 interfaces require all transaction objects and data to be passed by value or const reference,

which slows down simulation. Some applications work around this restriction by embedded pointers in

transaction objects, but this is non-standard and non-interoperable. TLM-2.0 addresses this shortcoming

with transaction objects whose lifetime extends across several transport calls, supported by a new

transport interface.

3.2 Transaction-level modeling, use cases and abstraction

There has been a longstanding discussion in the ESL community concerning what is the most appropriate

taxonomy of abstraction levels for transaction level modeling. Models have been categorized according to a

range of criteria, including granularity of time, frequency of model evaluation, functional abstraction,

communication abstraction, and use cases. The TLM-2.0 activity explicitly recognizes the existence of a

variety of use cases for transaction-level modeling (see the Requirements Specification for TLM-2.0), but

rather than defining an abstraction level around each use case, TLM-2.0 takes the approach of distinguishing

between interfaces (APIs) on the one hand, and coding styles on the other. The TLM-2.0 standard defines a

set of interfaces which should be thought of as low-level programming mechanisms for implementing

transaction-level models, then describes a number of coding styles that are appropriate for, but not locked to,

the various use cases.

The definitions of the standard TLM-2.0 interfaces stand apart from the descriptions of the coding styles. It is

the TLM-2.0 interfaces which form the normative part of the standard and ensure interoperability. Each

coding style can support a range of abstraction across functionality, timing and communication. In principle

users can create their own coding styles.

An untimed functional model consisting of a single software thread can be written as a C function or as a

single SystemC process, and is sometimes termed an algorithmic model. Such a model is not transaction-level

per se, because by definition a transaction is an abstraction of communication, and a single-threaded model

has no inter-process communication. A transaction-level model requires multiple SystemC processes to

simulate concurrent execution and communication.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 6

An abstract transaction-level model containing multiple processes (multiple software threads) requires some

mechanism by which those threads can yield control to one another. This is because SystemC uses a co-

operative multitasking model where an executing process cannot be pre-empted by any other process.

SystemC processes yield control by calling wait in the case of a thread process, or returning to the kernel in

the case of a method process. Calls to wait are usually hidden behind a programming interface (API), which

may model a particular abstract or concrete protocol that may or may not rely on timing information.

Synchronization may be strong in the sense that the sequence of communication events is precisely

determined in advance, or weak in the sense that the sequence of communication events is partially

determined by the detailed timing of the individual processes. Strong sychronization is easily implemented in

SystemC using FIFOs or semaphores, allowing a completely untimed modeling style where in principle

simulation can run without advancing simulation time. Untimed modeling in this sense is outside the scope of

TLM-2.0. On the other hand, a fast virtual platform model allowing multiple embedded software threads to

run in parallel may use either strong or weak synchronization. In this standard, the appropriate coding style

for such a model is termed loosely-timed.

A more detailed transaction-level model may need to associate multiple protocol-specific timing points with

each transaction, such as timing points to mark the start and the end of each phase of the protocol. By

choosing an appropriate number of timing points, it is possible to model communication to a high degree of

timing accuracy without the need to execute the component models on every single clock cycle. In this

standard, such a coding style is termed approximately-timed.

3.3 Coding styles

A coding style is a set of programming language idioms that work well together, not a specific abstraction

level or software programming interface. For simplicity and clarity, this document restricts itself to

elaborating two specific named coding styles; loosely-timed and approximately-timed. By their nature the

Use cases

Loosely-timed

Approximately-timed

Software

development

Architectural

analysis

Hardware

verification

Software

performance

Blocking

interface

Non-blocking

interface
DMI SocketsQuantum

Generic

payload

TLM-2 Coding styles

Mechanisms

Each style supports a range of abstractions

Figure 2

Phases

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 7

coding styles are not precisely defined, and the rules governing the TLM-2.0 core interfaces are defined

independently from these coding styles. In principle, it would be possible to define other coding styles based

on the TLM-1 and TLM-2.0 mechanisms.

3.3.1 Untimed coding style

TLM-2.0 does not make explicit provision for an untimed coding style, because all contemporary bus-based

systems require some notion of time in order to model software running on one or more embedded processors.

However, untimed modeling is supported by the TLM-1 core interfaces. (The term untimed is sometimes used

to refer to models that contain a limited amount of timing information of unspecified accuracy. In TLM-2.0,

such models would be termed loosely-timed.)

3.3.2 Loosely-timed coding style and temporal decoupling

The loosely-timed coding style makes use of the blocking transport interface. This interface allows only two

timing points to be associated with each transaction, corresponding to the call to and return from the blocking

transport function. In the case of the base protocol, the first timing point marks the beginning of the request,

and the second marks the beginning of the response. These two timing points could occur at the same

simulation time or at different times.

The loosely-timed coding style is appropriate for the use case of software development using a virtual

platform model of an MPSoC, where the software content may include one or more operating systems. The

loosely-timed coding style supports the modeling of timers and interrupts, sufficient to boot an operating

system and run arbitrary code on the target machine.

The loosely-timed coding style also supports temporal decoupling, where individual SystemC processes are

permitted to run ahead in a local ―time warp‖ without actually advancing simulation time until they reach the

point when they need to synchronize with the rest of the system. Temporal decoupling can result in very fast

simulation for certain systems because it increases the data and code locality and reduces the scheduling

overhead of the simulator. Each process is allowed to run for a certain time slice or quantum before switching

to the next, or instead may yield control when it reaches an explicit synchronization point.

Just considering SystemC itself, the SystemC scheduler keeps a tight hold on simulation time. The scheduler

advances simulation time to the time of the next event, then runs any processes due to run at that time or

sensitive to that event. SystemC processes only run at the current simulation time (as obtained by calling the

method sc_time_stamp), and whenever a SystemC process reads or writes a variable, it accesses the state of

the variable as it would be at the current simulation time. When a process finishes running it must pass control

back to the simulation kernel. If the simulation model is written at a fine-grained level, then the overhead of

event scheduling and process context switching becomes the dominant factor in simulation speed. One way to

speed up simulation is to allow processes to run ahead of the current simulation time, or temporal decoupling.

When implementing temporal decoupling in SystemC, a process can be allowed to run ahead of simulation

time until it needs to interact with another process, for example to read or update a variable belonging to

another process. At that point, the process may either access the current value and continue (with some

possible loss of timing accuracy) or may return control to the simulation kernel, only resuming the process

when simulation time has caught up with the local ―time warp‖. Each process is responsible for determining

whether it can run ahead of simulation time without breaking the functionality of the model. When a process

encounters an external dependency it has two choices: either force synchronization, which means yielding to

allow all other processes to run as normal until simulation time catches up, or sample or update the current

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 8

value and continue. The synchronization option guarantees functional congruency with the standard SystemC

simulation semantics. Continuing with the current value relies on making assumptions concerning

communication and timing in the modeled system. It assumes that no damage will be done by sampling or

updating the value too early or too late. This assumption is usually valid in the context of a virtual platform

simulation, where the software stack should not be dependent on the low-level details of the hardware timing

anyway.

Temporal decoupling is characteristic of the loosely-timed coding style.

If a process were permitted to run ahead of simulation time with no limit, the SystemC scheduler would be

unable to operate and other processes would never get the chance to execute. This may be avoided by

reference to the global quantum, which imposes an upper limit on the time a process is allowed to run ahead

of simulation time. The quantum is set by the application, and the quantum value represents a tradeoff

between simulation speed and accuracy. Too small a quantum forces processes to yield and synchronize very

frequently, slowing down simulation. Too large a quantum might introduce timing inconsistencies across the

system, possibly to the point where the system ceases to function.

For example, consider the simulation of a system consisting of a processor, a memory, a timer, and some slow

external peripherals. The software running on the processor spends most of its time fetching and executing

instructions from system memory, and only interacts with the rest of the system when it is interrupted by the

timer, say every 1ms. The ISS that models the processor could be permitted to run ahead of SystemC

simulation time with a quantum of up to 1ms, making direct accesses to the memory model, but only

synchronizing with the peripheral models at the rate of timer interrupts. The point here is that the ISS does not

have to be locked to the simulation time clock of the hardware part of the system, as would be the case with

more traditional hardware-software co-simulation. Depending on the detail of the models, temporal

decoupling alone could give a simulation speed improvement of approximately 10X, or 100X when combined

with DMI.

It is quite possible for some processes to be temporally decoupled and others not, and also for different

processes to use different values for the time quantum. However, any process that is not temporally decoupled

is likely to become a simulation speed bottleneck.

In TLM-2.0, temporal decoupling is supported by the tlm_global_quantum class and the timing annotation

of the blocking and non-blocking transport interface. The utility class tlm_quantumkeeper provides a

convenient way to access the global quantum.

3.3.3 Synchronization in loosely-timed models

An untimed model relies on the presence of explicit synchronization points (that is calls to wait or blocking

method calls) in order to pass control between initiators at predetermined points during execution. A loosely-

timed model can also benefit from explicit synchronization in order to guarantee deterministic execution, but

a loosely-timed model is able to make progress even in the absence of explicit synchronization points (calls to

wait), because each initiator will only run ahead as far as the end of the time quantum before yielding control.

A loosely-timed model can increase its timing accuracy by using synchronization-on-demand, that is, yielding

control to the scheduler before reaching the end of the time quantum.

The time quantum mechanism is not intended to ensure correct system synchronization, but rather is a

simulation mechanism that allows multiple system initiators to make progress in a scheduler-based

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 9

simulation environment. The time quantum mechanism is not an alternative to designing an explicit

synchronization scheme at the system level.

3.3.4 Approximately-timed coding style

The approximately-timed coding style is supported by the non-blocking transport interface, which is

appropriate for the use cases of architectural exploration and performance analysis. The non-blocking

transport interface provides for timing annotation and for multiple phases and timing points during the

lifetime of a transaction.

For approximately-timed modeling, a transaction is broken down into multiple phases, with an explicit timing

point marking the transition between phases. In the case of the base protocol there are exactly four timing

points marking the beginning and the end of the request and the beginning and the end of the response.

Specific protocols may need to add further timing points, which may possibly cause the loss of direct

compatibility with the generic payload.

Although it is possible to use the non-blocking transport interface with just two phases to indicate the start

and end of a transaction, the blocking transport interface is generally preferred for loosely-timed modeling.

The approximately-timed coding style cannot generally exploit temporal decoupling because of the need for

timing accuracy. Instead, each process typically executes in lock step with the SystemC scheduler. Process

interactions are annotated with specific delays. To create an approximately-timed model, it is generally

sufficient to annotate delays representing the data transfer times for write and read commands and the latency

of the target. For the base protocol, the data transfer times are effectively the same as the minimum initiation

interval or accept delay between two successive requests or two successive responses. The annotated delays

are implemented by making calls to the SystemC scheduler, that is, wait(delay) or notify(delay).

3.3.5 Characterization of loosely-timed and approximately-timed coding styles

The coding styles can be characterized in terms of timing points and temporal decoupling.

Loosely-timed. Each transaction has just two timing point, marking the start and the end of the transaction.

Simulation time is used, but processes may be temporally decoupled from simulation time. Each process

keeps a tally of how far it has run ahead of simulation time, and may yield because it reaches an explicit

synchronization point or because it has consumed its time quantum.

Approximately-timed. Each transaction has multiple timing points. Processes typically need to run in lock-

step with SystemC simulation time. Delays annotated onto process interactions are implemented using

timeouts (wait) or timed event notifications.

Untimed. The notion of simulation time is unnecessary. Processes yield at explicit pre-determined

synchronization points.

3.3.6 Switching between loosely-timed and approximately-timed modeling

A model may switch between the loosely-timed and approximately-timed coding style during simulation. The

idea is to run rapidly through the reset and boot sequence at the loosely-timed level, then switch to

approximately timed modeling for more detailed analysis once the simulation has reached an interesting stage.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 10

3.3.7 Cycle-accurate modeling

Cycle-accurate modeling is beyond the scope of TLM-2.0 at present. It is possible to create cycle-accurate

models using SystemC and TLM-1 as it stands, but the requirement for the standardization of a cycle-accurate

coding style still remains an open issue, possibly to be addressed by a future OSCI standard.

In principle only, the approximately-timed coding style might be extended to encompass cycle-accurate

modeling by defining an appropriate set of phases and rules. The TLM-2.0 release includes sufficient

machinery for this, but the details have not been worked out.

3.3.8 Blocking versus non-blocking transport interfaces

The blocking and non-blocking transport interfaces are distinct interfaces that exist in TLM-2.0 to support

different levels of timing detail. The blocking transport interface is only able to model the start and end of a

transaction, with the transaction being completed within a single function call. The non-blocking transport

interface allows a transaction to be broken down into multiple timing points, and typically requires multiple

function calls for a single transaction.

For interoperability, the blocking and non-blocking transport interfaces are combined into a single interface.

A model that initiates transactions may use the blocking or non-blocking transport interfaces (or both)

according to coding style. Any model that provides a TLM-2.0 transport interface is obliged to provide both

the blocking and non-blocking forms for maximal interoperability, although such a model is not obliged to

implement both interfaces internally.

TLM-2.0 provides a mechanism (the so-called convenience socket) to automatically convert incoming

blocking or non-blocking transport calls to non-blocking or blocking transport calls, respectively. Converting

transport call types does incur some cost, particularly converting an incoming non-blocking call to a blocking

implementation. However, the cost overhead is mitigated by the fact that the presence of an approximately-

timed model is likely to have a negative impact on simulation speed anyway.

The C++ static typing rules enforce the implementation of both interfaces, but an initiator can choose

dynamically whether to call the blocking or the non-blocking transport method. It is possible for different

initiators to call different methods, or for a given initiator to switch between blocking and non-blocking calls

on-the-fly. This standard includes rules governing the mixing and ordering of blocking and non-blocking

transport calls to the same target.

The strength of the blocking transport interface is that it allows a simplified coding style for models that are

able to complete a transaction in a single function call. The strength of the non-blocking transport interface is

that it supports the association of multiple timing points with a single transaction. In principle, either interface

supports temporal decoupling, but the speed benefits of temporal decoupling are likely to be nullified by the

presence of multiple timing points for approximately-timed models.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 11

3.3.9 Use cases and coding styles

The table below summarizes the mapping between use cases for transaction-level modeling and coding styles:

Use Case Coding style

Software application development Loosely-timed

Software performance analysis Loosely-timed

Hardware architectural analysis Loosely-timed or approximately-timed

Hardware performance verification Approximately-timed or cycle-accurate

Hardware functional verification Untimed (verification environment),

loosely-timed or approximately-timed

3.4 Initiators, targets, sockets, and transaction bridges

The TLM-2.0 core interfaces pass transactions between initiators and targets. An initiator is a module that can

initiate transactions, that is, create new transaction objects and pass them on by calling a method of one of the

core interfaces. A target is a module that acts as the final destination for a transaction. In the case of a write

transaction, an initiator (such as a processor) writes data to a target (such as a memory). In the case of a read

transaction, an initiator reads data from a target. An interconnect component is a module that accesses a

Initiator
Interconnect

component
Target

Initiator

socket

Target

socket

Initiator

socket

Target

socket

Forward

path

Backward

path

Forward

path

Backward

path

Transaction

object

References to a single transaction

object are passed along the

forward and backward paths

Figure 3

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 12

transaction but does not act as an initiator or a target for that transaction, typical examples being arbiters and

routers. The roles of initiator, interconnect and target can change dynamically. For example, a given

component may act as an interconnect for some transactions but as a target for other transactions.

In order to illustrate the idea, this paragraph will describe the lifetime of a typical transaction object. The

transaction object is created by an initiator and passed as an argument of a method of the transport interface

(blocking or non-blocking). That method is implemented by an interconnect component such as an arbiter,

which may read attributes of the transaction object before passing it on to a further transport call. That second

transport method is implemented by a second interconnect component, such as a router, which in turn passes

on the transaction through a third transport call to a target such as a memory, the final destination for the

transaction object. (The actual number of interconnect components will vary from transaction to transaction.

There may be none.) This sequence of method calls is known as the forward path. The transaction is executed

in the target, and the transaction object may be returned to the initiator in one of two ways, either carried with

the return from the transport method calls as they unwind, known as the return path, or passed by making

explicit transport method calls on the opposite path from target back to initiator, known as the backward path.

This choice is determined by the return value from the non-blocking transport method. (Strictly speaking

there are two return paths corresponding to the forward and backward paths, but the meaning is usually clear

from the context.)

The forward path is the calling path by which an initiator or interconnect component makes interface method

calls forward in the direction of another interconnect component or the target. The backward path is the

calling path by which a target or interconnect component makes interface method calls back in the direction

of another interconnect component or the initiator. The entire path between an initiator and a target consists of

a number of hops, each hop connecting two adjacent components. The number of hops from initiator to target

is one greater than the number of interconnect components on that path. When using the generic payload, the

forward and backward paths should always pass through the same set of components and sockets, obviously

in reverse order.

Initiator
Interconnect

component
Target

Figure 4

Interconnect

component

Initiator
Initiator /

Target
Target

Initiator /

Target

Initiator Target

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 13

In order to support both forward and backward paths, each connection between components requires a port

and an export, both of which have to be bound. This is facilitated by the initiator socket and the target socket.

An initiator socket provides a port for interface method calls on the forward path and an export for interface

method calls on the backward path. A target socket provides the opposite. (More specifically, an initiator

socket is derived from class sc_port and has an sc_export, and vice versa for a target socket.) The initiator

and target socket classes overload the SystemC port binding operator to implicitly bind both forward and

backward paths.

As well as the transport interfaces, the sockets also encapsulate the DMI and debug transport interfaces (see

below).

When using sockets, an initiator component will have at least one initiator socket, a target component at least

one target socket, and an interconnect component at least one of each. A component may have several sockets

transporting different transaction types, in which case a single component may act as initiator or target for

multiple independent transactions.

In order to model a bus bridge there are two alternatives. Either model the bus bridge as an interconnect

component, or model the bus bridge as a transaction bridge between two separate TLM-2.0 transactions. An

interconnect component would pass on a pointer to a single transaction object, which is the best approach for

simulation speed. A transaction bridge would require the transaction object to be copied, which gives much

more flexibility because the two transactions could have different attributes.

The use of TLM-2.0 sockets is recommended for maximal interoperability, convenience, and a consistent

coding style. Whilst it is possible for components to use SystemC ports and exports directly with the TLM-2.0

core interfaces, this is not recommended.

3.5 DMI and debug transport interfaces

The direct memory interface (DMI) and debug transport interface are specialized interfaces distinct from the

transport interface, providing direct access and debug access to an area of memory owned by a target. Once a

DMI request has been granted, the DMI interface enables an initiator to bypass the usual path through the

interconnect components used by the transport interface. DMI is intended to accelerate regular memory

transactions in a loosely-timed simulation, whereas the debug transport interface is for debug access free of

the delays or side-effects associated with regular transactions.

The DMI has both forward (initiator-to-target) and backward (target-to-initiator) interfaces, whereas debug

only has a forward interface. See 4.2 Direct memory interface and 4.3 Debug transport interface

3.6 Combined interfaces and sockets

The blocking and non-blocking transport interfaces are combined with the DMI and debug transport

interfaces in the standard initiator and target sockets. All four interfaces (the two transport interfaces, DMI,

and debug) can be used in parallel to access a given target (subject to the rules described in this standard).

These combined interfaces are one of the keys to ensuring interoperability between components using the

TLM-2.0 standard, the other key being the generic payload. See 6.1 Combined interfaces

The standard target sockets provide all four interfaces, so each target component must effectively implement

the methods of all four interfaces. However, the design of the blocking and non-blocking transport interfaces

together with the provision of convenience sockets to convert between the two means that a given target need

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 14

only implement either the blocking or the non-blocking transport method, not both, according to the speed

and accuracy requirements of the model.

A given initiator may choose to call methods through any or all of the core interfaces, again according to the

speed and accuracy requirements. The coding styles mentioned above help guide the choice of an appropriate

set of interface features. Typically, a loosely-timed initiator will call blocking transport, DMI and debug,

whereas an approximately-timed initiator will call non-blocking transport and debug.

3.7 Namespaces

The TLM-2.0 classes shall be declared in a two top-level C++ namespaces, tlm and tlm_utils. Particular

implementations of the TLM-2.0 classes may choose to nest further namespaces within these two

namespaces, but such nested namespaces shall not be used in applications.

Namespace tlm contains the classes that comprise the interoperability interface for memory-mapped bus

modeling.

Namespace tlm_utils contains utility classes that are not strictly necessary for interoperability at the interface

between memory-mapped bus models, but which are nevertheless a proper part of the TLM-2.0 standard.

3.8 Header files and version numbers

Applications should #include the header file tlm.h from the include/tlm directory of the software distribution.

Applications should also #include any header files they may require from the include/tlm/tlm_utils directory.

Applications compiling the simple sockets with current released versions of the OSCI proof-of-concept

simulator should define the macro SC_INCLUDE_DYNAMIC_PROCESSES before including the SystemC

header file.

3.8.1 Software version information

The header file include/tlm/tlm_h/tlm_version.h shall contain a set of macros, constants, and functions that

provide information concerning the version number of the OSCI TLM-2.0 software distribution. Applications

may use these macros and constants.

3.8.1.1 Definitions

namespace tlm

{

#define TLM_VERSION_MAJOR implementation_defined_number // For example, 2

#define TLM_VERSION_MINOR implementation_defined_number // 0

#define TLM_VERSION_PATCH implementation_defined_number // 1

#define TLM_VERSION_ORIGINATOR implementation_defined_string // ―OSCI‖

#define TLM_VERSION_RELEASE_DATE implementation_defined_date // ―20090329‖

#define TLM_VERSION_PRERELEASE implementation_defined_string // ―beta‖

#define TLM_IS_PRERELEASE implementation_defined_bool // TRUE

#define TLM_VERSION implementation_defined_string // ―2.0.1_beta-OSCI‖

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 15

#define TLM_COPYRIGHT implementation_defined_string

const unsigned int tlm_version_major;

const unsigned int tlm_version_minor;

const unsigned int tlm_version_patch;

const std::string tlm_version_originator;

const std::string tlm_version_release_date;

const std::string tlm_version_prerelease;

const bool tlm_is_prerelease;

const std::string tlm_version_string;

const std::string tlm_copyright_string;

inline const char* tlm_release();

inline const char* tlm_version();

inline const char* tlm_copyright();

} // namespace tlm

3.8.1.2 Rules

a) Each implementation_defined_number shall consist of a sequence of decimal digits from the character set

[0-9] not enclosed in quotation marks.

b) The originator and pre-release strings shall each consist of a sequence of characters from the character set

[A-Z][a-z][0-9]_ enclosed in quotation marks.

c) The version release date shall consist of an ISO 8601 basic format calendar date of the form

YYYYMMDD, where each of the 8 characters is a decimal digit, enclosed in quotation marks.

d) The IS_PRERELEASE flag shall be either FALSE or TRUE, not enclosed in quotation marks.

e) The version string shall be set to the value ―major.minor.patch_prerelease-originator‖ or

―major.minor.patch-originator‖, where major, minor, patch, prerelease and originator are the values of the

corresponding strings (without enclosing quotation marks), and the presence or absence of the prerelease

string shall depend on the value of the IS_PRERELEASE flag.

f) The copyright string should be set to a copyright notice.

g) Each constant shall be initialized with the value defined by the macro of the corresponding name

converted to the appropriate data type.

h) The methods tlm_release and tlm_version shall each return the value of the version string converted to a

C string.

i) The method tlm_copyright shall return the value of the copyright string converted to a C string.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 16

4 TLM-2.0 Core Interfaces

In addition to the core interfaces from TLM-1, TLM-2.0 adds blocking and non-blocking transport interfaces,

a direct memory interface (DMI), and a debug transport interface.

4.1 Transport interfaces

The transport interfaces are the primary interfaces used to transport transactions between initiators, targets and

interconnect components. Both the blocking and non-blocking transport interfaces support timing annotation

and temporal decoupling, but only non-blocking transport supports multiple phases within the lifetime of a

transaction. Blocking transport does not have an explicit phase argument, and any association between

blocking transport and the phases of the non-blocking transport interface is purely notional. Only the non-

blocking transport method returns a value indicating whether or not the return path was used.

The transport interfaces and the generic payload were designed to be used together for the fast, abstract

modeling of memory-mapped buses. The transport interface templates are specialized with the transaction

type allowing them to be used separately from the generic payload, although many of the interoperability

benefits would be lost.

The rules governing memory management of the transaction object, transaction ordering, and the permitted

function calling sequence depend on the specific transaction type passed as a template argument to the

transport interface, which in turn depends on the protocol traits class passed as a template argument to the

socket (if a socket is used).

4.1.1 Blocking transport interface

4.1.1.1 Introduction

The TLM-2.0 blocking transport interface is intended to support the loosely-timed coding style. The blocking

transport interface is appropriate where an initiator wishes to complete a transaction with a target during the

course of a single function call, the only timing points of interest being those that mark the start and the end of

the transaction.

The blocking transport interface only uses the forward path from initiator to target.

The TLM-2.0 blocking transport interface has deliberate similarities with the transport interface from TLM-1,

which is still part of the TLM-2.0 standard, but the TLM-1 transport interface and the TLM-2.0 blocking

transport interface are not identical. In particular, the new b_transport method has a single transaction

argument passed by non-const reference and a second argument to annotate timing, whereas the TLM-1

transport method takes a request as a single const reference request argument, has no timing annotation, and

returns a response by value. TLM-1 assumes separate request and response objects passed by value (or const

reference), whereas TLM-2.0 assumes a single transaction object passed by reference, whether using the

blocking or the non-blocking TLM-2.0 interfaces.

The b_transport method has a timing annotation argument. This single argument is used on both the call to

and the return from b_transport to indicate the time of the start and end of the transaction, respectively,

relative to the current simulation time.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 17

4.1.1.2 Class definition

namespace tlm {

template <typename TRANS = tlm_generic_payload>

class tlm_blocking_transport_if : public virtual sc_core::sc_interface {

public:

 virtual void b_transport(TRANS& trans, sc_core::sc_time& t) = 0;

};

} // namespace tlm

4.1.1.3 The TRANS template argument

The intent is that this core interface may be used to transport transactions of any type. A specific transaction

type, tlm_generic_payload, is provided to ease interoperability between models where the precise details of

the transaction attributes are less important.

For maximum interoperability, applications should use the default transaction type tlm_generic_payload

with the base protocol. See 8.2 Base protocol. In order to model specific protocols, applications may

substitute their own transaction type. Sockets that use interfaces specialized with different transaction types

cannot be bound together, providing compile-time checking but restricting interoperability.

4.1.1.4 Rules

a) The b_transport method may call wait, directly or indirectly.

b) The b_transport method shall not be called from a method process.

c) The initiator may re-use a transaction object from one call to the next and across calls to the transport

interfaces, DMI, and the debug transport interface

d) The call to b_transport marks the first timing point of the transaction. The return from b_transport

marks the final timing point of the transaction.

e) The timing annotation argument allows the timing points to be offset from the simulation times (value

returned by sc_time_stamp()) at which the function call and return are executed.

f) The callee may modify or update the transaction object, subject to any constraints imposed by the

transaction class TRANS.

g) It is recommended that the transaction object should not contain timing information. Timing should be

annotated using the sc_time argument to b_transport.

h) Typically, an interconnect component should pass the b_transport call along the forward path from

initiator to target. In other words, the implementation of b_transport for the target socket of the

interconnect component may call the b_transport method of an initiator socket.

i) Whether or not the implementation of b_transport is permitted to call nb_transport_fw depends on the

rules associated with the protocol. For the base protocol, the convenience socket simple_target_socket is

able to make this conversion automatically. See 9.1.2 Simple sockets.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 18

j) The implementation of b_transport shall not call nb_transport_bw.

4.1.1.5 Message sequence chart – blocking transport

The blocking transport method may return immediately (that is, in the current SystemC evaluation phase) or

may yield control to the scheduler and only return to the initiator at a later point in simulation time. Although

the initiator thread may be blocked, another thread in the initiator may be permitted to call b_transport

before the first call has returned, depending on the protocol.

Blocking Transport

b_transport(t, 0ns);

b_transport(t, 0ns);

Call

Return

Initiator Target

Figure 5

b_transport(t, 0ns);

b_transport(t, 0ns);

Call

Return

Simulation time = 100ns

Simulation time = 140ns wait (40ns)

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 19

4.1.1.6 Message sequence chart – temporal decoupling

A temporally decoupled initiator may run at a notional local time in advance of the current simulation time, in

which case it should pass a non-zero value for the time argument to b_transport, as shown below. The

initiator and target may each further advance the local time offset by increasing the value of the time

argument. Adding the time argument returned from the call to the current simulation time gives the notional

time at which each the transaction completes, but simulation time itself cannot advance until the initiator

thread yields.

The body of b_transport may itself call wait, in which case the local time offset should be reset to zero. In

the diagram below, the final return from the initiator happens at simulation time 140ns, but with an annotated

delay of 5ns, giving an effective local time of 145ns.

Temporal decoupling

b_transport(t, 0ns);

b_transport(t, 5ns);

Call

Return

Initiator Target

Figure 6

b_transport(t, 30ns);

b_transport(t, 5ns);

Call

Return

Simulation time = 100ns

Simulation time = 140ns wait (40ns)

Local time offset

+0ns

+5ns

b_transport(t, 20ns);

b_transport(t, 25ns);

Call

Return

+20ns

+25ns

+30ns

+5ns

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 20

4.1.1.7 Message sequence chart – the time quantum

A temporally decoupled initiator will continue to advance local time until the time quantum is exceeded. At

that point, the initiator is obliged to synchronize by suspending execution, directly or indirectly calling the

wait method with the local time as an argument. This allows other initiators in the model to run and to catch

up, which effectively means that the initiators execute in turn, each being responsible for determining when to

hand back control by keeping track of its own local time. The original initiator should only run again after

simulation time has advanced to the next quantum.

The primary purpose of delays in the loosely-timed coding style is to allow each initiator to determine when

to hand back control. It is best if the model does not rely on the details of the timing in order to function

correctly.

Within each quantum, the transactions generated by a given initiator happen in strict sequential order, but

without advancing simulation time. The local time is not tracked by the SystemC scheduler.

The time quantum

b_transport(t, 950ns);

b_transport(t, 970ns);

Call

Return

Initiator Target

Figure 7

b_transport(t, 0ns);Call

Simulation time = 1us

Simulation time = 2010ns

wait (1010ns)

Local time offset

+950ns

+970ns

b_transport(t, 990ns);

b_transport(t, 1010ns);

Call

Return

+990ns

+1010ns

+0ns

Quantum = 1us

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 21

4.1.2 Non-blocking transport interface

4.1.2.1 Introduction

The non-blocking transport interface is intended to support the approximately-timed coding style. The non-

blocking transport interface is appropriate where it is desired to model the detailed sequence of interactions

between initiator and target during the course of each transaction. In other words, to break down a transaction

into multiple phases, where each phase transition is associated with a timing point. Each call to and return

from the non-blocking transport method may correspond to a phase transition.

By restricting the number of timing points to two, it is possible to use the non-blocking transport interface

with the loosely-timed coding style, but this is not generally recommended. For loosely-timed modeling, the

blocking transport interface is generally preferred for its simplicity. The non-blocking transport interface is

particularly suited for modeling pipelined transactions, which would be awkward to model using blocking

transport.

The non-blocking transport interface uses both the forward path from initiator to target and the backward path

from target to initiator. There are two distinct interfaces, tlm_fw_nonblocking_transport_if and

tlm_bw_nonblocking_transport_if, for use on opposite paths.

The non-blocking transport interface uses a similar argument-passing mechanism to the blocking transport

interface in that the non-blocking transport methods pass a non-const reference to the transaction object and a

timing annotation, but there the similarity ends. The non-blocking transport method also passes a phase to

indicate the state of the transaction, and returns an enumeration value to indicate whether the return from the

function also represents a phase transition.

Both blocking and non-blocking transport support timing annotation, but only non-blocking transport supports

multiple phases within the lifetime of a transaction. The blocking and non-blocking transport interface and the

generic payload were designed to be used together for the fast, abstract modeling of memory-mapped buses.

However, the transport interfaces can be used separately from the generic payload to model specific protocols.

Both the transaction type and the phase type are template parameters of the non-blocking transport interface.

4.1.2.2 Class definition

namespace tlm {

enum tlm_sync_enum { TLM_ACCEPTED, TLM_UPDATED, TLM_COMPLETED };

template <typename TRANS = tlm_generic_payload, typename PHASE = tlm_phase>

class tlm_fw_nonblocking_transport_if : public virtual sc_core::sc_interface {

public:

 virtual tlm_sync_enum nb_transport_fw(TRANS& trans, PHASE& phase, sc_core::sc_time& t) = 0;

};

template <typename TRANS = tlm_generic_payload, typename PHASE = tlm_phase>

class tlm_bw_nonblocking_transport_if : public virtual sc_core::sc_interface {

public:

 virtual tlm_sync_enum nb_transport_bw(TRANS& trans, PHASE& phase, sc_core::sc_time& t) = 0;

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 22

};

} // namespace tlm

4.1.2.3 The TRANS and PHASE template arguments

The intent is that the non-blocking transport interface may be used to transport transactions of any type and

with any number of phases and timing points. A specific transaction type, tlm_generic_payload, is provided

to ease interoperability between models where the precise details of the transaction attributes are less

important, and a specific type tlm_phase is provided for use with the base protocol. See 8.2 Base protocol

For maximum interoperability, applications should use the default transaction type tlm_generic_payload and

the default phase type tlm_phase with the base protocol. In order to model specific protocols, applications

may substitute their own transaction type and phase type. Sockets that use interfaces specialized with different

transaction types cannot be bound together, providing compile-time checking but restricting interoperability.

4.1.2.4 The nb_transport_fw and nb_transport_bw calls

a) There are two non-blocking transport methods, nb_transport_fw for use on the forward path, and

nb_transport_bw for use on the backward path. Aside from their names and calling direction these two

methods have similar semantics. In this document, the italicized term nb_transport is used to describe

both methods in situations where there is no need to distinguish between them.

b) In the case of the base protocol, the forward and backward paths should pass through exactly the same

sequence of components and sockets in opposing order. It is the responsibility of each component to

route any transaction returning toward the initiator using the target socket through which that transaction

was first received.

c) nb_transport_fw shall only be called on the forward path, and nb_transport_bw shall only be called on

the backward path.

d) An nb_transport_fw call on the forward path shall under no circumstances directly or indirectly make a

call to nb_transport_bw on the backward path, and vice versa.

e) The nb_transport methods shall not call wait, directly or indirectly.

f) The nb_transport methods may be called from a thread process or from a method process.

g) nb_transport is not permitted to call b_transport. One solution would be to call b_transport from a

separate thread process, spawned or notified by the original nb_transport_fw method. For the base

protocol, a convenience socket simple_target_socket is provided, which is able to make this conversion

automatically. See 9.1.2 Simple sockets.

h) The non-blocking transport interface is explicitly intended to support pipelined transactions. In other

words, several successive calls to nb_transport_fw from the same process could each initiate separate

transactions without having to wait for the first transaction to complete.

i) In principle, the final timing point of a transaction may be marked by a call to or a return from

nb_transport either on the forward path or the backward path.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 23

4.1.2.5 The trans argument

a) The lifetime of a given transaction object may extend beyond the return from nb_transport such that a

series of calls to nb_transport may pass a single transaction object forward and backward between

initiators, interconnect components, and targets.

b) If there are multiple calls to nb_transport associated with a given transaction instance, one and the same

transaction object shall be passed as an argument to every such call. In other words, a given transaction

instance shall be represented by a single transaction object.

c) An initiator may re-use a given transaction object to represent more than one transaction instance, or

across calls to the transport interfaces, DMI, and the debug transport interface.

d) Since the lifetime of the transaction object may extend over several calls to nb_transport, either the caller

or the callee may modify or update the transaction object, subject to any constraints imposed by the

transaction class TRANS. For example, for the generic payload, the target may update the data array of

the transaction object in the case of a read command, but shall not update the command field. See 7.7

Default values and modifiability of attributes

4.1.2.6 The phase argument

a) Each call to nb_transport passes a reference to a phase object. In the case of the base protocol, successive

calls to nb_transport with the same phase are not permitted. Each phase transition has an associated

timing point. A timing annotation using the sc_time argument shall delay the timing point relative to the

phase transition.

b) The phase argument is passed by reference. Either caller or callee may modify the phase.

c) The intent is that the phase argument should be used to inform components as to whether and when they

are permitted to read or modify the attributes of a transaction. If the rules of a protocol allow a given

component to modify the value of a transaction attribute during a particular phase, then that component

may modify the value at any time during that phase and any number of times during that phase. The

protocol should forbid other components from reading the value of that attribute during that phase, only

permitting the value to be read after the next phase transition.

d) The value of the phase argument represents the current state of the protocol state machine for the given

hop. Where a single transaction object is passed between more than two components (initiator,

interconnect, target), each hop requires (notionally, at least) a separate protocol state machine.

e) Whereas the transaction object has a lifetime and a scope that may extend beyond any single call to

nb_transport, the phase object is normally local to the caller. Each nb_transport call for a given

transaction may have a separate phase object. Corresponding phase transitions on different hops may

occur at different points in simulation time.

f) The default phase type tlm_phase is specific to the base protocol. Other protocols may use or extend type

tlm_phase or may substitute their own phase type (with a corresponding loss of interoperability). See 8.1

Phases.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 24

4.1.2.7 The tlm_sync_enum return value

a) The concept of sychronization is referred to in several places. To synchronize is to yield control to the

SystemC scheduler in order that other processes may run, but has additional connotations for temporal

decoupling. This is discussed more fully elsewhere. See 9.2.4 General guidelines for processes using

temporal decoupling.

b) In principle, synchronization can be accomplished by yielding (calling wait in the case of a thread

process or returning to the kernel in the case of a method process), but a temporally decoupled initiator

should synchronize by calling the sync method of class tlm_quantum_keeper. In general, it is necessary

for an initiator to synchronize from time-to-time in order to allow other SystemC processes to run.

c) The following rules apply to both the forward and backward paths.

d) The meaning of the return value from nb_transport is fixed, and does not vary according to the

transaction type or phase type. Hence the following rules are not restricted to the base protocol but apply

to every transaction and phase type used to parameterize the non-blocking transport interface.

e) TLM_ACCEPTED. The callee shall not have modified the state of the transaction object, the phase, or

the time argument during the call. In other words, TLM_ACCEPTED indicates that the return path is not

being used. The caller may ignore the values of the nb_transport arguments following the call, since the

callee is obliged to leave them unchanged. In general, the caller will have to yield before the component

containing the callee can respond to the transaction. For the base protocol, a callee that is ignoring an

ignorable phase should return TLM_ACCEPTED.

f) TLM_UPDATED. The callee has updated the transaction object. The callee may have modified the state

of the phase argument, may have modified the state of the transaction object, and may have increased the

value of the time argument during the call. In other words, TLM_UPDATED indicates that the return

path is being used, and the callee has advanced the state of the protocol state machine associated with the

transaction. Whether or not the callee is actually obliged to modify each of the arguments depends on the

protocol. Following the call to nb_transport, the caller should inspect the phase, transaction and time

arguments and take the appropriate action.

g) TLM_COMPLETED. The callee has updated the transaction object, and the transaction is complete.

The callee may have modified the state of the transaction object, and may have increased the value of the

time argument during the call. The value of the phase argument is undefined. In other words,

TLM_COMPLETED indicates that the return path is being used and the transaction is complete with

respect to a particular socket. Following the call to nb_transport, the caller should inspect the transaction

object and take the appropriate action, but should ignore the phase argument. There shall be no further

transport calls associated with this particular transaction through the current socket along either the

forward or backward paths. Completion in this sense does not necessarily imply successful completion,

so depending on the transaction type, the caller may need to inspect a response status embedded in the

transaction object.

h) In general there is no obligation to complete a transaction by having nb_transport return

TLM_COMPLETED. A transaction is in any case complete with respect to a particular socket when the

final phase of the protocol is passed as an argument to nb_transport. (For the base protocol, the final

phase is END_RESP.) In other words, TLM_COMPLETED is not mandatory.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 25

i) For any of the three return values, and depending on the protocol, following the call to nb_transport the

caller may need to yield in order to allow the component containing the callee to generate a response or

to release the transaction object.

4.1.2.8 tlm_sync_enum summary

tlm_sync_enum Transaction object Phase on return Timing annotation

on return

TLM_ACCEPTED Unmodified Unchanged Unchanged

TLM_UPDATED Updated Changed May be increased

TLM_COMPLETED Updated Ignored May be increased

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 26

4.1.2.9 Message sequence chart – using the backward path

The following message sequence charts illustrate various calling sequences to nb_transport. The arguments

and return value passed to and from nb_transport are shown using the notation return, phase, delay, where

return is the value returned from the function call, phase is the value of the phase argument, and delay is the

value of the sc_time argument The notation ‗-‘ indicates that the value is unused.

The following message sequence charts use the phases of the base protocol as an example, that is,

BEGIN_REQ, END_REQ and so on. With the approximately-timed coding style and the base protocol, a

transaction is passed back-and-forth twice between initiator and target. For other protocols, the number of

phases and their names may be different.

If the recipient of an nb_transport call is unable immediately to calculate the next state of the transaction or

the delay to the next timing point, it should return a value of TLM_ACCEPTED. The caller should yield

control to the scheduler and expect to receive a call to nb_transport on the opposite path when the callee is

ready to respond. Notice that in this case, unlike the loosely-timed case, the caller could be the initiator or the

target.

Transactions may be pipelined. The initiator could call nb_transport to send another transaction to the target

before having seen the final phase transition of the previous transaction.

Because processes are regularly yielding control to the scheduler in order to allow simulation time to advance,

the approximately-timed coding style is expected to simulate a lot more slowly than the loosely-timed coding

style.

Using the backward path

Initiator Target

TLM_ACCEPTED, -, -

-, END_REQ, 0ns

Phase

BEGIN_REQ

END_REQ

Call

Return

-, BEGIN_REQ, 0ns

TLM_ACCEPTED, -, -

Call

Return

Simulation time = 100ns

Simulation time = 110ns

TLM_ACCEPTED, -, -

-, BEGIN_RESP, 0ns

BEGIN_RESP

Call

Return

Simulation time = 120ns

END_RESP

-, END_RESP, 0ns

TLM_ACCEPTED, -, -

Call

Return

Simulation time = 130ns

Figure 8

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 27

4.1.2.10 Message sequence chart – using the return path

If the recipient of an nb_transport call can immediately calculate the next state of the transaction and the

delay to the next timing point, it may return the new state on return from nb_transport rather than using the

opposite path. If the next timing point marks the end of the transaction, the recipient can return either

TLM_UPDATED or TLM_COMPLETED. A callee can return TLM_COMPLETED at any stage (subject to

the rules of the protocol) to indicate to the caller that it has pre-empted the other phases and jumped to the

final phase, completing the transaction. This applies to initiator and target alike.

With TLM_UPDATED, the callee should update the transaction, the phase, and the timing annotation.

In the diagram below, the non-zero timing annotation argument passed on return from the function calls

indicates to the caller the delay between the phase transition on the hop and the corresponding timing point.

Using the return path

Initiator TargetPhase

BEGIN_REQ

END_REQ

-, BEGIN_REQ, 0ns

TLM_UPDATED, END_REQ, 10ns

Call

Return

Simulation time = 100ns

Simulation time = 110ns

TLM_UPDATED, END_RESP, 5ns

-, BEGIN_RESP, 0ns

BEGIN_RESP

Call

Return

Simulation time = 150ns

END_RESP Simulation time = 155ns

Figure 9

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 28

4.1.2.11 Message sequence chart – early completion

Depending on the protocol, an initiator or a target may return TLM_COMPLETED from nb_transport at any

point in order to complete the transaction early. Neither initiator nor target may make any further

nb_transport calls for this particular transaction instance. Whether or not an initiator or target is actually

permitted to shortcut a transaction in this way depends on the rules of the specific protocol.

In the diagram below, the timing annotation on the return path indicates to the initiator that the final timing

point is to occur after the given delay. The phase transitions from BEGIN_REQ through END_REQ and

BEGIN_RESP to END_RESP are implicit, rather than being passed explicitly as arguments to nb_transport.

Early completion

-, BEGIN_REQ, 0ns

TLM_COMPLETED, -, 10ns

Call

Return

Phase

BEGIN_REQ

(END_RESP)

Initiator Target

Figure 10

Simulation time = 100ns

Simulation time = 110ns

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 29

4.1.2.12 Message sequence chart – timing annotation

A caller may annotate a delay onto an nb_transport call. This is an indication to the callee that the transaction

should be processed as if it had been received after the given delay. An approximately-timed callee would

typically handle this situation by putting the transaction into a payload event queue for processing when

simulation time has caught up with the annotated delay. Depending on the implementation of the payload

event queue, this processing may occur either in a SystemC process sensitive to an event notification from the

payload event queue or in a callback registered with the payload event queue.

Delays can be annotated onto calls on the forward and backward paths and the corresponding return paths. An

approximately-timed initiator would be expected to handle incoming transactions on both the forward return

path and the backward path in the same way. Similarly, an approximately-timed target would be expected to

handle incoming transactions on both the backward return path and the forward path in the same way.

Timing annotation

-, BEGIN_REQ, 10ns

TLM_ACCEPTED, -,-

Call

Return

Phase

BEGIN_REQ

END_REQ

Initiator Target

Figure 11

Simulation time = 100ns

Simulation time = 135ns

Simulation time = 110ns

TLM_ACCEPTED, -, -

-, END_REQ, 10ns Call

Return

Simulation time = 125ns

Payload

Event

Queue

Payload

Event

Queue

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 30

4.1.3 Timing annotation with the transport interfaces

Timing annotation is a shared feature of the blocking and non-blocking transport interfaces, expressed using

the sc_time argument to the b_transport, nb_transport_fw and nb_transport_bw methods. In this

document, the italicized term transport is used to denote the three methods b_transport, nb_transport_fw,

and nb_transport_bw.

Transaction ordering is governed by a combination of the core interface rules and the protocol rules. The rules

in the following clause apply to the core interfaces regardless of the choice of protocol. For the base protocol,

the rules given here should be read in conjunction with those in 8.2.7 Base protocol rules concerning timing

annotation.

4.1.3.1 The sc_time argument

a) It is recommended that the transaction object should not contain timing information. Any timing

annotation should be expressed using the sc_time argument to transport

b) The time argument shall be non-negative, and shall be expressed relative to the current simulation time

sc_time_stamp().

c) The time argument shall apply on both the call to and return from transport (subject to the rules of the

tlm_sync_enum return value of nb_transport).

d) The nb_transport method may itself increase the value of the time argument, but shall not decrease the

value. The b_transport method may increase the value of the time argument, or may decrease the value

in the case that it has called wait and thus synchronized with simulation time, but only by an amount that

is less than or equal to the time for which the process was suspended. This rule is consistent with time not

running backward in a SystemC simulation.

e) In the following description, the recipient of the transaction on the call to transport is the callee, and the

recipient of the transaction on return from transport is the caller.

f) The recipient shall behave as if it had received the transaction at an effective local time of

sc_time_stamp() + t, where t is the value of the time argument. In other words, the recipient shall behave

as if the timing point associated with the interface method call is to occur at the effective local time.

g) Given a sequence of calls to transport, the effective local times at which the transactions are to be

processed may or may not be in increasing time order in general. For transactions created by different

initiators, it is fundamental to temporal decoupling that interface method call order may be different from

effective local time order. The responsibility to handle transactions with out-of-order timing annotations

lies with the recipient.

h) Upon receipt of a transaction with a non-zero timing annotation, any recipient always has choices which

reflect the modeling tradeoff between speed and accuracy. The recipient can execute any state changes

caused by the transaction immediately and pass on the timing annotation, possibly increased, or it can

schedule some internal process to resume after part or all of the annotated time has elapsed and execute

the state changes only then. The choice is not enforced by the transport interface, but may be documented

as part of a protocol traits class or coding style.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 31

i) If the recipient is not concerned with timing accuracy or with processing a sequence of incoming

transactions in the order given by their timing annotations, it may process each transaction immediately,

without delay. Having done so, the recipient may also choose to increase the value of the timing

annotation to model the time needed to process the transaction. This scenario assumes that the system

design can tolerate out-of-order execution because of the existence of some explicit mechanism (over and

above the TLM-2.0 interfaces) to enforce the correct causal chain of events.

j) If the recipient is to implement an accurate model of timing and execution order, it should ensure that the

transaction is indeed processed at the correct time relative to any other SystemC processes with which it

may interact. In SystemC, the appropriate mechanism to schedule an event at a future time is the timed

event notification. For convenience, TLM-2.0 provides a family of utility classes, know as payload event

queues, which can be used to queue transactions for processing at the proper simulation time according to

the natural semantics of SystemC (see 9.3 Payload event queue). In other words, an approximately-timed

recipient should typically put the transaction into a payload event queue.

k) Rather than processing the transaction directly, the recipient may pass the transaction on with a further

call to or return from a transport method without modification to the transaction and using the same

phase and timing annotation (or with an increased timing annotation).

l) With the loosely-timed coding style, transactions are typically executed immediately such that execution

order matches interface method call order, and the b_transport method is recommended.

m) With the approximately-timed coding style, transactions are typically delayed such that their execution

order matches the effective local time order, and the nb_transport method is recommended.

n) Each component can make the above choice dynamically on a call-by-call basis. For example, a loosely-

timed component may execute a series of transactions immediately in call order, passing on the timing

annotations, but may then choose to schedule the very next transaction for execution only after the delay

given by the timing annotation has elapsed (known as synchronization on demand). This is a matter of

coding style.

o) The above choice exists for both blocking and non-blocking transport. For example, b_transport may

increase the timing annotation and return immediately or may wait for the timing annotation to elapse

before returning. nb_transport may increase the timing annotation and return TLM_COMPLETED or

may return TLM_ACCEPTED and schedule the transaction for execution later.

p) As a consequence of the above rules, if a component is the recipient of a series of transactions where the

order of the incoming interface method calls is different from the effective local time order, the

component is free to choose the mutual execution order of those particular transactions. The

recommendation is to execute all transactions in call order or to execute all transactions in effective local

time order, but this is not an obligation.

q) Note that the order in which incoming transactions are executed by a component should in effect always

be the same as interface method call order, because a component will either execute an incoming

transaction before returning from the interface method call regardless of the timing annotation (loosely-

timed), or will schedule the transaction for execution at the proper future time and return

TLM_ACCEPTED (approximately-timed), thus indicating to the caller that it should wait before issuing

the next transaction. (TLM_ACCEPTED alone does not forbid the caller from issuing the next

transaction, but in the case of the base protocol, the request and response exclusion rules may do so.)

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 32

r) Timing annotation can also be described in terms of temporal decoupling. A non-zero timing annotation

can be considered as an invitation to the recipient to ―warp time‖. The recipient can choose to enter a

time warp, or it can put the transaction in a queue for later processing and yield. In a loosely-timed

model, time warping is generally acceptable. On the other hand, if the target has dependencies on other

asynchronous events, the target may have to wait for simulation time to advance before it can predict the

future state of the transaction with certainty.

s) For a general description of temporal decoupling, see 3.3.2 Loosely-timed coding style and temporal

decoupling

t) For a description of the quantum, see 9.2 Quantum keeper

Example

The following pseudo-code fragments illustrate just some of the many possible coding styles:

// ---

// Various interface method definitions

// ---

void b_transport(TRANS& trans, sc_core::sc_time& t)

{

 // Loosely-timed coding style

 execute_transaction(trans);

 t = t + latency;

}

void b_transport(TRANS& trans, sc_core::sc_time& t)

{

 // Loosely-timed with synchronization at the target or synchronization-on-demand

 wait(t);

 execute_transaction(trans);

 t = SC_ZERO_TIME;

}

tlm_sync_enum nb_transport_fw(TRANS& trans, PHASE& phase, sc_core::sc_time& t)

{

 // Pseudo-loosely-timed coding style using non-blocking transport (not recommended)

 execute_transaction(trans);

 t = t + latency;

 return TLM_COMPLETED;

}

tlm_sync_enum nb_transport_fw(TRANS& trans, PHASE& phase, sc_core::sc_time& t)

{

 // Approximately-timed coding style

 // Post the transaction into a payload event queue for execution at time sc_time_stamp() + t

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 33

 payload_event_queue->notify(trans, phase, t);

 // Increment the transaction reference count

 trans.acquire();

 return TLM_ACCEPTED;

}

tlm_sync_enum nb_transport_fw(TRANS& trans, PHASE& phase, sc_core::sc_time& t)

{

 // Approximately-timed coding style making use of the backward path

 payload_event_queue->notify(trans, phase, t);

 trans.acquire();

 // Modify the phase and time arguments

 phase = END_REQ;

 t = t + accept_delay;

 return TLM_UPDATED;

}

// ---

// b_transport interface method calls, loosely-timed coding style

// ---

initialize_transaction(T1);

socket->b_transport(T1, t); // t may increase

process_response(T1);

initialize_transaction(T2);

socket->b_transport(T2, t); // t may increase

process_response(T2);

// Initiator may sync after each transaction or after a series of transactions

quantum_keeper->set(t);

if (quantum_keeper->need_sync())

 quantum_keeper->sync();

// ---

// nb_transport interface method call, approximately-timed coding style

// ---

initialize_transaction(T3);

status = socket->nb_transport_fw(T3, phase, t);

if (status == TLM_ACCEPTED)

{

 // No action, but expect an incoming nb_transport_bw method call

}

else if (status == TLM_UPDATED) // Backward path is being used

{

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 34

 payload_event_queue->notify(T3, phase, t);

}

else if (status == TLM_COMPLETED) // Early completion

{

 // Timing annotation may be taken into account in one of several ways

 // Either (1) by waiting, as shown here

 wait (t);

 process_response(T3);

 // or (2) by creating an event notification

 // response_event.notify(t);

 // or (3) by being passed on to the next transport method call (code not shown here)

}

4.1.4 Migration path from TLM-1

The old TLM-1 and the new TLM-2.0 interfaces are both part of the TLM-2.0 standard. The TLM-1 blocking

and non-blocking interfaces are still useful in their own right. For example, a number of vendors have used

these interfaces in building functional verification environments for HDL designs.

The intent is that the similarity between the old and new blocking transport interfaces should ease the task of

building adapters between legacy models using the TLM-1 interfaces and the new TLM-2.0 interfaces.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 35

4.2 Direct memory interface

4.2.1 Introduction

The Direct Memory Interface, or DMI, provides a means by which an initiator can get direct access to an area

of memory owned by a target, thereafter accessing that memory using a direct pointer rather than through the

transport interface. The DMI offers a large potential increase in simulation speed for memory access between

initiator and target because once established it is able to bypass the normal path of multiple b_transport or

nb_transport calls from initiator through interconnect components to target.

There are two direct memory interfaces, one for calls on the forward path from initiator to target, and a second

for calls on the backward path from target to initiator. The forward path is used to request a particular mode of

DMI access (e.g. read or write) to a given address, and returns a reference to a DMI descriptor of type

tlm_dmi, which contains the bounds of the DMI region. The backward path is used by the target to invalidate

DMI pointers previously established using the forward path. The forward and backward paths may pass

through zero, one or many interconnect components, but should be identical to the forward and backward

paths for the corresponding transport calls through the same sockets.

A DMI pointer is requested by passing a transaction along the forward path. The default DMI transaction type

is tlm_generic_payload, where only the command and address attributes of the transaction object are used.

DMI follows the same approach to extension as the transport interface, that is, a DMI request may contain

ignorable extensions, but any non-ignorable or mandatory extension requires the definition of a new protocol

traits class (see 7.2.2 Define a new protocol traits class containing a typedef for tlm_generic_payload).

The DMI descriptor returns latency values for use by the initiator, and so provides sufficient timing accuracy

for loosely-timed modeling.

DMI pointers may be used for debug, but the debug transport interface itself is usually sufficient because

debug traffic is usually light, and usually dominated by I/O rather than memory access. Debug transactions

are not usually on the critical path for simulation speed. If DMI pointers were used for debug, the latency

values should be ignored.

4.2.2 Class definition

namespace tlm {

class tlm_dmi

{

public:

 tlm_dmi() { init(); }

 void init();

 enum dmi_access_e {

 DMI_ACCESS_NONE = 0x00,

 DMI_ACCESS_READ = 0x01,

 DMI_ACCESS_WRITE = 0x02,

 DMI_ACCESS_READ_WRITE = DMI_ACCESS_READ | DMI_ACCESS_WRITE

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 36

 };

 unsigned char* get_dmi_ptr() const;

 sc_dt::uint64 get_start_address() const;

 sc_dt::uint64 get_end_address() const;

 sc_core::sc_time get_read_latency() const;

 sc_core::sc_time get_write_latency() const;

 dmi_access_e get_granted_access() const;

 bool is_none_allowed() const;

 bool is_read_allowed() const;

 bool is_write_allowed() const;

 bool is_read_write_allowed() const;

 void set_dmi_ptr(unsigned char* p);

 void set_start_address(sc_dt::uint64 addr);

 void set_end_address(sc_dt::uint64 addr);

 void set_read_latency(sc_core::sc_time t);

 void set_write_latency(sc_core::sc_time t);

 void set_granted_access(dmi_access_e t);

 void allow_none();

 void allow_read();

 void allow_write();

 void allow_read_write();

};

template <typename TRANS = tlm_generic_payload>

class tlm_fw_direct_mem_if : public virtual sc_core::sc_interface

{

public:

 virtual bool get_direct_mem_ptr(TRANS& trans, tlm_dmi& dmi_data) = 0;

};

class tlm_bw_direct_mem_if : public virtual sc_core::sc_interface

{

public:

 virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::uint64 end_range) = 0;

};

} // namespace tlm

4.2.3 get_direct_mem_ptr method

a) The get_direct_mem_ptr method shall only be called by an initiator or by an interconnect component,

not by a target.

b) The trans argument shall pass a reference to a DMI transaction object constructed by the initiator.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 37

c) The dmi_data argument shall be a reference to a DMI descriptor constructed by the initiator.

d) Any interconnect component should pass the get_direct_mem_ptr call along the forward path from

initiator to target. In other words, the implementation of get_direct_mem_ptr for the target socket of the

interconnect component may call the get_direct_mem_ptr method of an initiator socket.

e) Each get_direct_mem_ptr call shall follow exactly the same path from initiator to target as a

corresponding set of transport calls. In other words, each DMI request shall involve an interaction

between one initiator and one target, where those two components also serve the role of initiator and

target for a single transaction object passed through the transport interface. DMI cannot be used on a path

through a component that initiates a second transaction object, such as a non-trivial width converter. (If

DMI is an absolute requirement for simulation speed, the simulation model may need to be restructured

to permit it.)

f) Any interconnect components shall pass on the trans and dmi_data arguments in the forward direction,

the only permitted modification being to the value of the address attribute of the DMI transaction object

as described below. The address attribute of the transaction and the DMI descriptor may both be modified

on return from the get_direct_mem_ptr method, that is, when unwinding the function calls from target

back to initiator.

g) If the target is able to support DMI access to the given address, it shall set the members of the DMI

descriptor as described below and set the return value of the function to true. When a target grants DMI

access, the DMI descriptor is used to indicate the details of the access being granted.

h) If the target is not able to support DMI access to the given address, it need set only the address range and

type members of the DMI descriptor as described below and set the return value of the function to false.

When a target denies DMI access, the DMI descriptor is used to indicate the details of the access being

denied.

i) A target may grant or deny DMI access to any part or parts of its memory region, including non-

contiguous regions, subject to the rules given in this clause.

j) In the case that a target has granted DMI access and has set the return value of the function to true, an

interconnect component may deny DMI access by setting the return value of the function to false on

return from the get_direct_mem_ptr method. The reverse is not permitted; in the case that a target has

denied DMI access, an interconnect component shall not grant DMI access.

k) Given multiple calls to get_direct_mem_ptr, a target may grant DMI access to multiple initiators for the

same memory region at the same time. The application is responsible for synchronization and coherency.

l) Since each call to get_direct_mem_ptr can only return a single DMI pointer to a contiguous memory

region, each DMI request can only be fulfilled by a single target in practice. In other words, if a memory

region is scattered across multiple targets, then even though the address range is contiguous, each target

will likely require a separate DMI request.

m) If read or write access to a certain region of memory causes side effects in a target (that is, causes some

other change to the state of the target over and above the state of the memory), the target should not grant

DMI access of the given type to that memory region. But if, for example, only write access causes side

effects in a target, the target may still grant DMI read access to a given region.

n) The implementation of get_direct_mem_ptr may call invalidate_direct_mem_ptr.

o) The implementation of get_direct_mem_ptr shall not call wait, directly or indirectly.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 38

4.2.4 template argument and tlm_generic_payload class

a) The tlm_fw_direct_mem_if template shall be parameterized with the type of a DMI transaction class.

b) The transaction object shall contain attributes to indicate the address for which direct memory access is

requested and the type of access requested, namely read access or write access to the given address. In the

case of the base protocol, these shall be the command and address attributes of the generic payload.

c) The default value of the TRANS template argument shall be the class tlm_generic_payload.

d) For maximal interoperability, the DMI transaction class should be the tlm_generic_payload class. The

use of non-ignorable extensions or other transaction types will restrict interoperability.

e) The initiator shall be responsible for constructing and managing the DMI transaction object, and for

setting the appropriate attributes of the object before passing it as an argument to get_direct_mem_ptr.

f) The command attribute of the transaction object shall be set by the initiator to indicate the kind of DMI

access being requested, and shall not be modified by any interconnect component or target. For the base

protocol, the permitted values are TLM_READ_COMMAND for read access, and

TLM_WRITE_COMMAND for write access.

g) For the base protocol, the command attribute is forbidden from having the value

TLM_IGNORE_COMMAND. However, this value may be used by other protocols.

h) The address attribute of the transaction object shall be set by the initiator to indicate the address for which

direct memory access is being requested.

i) An interconnect component passing the DMI transaction object along the forward path should decode and

where necessary modify the address attribute of the transaction exactly as it would for the corresponding

transport interface of the same socket. For example, an interconnect component may need to mask the

address (reducing the number of significant bits) according to the address width of the target and its

location in the system memory map.

j) An interconnect component need not pass on the get_direct_mem_ptr call in the event that it detects an

addressing error.

k) In the case of the base protocol, the initiator is not obliged to set any other attributes of the generic

payload aside from command and address, and the target and any interconnect components may ignore

all other attributes. In particular, the response status attribute and the DMI allowed attribute may be

ignored. The DMI allowed attribute is only intended for use with the transport interfaces.

l) The initiator may re-use a transaction object from one DMI call to the next and across calls to DMI, the

transport interfaces, and the debug transport interface.

m) If an application needs to add further attributes to a DMI transaction object for use by the target when

determining the kind of DMI access being requested, the recommended approach is to add extensions to

the generic payload rather than substituting an unrelated transaction class. For example, the DMI

transaction might include a CPU ID to allow the target to service DMI requests differently depending on

the kind of CPU making the request. In the case that such extensions are non-ignorable, this will require

the definition of a new protocol traits class.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 39

4.2.5 tlm_dmi class

a) A DMI descriptor is an object of class tlm_dmi. DMI descriptors shall be constructed by initiators, but

their members may be set by interconnect components or targets.

b) A DMI descriptor shall have the following attributes: the DMI pointer attribute, the granted access type

attribute, the start address attribute, the end address attribute, the read latency attribute, and the write

latency attribute. The default values of these attributes shall be as follows: DMI pointer attribute = 0,

access type = DMI_ACCESS_NONE, start address = 0, end address = the maximum value of type

sc_dt::uint64, read latency = SC_ZERO_TIME, and write latency = SC_ZERO_TIME.

c) Method init shall initialize the members of the DMI descriptor to their default values.

d) A DMI descriptor shall be in its default state whenever it is passed as an argument to

get_direct_mem_ptr by the initiator. If DMI descriptor objects are pooled, the initiator shall reset the

DMI descriptor to its default state before passing it as an argument to get_direct_mem_ptr. Method init

may be called for this purpose.

e) Since an interconnect component is not permitted to modify the DMI descriptor as it is passed on towards

the target, the DMI descriptor shall be in its initial state when it is received by the target.

f) The method set_dmi_ptr shall set the DMI pointer attribute to the value passed as an argument. The

method get_dmi_ptr shall return the current value of the DMI pointer attribute

g) The DMI pointer attribute shall be set by the target to point to the storage location corresponding to the

value of the start address attribute. This shall be less than or equal to the address requested in the call to

get_direct_mem_ptr. The initial value shall be 0.

h) The storage in the DMI region is represented with type unsigned char*. The storage shall have the same

organization as the data array of the generic payload. If a target is unable to return a pointer to a memory

region with that organization, the target is unable to support DMI and get_direct_mem_ptr should return

the value false. For a full description of how memory organization and endianness are handled in TLM-

2.0, see 7.17 Endianness

i) An interconnect component is permitted to modify the DMI pointer attribute on the return path from the

get_direct_mem_ptr function call in order to restrict the region to which DMI access is being granted.

j) The method set_granted_access shall set the granted access type attribute to the value passed as an

argument. The method get_granted_access shall return the current value of the granted access type

attribute. The initial value shall be DMI_ACCESS_NONE.

k) The methods allow_none, allow_read, allow_write and allow_read_write shall set the granted access

type attribute to the value DMI_ACCESS_NONE, DMI_ACCESS_READ, DMI_ACCESS_WRITE or

DMI_ACCESS_READ_WRITE respectively.

l) The method is_none_allowed shall return true if and only if the granted access type attribute has the

value DMI_ACCESS_NONE. The method is_read_allowed shall return true if and only if the granted

access type attribute has the value DMI_ACCESS_READ or DMI_ACCESS_READ_WRITE. The

method is_write_allowed shall return true if and only if the granted access type attribute has the value

DMI_ACCESS_WRITE or DMI_ACCESS_READ_WRITE. The method is_read_write_allowed shall

return true if and only if the granted access type attribute has the value DMI_ACCESS_READ_WRITE.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 40

m) The target shall set the granted access type attribute to the type of access being granted or being denied.

A target is permitted to respond to a request for read access by granting (or denying) read or read/write

access, and to a request for write access by granting (or denying) write or read/write access. An

interconnect component is permitted to restrict the granted access type by overwriting a value of

DMI_ACCESS_READ_WRITE with DMI_ACCESS_READ or DMI_ACCESS_WRITE on the return

path from the get_direct_mem_ptr function call.

n) A target wishing to deny read and write access to the DMI region should set the granted access type to

DMI_ACCESS_READ_WRITE, not to DMI_ACCESS_NONE.

Example

bool get_direct_mem_ptr(TRANS& trans, tlm::tlm_dmi& dmi_data)

{

 // Deny DMI access to entire memory region

 dmi_data.allow_read_write();

 dmi_data.set_start_address(0x0);

 dmi_data.set_end_address((sc_dt::uint64)-1);

 return false;

}

o) The target should set the granted access type to DMI_ACCESS_NONE to indicate that it is not granting

(or denying) read, write, or read/write access to the initiator, but is granting (or denying) some other kind

of access as requested by an extension to the DMI transaction object. This value should only be used in

cases where an extension to the DMI transaction object makes the pre-defined access types read, write

and read/write unnecessary or meaningless. This value should not be used in the case of the base

protocol.

p) The initiator is responsible for using only those modes of DMI access which have been granted by the

target (and possibly modified by the interconnect) using the granted access type attribute (or in cases

other than the base protocol, granted using extensions to the generic payload or using other DMI

transaction types).

q) The methods set_start_address and set_end_address shall set the start and end address attributes,

respectively, to the values passed as arguments. The methods get_start_address and get_end_address

shall return the current values of the start and end address attributes, respectively.

r) The start and end address attributes shall be set by the target (or modified by the interconnect) to point to

the addresses of the first and the last bytes in the DMI region. The DMI region is either being granted or

being denied, as determined by the value returned from the get_direct_mem_ptr method (true or false).

A target wishing to deny access to its entire memory region may set the start address to 0 and the end

address to the maximum value of type sc_dt::uint64.

s) A target can only grant or deny a single contiguous memory region for each get_direct_mem_ptr call. A

target can set the DMI region to a single address by having the start and end address attributes be equal,

or can set the DMI region to be arbitrarily large.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 41

t) Having been granted DMI access of a given type to a given region, an initiator may perform access of the

given type anywhere in that region until it is invalidated. In other words, access is not restricted to the

address given in the DMI request.

u) Any interconnect components that pass on the get_direct_mem_ptr call are obliged to transform the

start and end address attributes as they do the address argument. Any transformations on the addresses in

the DMI descriptor shall occur as the descriptor is passed along the return path from the

get_direct_mem_ptr function call. For example, the target may set the start address attribute to a relative

address within the memory map known to that target, in which case the interconnect component is

obliged to transform the relative address back to an absolute address in the system memory map. The

initial values shall be 0 and the maximum value of type sc_dt::uint64, respectively.

v) An interconnect component is permitted to modify the start and end address attributes in order to restrict

the region to which DMI access is being granted, or expand the range to which DMI access is being

denied.

w) If get_direct_mem_ptr returns the value true, the DMI region indicated by the start and end address

attributes is a region for which DMI access is allowed. On the other hand, if get_direct_mem_ptr return

the value false, it is a region for which DMI access is disallowed.

x) A target or interconnect component receiving two or more calls to get_direct_mem_ptr may return two

or more overlapping allowed DMI regions or two or more overlapping disallowed DMI regions.

y) A target or interconnect component shall not return overlapping DMI regions where one region is

allowed and the other is disallowed for the same access type, for example both read or read/write or both

write or read/write, without making an intervening call to invalidate_direct_mem_ptr to invalidate the

first region.

z) In other words, the definition of the DMI regions shall not be dependent upon the order in which they

were created unless the first region is invalidated by an intervening call to invalidate_direct_mem_ptr.

Specifically, the creation of a disallowed DMI region shall not be permitted to punch a hole in an existing

allowed DMI region for the same access type, or vice versa.

aa) A target may disallow DMI access to the entire address space (start address attribute = 0, end address

attribute = maximum value), perhaps because the target does not support DMI access at all, in which case

an interconnect component should clip this disallowed region down to the part of the memory map

occupied by the target. Otherwise, if an interconnect component fails to clip the address range, then an

initiator would be misled into thinking that DMI was disallowed across the entire system address space.

bb) The methods set_read_latency and set_write_latency shall set the read and write latency attributes,

respectively, to the values passed as arguments. The methods get_read_latency and get_write_latency

shall return the current values of the read and write latency attributes, respectively.

cc) The read and write latency attributes shall be set to the average latency per byte for read and write

memory transactions, respectively. In other words, the initiator performing the direct memory operation

shall calculate the actual latency by multiplying the read or write latency from the DMI descriptor by the

number of bytes that would have been transferred by the equivalent transport transaction. The initial

values shall be SC_ZERO_TIME. Both interconnect components and the target may increase the value of

either latency such that the latency accumulates as the DMI descriptor is passed back from target to

initiator on return from the get_direct_mem_ptr method. One or both latencies will be valid, depending

on the value of the granted access type attribute.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 42

dd) The initiator is responsible for respecting the latencies whenever it accesses memory using the direct

memory pointer. If the initiator chooses to ignore the latencies, this may result in timing inaccuracies.

4.2.6 invalidate_direct_mem_ptr method

a) The invalidate_direct_mem_ptr method shall only be called by a target or an interconnect component.

b) A target is obliged to call invalidate_direct_mem_ptr before any change that would modify the validity

or the access type of any existing DMI region. For example, before restricting the address range of an

existing DMI region, before changing the access type from read/write to read, or before re-mapping the

address space.

c) The start_range and end_range arguments shall be the first and last addresses of the address range for

which DMI access is to be invalidated.

d) An initiator receiving an incoming call to invalidate_direct_mem_ptr shall immediately invalidate and

discard any DMI region (previously received from a call to get_direct_mem_ptr) that overlaps with the

given address range.

e) In the case of a partial overlap, that is, only part of an existing DMI region is invalidated, an initiator may

adjust the boundaries of the existing region or may invalidate the entire region.

f) Each DMI region shall remain valid until it is explicitly invalidated by a target using a call to

invalidate_direct_mem_ptr. Each initiator may maintain a table of valid DMI regions, and continue to

use each region until it is invalidated.

g) Any interconnect components are obliged to pass on the invalidate_direct_mem_ptr call along the

backward path from target to initiator, decoding and where necessary modifying the address arguments as

they would for the corresponding transport interface. Because the transport interface transforms the

address on the forward path and DMI on the backward path, the transport and DMI transformations

should be the inverse of one another.

h) Given a single invalidate_direct_mem_ptr call from a target, an interconnect component may make

multiple invalidate_direct_mem_ptr calls to initiators. Since there may be multiple initiators each

getting direct memory pointers to the same target, a safe implementation is for an interconnect

component to call invalidate_direct_mem_ptr for every initiator.

i) An interconnect component can invalidate all direct memory pointers in an initiator by setting

start_range to 0 and end_range to the maximum value of the type sc_dt::uint64.

j) The implementation of any TLM-2.0 core interface method may call invalidate_direct_mem_ptr.

k) The implementation of invalidate_direct_mem_ptr shall not call get_direct_mem_ptr, directly or

indirectly.

l) The implementation of invalidate_direct_mem_ptr shall not call wait, directly or indirectly.

4.2.7 DMI versus transport

a) By definition, the direct memory interface provides a direct interface between initiator and target that

bypasses any interconnect components. The transport interfaces, on the other hand, cannot bypass

interconnect components.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 43

b) Care must be taken to ensure correct behavior when an interconnect component retains state or has side

effects, such as buffered interconnects or interconnects modeling cache memory. The transport interfaces

may access and update the state of the interconnect component, whereas the direct memory interface will

bypass the interconnect component. The safest alternative is for such interconnect components always to

deny DMI access.

c) It is possible for an initiator to switch back and forth between calling the transport interfaces and using a

direct memory pointer. It is also possible that one initiator may use DMI while another initiator is using

the transport interfaces. Care must be taken to ensure correct behavior, particularly considering that

transport calls may carry a timing annotation. This is the responsibility of the application. For example, a

given target could support DMI and transport simultaneously, or could invalidate every DMI pointer

whenever transport is called.

4.2.8 DMI and temporal decoupling

a) A DMI region can only be invalidated by means of a target or interconnect component making a call to

invalidate_direct_mem_ptr.

b) An initiator is responsible for checking that a DMI region is still valid before using the associated DMI

pointer, subject to the following considerations.

c) The co-routine semantics of SystemC guarantee that once an initiator has started running, no other

SystemC process will be able to run until the initiator yields. In particular, no other SystemC process

would be able to invalidate a DMI pointer (although the current process might). As a consequence, a

temporally decoupled initiator does not necessarily need to check repeatedly that a given DMI region is

still valid each time it uses the associated DMI pointer.

d) It is possible that an interface method call made from an initiator may cause another component to call

invalidate_direct_mem_ptr, thus invalidating a DMI region being used by that initiator. This could be

true of a temporally decoupled initiator that runs without yielding.

e) While an initiator is running without interacting with any other components and without yielding, any

valid DMI region will remain valid.

f) It is possible that after a temporally decoupled initiator using DMI has yielded, another temporally

decoupled initiator may cause that same DMI region to be invalidated within the current time quantum.

This reflects the fundamental inaccuracy intrinsic to temporal decoupling in general, but does not

represent a violation of the rules given in this clause.

4.2.9 Optimization using a DMI hint

a) The DMI hint, otherwise known as the DMI allowed attribute, is a mechanism to optimize simulation

speed by avoiding the need to repeatedly poll for DMI access. Instead of calling get_direct_mem_ptr to

check for the availability of a DMI pointer, an initiator can check the DMI allowed attribute of a normal

transaction passed through the transport interface.

b) The generic payload provides a DMI allowed attribute. User-defined transactions could implement a

similar mechanism, in which case the target should set the value of the DMI allowed attribute

appropriately.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 44

c) Use of the DMI allowed attribute is optional. An initiator is free to ignore the DMI allowed attribute of

the generic payload.

d) For an initiator wishing to take advantage of the DMI allowed attribute, the recommended sequence of

actions is as follows:

i. The initiator should check the address against its cache of valid DMI regions

ii. If there is no existing DMI pointer, the initiator should perform a normal transaction through the

transport interface

iii. Following that, the initiator should check the DMI allowed attribute of the transaction

iv. If the attribute indicates DMI is allowed, the initiator should call get_direct_mem_ptr

v. The initiator should modify its cache of valid DMI regions according to the values returned from the

call.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 45

4.3 Debug transport interface

4.3.1 Introduction

The debug transport interface provides a means to read and write to storage in a target, over the same forward

path from initiator to target as is used by the transport interface, but without any of the delays, waits, event

notifications or side effects associated with a regular transaction. In other words, the debug transport interface

is non-intrusive. Because the debug transport interface follows the same path as the transport interface, the

implementation of the debug transport interface can perform the same address translation as for regular

transactions.

For example, the debug transport interface could permit a software debugger attached to an ISS to peek or

poke an address in the memory of the simulated system from the point of view of the simulated CPU. The

debug transport interface could also allow an initiator to take a snapshot of system memory contents during

simulation for diagnostic purposes, or to initialize some area of system memory at the end of elaboration.

The default debug transaction type is tlm_generic_payload, where only the command, address, data length

and data pointer attributes of the transaction object are used. Debug transactions follow the same approach to

extension as the transport interface, that is, a debug transaction may contain ignorable extensions, but any

non-ignorable or mandatory extension requires the definition of a new protocol traits class (see 7.2.2 Define a

new protocol traits class containing a typedef for tlm_generic_payload).

4.3.2 Class definition

namespace tlm {

template <typename TRANS = tlm_generic_payload>

class tlm_transport_dbg_if : public virtual sc_core::sc_interface

{

public:

 virtual unsigned int transport_dbg(TRANS& trans) = 0;

};

} // namespace tlm

4.3.3 TRANS template argument and tlm_generic_payload class

a) The tlm_transport_dbg_if template shall be parameterized with the type of a debug transaction class.

b) The debug transaction class shall contain attributes to indicate to the target the command, address, data

length and date pointer for the debug access. In the case of the base protocol, these shall be the

corresponding attributes of the generic payload.

c) The default value of the TRANS template argument shall be the class tlm_generic_payload.

d) For maximal interoperability, the debug transaction class should be tlm_generic_payload. The use of

non-ignorable extensions or other transaction types will restrict interoperability.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 46

e) If an application needs to add further attributes to a debug transaction, the recommended approach is to

add extensions to the generic payload rather than substituting an unrelated transaction class. In the case

that such extensions are non-ignorable or mandatory, this will require the definition of a new protocol

traits class.

4.3.4 Rules

a) Calls to transport_dbg shall follow the same forward path as the transport interface used for normal

transactions.

b) The trans argument shall pass a reference to a debug transaction object.

c) The initiator shall be responsible for constructing and managing the debug transaction object, and for

setting the appropriate attributes of the object before passing it as an argument to transport_dbg.

d) The command attribute of the transaction object shall be set by the initiator to indicate the kind of debug

access being requested, and shall not be modified by any interconnect component or target. For the base

protocol, the permitted values are TLM_READ_COMMAND for read access to the target,

TLM_WRITE_COMMAND for write access to the target, and TLM_IGNORE_COMMAND.

e) On receipt of a transaction with the command attribute equal to TLM_IGNORE_COMMAND, the target

should not execute a read or a write, but may use the value of any attribute in the generic payload,

including any extensions, in executing an extended debug transaction.

f) As is the case for the transport interface, the use of any non-ignorable or mandatory generic payload

extension with the debug transport interface requires the definition of a new protocol traits class.

g) The address attribute shall be set by the initiator to the first address in the region to be read or written.

h) An interconnect component passing the debug transaction object along the forward path should decode

and where necessary modify the address attribute of the transaction object exactly as it would for the

corresponding transport interface of the same socket. For example, an interconnect component may need

to mask the address (reducing the number of significant bits) according to the address width of the target

and its location in the system memory map.

i) An interconnect component need not pass on the transport_dbg call in the event that it detects an

addressing error.

j) The address attribute may be modified several times if a debug payload is forwarded through several

interconnect components. When the debug payload is returned to the initiator, the original value of the

address attribute may have been overwritten.

k) The data length attribute shall be set by the initiator to the number of bytes to be read or written and shall

not be modified by any interconnect component or target. The data length attribute may be 0, in which

case the target shall not read or write any bytes, and the data pointer attribute may be null.

l) The data pointer attribute shall be set by the initiator to the address of an array from which values are to

be copied to the target (for a write), or to which values are to be copied from the target (for a read), and

shall not be modified by any interconnect component or target. This array shall be allocated by the

initiator, and shall not be deleted before the return from transport_dbg. The size of the array shall be at

least equal to the value of the data length attribute. If the data length attribute is 0, the data pointer

attribute may be the null pointer and the array need not be allocated.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 47

m) The implementation of transport_dbg in the target shall read or write the given number of bytes using

the given address (after address translation through the interconnect), if it is able. In the case of a write

command, the target shall not modify the contents of the data array.

n) The data array shall have the same organization as the data array of the generic payload when used with

the transport interface. The implementation of transport_dbg shall be responsible for converting

between the organization of the local data storage within the target and the generic payload organization.

o) In the case of the base protocol, the initiator is not obliged to set any other attributes of the generic

payload aside from command, address, data length and data pointer, and the target and any interconnect

components may ignore all other attributes. In particular, the response status attribute may be ignored.

p) The initiator may re-use a transaction object from one call to the next and across calls to the debug

transport interface, the transport interfaces, and DMI.

q) transport_dbg shall return a count of the number of bytes actually read or written, which may be less

than the value of the data length attribute. If the target is not able to perform the operation, it shall return

a value of 0.

r) Directly or indirectly, transport_dbg shall not call wait, and should not cause any state changes in any

interconnect component or in the target aside from the immediate effect of executing a debug write

command.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 48

5 Global quantum

5.1 Introduction

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount of time

known as the time quantum, and is associated with the loosely-timed coding style. Temporal decoupling

permits a significant simulation speed improvement by reducing the number of context switches and events.

The use of a time quantum is not strictly necessary in the presence of explicit synchronization between

temporally decoupled processes, in which case processes may run arbitrarily far ahead to the point when the

next synchronization point is reached. However, any processes that do require a time quantum should use the

global quantum.

When using temporal decoupling, the delays annotated to the b_transport and nb_transport methods are to

be interpreted as local time offsets defined relative to the current simulation time as returned by

sc_time_stamp(), also known as the quantum boundary. The global quantum is the default time interval

between successive quantum boundaries. The value of the global time quantum is maintained by the singleton

class tlm_global_quantum. It is recommended that each process should use the global time quantum, but a

process is permitted to calculate its own local time quantum.

For a general description of temporal decoupling, see 3.3.2 Loosely-timed coding style and temporal

decoupling

For a description of timing annotation, see 4.1.3 Timing annotation with the transport interfaces

The utility class tlm_quantumkeeper provides a set of methods for managing and interacting with the time

quantum. For a description of how to use a quantum keeper, see 9.2 Quantum keeper

5.2 Header file

The class definition for the global quantum shall be in the header file tlm.h

5.3 Class definition

namespace tlm {

class tlm_global_quantum

{

public:

 static tlm_global_quantum& instance();

 virtual ~tlm_global_quantum();

 void set(const sc_core::sc_time&);

 const sc_core::sc_time& get() const;

 sc_core::sc_time compute_local_quantum();

protected:

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 49

 tlm_global_quantum();

};

} // namespace tlm

5.4 Class tlm_global_quantum

a) There is a unique global quantum maintained by the class tlm_global_quantum. This should be

considered the default time quantum. The intent is that all temporally decoupled initiators should

synchronize on integer multiples of the global quantum, or more frequently where required.

b) It is possible for each initiator to use a different time quantum, but more typical for all initiators to use the

global quantum. An initiator that only requires infrequent synchronization could conceivably have a

longer time quantum than the rest, but it is usually the shortest time quantum that has the biggest negative

impact on simulation speed.

c) The method instance shall return a reference to the singleton global quantum object.

d) The method set shall set the value of the global quantum to the value passed as an argument.

e) The method get shall return the value of the global quantum.

f) The method compute_local_quantum shall calculate and return the value of the local quantum based on

the unique global quantum. The local quantum shall be calculated by subtracting the value of

sc_time_stamp from the next larger integer multiple of the global quantum. The local quantum shall

equal the global quantum in the case where compute_local_quantum is called at a simulation time that

is an integer multiple of the global quantum. Otherwise, the local quantum shall be less than the global

quantum.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 50

6 Combined interfaces and sockets

6.1 Combined interfaces

6.1.1 Introduction

The combined forward and backward transport interfaces group the core TLM-2.0 interfaces for use by the

initiator and target sockets. Note that the combined interfaces include the transport, DMI and debug transport

interfaces, but do not include any TLM-1 core interfaces. The forward interface provides method calls on the

forward path from initiator socket to target socket, and the backwards interface on the backward path from

target socket to initiator socket. Neither the blocking transport interface nor the debug transport interface

require a backward calling path.

It would be technically possible to define new socket class templates unrelated to the standard initiator and

target sockets and then to instantiate those class templates using the combined interfaces as template

arguments, but for the sake of interoperability this is not recommended. On the other hand, deriving new

socket classes from the standard sockets is recommended for convenience.

The combined interface templates are parameterized with a protocol traits class that defines the types used by

the forward and backward interfaces, namely the payload type and the phase type. A protocol traits class is

associated with a specific protocol. The default protocol type is the class tlm_base_protocol_types. See 8.2

Base protocol.

6.1.2 Class definition

namespace tlm {

// The default protocol traits class:

struct tlm_base_protocol_types

{

 typedef tlm_generic_payload tlm_payload_type;

 typedef tlm_phase tlm_phase_type;

};

// The combined forward interface:

template< typename TYPES = tlm_base_protocol_types >

class tlm_fw_transport_if

 : public virtual tlm_fw_nonblocking_transport_if< typename TYPES::tlm_payload_type ,

 typename TYPES::tlm_phase_type>

 , public virtual tlm_blocking_transport_if< typename TYPES::tlm_payload_type>

 , public virtual tlm_fw_direct_mem_if< typename TYPES::tlm_payload_type>

 , public virtual tlm_transport_dbg_if< typename TYPES::tlm_payload_type>

{};

// The combined backward interface:

template < typename TYPES = tlm_base_protocol_types >

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 51

class tlm_bw_transport_if

 : public virtual tlm_bw_nonblocking_transport_if<typename TYPES::tlm_payload_type ,

 typename TYPES::tlm_phase_type >

 , public virtual tlm_bw_direct_mem_if

{};

} // namespace tlm

6.2 Initiator and target sockets

6.2.1 Introduction

A socket combines a port with an export. An initiator socket has a port for the forward path and an export for

the backward path, whilst a target socket has an export for the forward path and a port for the backward path.

The sockets also overload the SystemC port binding operators to bind both the port and export to the export

and port in the opposing socket. When binding sockets hierarchically, parent to child or child to parent, it is

important to carefully consider the binding order.

Both the initiator and target sockets are coded using a C++ inheritance hierarchy. Only the most derived

classes tlm_initiator_socket and tlm_target_socket are typically used directly by applications. These two

sockets are parameterized with a protocol traits class that defines the types used by the forward and backward

interfaces. Sockets can only be bound together if they have the identical protocol type. The default protocol

type is the class tlm_base_protocol_types. If an application defines a new protocol it should instantiate

combined interface templates with a new protocol traits class, whether or not the new protocol is based on the

generic payload.

The initiator and target sockets provide the following benefits:

a) They group the transport, direct memory and debug transport interfaces for both the forward and

backward paths together into a single object.

b) They provide methods to bind port and export of both the forward and backward paths in a single call.

c) They offer strong type checking when binding sockets parameterized with incompatible protocol types.

d) They include a bus width parameter that may be used to interpret the transaction.

The socket classes tlm_initiator_socket and tlm_target_socket belong to the interoperability layer of the

TLM-2.0 standard. In addition, there is a family of derived socket classes provided in the utilities namespace,

collectively known as convenience sockets.

6.2.2 Class definition

namespace tlm {

// Abstract base class for initiator sockets

template <

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 52

 unsigned int BUSWIDTH = 32,

 typename FW_IF = tlm_fw_transport_if<>,

 typename BW_IF = tlm_bw_transport_if<>

>

class tlm_base_initiator_socket_b

{

public:

 virtual ~tlm_base_initiator_socket_b() {}

 virtual sc_core::sc_port_b<FW_IF> & get_base_port() = 0;

 virtual BW_IF & get_base_interface() = 0;

 virtual sc_core::sc_export<BW_IF> & get_base_export() = 0;

};

// Abstract base class for target sockets

template <

 unsigned int BUSWIDTH = 32,

 typename FW_IF = tlm_fw_transport_if<>,

 typename BW_IF = tlm_bw_transport_if<>

>

class tlm_base_target_socket_b

{

public:

 virtual ~tlm_base_target_socket_b();

 virtual sc_core::sc_port_b<BW_IF> & get_base_port() = 0;

 virtual sc_core::sc_export<FW_IF> & get_base_export() = 0;

 virtual FW_IF & get_base_interface() = 0;

};

// Base class for initiator sockets, providing binding methods

template <

 unsigned int BUSWIDTH = 32,

 typename FW_IF = tlm_fw_transport_if<>,

 typename BW_IF = tlm_bw_transport_if<>,

 int N = 1,

 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND

>

class tlm_base_initiator_socket : public tlm_base_initiator_socket_b<BUSWIDTH, FW_IF, BW_IF>,

 public sc_core::sc_port<FW_IF, N, POL>

{

public:

 typedef FW_IF fw_interface_type;

 typedef BW_IF bw_interface_type;

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 53

 typedef sc_core::sc_port<fw_interface_type, N, POL> port_type;

 typedef sc_core::sc_export<bw_interface_type> export_type;

 typedef tlm_base_target_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

 base_target_socket_type;

 typedef tlm_base_initiator_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

 base_type;

 tlm_base_initiator_socket();

 explicit tlm_base_initiator_socket(const char* name);

 virtual const char* kind() const;

 unsigned int get_bus_width() const;

 void bind(base_target_socket_type& s);

 void operator() (base_target_socket_type& s);

 void bind(base_type& s);

 void operator() (base_type& s);

 void bind(bw_interface_type& ifs);

 void operator() (bw_interface_type& s);

 // Implementation of pure virtual functions of base class

 virtual sc_core::sc_port_b<FW_IF> & get_base_port() { return *this; }

 virtual BW_IF & get_base_interface() { return m_export; }

 virtual sc_core::sc_export<BW_IF> & get_base_export() { return m_export; }

protected:

 export_type m_export;

};

// Base class for target sockets, providing binding methods

template <

 unsigned int BUSWIDTH = 32,

 typename FW_IF = tlm_fw_transport_if<>,

 typename BW_IF = tlm_bw_transport_if<>,

 int N = 1,

 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND

>

class tlm_base_target_socket : public tlm_base_target_socket_b<BUSWIDTH, FW_IF, BW_IF>,

 public sc_core::sc_export<FW_IF>

{

public:

 typedef FW_IF fw_interface_type;

 typedef BW_IF bw_interface_type;

 typedef sc_core::sc_port<bw_interface_type, N, POL> port_type;

 typedef sc_core::sc_export<fw_interface_type> export_type;

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 54

 typedef tlm_base_initiator_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

 base_initiator_socket_type;

 typedef tlm_base_target_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

 base_type;

 tlm_base_target_socket();

 explicit tlm_base_target_socket(const char* name);

 virtual const char* kind() const;

 unsigned int get_bus_width() const;

 void bind(base_initiator_socket_type& s);

 void operator() (base_initiator_socket_type& s);

 void bind(base_type& s);

 void operator() (base_type& s);

 void bind(fw_interface_type& ifs);

 void operator() (fw_interface_type& s);

 int size() const;

 bw_interface_type* operator-> ();

 bw_interface_type* operator[] (int i);

 // Implementation of pure virtual functions of base class

 virtual sc_core::sc_port_b<BW_IF> & get_base_port() { return m_port; }

 virtual FW_IF & get_base_interface() { return *this; }

 virtual sc_core::sc_export<FW_IF> & get_base_export() { return *this; }

protected:

 port_type m_port;

};

// Principal initiator socket, parameterized with protocol traits class

template <

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm_base_protocol_types,

 int N = 1,

 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND

>

class tlm_initiator_socket : public tlm_base_initiator_socket <

 BUSWIDTH, tlm_fw_transport_if<TYPES>, tlm_bw_transport_if<TYPES>, N, POL>

{

public:

 tlm_initiator_socket();

 explicit tlm_initiator_socket(const char* name);

 virtual const char* kind() const;

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 55

};

// Principal target socket, parameterized with protocol traits class

template <

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm_base_protocol_types,

 int N = 1,

 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND

>

class tlm_target_socket : public tlm_base_target_socket <

 BUSWIDTH, tlm_fw_transport_if<TYPES>, tlm_bw_transport_if<TYPES>, N, POL>

{

public:

 tlm_target_socket();

 explicit tlm_target_socket(const char* name);

 virtual const char* kind() const;

};

} // namespace tlm

6.2.3 Classes tlm_base_initiator_socket_b and tlm_base_target_socket_b

a) The abstract base classes tlm_base_initiator_socket_b and tlm_base_target_socket_b declare pure

virtual functions that should be overridden in any derived class to return the port, export and interface

objects associated with the socket.

b) These sockets are not typically used directly by applications.

6.2.4 Classes tlm_base_initiator_socket and tlm_base_target_socket

a) For class tlm_base_initiator_socket, the constructor with a name argument shall pass the character

string argument to the constructor belonging to the base class sc_port to set the string name of the

instance in the module hierarchy, and shall also pass the same character string to set the string name of

the corresponding sc_export on the backward path, adding the suffix “_export” and calling

sc_gen_unique_name to avoid name clashes. For example, the call tlm_initiator_socket(“foo”) would

set the port name to “foo” and the export name to “foo_export”. In the case of the default constructor,

the names shall be created by calling sc_gen_unique_name("tlm_base_initiator_socket") for the port,

and sc_gen_unique_name("tlm_base_initiator_socket_export") for the export.

b) For class tlm_base_target_socket, the constructor with a name argument shall pass the character string

argument to the constructor belonging to the base class sc_export to set the string name of the instance in

the module hierarchy, and shall also pass the same character string to set the string name of the

corresponding sc_port on the backward path, adding the suffix “_port” and calling

sc_gen_unique_name to avoid name clashes. For example, the call tlm_target_socket(“foo”) would set

the export name to “foo” and the port name to “foo_port”. In the case of the default constructor, the

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 56

names shall be created by calling sc_gen_unique_name("tlm_base_target_socket") for the export, and

sc_gen_unique_name("tlm_base_target_socket_port") for the port.

c) The method kind shall return the class name as a C string, that is, ―tlm_base_initiator_socket‖ or

―tlm_base_target_socket‖ respectively.

d) The method get_bus_width shall return the value of the BUSWIDTH template argument.

e) Template argument BUSWIDTH shall determine the word length for each individual data word

transferred through the socket, expressed as the number of bits in each word. For a burst transfer,

BUSWIDTH shall determine the number of bits in each beat of the burst. The precise interpretation of

this attribute shall depend on the transaction type. For the meaning of BUSWIDTH with the generic

payload, see 7.11 Data length attribute.

f) When binding socket-to-socket, the two sockets shall have identical values for the BUSWIDTH template

argument. Executable code in the initiator or target may get and act on the BUSWIDTH.

g) Each of the methods bind and operator() that take a socket as an argument shall bind the socket instance

to which the method belongs to the socket instance passed as an argument to the method.

h) Each of the methods bind and operator() that take an interface as an argument shall bind the export of

the socket instance to which the method belongs to the channel instance passed as an argument to the

method. (A channel is the SystemC term for a class that implements an interface.)

i) When binding initiator socket to target socket, the bind method and operator() shall each bind the port

of the initiator socket to the export of the target socket, and the port of the target socket to the export of

the initiator socket. This is for use when binding socket-to-socket at the same level in the hierarchy.

j) An initiator socket can be bound to a target socket by calling the bind method or operator() of either

socket, with precisely the same effect. In either case, the forward path lies in the direction from the

initiator socket to the target socket.

k) When binding initiator socket to initiator socket or target socket to target socket, the bind method and

operator() shall each bind the port of one socket to the port of the other socket, and the export of one

socket to the export of the other socket. This is for use in hierarchical binding, that is, when binding a

socket on a child module to a socket on a parent module, or a socket on a parent module to a socket on a

child module, passing transactions up or down the module hierarchy.

l) For hierarchical binding, it is necessary to bind sockets in the correct order. When binding initiator socket

to initiator socket, the socket of the child must be bound to the socket of the parent. When binding target

socket to target socket, the socket of the parent must be bound to the socket of the child. This rule is

consistent with the fact the tlm_base_initiator_socket is derived from sc_port, and

tlm_base_target_socket from sc_export. Port must be bound to port going up the hierarchy, port-to-

export across the top, and export-to-export going down the hierarchy.

m) In order for two sockets of classes tlm_base_initiator_socket and tlm_base_target_socket to be bound

together, they must share the same forward and backward interface types and bus widths

n) The method size of the target socket shall call method size of the port in the target socket (on the

backward path), and shall return the value returned by size of the port.

o) The method operator-> of the target socket shall call method operator-> of the port in the target socket

(on the backward path), and shall return the value returned by operator-> of the port.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 57

p) The method operator[] of the target socket shall call method operator[] of the port in the target socket

(on the backward path) with the same argument, and shall return the value returned by operator[] of the

port.

q) Class tlm_base_initiator_socket and class tlm_base_target_socket each act as multi-sockets, that is, a

single initiator socket may be bound to multiple target sockets, and a single target socket may be bound

to multiple initiator sockets. The two class templates have template parameters specifying the number of

bindings and the port binding policy, which are used within the class implementation to parameterize the

associated sc_port template instantiation.

r) If an object of class tlm_base_initiator_socket or tlm_base_target_socket is bound multiple times, then

the method operator[] can be used to address the corresponding object to which the socket is bound. The

index value is determined by the order in which the methods bind or operator() were called to bind the

sockets. However, any incoming interface method calls received by such a socket will be anonymous in

the sense that there is no mechanism provided to identify the caller. On the other hand, such a mechanism

is provided by the convenience sockets. See 9.1.4 Multi-sockets.

s) For example, consider a socket bound to two separate targets. The calls socket[0]->nb_transport_fw(...)

and socket[1]->nb_transport_fw() would address the two targets, but there is no way to identify the

caller of in incoming nb_transport_bw() method from one of those two targets.

t) The implementations of the virtual methods get_base_port and get_base_export shall return the port

and export objects of the socket, respectively. The implementation of the virtual method

get_base_interface shall return the export object in the case of the initiator port, or the socket object

itself in the case of the target socket.

6.2.5 Classes tlm_initiator_socket and tlm_target_socket

a) The socket tlm_initiator_socket and tlm_target_socket take a protocol traits class as a template

parameter. These sockets (or convenience sockets derived from them) should typically be used by an

application rather than the base sockets.

b) The constructors of the classes tlm_initiator_socket and tlm_target_socket shall call the corresponding

constructors of their respective base classes, passing the char* argument where it exists.

c) In order for two sockets of classes tlm_initiator_socket and tlm_target_socket to be bound together,

they must share the same protocol traits class (default tlm_base_protocol_types) and bus width. Strong

type checking between sockets can be achieved by defining a new protocol traits class for each distinct

protocol, whether or not that protocol is based on the generic payload.

d) The method kind shall return the class name as a C string, that is, ―tlm_initiator_socket‖ or

―tlm_target_socket‖ respectively.

Example

#include <systemc>

#include "tlm.h"

using namespace sc_core;

using namespace std;

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 58

struct Initiator: sc_module, tlm::tlm_bw_transport_if<> // Initiator implements the bw interface

{

 tlm::tlm_initiator_socket<32> init_socket; // Protocol types default to base protocol

 SC_CTOR(Initiator) : init_socket("init_socket") {

 SC_THREAD(thread);

 init_socket.bind(*this); // Initiator socket bound to the initiator itself

 }

 void thread() { // Process generates one dummy transaction

 tlm::tlm_generic_payload trans;

 sc_time delay = SC_ZERO_TIME;

 init_socket->b_transport(trans, delay);

 }

 virtual tlm::tlm_sync_enum nb_transport_bw(

 tlm::tlm_generic_payload& trans,

 tlm::tlm_phase& phase,

 sc_core::sc_time& t) {

 return tlm::TLM_COMPLETED; // Dummy implementation

 }

 virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::uint64 end_range)

 { } // Dummy implementation

};

struct Target: sc_module, tlm::tlm_fw_transport_if<> // Target implements the fw interface

{

 tlm::tlm_target_socket<32> targ_socket; // Protocol types default to base protocol

 SC_CTOR(Target) : targ_socket("targ_socket") {

 targ_socket.bind(*this); // Target socket bound to the target itself

 }

 virtual tlm::tlm_sync_enum nb_transport_fw(

 tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_core::sc_time& t) {

 return tlm::TLM_COMPLETED; // Dummy implementation

 }

 virtual void b_transport(tlm::tlm_generic_payload& trans, sc_time& delay)

 { } // Dummy implementation

 virtual bool get_direct_mem_ptr(tlm::tlm_generic_payload& trans, tlm::tlm_dmi& dmi_data)

 { return false; } // Dummy implementation

 virtual unsigned int transport_dbg(tlm::tlm_generic_payload& trans)

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 59

 { return 0; } // Dummy implementation

};

SC_MODULE(Top1) // Showing a simple non-hierarchical binding of initiator to target

{

 Initiator *init;

 Target *targ;

 SC_CTOR(Top1) {

 init = new Initiator("init");

 targ = new Target("targ");

 init->init_socket.bind(targ->targ_socket); // Bind initiator socket to target socket

 }

};

struct Parent_of_initiator: sc_module // Showing hierarchical socket binding

{

 tlm::tlm_initiator_socket<32> init_socket;

 Initiator* initiator;

 SC_CTOR(Parent_of_initiator) : init_socket("init_socket") {

 initiator = new Initiator("initiator");

 initiator->init_socket.bind(init_socket); // Bind initiator socket to parent initiator socket

 }

};

struct Parent_of_target: sc_module

{

 tlm::tlm_target_socket<32> targ_socket;

 Target* target;

 SC_CTOR(Parent_of_target) : targ_socket("targ_socket") {

 target = new Target("target");

 targ_socket.bind(target->targ_socket); // Bind parent target socket to target socket

 }

};

SC_MODULE(Top2)

{

 Parent_of_initiator *init;

 Parent_of_target *targ;

 SC_CTOR(Top2) {

 init = new Parent_of_initiator("init");

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 60

 targ = new Parent_of_target("targ");

 init->init_socket.bind(targ->targ_socket); // Bind initiator socket to target socket at top level

 }

};

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 61

7 Generic payload

7.1 Introduction

The generic payload is the class type offered by the TLM-2.0 standard for transaction objects passed through

the core interfaces. The generic payload is closely related to the base protocol, which itself defines further

rules to ensure interoperability when using the generic payload. See 8.2 Base protocol

The generic payload is intended to improve the interoperability of memory-mapped bus models, which it does

at two levels. Firstly, the generic payload provides an off-the-shelf general-purpose payload that guarantees

immediate interoperability when creating abstract models of memory-mapped buses where the precise details

of the bus protocol are unimportant, whilst at the same time providing an extension mechanism for ignorable

attributes. Secondly, the generic payload can be used as the basis for creating detailed models of specific bus

protocols, with the advantage of reducing the implementation cost and increasing simulation speed when there

is a need to bridge or adapt between different protocols, sometimes to the point where the bridge becomes

trivial to write.

The generic payload is specifically aimed at modeling memory-mapped buses. It includes some of the

attributes found in typical memory-mapped bus protocols such as command, address, data, byte enables,

single word transfers, burst transfers, streaming, and response status. The generic payload may also be used as

the basis for modeling protocols other than memory-mapped buses.

The generic payload does not include every attribute found in typical memory-mapped bus protocols, but it

does include an extension mechanism so that applications can add their own specialized attributes.

For specific protocols, whether bus-based or not, modeling and interoperability are the responsibility of the

protocol owners and are outside the scope of OSCI. It is up to the protocol owners or subject matter experts to

proliferate models or coding guidelines for their own particular protocol. However, the generic payload is still

applicable here, because it provides a common starting point for model creation, and in many cases will

reduce the cost of bridging between different protocols in a transaction-level model.

It is recommended that the generic payload be used with the initiator and target sockets, which provide a bus

width parameter used when interpreting the data array of the generic payload as well as forward and backward

paths and a mechanism to enforce strong type checking between different protocols whether or not they are

based on the generic payload.

The generic payload can be used with both the blocking and non-blocking transport interfaces. It can also be

used with the direct memory and debug transport interfaces, in which case only a restricted set of attributes is

used.

7.2 Extensions and interoperability

The goal of the generic payload is to enable interoperability between memory-mapped bus models, but all

buses are not created equal. Given two transaction-level models that use different protocols and that model

those protocols at a detailed level, then just as in a physical system, an adapter or bridge must be inserted

between those models to perform protocol conversion and allow them to communicate. On the other hand,

many transaction level models produced early in the design flow do not care about the specific details of any

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 62

particular protocol. For such models it is sufficient to copy a block of data starting at a given address, and for

those models the generic payload can be used directly to give excellent interoperability.

The generic payload extension mechanism permits any number of extensions of any type to be defined and

added to a transaction object. Each extension represents a new set of attributes, transported along with the

transaction object. Extensions can be created, added, written and read by initiators, interconnect components,

and targets alike. The extension mechanism itself does not impose any restrictions. Of course, undisciplined

use of this extension mechanism would compromise interoperability, so disciplined use is strongly

encouraged. But the flexibility is there where you need it!

The use of the extension mechanism represents a trade-off between increased coding convenience when

binding sockets, and decreased compile-time type checking. If the undisciplined use of generic payload

extensions were allowed, each application would be obliged to detect any incompatibility between extensions

by including explicit run-time checks in each interconnect component and target, and there would be no

mechanism to enforce the existence of a given extension. The TLM-2.0 standard prescribes specific coding

guidelines to avoid these pitfalls.

There are three, and only three, recommended alternatives for the transaction template argument TRANS of

the blocking and non-blocking transport interfaces and the template argument TYPES of the combined

interfaces:

a) Use the generic payload directly, with ignorable extensions

b) Define a new protocol traits class containing a typedef for tlm_generic_payload.

c) Define a new protocol traits class and a new transaction type

These three alternatives are defined below in order of decreasing interoperability.

It should be emphasized that although deriving a new class from the generic payload is possible, it is not the

recommended approach for interoperability

It should also be emphasized that these three options may be mixed in a single system model. In particular,

there is value in mixing the first two options, since the extension mechanism has been designed to permit

efficient interoperability.

7.2.1 Use the generic payload directly, with ignorable extensions

a) In this case, the transaction type is tlm_generic_payload, the phase type is tlm_phase, and the protocol

traits class for the combined interfaces is tlm_base_protocol_types. These are the default values for the

TRANS argument of the transport interfaces and TYPES argument of the combined interfaces,

respectively. Any model that uses the standard initiator and target sockets with the base protocol will be

interoperable with any other such model, provided that those models respect the semantics of the generic

payload and the base protocol. See 8.2 Base protocol

b) In this case, any generic payload extension or extended phase shall be ignorable. Ignorable means that

any component other than the component that added the extension is permitted to behave as if the

extension were absent. See 7.20.1.1 Ignorable extensions

c) If an extension is ignorable, then by definition compile-time checking to enforce support for that

extension in a target is not wanted, and indeed, the ignorable extension mechanism does not support

compile-time checking.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 63

d) The generic payload intrinsically supports minor variations in protocol. As a general principle, a target is

recommended to support every feature of the generic payload. But, for example, a particular component

may or may not support byte enables. A target that is unable to support a particular feature of the generic

payload is obliged to generate the standard error response. This should be thought of as being part of the

specification of the generic payload.

7.2.2 Define a new protocol traits class containing a typedef for tlm_generic_payload

a) In this case, the transaction type is tlm_generic_payload and the phase type tlm_phase, but the protocol

traits class used to specialize the socket is a new application-defined class, not the default

tlm_base_protocol_types. This ensures that the extended generic payload is treated as a distinct type,

and provides compile-time type checking when the initiator and target sockets are bound.

b) The new protocol type may set its own rules, and these rules may extend or contradict any of the rules of

the base protocol, including the generic payload memory management rules (see 7.5 Generic payload

memory management) and the rules for the modifiability of attributes (see 7.7 Default values and

modifiability of attributes). However, for the sake of consistency and interoperability it is recommended

to follow the rules and coding style of the base protocol as far as possible. See 8.2 Base protocol

c) The generic payload extension mechanism may be used for ignorable, non-ignorable or mandatory

extensions with no restrictions. The semantics of any extensions should be thoroughly documented with

the new protocol traits class.

d) Because the transaction type is tlm_generic_payload, the transaction can be transported through

interconnect components and targets that use the generic payload type, and can be cloned in its entirety,

including all extensions. This provides a good starting point for building interoperable components and

for creating adapters or bridges between different protocols, but the user should consider the semantics of

the extended generic payload very carefully.

e) It is usual to use one and the same protocol traits class along the entire length of the path followed by a

transaction from an initiator through zero or more interconnect components to a target. However, it may

be possible to model an adapter or bus bridge as an interconnect component that takes incoming

transactions of one protocol type and converts them to outgoing transactions of another protocol type. It

is also possible to create a transaction bridge, which acts as a target for incoming transactions and as an

initiator for outgoing transactions.

f) When passing a generic payload transaction between sockets specialized using different protocol traits

classes, the user is obliged to consider the semantics of each extension very carefully to ensure that the

transaction can be transported through components that are aware of the generic payload but not the

extensions. There is no general rule. Some extensions can be transported through components ignorant of

the extension without mishap, for example an attribute specifying the security level of the data. Other

extensions will require explicit adaption or might not be supportable at all, for example an attribute

specifying that the interconnect is to be locked.

7.2.3 Define a new protocol traits class and a new transaction type

a) In this case, the transaction type may be unrelated to the generic payload.

b) A new protocol traits class will need to be defined to parameterize the combined interfaces and the

sockets.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 64

c) This choice may be justified when the new transaction type is significantly different from the generic

payload or represents a very specific protocol.

d) If the intention is to use the generic payload for maximal interoperability, the recommended approach is

to use the generic payload as described in one of the previous two clauses rather than use it in the

definition of a new class.

7.3 Generic payload attributes and methods

The generic payload class contains a set of private attributes, and a set of public access functions to get and

set the values of those attributes. The exact implementation of those access functions is implementation-

defined.

The majority of the attributes are set by the initiator and shall not be modified by any interconnect component

or target. Only the address, DMI allowed, response status and extension attributes may be modified by an

interconnect component or by the target. In the case of a read command, the target may also modify the data

array.

7.4 Class definition

namespace tlm {

class tlm_generic_payload;

class tlm_mm_interface {

public:

 virtual void free(tlm_generic_payload*) = 0;

 virtual ~tlm_mm_interface() {}

};

unsigned int max_num_extensions();

class tlm_extension_base

{

public:

 virtual tlm_extension_base* clone() const = 0;

 virtual void free() { delete this; }

 virtual void copy_from(tlm_extension_base const &) = 0;

protected:

 virtual ~tlm_extension_base() {}

};

template <typename T>

class tlm_extension : public tlm_extension_base

{

public:

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 65

 virtual tlm_extension_base* clone() const = 0;

 virtual void copy_from(tlm_extension_base const &) = 0;

 virtual ~tlm_extension() {}

 const static unsigned int ID;

};

enum tlm_command {

 TLM_READ_COMMAND,

 TLM_WRITE_COMMAND,

 TLM_IGNORE_COMMAND

};

enum tlm_response_status {

 TLM_OK_RESPONSE = 1,

 TLM_INCOMPLETE_RESPONSE = 0,

 TLM_GENERIC_ERROR_RESPONSE = -1,

 TLM_ADDRESS_ERROR_RESPONSE = -2,

 TLM_COMMAND_ERROR_RESPONSE = -3,

 TLM_BURST_ERROR_RESPONSE = -4,

 TLM_BYTE_ENABLE_ERROR_RESPONSE = -5

 };

#define TLM_BYTE_DISABLED 0x0

#define TLM_BYTE_ENABLED 0xff

class tlm_generic_payload {

public:

 // Constructors and destructor

 tlm_generic_payload();

 explicit tlm_generic_payload(tlm_mm_interface*);

 virtual ~tlm_generic_payload();

private:

 // Disable copy constructor and assignment operator

 tlm_generic_payload(const tlm_generic_payload&);

 tlm_generic_payload& operator= (const tlm_generic_payload&);

public:

 // Memory management

 void set_mm(tlm_mm_interface*);

 bool has_mm() const;

 void acquire();

 void release();

 int get_ref_count() const;

 void reset();

 void deep_copy_from(const tlm_generic_payload &);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 66

 void update_original_from(const tlm_generic_payload & , bool use_byte_enable_on_read = true);

 void update_extensions_from(const tlm_generic_payload &);

 void free_all_extensions();

 // Access methods

 tlm_command get_command() const;

 void set_command(const tlm_command);

 bool is_read();

 void set_read();

 bool is_write();

 void set_write();

 sc_dt::uint64 get_address() const;

 void set_address(const sc_dt::uint64);

 unsigned char* get_data_ptr() const;

 void set_data_ptr(unsigned char*);

 unsigned int get_data_length() const;

 void set_data_length(const unsigned int);

 unsigned int get_streaming_width() const;

 void set_streaming_width(const unsigned int);

 unsigned char* get_byte_enable_ptr() const;

 void set_byte_enable_ptr(unsigned char*);

 unsigned int get_byte_enable_length() const;

 void set_byte_enable_length(const unsigned int);

 // DMI hint

 void set_dmi_allowed(bool);

 bool is_dmi_allowed() const;

 tlm_response_status get_response_status() const;

 void set_response_status(const tlm_response_status);

 std::string get_response_string();

 bool is_response_ok();

 bool is_response_error();

 // Extension mechanism

 template <typename T> T* set_extension(T*);

 tlm_extension_base* set_extension(unsigned int , tlm_extension_base*);

 template <typename T> T* set_auto_extension(T*);

 tlm_extension_base* set_auto_extension(unsigned int , tlm_extension_base*);

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 67

 template <typename T> void get_extension(T*&) const;

 template <typename T> T* get_extension() const;

 tlm_extension_base* get_extension(unsigned int) const;

 template <typename T> void clear_extension(const T*);

 template <typename T> void clear_extension();

 template <typename T> void release_extension(T*);

 template <typename T> void release_extension();

 void resize_extensions();

};

} // namespace tlm

7.5 Generic payload memory management

a) The initiator shall be responsible for setting the data pointer and byte enable pointer attributes to existing

storage, which could be static, automatic (stack) or dynamically allocated (new) storage. The initiator

shall not delete this storage before the lifetime of the transaction is complete. The generic payload

destructor does not delete these two arrays.

b) This clause should be read in conjunction with the rules on generic payload extensions. See 7.20 Generic

payload extensions.

c) The generic payload supports two distinct approaches to memory management; reference counting with

an explicit memory manager and ad hoc memory management by the initiator. The two approaches can

be combined. Any memory management approach should manage both the transaction object itself and

any extensions to the transaction object.

d) The construction and destruction of objects of type tlm_generic_payload is expected to be expensive in

terms of CPU time due to the implementation of the extension array. As a consequence, repeated

construction and destruction of generic payload objects should be avoided. There are two recommended

strategies; either use a memory manager that implements a pool of transaction objects, or if using ad hoc

memory management, re-use the very same generic payload object across successive calls to

b_transport (effectively a transaction pool with a size of one). In particular, having a generic payload

object constructed and destructed once per call to transport would be prohibitively slow and should be

avoided.

e) A memory manager is a user-defined class that implements at least the free method of the abstract base

class tlm_mm_interface. The intent is that a memory manager would provide a method to allocate a

generic payload transaction object from a pool of transactions, would implement the free method to

return a transaction object to that same pool, and would implement a destructor to delete the entire pool.

The free method is called by the release method of class tlm_generic_payload when the reference count

of a transaction object reaches 0. The free method of class tlm_mm_interface would typically call the

reset method of class tlm_generic_payload in order to delete any extensions marked for automatic

deletion.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 68

f) The methods set_mm, acquire, release, get_ref_count and reset of the generic payload shall only used

in the presence of a memory manager. By default, a generic payload object does not have a memory

manager set.

g) Ad hoc memory management by the initiator without a memory manager requires the initiator to allocate

memory for the transaction object before the TLM-2.0 core interface call, and delete or pool the

transaction object and any extension objects after the call.

h) When the generic payload is used with the blocking transport interface, the direct memory interface or

the debug transport interface, either approach may be used. Ad hoc memory management by the initiator

is sufficient. In the absence of a memory manager, the b_transport, get_direct_mem_ptr, or

transport_dbg method should assume that the transaction object and any extensions will be invalidated

or deleted on return.

i) When the generic payload is used with the non-blocking transport interface, a memory manager shall be

used. Any transaction object passed as an argument to nb_transport shall have a memory manager

already set. This applies whether the caller is the initiator, an interconnect component, or a target.

j) A blocking-to-non-blocking transport adapter shall set a memory manager for a given transaction if none

existed already, in which case it shall remove that same memory manager from the transaction before

returning control to the caller. A memory manager cannot be removed until the reference count has

returned to 0, so the implementation will necessarily require that the method free of the memory manager

does not delete the transaction object. The simple_target_socket provides an example of such an

adapter.

k) When using a memory manager, the transaction object and any extension objects shall be allocated from

the heap (ultimately by calling new or malloc).

l) When using ad hoc memory management, the transaction object and any extensions may be allocated

from the heap or from the stack. When using stack allocation, particular care needs to be taken with the

memory management of extension objects in order to avoid memory leaks and segmentation faults.

m) The method set_mm shall set the memory manager of the generic payload object to the object whose

address is passed as an argument. The argument may be null, in which case any existing memory

manager would be removed from the transaction object, but not itself deleted. set_mm shall not be called

for a transaction object that already has a memory manager and a reference count greater than 0.

n) The method has_mm shall return true if and only if a memory manager has been set. When called from

the body of an nb_transport method, has_mm should return true.

o) When called from the body of the b_transport, get_direct_mem_ptr, or transport_dbg methods,

has_mm may return true or false. An interconnect component may call has_mm and take the appropriate

action depending on whether or not a transaction has a memory manager. Otherwise, it shall assume all

the obligations of a transaction with a memory manager (for example, heap allocation), but shall not call

any of the methods that require the presence of a memory manager (for example, acquire).

p) Each generic payload object has a reference count. The default value of the reference count is 0.

q) The method acquire shall increment the value of the reference count. If acquire is called in the absence

of a memory manager, a run-time error will occur.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 69

r) The method release shall decrement the value of the reference count, and if this leaves the value equal to

0, shall call the method free of the memory manager object, passing the address of the transaction object

as an argument. If release is called in the absence of a memory manager, a run-time error will occur.

s) The method get_ref_count shall return the value of the reference count. In the absence of a memory

manager, the value returned would be 0.

t) In the presence of a memory manager, each initiator should call the acquire method of each transaction

object before first passing that object as an argument to an interface method call, and should call the

release method of that transaction object when the object is no longer required.

u) In the presence of a memory manager, each interconnect component and target should call the acquire

method whenever they need to extend the lifetime of a transaction object beyond the current interface

method call, and call the release method when the object is no longer required.

v) In the presence of a memory manager, a component may call the release method from any interface

method call or process. Thus, a component cannot assume a transaction object is still valid after making

an interface method call or after yielding control unless it has previously called the acquire method. For

example, an initiator may call release from its implementation of nb_transport_bw, or a target from its

implementation of nb_transport_fw.

w) If an interconnect component or a target wishes to extend the lifetime of a transaction object indefinitely

for analysis purposes, it should make a clone of the transaction object rather than using the reference

counting mechanism. In other words, the reference count should not be used to extend the lifetime of a

transaction object beyond the normal phases of the protocol.

x) In the presence of a memory manager, a transaction object shall not be re-used to represent a new

transaction or re-used with a different interface until the reference count indicates that no component

other than the initiator itself still has a reference to the transaction object. That is, assuming the initiator

has called acquire for the transaction object, until the reference count equals 1. This rule applies when

re-using transactions with the same interface or across the transport, direct memory and debug transport

interfaces. When reusing transaction objects to represent different transaction instances, it is best practice

not to reuse the object until the reference count equals 0, that is, until the object has been freed.

y) The method reset shall delete any extensions marked for automatic deletion, and shall set the

corresponding extension pointers to null. Each extension shall be deleted by calling the method free of

the extension object, which could conceivably be overloaded if a user wished to provide explicit memory

management for extension objects. The method reset should typically be called from the method free of

class tlm_mm_interface in order to delete extensions at the end of the lifetime of a transaction.

z) An extension object added by calling set_extension may be deleted by calling release_extension.

Calling clear_extension would only clear the extension pointer, not delete the extension object itself.

This latter behavior would be required in the case that transaction objects are stack-allocated without a

memory manager, and extension objects pooled.

aa) In the absence of a memory manager, whichever component allocates or sets a given extension should

also delete or clear that same extension before returning control from b_transport,

get_direct_mem_ptr, or transport_dbg. For example, an interconnect component that implements

b_transport and calls set_mm to add a memory manager to a transaction object shall not return from

b_transport until it has removed from the transaction object all extensions added by itself (and assuming

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 70

that any downstream components will already have removed any extensions added by themselves, by

virtue of this very same rule).

bb) In the presence of a memory manager, extensions can be added by calling set_auto_extension, and thus

deleted or pooled automatically by the memory manager. Alternatively, extensions added by calling

set_extension and not explicitly cleared are so-called sticky extensions, meaning that they will not be

automatically deleted when the transaction reference count reaches 0 but may remain associated with the

transaction object even when it is pooled. Sticky extensions are a particularly efficient way to manage

extension objects because the extension object need not be deleted and re-constructed between transport

calls. Sticky extensions rely on transaction objects being pooled (or re-used singly).

cc) If it is unknown whether or not a memory manager is present, extensions should be added by calling

set_extension and deleted by calling release_extension. This calling sequence is safe in the presence or

absence of a memory manager. This circumstance can only occur within an interconnect component or

target that chooses not to call has_mm. (Within an initiator, it is always known whether or not a memory

manager is present, and a call to has_mm will always reveal whether or not a memory manager is

present.)

dd) The method free_all_extensions shall delete all extensions, including but not limited to those marked for

automatic deletion, and shall set the corresponding extension pointers to null. Each extension shall be

deleted by calling the method free of the extension object. The free method could conceivably be

overloaded if a user wished to provide explicit memory management for extension objects.

ee) free_all_extensions would be useful when removing the extensions from a pooled transaction object that

does not use a memory manager. With a memory manager, extensions marked for automatic deletion

would indeed have been deleted automatically, while sticky extensions would not need to be deleted.

ff) The method deep_copy_from shall modify the attributes and extensions of the current transaction object

by copying those of another transaction object, which is passed as an argument to the method. The

command, address, data length, byte enable length, streaming width, response status, and DMI allowed

attributes shall be copied. The data and byte enable arrays shall be deep copied if and only if the

corresponding pointers in both transactions are non-null. The application is responsible for ensuring that

the arrays in the current transaction are sufficiently large. If an extension on the other transaction already

exists on the current transaction, it shall be copied by calling the copy_from method of the extension

class. Otherwise, a new extension object shall be created by calling the clone method of the extension

class, and set on the current transaction. In the case of cloning, the new extension shall be marked for

automatic deletion if and only if a memory manager is present for the current transaction.

gg) In other words, in the presence of a memory manager deep_copy_from will mark for automatic deletion

any new extensions that were not already on the current object. Without a memory manager, extensions

cannot be marked for auto-deletion.

hh) The method update_original_from shall modify certain attributes and extensions of the current

transaction object by copying those of another transaction object, which is passed as an argument to the

method. The intent is that update_original_from should be called to pass back the response for a

transaction created using deep_copy_from. The response status and DMI allowed attributes of the

current transaction object shall be modified. The data array shall be deep copied if and only if the

command attribute of the current transaction is TLM_READ_COMMAND and the data pointers in the

two transactions are both non-null and are unequal. The byte enable array shall be used to mask the copy

operation, as per the read command, if and only if the byte enable pointer is non-null and the

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 71

use_byte_enable_on_read argument is true. Otherwise, the entire data array shall be deep copied. The

extensions of the current transaction object shall be updated as per the update_extensions_from method.

ii) The method update_extensions_from shall modify the extensions of the current transaction object by

copying from another transaction object only those extensions that were already present on the current

object. The extensions shall be copied by calling the copy_from method of the extension class.

jj) The typical use case for deep_copy_from, update_original_from and update_extensions_from is

within a transaction bridge where they are used to deep copy an incoming request, send the copy out

through an initiator socket, then on receiving back the response copy the appropriate attributes and

extensions back to the original transaction object. The transaction bridge may choose to deep copy the

arrays or merely to copy the pointers.

kk) These obligations apply to the generic payload. In principle, similar obligations might apply to

transaction types unrelated to the generic payload

7.6 Constructors, assignment, and destructor

a) The default constructor shall set the generic payload attributes to their default values, as defined in the

following clauses.

b) The constructor tlm_generic_payload(tlm_mm_interface*) shall set the generic payload attributes to

their default values, and shall set the memory manager of the generic payload object to the object whose

address is passed as an argument. This is equivalent to calling the default constructor then immediately

calling set_mm.

c) The copy constructor and assignment operators are disabled.

d) The virtual destructor ~tlm_generic_payload shall delete all extensions, including but not limited to

those marked for automatic deletion. Each extension shall be deleted by calling the method free of the

extension object. The destructor shall not delete the data array or the byte enable array.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 72

7.7 Default values and modifiability of attributes

The default values and modifiability of the generic payload attributes and arrays are summarized in the

following table:

Attribute Default value Modifiable by

interconnect?

Modifiable by

target?

Command TLM_IGNORE_COMMAND No No

Address 0 Yes No

Data pointer 0 No No

Data length 0 No No

Byte enable pointer 0 No No

Byte enable length 0 No No

Streaming width 0 No No

DMI allowed false Yes Yes

Response status TLM_INCOMPLETE_RESPONSE No Yes

Extension pointers 0 Yes Yes

Arrays Default value Modifiable by

interconnect?

Modifiable by

target?

Data array - No Read command

only

Byte enable array - No No

a) It is the responsibility of the initiator to set the value of every generic payload attribute (with the

exception of extension pointers) prior to passing the transaction object through an interface method call.

Care should be taken to ensure the attributes are set correctly in the case where transaction objects are

pooled and reused.

b) In the case that a transaction object is returned to a pool or otherwise re-used, these modifiability rules

cease to apply at the end of the lifetime of that transaction instance. In the presence of a memory manager

this is the point at which the reference count reaches 0, or otherwise, on return from the interface method

call. The modifiability rules would apply afresh were the transaction object to be re-used for a new

transaction.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 73

c) After passing the transaction object as an argument to an interface method call (b_transport,

nb_transport_fw, get_direct_mem_ptr, or transport_dbg), the only generic payload attributes that the

initiator is permitted to modify during the lifetime of the transaction are the extension pointers.

d) An interconnect component is permitted to modify the address attribute, but only before passing the

transaction concerned as an argument to any TLM-2.0 core interface method on the forward path. Once

an interconnect component has passed a reference to the transaction to a downstream component, it is not

permitted to modify the address attribute of that transaction object again throughout the entire lifetime of

the transaction.

e) As a consequence of the previous rule, the address attribute is valid immediately upon entering any of the

forward path interface method calls b_transport, get_direct_mem_ptr, or transport_dbg. In the case

of nb_transport_fw the address attribute is valid immediately upon entering the function but only when

the phase is BEGIN_REQ. Following the return from any forward path TLM-2.0 interface method call,

the address attribute will have the value set by the interconnect component lying furthest downstream,

and so should be regarded as being undefined for the purposes of transaction routing.

f) The interconnect and target are not permitted to modify the data array in the case of a write command,

but the target alone is permitted to modify the data array in the case of a read command.

g) For a given transaction object, the target is permitted to modify the DMI allowed attribute, the response

status attribute and (for a read command) the data array at any time between having first received the

transaction object and the time at which it passes a response in the upstream direction. A target is not

permitted to modify these attributes after having sent a response in the upstream direction. A target sends

a response in this sense whenever it returns control from the b_transport, get_direct_mem_ptr or

transport_dbg methods, whenever it passes the BEGIN_RESP phase as an argument to nb_transport, or

whenever it returns the value TLM_COMPLETED from nb_transport.

h) If the DMI allowed attribute is false, an interconnect component is not permitted to modify the DMI

allowed attribute. But if the target sets the DMI allowed attribute to true, an interconnect component is

permitted to reset the DMI allowed attribute to false as it passes the response in an upstream direction. In

other words, an interconnect component is permitted to clear the DMI allowed attribute, despite the DMI

allowed attribute having been set by the target.

i) The initiator is permitted to assume it is seeing the values of the DMI allowed attribute, the response

status attribute and (for a read command) the data array as modified by the target only after it has

received the response.

j) If the above rules permit a component to modify the value of a transaction attribute within a particular

window of time, that attribute may be modified at any time during that window and any number of times

during that window. Any other component shall only read the value of the attribute as it is left at the end

of the time window (with the exception of extensions).

k) The roles of initiator, interconnect, and target may change dynamically. For example, although an

interconnect component is not permitted to modify the response status attribute, that same component

could modify the response status attribute by taking on the role of target for a given transaction. In its role

as a target, the component would be forbidden from passing that particular transaction any further

downstream.

l) In the case where the generic payload is used as the transaction type for the direct memory and debug

transport interfaces, the modifiability rules given in this section shall apply to the appropriate attributes,

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 74

that is, the command and address attributes in the case of direct memory, and the command, address, data

pointer and data length attributes in the case of debug transport.

7.8 Command attribute

a) The method set_command shall set the command attribute to the value passed as an argument. The

method get_command shall return the current value of the command attribute.

b) The methods set_read and set_write shall set the command attribute to TLM_READ_COMMAND and

TLM_WRITE_COMMAND respectively. The methods is_read and is_write shall return true if and

only if the current value of the command attribute is TLM_READ_COMMAND and

TLM_WRITE_COMMAND respectively.

c) A read command is a generic payload transaction with the command attribute equal to

TLM_READ_COMMAND. A write command is a generic payload transaction with the command

attribute equal to TLM_WRITE_COMMAND. An ignore command is a generic payload transaction with

the command attribute equal to TLM_IGNORE_COMMAND

d) On receipt of a read command, the target shall copy the contents of a local array in the target to the array

pointed to be the data pointer attribute, honoring all the semantics of the generic payload as defined by

this standard.

e) On receipt of a write command, the target shall copy the contents of the array pointed to by the data

pointer attribute to a local array in the target, honoring all the semantics of the generic payload as defined

by this standard.

f) If the target is unable to execute a read or write command, it shall generate a standard error response. The

recommended response status is TLM_COMMAND_ERROR_RESPONSE.

g) An ignore command is a null command. The intent is that an ignore command may be used as a vehicle

for transporting generic payload extensions without the need to execute a read or a write command,

although the rules concerning extensions are the same for all three commands.

h) On receipt of an ignore command, the target shall not execute a write command or a read command. In

particular, it shall not modify the value of the local array that would be modified by a write command, or

modify the value of the array pointed to by the data pointer attribute. The target may, however, use the

value of any attribute in the generic payload, including any extensions.

i) On receipt of an ignore command, a component that usually acts as an interconnect component may

either forward the transaction onward toward the target (that is, act as an interconnect), or may return an

error response (that is, act as a target). A component that routes read and write commands differently

would be expected to return an error response.

j) A target is deemed to have executed an ignore command successfully if it has received the transaction

and has checked the values of the generic payload attributes to its own satisfaction. See 7.16 Response

status attribute

k) The command attribute shall be set by the initiator, and shall not be overwritten by any interconnect

component or target.

l) The default value of the command attribute shall be TLM_IGNORE_COMMAND.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 75

7.9 Address attribute

a) The method set_address shall set the address attribute to the value passed as an argument. The method

get_address shall return the current value of the address attribute.

b) For a read command or a write command, the target shall interpret the current value of the address

attribute as the start address in the system memory map of the contiguous block of data being read or

written. This address may or may not correspond to the first byte in the array pointed to by the data

pointer attribute, depending on the endianness of the host computer.

c) The address associated with any given byte in the data array is dependent upon the address attribute, the

array index, the streaming width attribute, the endianness of the host computer and the width of the

socket. See 7.17 Endianness

d) The value of the address attribute need not be word-aligned (although address calculations can be

considerably simplified if the address attribute is a multiple of the local socket width expressed in bytes).

e) If the target is unable to execute the transaction with the given address attribute (because the address is

out-of-range, for example) it shall generate a standard error response. The recommended response status

is TLM_ADDRESS_ERROR_RESPONSE.

f) The address attribute shall be set by the initiator, but may be overwritten by one or more interconnect

components. This may be necessary if an interconnect component performs address translation, for

example to translate an absolute address in the system memory map to a relative address in the memory

map known to the target. Once the address attribute has been overwritten in this way, the old value is lost

(unless it was explicitly saved somewhere).

g) The default value of the address attribute shall be 0.

7.10 Data pointer attribute

a) The method set_data_ptr shall set the data pointer attribute to the value passed as an argument. The

method get_data_ptr shall return the current value of the data pointer attribute. Note that the data pointer

attribute is a pointer to the data array, and these methods set or get the value of the pointer, not the

contents of the array.

b) For a read command or a write command, the target shall copy data to or from the data array,

respectively, honoring the semantics of the remaining attributes of the generic payload.

c) The initiator is responsible for allocating storage for the data and byte enable arrays. The storage may

represent the final source or destination of the data in the initiator, such as a register file or cache

memory, or may represent a temporary buffer used to transfer data to and from the transaction level

interface.

d) In general, the organization of the generic payload data array is independent of the organization of local

storage within the initiator and the target. However, the generic payload has been designed so that data

can be copied to and from the target with a single call to memcpy in most circumstances. This assumes

that the target uses the same storage organization as the generic payload. This assumption is made for

simulation efficiency, but does not restrict the expressive power of the generic payload: the target is free

to transform the data in any way it wishes as it copies the data to and from the data array.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 76

e) It is an error to call the transport interface with a transaction object having a null data pointer attribute.

f) The length of the data array shall be greater than or equal to the value of the data length attribute, in

bytes.

g) The data pointer attribute shall be set by the initiator, and shall not be overwritten by any interconnect

component or target.

h) For a write command or TLM_IGNORE_COMMAND, the contents of the data array shall be set by the

initiator, and shall not be overwritten by any interconnect component or target

i) For a read command, the contents of the data array may be overwritten by the target (honoring the

semantics of the byte enable) but by no other component and only before the target sends a response. A

target sends a response in this sense whenever it returns control from the b_transport,

get_direct_mem_ptr or transport_dbg methods, whenever it passes the BEGIN_RESP phase as an

argument to nb_transport, or whenever it returns the value TLM_COMPLETED from nb_transport.

j) The default value of the data pointer attribute shall be 0, the null pointer.

7.11 Data length attribute

a) The method set_data_length shall set the data length attribute to the value passed as an argument. The

method get_data_length shall return the current value of the data length attribute.

b) For a read command or a write command, the target shall interpret the data length attribute as the number

of bytes to be copied to or from the data array, inclusive of any bytes disabled by the byte enable

attribute.

c) The data length attribute shall be set by the initiator, and shall not be overwritten by any interconnect

component or target.

d) The data length attribute shall not be set to 0. In order to transfer zero bytes, the command attribute

should be set to TLM_IGNORE_COMMAND.

e) When using the standard socket classes of the interoperability layer (or classes derived from these) for

burst transfers, the word length for each transfer shall be determined by the BUSWIDTH template

parameter of the socket. BUSWIDTH is independent of the data length attribute. BUSWIDTH shall be

expressed in bits. If the data length is less than or equal to the BUSWIDTH / 8, the transaction is

effectively modeling a single-word transfer, and if greater, the transaction is effectively modeling a burst.

A single transaction can be passed through sockets of different bus widths. The BUSWIDTH may be

used to calculate the latency of the transfer.

f) The target may or may not support transactions with data length greater than the word length of the

target, whether the word length is given by the BUSWIDTH template parameter or by some other value.

g) If the target is unable to execute the transaction with the given data length, it shall generate a standard

error response, and it shall not modify the contents of the data array. The recommended response status is

TLM_BURST_ERROR_RESPONSE.

h) The default value of the data length attribute shall be 0, which is an invalid value. Hence, the data length

attribute shall be set explicitly before the transaction object is passed through an interface method call.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 77

7.12 Byte enable pointer attribute

a) The method set_byte_enable_ptr shall set the pointer to the byte enable array to the value passed as an

argument. The method get_byte_enable_ptr shall return the current value of the byte enable pointer

attribute.

b) The elements in the byte enable array shall be interpreted as follows. A value of 0 shall indicate that that

corresponding byte is disabled, and a value of 0xff shall indicate that the corresponding byte is enabled.

The meaning of all other values shall be undefined. The value 0xff has been chosen so that the byte

enable array can be used directly as a mask. The two macros TLM_BYTE_DISABLED and

TLM_BYTE_ENABLED are provided for convenience.

c) Byte enables may be used to create burst transfers where the address increment between each beat is

greater than the number of significant bytes transferred on each beat, or to place words in selected byte

lanes of a bus. At a more abstract level, byte enables may be used to create ―lacy bursts‖ where the data

array of the generic payload has an arbitrary pattern of holes punched in it.

d) The byte enable mask may be defined by a small pattern applied repeatedly or by a large pattern covering

the whole data array. See 7.13 Byte enable length attribute

e) The number of elements in the byte enable array shall be given by the byte enable length attribute.

f) The byte enable pointer may be set to 0, the null pointer, in which case byte enables shall not be used for

the current transaction, and the byte enable length shall be ignored.

g) If byte enables are used, the byte enable pointer attribute shall be set by the initiator, the storage for the

byte enable array shall be allocated by the initiator, the contents of the byte enable array shall be set by

the initiator, and neither the byte enable pointer nor the contents of the byte enable array shall be

overwritten by any interconnect component or target.

h) If the byte enable pointer is non-null, the target shall either implement the semantics of the byte enable as

defined below or shall generate a standard error response. The recommended response status is

TLM_BYTE_ENABLE_ERROR_RESPONSE.

i) In the case of a write command, any interconnect component or target should ignore the values of any

disabled bytes in the data array. It is recommended that disabled bytes have no effect on the behavior of

any interconnect component or target. The initiator may set those bytes to any values, since they are

going to be ignored.

j) In the case of a write command, when a target is doing a byte-by-byte copy from the transaction data

array to a local array, the target should not modify the values of bytes in the local array corresponding to

disabled bytes in the generic payload.

k) In the case of a read command, any interconnect component or target should not modify the values of

disabled bytes in the data array. The initiator can assume that disabled bytes will not be modified by any

interconnect component or target.

l) In the case of a read command, when a target is doing a byte-by-byte copy from a local array to the

transaction data array, the target should ignore the values of bytes in the local array corresponding to

disabled bytes in the generic payload.

m) If the application needs to violate these semantics for byte enables, or to violate any other semantics of

the generic payload as defined in this document, the recommended approach would be to create a new

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 78

protocol traits class. See 7.2.2 Define a new protocol traits class containing a typedef for

tlm_generic_payload

n) The default value of the byte enable pointer attribute shall be 0, the null pointer.

7.13 Byte enable length attribute

a) The method set_byte_enable_length shall set the byte enable length attribute to the value passed as an

argument. The method get_byte_enable_length shall return the current value of the byte enable length

attribute.

b) For a read command or a write command, the target shall interpret the byte enable length attribute as the

number of elements in the byte enable array.

c) The byte enable length attribute shall be set by the initiator, and shall not be overwritten by any

interconnect component or target.

d) The byte enable to be applied to a given element of the data array shall be calculated using the formula

byte_enable_array_index = data_array_index % byte_enable_length. In other words, the byte enable

array is applied repeatedly to the data array.

e) The byte enable length attribute may be greater than the data length attribute, in which case any

superfluous byte enables should not affect the behavior of a read or write command, but could be used by

extensions.

f) If the byte enable pointer is 0, the null pointer, then the value of the byte enable length attribute shall be

ignored by any interconnect component or target. If the byte enable pointer is non-0, the byte enable

length shall be non-0.

g) If the target is unable to execute the transaction with the given byte enable length, it shall generate a

standard error response. The recommended response status is

TLM_BYTE_ENABLE_ERROR_RESPONSE.

h) The default value of the byte enable length attribute shall be 0.

7.14 Streaming width attribute

a) The method set_streaming_width shall set the streaming width attribute to the value passed as an

argument. The method get_streaming_width shall return the current value of the streaming width

attribute.

b) For a read command or a write command, the target shall interpret and act upon the current value of the

streaming width attribute

c) Streaming affects the way a component should interpret the data array. A stream consists of a sequence of

data transfers occurring on successive notional beats, each beat having the same start address as given by

the generic payload address attribute. The streaming width attribute shall determine the width of the

stream, that is, the number of bytes transferred on each beat. In other words, streaming affects the local

address associated with each byte in the data array. In all other respects, the organization of the data array

is unaffected by streaming.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 79

d) The bytes within the data array have a corresponding sequence of local addresses within the component

accessing the generic payload transaction. The lowest address is given by the value of the address

attribute. The highest address is given by the formula address_attribute + streaming_width – 1. The

address to or from which each byte is being copied in the target shall be set to the value of the address

attribute at the start of each beat.

e) With respect to the interpretation of the data array, a single transaction with a streaming width shall be

functionally equivalent to a sequence of transactions each having the same address as the original

transaction, each having a data length attribute equal to the streaming width of the original, and each with

a data array that is a different subset of the original data array on each beat. This subset effectively steps

down the original data array maintaining the sequence of bytes.

f) A streaming width of 0 shall be invalid. If a streaming transfer is not required, the streaming width

attribute should be set to a value greater than or equal to the value of the data length attribute.

g) The value of the streaming width attribute shall have no affect on the length of the data array or the

number of bytes stored in the data array.

h) Width conversion issues may arise when the streaming width is different from the width of the socket

(when measured as a number of bytes). See 7.17 Endianness

i) If the target is unable to execute the transaction with the given streaming width, it shall generate a

standard error response. The recommended response status is TLM_BURST_ERROR_RESPONSE.

j) Streaming may be used in conjunction with byte enables, in which case the streaming width would

typically be equal to the byte enable length. It would also make sense to have the streaming width a

multiple of the byte enable length. Having the byte enable length a multiple of the streaming width would

imply that different bytes were enabled on each beat.

k) The streaming width attribute shall be set by the initiator, and shall not be overwritten by any

interconnect component or target.

l) The default value of the streaming width attribute shall be 0.

7.15 DMI allowed attribute

a) The method set_dmi_allowed shall set the DMI allowed attribute to the value passed as an argument.

The method is_dmi_allowed shall return the current value of the DMI allowed attribute.

b) The DMI allowed attribute provides a hint to an initiator that it may try to obtain a direct memory pointer.

The target should set this attribute to true if the transaction at hand could have been done through DMI.

See 4.2.9 Optimization using a DMI hint

c) The default value of the DMI allowed attribute shall be false.

7.16 Response status attribute

a) The method set_response_status shall set the response status attribute to the value passed as an

argument. The method get_response_status shall return the current value of the response status attribute.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 80

b) The method is_response_ok shall return true if and only if the current value of the response status

attribute is TLM_OK_RESPONSE. The method is_response_error shall return true if and only if the

current value of the response status attribute is not equal to TLM_OK_RESPONSE.

c) The method get_response_string shall return the current value of the response status attribute as a text

string.

d) As a general principle, a target is recommended to support every feature of the generic payload, but in the

case that it does not, it shall generate the standard error response. See 7.16.1 The standard error response

e) The response status attribute shall be set to TLM_INCOMPLETE_RESPONSE by the initiator, and may

or may not be overwritten by the target. The response status attribute shall not be overwritten by an

interconnect component. The value TLM_INCOMPLETE_RESPONSE should be used to indicate that

the component acting as the target did not attempt to execute the command, as might be the case if the

response was returned from a component that usually acts as an interconnect component. But note that

such a component would be allowed to set the response status attribute to any error response, because it is

acting as a target.

f) If the target is able to execute the command successfully, it shall set the response status attribute to

TLM_OK_RESPONSE. Otherwise, the target may set the response status to any of the six error

responses listed in the table below. The target should choose the appropriate error response depending on

the cause of the error.

Error response Interpretation

TLM_INCOMPLETE_RESPONSE Target did not attempt to execute the command

TLM_ADDRESS_ERROR_RESPONSE Target was unable to act upon the address attribute, or

address out-of-range

TLM_COMMAND_ERROR_RESPONSE Target was unable to execute the command

TLM_BURST_ERROR_RESPONSE Target was unable to act upon the data length or

streaming width

TLM_BYTE_ENABLE_ERROR_RESPONSE Target was unable to act upon the byte enable

TLM_GENERIC_ERROR_RESPONSE Any other error

g) If a target detects an error but is unable to select a specific error response, it may set the response status to

TLM_GENERIC_ERROR_RESPONSE.

h) The default value of the response status attribute shall be TLM_INCOMPLETE_RESPONSE.

i) In the case of TLM_IGNORE_COMMAND, a target that has received the transaction and would have

been in a position to execute a read or write command should return TLM_OK_RESPONSE. Otherwise,

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 81

the target may choose, at its discretion, to set an error response using the same criteria it would have

applied for a read or write command. For example, a target that does not support byte enables would be

permitted (but not obliged) to return TLM_BYTE_ENABLE_ERROR_RESPONSE.

j) The presence of a generic payload extension or extended phase may cause a target to return a different

response status, provided that the rules concerning ignorable extensions are honored. In other words,

within the base protocol it is allowable that an extension may cause a command to fail, but it is also

allowable that the target may ignore the extension and thus have the command succeed.

k) The target shall be responsible for setting the response status attribute at the appropriate point in the

lifetime of the transaction. In the case of the blocking transport interface, this means before returning

control from b_transport. In the case of the non-blocking transport interface and the base protocol, this

means before sending the BEGIN_RESP phase or returning a value of TLM_COMPLETED.

l) It is recommended that the initiator should always check the response status attribute on receiving a

transition to the BEGIN_RESP phase or after the completion of the transaction. An initiator may choose

to ignore the response status if it is known in advance that the value will be TLM_OK_RESPONSE,

perhaps because it is known in advance that the initiator is only connected to targets that always return

TLM_OK_RESPONSE, but in general this will not be the case. In other words, the initiator ignores the

response status at its own risk.

m) A target has some latitude when selecting an error response. For example, if the command and address

attributes are in error, a target may be justified in setting any of TLM_ADDRESS_ERROR_RESPONSE,

TLM_COMMAND_ERROR_RESPONSE, or TLM_GENERIC_ERROR_RESPONSE. When using the

response status to determine its behavior an initiator should not rely on the distinction between the six

categories of error response alone, although an initiator may use the response status to determine the

content of diagnostic messages printed for the benefit of the user.

7.16.1 The standard error response

When a target receives a generic payload transaction, the target should perform one and only one of the

following actions:

a) Execute the command represented by the transaction, honoring the semantics of the generic payload

attributes, and honoring the publicly documented semantics of the component being modeled, and set the

response status to TLM_OK_RESPONSE.

b) Set the response status attribute of the generic payload to one of the five error responses as described

above.

c) Generate a report using the standard SystemC report handler with any of the four standard SystemC

severity levels indicating that the command has failed or been ignored, and set the response status to

TLM_OK_RESPONSE.

It is recommended that the target should perform exactly one of these actions, but an implementation is not

obliged or permitted to enforce this recommendation.

It is recommended that a target for a transaction type other than the generic payload should follow this same

principle, that is, execute the command as expected, or generate an error response using an attribute of the

transaction, or generate a SystemC report. However, the details of the semantics and the error response

mechanism for such a transaction are outside the scope of this standard.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 82

The conditions for satisfying point a) above are determined by the expected behavior of the target component

as would be visible to a user of that component. The attributes of the generic payload have defined semantics

which correspond to conventional usage in the context of memory-mapped buses, but which do not

necessarily assume that the target behaves as a random-access memory. There are many subtle corner cases.

For example:

i. A target may have a memory-mapped register that supports both read and write commands, but the

write command is non-sticky, that is, write modifies the state of the target, but a write followed by read

will not return the data just written but some other value determined by the state of the target. If this is

the normal expected behavior of the component, it is covered by point a).

ii. A target may implement the write command to set a bit whilst totally ignoring the value of the data

attribute. If this is the normal expected behavior of the target, it is covered by point a)

iii. A read-only memory may ignore the write command without signalling an error to the initiator using

the response status attribute. Since the write command is not changing the state of the target but is

being ignored altogether, the target should at least generate a SystemC report with severity SC_INFO or

SC_WARNING.

iv. A target should not under any circumstances implement the write command by performing a read, or

vice versa. That would be a fundamental violation of the semantics of the generic payload.

v. A target may implement the read command according to the intent of the generic payload, but with

additional side-effects. This is covered by point a).

vi. A target with a set of memory-mapped registers forming an addressable register file receives a write

command with an out-of-range address. The target should either set the response status attribute of the

transaction to TLM_ADDRESS_ERROR_RESPONSE or generate a SystemC report.

vii. A passive simulation bus monitor target receives a transaction with an address that is outside the

physical range of the bus being modeled. The target may log the erroneous transaction for post-

processing under point a) and not generate an error response under points b) or c). Alternatively, the

target may generate a report under point c).

In other words, the distinction between points a), b) and c) is ultimately a pragmatic judgement to be made on

a case-by-case basis, but the definitive rule for the generic payload is that a target should always perform

exactly one of these actions.

Example

// Showing generic payload with command, address, data, and response status

// The initiator

void thread() {

 tlm::tlm_generic_payload trans; // Construct default generic payload

 sc_time delay;

 trans.set_command(tlm::TLM_WRITE_COMMAND); // A write command

 trans.set_data_length(4); // Write 4 bytes

 trans.set_byte_enable_ptr(0); // Byte enables unused

 trans.set_streaming_width(4); // Streaming unused

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 83

 for (int i = 0; i < RUN_LENGTH; i += 4) { // Generate a series of transactions

 int word = i;

 trans.set_address(i); // Set the address

 trans.set_data_ptr((unsigned char*)(&word)); // Write data from local variable ‗word‘

 trans.set_dmi_allowed(false); // Clear the DMI hint

 trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE); // Clear the response status

 init_socket->b_transport(trans, delay);

 if (trans.is_response_error()) // Check return value of b_transport

 SC_REPORT_ERROR("TLM-2.0", trans.get_response_string().c_str());

 ...

}

...

// The target

virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& t)

{

 tlm::tlm_command cmd = trans.get_command();

 sc_dt::uint64 adr = trans.get_address();

 unsigned char* ptr = trans.get_data_ptr();

 unsigned int len = trans.get_data_length();

 unsigned char* byt = trans.get_byte_enable_ptr();

 unsigned int wid = trans.get_streaming_width();

 if (adr+len > m_length) { // Check for storage address overflow

 trans.set_response_status(tlm::TLM_ADDRESS_ERROR_RESPONSE);

 return;

 }

 if (byt) { // Target unable to support byte enable attribute

 trans.set_response_status(tlm::TLM_BYTE_ENABLE_ERROR_RESPONSE);

 return;

 }

 if (wid < len) { // Target unable to support streaming width attribute

 trans.set_response_status(tlm::TLM_BURST_ERROR_RESPONSE);

 return;

 }

 if (cmd == tlm::TLM_WRITE_COMMAND) // Execute command

 memcpy(&m_storage[adr], ptr, len);

 else if (cmd == tlm::TLM_READ_COMMAND)

 memcpy(ptr, &m_storage[adr], len);

 trans.set_response_status(tlm::TLM_OK_RESPONSE); // Successful completion

 }

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 84

// Showing generic payload with byte enables

// The initiator

void thread() {

 tlm::tlm_generic_payload trans;

 sc_time delay;

 static word_t byte_enable_mask = 0x0000fffful; // MSB..LSB regardless of host-endianness

 trans.set_command(tlm::TLM_WRITE_COMMAND);

 trans.set_data_length(4);

 trans.set_byte_enable_ptr(reinterpret_cast<unsigned char*>(&byte_enable_mask));

 trans.set_byte_enable_length(4);

 trans.set_streaming_width(4);

 ...

...

// The target

virtual void b_transport(

 tlm::tlm_generic_payload& trans, sc_core::sc_time& t)

{

 tlm::tlm_command cmd = trans.get_command();

 sc_dt::uint64 adr = trans.get_address();

 unsigned char* ptr = trans.get_data_ptr();

 unsigned int len = trans.get_data_length();

 unsigned char* byt = trans.get_byte_enable_ptr();

 unsigned int bel = trans.get_byte_enable_length();

 unsigned int wid = trans.get_streaming_width();

 if (cmd == tlm::TLM_WRITE_COMMAND) {

 if (byt) {

 for (unsigned int i = 0; i < len; i++) // Byte enable applied repeatedly up data array

 if (byt[i % bel] == TLM_BYTE_ENABLED)

 m_storage[adr+i] = ptr[i]; // Byte enable [i] corresponds to data ptr [i]

 }

 else

 memcpy(&m_storage[adr], ptr, len); // No byte enables

 } else if (cmd == tlm::TLM_READ_COMMAND) {

 if (byt) { // Target does not support read with byte enables

 trans.set_response_status(tlm::TLM_BYTE_ENABLE_ERROR_RESPONSE);

 return;

 }

 else

 memcpy(ptr, &m_storage[adr], len);

 }

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 85

 trans.set_response_status(tlm::TLM_OK_RESPONSE);

 }

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 86

7.17 Endianness

7.17.1 Introduction

When using the generic payload to transfer data between initiator and target, both the endianness of the host

machine (host endianness) and the endianness of the initiator and target being modeled (modeled endianness)

are relevant. This clause defines rules to ensure interoperability between initiators and targets using the

generic payload, so is specifically concerned with the organization of the generic payload data array and byte

enable array. However, the rules given here may have an impact on some of the choices made in modeling

endianness beyond the immediate scope of the generic payload.

A general principle in the TLM-2.0 approach to endianness is that the organization of the generic payload

data array depends only on information known locally within each initiator, interconnect component or target.

In particular, it depends on the width of the local socket through which the transaction is sent or received, the

endianness of the host computer, and the endianness of the component being modeled.

The organization of the generic payload and the approach to endianness has been chosen to maximize

simulation efficiency in certain common system scenarios, particularly mixed-endian systems. The rules

given below dictate the organization of the generic payload, and this is independent of the organization of the

system being modeled. For example, a ―word‖ within the generic payload need not necessarily correspond in

internal representation with any ―word‖ within the modeled architecture.

At a macroscopic level, the main principle is that the generic payload assumes components in a mixed-endian

system to be wired up MSB to MSB (most-significant byte), and LSB to LSB (least-significant byte). In other

words, if a word is transferred between components of differing endianness, the MSB ... LSB relationship is

preserved, but the local address of each byte as seen within each component will necessarily change using the

transformation generally called address swizzling. This is true within both the modeled system and the TLM-

2.0 model. On the other hand, if a mixed-endian system is wired such that the local addresses are invariant

within each component (that is, each byte has the same local address when seen from any component), then

an explicit byte swap would need to be inserted in the TLM-2.0 model.

In order to achieve interoperability with respect to the endianness of the generic payload arrays, it is only

necessary to obey the rules given in this clause. A set of helper functions is provided to assist with the

organization of the data array. See 7.19 Helper functions for endianness conversion

7.17.2 Rules

a) In the following rules, the generic payload data array is denoted as data and the generic payload byte

enable array as be.

b) When using the standard socket classes of the interoperability layer (or classes derived from these), the

contents of the data and byte enable arrays shall be interpreted using the BUSWIDTH template parameter

of the socket through which the transaction is sent or received locally. The effective word length shall be

calculated as (BUSWIDTH + 7)/8 bytes, and in the following rules is denoted as W.

c) This quantity W defines the length of a word within the data array, each word being the amount of data

that could be transferred through the local socket on a single beat. The data array may contain a single

word, a part-word, or several contiguous words or part-words. Only the first and last words in the data

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 87

array may be part-words. This description refers to the internal organization of the generic payload, not to

the organization of the architecture being modeled.

d) If a given generic payload transaction object is passed through sockets of different widths, the data array

word length would appear different when calculated from the point of view of different sockets (see the

description of width conversion below).

e) The order of the bytes within each word of the data array shall be host-endian. That is, on a little-endian

host processor, within any given word data[n] shall be less significant than data[n+1], and on a big-

endian host processor, data[n] shall be the more significant than data[n+1].

f) The word boundaries in the data array shall be address-aligned, that is, they shall fall on addresses that

are integer multiples of the word length W. However, neither the address attribute nor the data length

attribute are required to be multiples of the word length. Hence the possibility that the first and last words

in the data array could be part-words.

g) The order of the words within the data array shall be determined by their addresses in the memory map of

the modeled system. For array index values less than the value of the streaming width attribute, the local

addresses of successive words shall be in increasing order, and (excluding any leading part-word) shall

equal address_attribute - (address_attribute % W) + NW, where N is a non-negative integer, and %

indicates remainder on division.

h) In other words, using the notation {a,b,c,d} to list the elements of the data array in increasing order of

array index, and using LSBN to denote the least significant byte of the Nth word, on a little-endian host

bytes are stored in the order {..., MSB0, LSB1, ..., MSB1, LSB2, ...}, and on a big-endian host {... LSB0,

MSB1, ... LSB1, MSB2, ...}, where the number of bytes in each full word is given by W, and the total

number of bytes is given by the data_length attribute.

i) The above rules effectively mean that initiators and targets are connected LSB-to-LSB, MSB-to-MSB.

The rules have been chosen to give optimal simulation speed in the case where the majority of initiators

and targets are modeled using host endianness whatever their native endianness, also known as

―arithmetic mode‖.

j) It is strongly recommended that applications should be independent of host endianness, that is, should

model the same behavior when run on a host of either endianness. This may require the use of helper

functions or conditional compilation.

k) If an initiator or target is modeled using its native endianness and that is different from host endianness, it

will be necessary to swap the order of bytes within a word when transferring data to or from the generic

payload data array. Helper functions are provided for this purpose.

l) For example, consider the following SystemC code fragment, which uses the literal value

0xAABBCCDD to initialize the generic payload data array:

 int data = 0xAABBCCDD;

 trans.set_data_ptr(reinterpret_cast<unsigned char*>(&data));

 trans.set_data_length(4);

 trans.set_address(0);

 socket->b_transport(trans, delay);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 88

m) The C++ compiler will interpret the literal 0xAABBCCDD in host-endian form. In either case, the MSB

has value 0xAA and the LSB has value 0xDD. Assuming this is the intent, the code fragment is valid and

is independent of host endianness. However, the array index of the four bytes will differ depending on

host endianness. On a little-endian host, data[0] = 0xDD, and on a big-endian host, data[0] = 0xAA. The

correspondence between local addresses in the modeled system and array indexes will differ depending

whether modeled endianess and host endianness are equal:

 Little-endian model and little-endian host: data[0] is 0xDD and local address 0

 Big-endian model and little-endian host: data[0] is 0xDD and local address 3

 Little-endian model and big-endian host: data[0] is 0xAA and local address 3

 Big-endian model and big-endian host: data[0] is 0xAA and local address 0

n) Code such as the fragment shown above would not be portable to a host computer that uses neither little

nor big endianness. In such a case, the code would have to be re-written to access the generic payload

data array using byte addressing only.

o) When a little-endian and a big-endian model interpret a given generic payload transaction, then by

definition they will agree on which is the MSB and LSB of a word, but they will each use different local

addresses to access the bytes of the word.

p) Neither the data length attribute nor the address attribute are required to be integer multiples of W.

However, having address and data length aligned with word boundaries and having W be a power of 2

considerably simplifies access to the data array. Just to emphasize the point, it would be perfectly in order

for a generic payload transaction to have an address and data length that indicated three bytes in the

middle of a 48-bit socket. If a particular target is unable to support a given address attribute or data

length, it should generate a standard error response. See 7.16 Response status attribute

q) For example, on a little-endian host and with W = 4, address = 1, and data_length = 4, the first word

would contain 3 bytes at addresses 1...3, and the second word 1 byte at address 4.

r) Single byte and part-word transfers may be expressed using non-aligned addressing. For example, given

W = 8, address = 5, and data = {1,2}, the two bytes with local addresses 5 and 6 are accessed in an order

dependent on endianness.

s) Part-word and non-aligned transfers can always be expressed using integer multiples of W together with

byte enables. This implies that a given transaction may have several equally valid generic payload

representations. For example, given a little-endian host and a little-endian initiator,

address = 2, W = 4, data = {1} is equivalent to

address = 0, W = 4, data = {x, x, 1, x}, and be = {0, 0, 0xff, 0}

address = 2, W = 4, data = {1,2,3,4} is equivalent to

address = 0, W = 4, data = {x, x, 1, 2, 3, 4, x, x}, and be = {0, 0, 0xff, 0xff, 0xff, 0xff, 0, 0}.

t) For part-word access, the necessity to use byte enables is dependent on endianness. For example, given

the intent to access the whole of the first word and the LSB of the second word, given a little-endian host

this might be expressed as

address = 0, W = 4, data = {1,2,3,4,5}

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 89

Given a big-endian host, the equivalent would be

address = 0, W = 4, data = {4,3,2,1,x,x,x,5}, be = {0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0xff }.

u) When two sockets are bound together, they necessarily have the same BUSWIDTH. However, a

transaction may be forwarded from a target socket to an initiator socket of a different bus width. In this

case, width conversion of the generic payload transaction must be considered. Any width conversion has

its own intrinsic endianness, depending on whether the least- or most significant byte of the wider socket

is picked out first.

v) When the endianness chosen for a width conversion matches the host endianness, the width conversion is

effectively free, meaning that a single transaction object can be forwarded from socket-to-socket without

modification. Otherwise, two separate generic payload transaction objects would be required. In figure

12, the width conversion between the 4-byte socket and the 2-byte socket uses host-endianness, moving

the less-significant bytes to lower addresses whilst retaining the host-endian byte order within each word.

The initiator and target both access the same sequence of bytes in the data array, but their local

addressing schemes are quite different.

w) If a width conversion is performed from a narrower socket to a wider socket, the choice has to be made as

to whether or not to perform address alignment on the outgoing transaction. Performing address

alignment will always necessitate the construction of a new generic payload transaction object.

x) Similar width conversion issues arise when the streaming width attribute is non-zero but different from

W. A choice has to be made as to the order in which to read off the bytes down the data array depending

on host endianness and the desired endianness of the width conversion.

Width conversion
Figure 12

Big-endian

Initiator

Little-endian

Target

LSB

Interconnect

component

W = 4

bytes

W = 2

bytes

MSB

Local

address

3

2

1

0

7

6

5

4

Local

address

0

1

2

3

4

5

6

7

Word

Word

Generic

payload

data array

LSB

MSB

Generic

payload

data array

Word

Word

Word

Word

LSB

MSB

Little-endian host

Little-endian

width

conversion

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 90

7.18 Helper functions to determine host endianness

7.18.1 Introduction

A set of helper functions is provided to determine the endianness of the host computer. These are intended for

use when creating or interpreting the generic payload data array.

7.18.2 Definition

namespace tlm {

enum tlm_endianness {

 TLM_UNKNOWN_ENDIAN, TLM_LITTLE_ENDIAN, TLM_BIG_ENDIAN };

inline tlm_endianness get_host_endianness(void);

inline bool host_has_little_endianness(void);

inline bool has_host_endianness(tlm_endianness endianness);

} // namespace tlm

7.18.3 Rules

a) The function get_host_endianness shall return the endianness of the host.

b) The function host_has_little_endianness shall return the value true if and only if the host is little-endian.

c) The function has_host_endianness shall return the value true if and only if the endianness of the host is

the same as that indicated by the argument.

d) If the host is neither little- nor big-endian, the value returned from the above three functions shall be

undefined.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 91

7.19 Helper functions for endianness conversion

7.19.1 Introduction

The rules governing the organization of the generic payload data array are well-defined, and in many simple

cases, writing host-independent C++ code to create and interpret the data array is a straightforward task.

However, the rules do depend on the relationship between the endianness of the modeled component and host

endianness, so creating host-independent code can become quite complex in cases involving non-aligned

addressing and data word widths that differ from the socket width. A set of helper functions is provided to

assist with this task.

With respect to endianness, interoperability depends only on the endianness rules being followed. Use of the

helper functions is not necessary for interoperability.

The motivation behind the endianness conversion functions is to permit the C++ code that creates a generic

payload transaction for an initiator to be written once with little regard for host endianness, and then to have

the transaction converted to match host endianness with a single function call. Each conversion function takes

an existing generic payload transaction and modifies that transaction in-place. The conversion functions are

organised in pairs, a to_hostendian function and a from_hostendian function, which should always be used

together. The to_hostendian function should be called by an initiator before sending a transaction through a

transport interface, and from_hostendian on receiving back the response.

Four pairs of functions are provided, the _generic pair being the most general and powerful, and the _word,

_aligned and _single functions being variants that can only handle restricted cases. The transformation

performed by the _generic functions is relatively computationally expensive, so the other functions should be

preferred for efficiency wherever possible.

The conversion functions provide sufficient flexibility to handle many common cases, including both

arithmetic mode and byte order mode. Arithmetic mode is where a component stores data words in host-

endian format for efficiency when performing arithmetic operations, regardless of the endianness of the

component being modeled. Byte order mode is where a component stores bytes in an array in ascending

address order, disregarding host endianness. The use of arithmetic mode is recommended for simulation

speed. Byte order mode may necessitate byte swapping when copying data to and from the generic payload

data array.

The conversion functions use the concept of a data word. The data word is independent of both the TLM-2.0

socket width and the word width of the generic payload data array. The data word is intended to represent a

register that stores bytes in host-endian order within the component model (regardless of the endianness of the

component being modeled). If the data word width is different to the socket width, the hostendian functions

may have to perform an endianness conversion. If the data word is just one byte wide, the hostendian

functions will effectively perform a conversion from and to byte order mode.

In summary, the approach to be taken with the hostendian conversion functions is to write the initiator code

as if the endianness of the host computer matched the endianness of the component being modeled, while

keeping the bytes within each data word in actual host-endian order. For data words wider than the host

machine word length, use an array in host-endian order. Then if host endianness differs from modeled

endianness, simply call the hostendian conversion functions.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 92

7.19.2 Definition

namespace tlm {

template<class DATAWORD>

inline void tlm_to_hostendian_generic(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_from_hostendian_generic(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_to_hostendian_word(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_from_hostendian_word(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_to_hostendian_aligned(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_from_hostendian_aligned(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_to_hostendian_single(tlm_generic_payload *, unsigned int);

template<class DATAWORD>

inline void tlm_from_hostendian_single(tlm_generic_payload *, unsigned int);

inline void tlm_from_hostendian(tlm_generic_payload *);

} // namespace tlm

7.19.3 Rules

a) The first argument to a function of the form to_hostendian should be a pointer to a generic payload

transaction object that would be valid if it were sent through a transport interface. The function should

only be called after constructing and initializing the transaction object and before passing it to an

interface method call.

b) The first argument to a function of the form from_hostendian shall be a pointer to a generic payload

transaction object previously passed to to_hostendian. The function should only be called when the

initiator receives a response for the given transaction or the transaction is complete. Since the function

may modify the transaction and its arrays, it should only be called at the end of the lifetime of the

transaction object.

c) If a to_hostendian function is called for a given transaction, the corresponding from_hostendian function

should also be called with the same template and function arguments. Alternatively, the function

tlm_from_hostendian(tlm_generic_payload *) can be called for the given transaction. This function uses

additional context information stored with the transaction object (as an ignorable extension) to recover

the template and function argument values, but is marginally slower in execution.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 93

d) The second argument to a hostendian function should be the width of the local socket through which the

transaction is passed, expressed in bytes. This is equivalent to the word length of the generic payload data

array with respect to the local socket. This shall be a power of 2.

e) The template argument to a hostendian function should be a type representing the internal initiator data

word for the endianness conversion. The expression sizeof(DATAWORD) is used to determine the width

of the data word in bytes, and the assignment operator of type DATAWORD is used during copying.

sizeof(DATAWORD) shall be a power of 2.

f) The implementation of to_hostendian adds an extension to the generic payload transaction object to store

context information. This means that to_hostendian can only be called once before calling

from_hostendian.

g) The following constraints are common to every pair of hostendian functions. The term integer multiple

means 1 x , 2 x , 3 x , ... and so forth:

Socket width shall be a power of 2

Data word width shall be a power of 2

 The streaming width attribute shall be an integer multiple of the data word width

 The data length attribute shall be an integer multiple of the streaming width attribute

h) The hostendian_generic functions are not subject to any further specific constraints. In particular, they

support byte enables, streaming, and non-aligned addresses and word widths.

i) The remaining pairs of functions, namely hostendian_word, hostendian_aligned, and hostendian_single,

all share the following additional constraints:

Data word width shall be no greater than socket width, and as a consequence, socket width shall be a

power-of-2 multiple of data word width.

The streaming width attribute shall equal the data length attribute. That is, streaming is not

supported.

Byte enable granularity shall be no finer than data word width. That is, the bytes in a given data word

shall be either all enabled or all disabled.

If byte enables are present, the byte enable length attribute shall equal the data length attribute.

j) The hostendian_aligned functions alone are subject to the following additional constraints:

The address attribute shall be an integer multiple of the socket width.

The data length attribute shall be an integer multiple of the socket width.

k) The hostendian_single functions alone are subject to the following additional constraints:

The data length attribute shall equal the data word width.

The data array shall not cross a data word boundary, and as a consequence, shall not cross a socket

boundary.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 94

7.20 Generic payload extensions

7.20.1 Introduction

The extension mechanism is an integral part of the generic payload, and is not intended to be used separately

from the generic payload. Its purpose is to permit attributes to be added to the generic payload. Extensions

can be ignorable or non-ignorable, mandatory or non-mandatory.

7.20.1.1 Ignorable extensions

Being ignorable means that any component other than the component that added the extension is permitted to

behave as if the extension were absent. As a consequence, the component that added the ignorable extension

cannot rely on any other component reacting in any way to the presence of the extension, and a component

receiving an ignorable extension cannot rely on other components having recognized that extension. This

definition applies to generic payload extensions and to extended phases alike.

A component shall not fail and shall not generate an error response because of the absence of an ignorable

extension. In this sense, ignorable extensions are also non-mandatory extensions. A component may fail or

generate an error response because of the presence of an ignorable extension, but also has the choice of

ignoring the extension.

In general, an ignorable extension can be thought of as one for which there exists an obvious and safe default

value such that any interconnect component or target can behave normally in the absence of the given

extension by assuming the default value. An example might be the privilege level associated with a

transaction, where the default is the lowest level.

Ignorable extensions may be used to transport auxiliary, side-band, or simulation-related information or meta-

data. For example, a unique transaction identifier, the wall-time when the transaction was created, or a

diagnostic filename.

Ignorable extensions are permitted by the base protocol.

7.20.1.2 Non-ignorable and mandatory extensions

A non-ignorable extension is an extension that every component receiving the transaction is obliged to act

upon if present. A mandatory extension is an extension that is required to be present. Non-ignorable and

mandatory extensions may be used when specializing the generic payload to model the details of a specific

protocol. Non-ignorable and mandatory extensions require the definition of a new protocol traits class.

7.20.2 Rationale

The rationale behind the extension mechanism is twofold. Firstly, to permit TLM-2.0 sockets that carry

variations on the core attribute set of the generic payload to be specialized with the same protocol traits class,

thus allowing them to be bound together directly with no need for adaption or bridging. Secondly, to permit

easy adaption between different protocols where both are based on the same generic payload and extension

mechanism. Without the extension mechanism, the addition of any new attribute to the generic payload would

require the definition of a new transaction class, leading to the need for multiple adapters. The extension

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 95

mechanism allows variations to be introduced into the generic payload, thus reducing the amount of coding

work that needs to be done to traverse sockets that carry different protocols.

7.20.3 Extension pointers, objects and transaction bridges

An extension is an object of a type derived from the class tlm_extension. The generic payload contains an

array of pointers to extension objects. Every generic payload object is capable of carrying a single instance of

every type of extension.

The array-of-pointers to extensions has a slot for every registered extension. The set_extension method

simply overwrites a pointer, and in principle can be called from an initiator, interconnect component, or

target. This provides a very a flexible low-level mechanism, but is open to misuse. The ownership and

deletion of extension objects has to be well-understood and carefully considered by the user.

When creating a transaction bridge between two separate generic payload transactions, it is the responsibility

of the bridge to copy any extensions, if required, from the incoming transaction object to the outgoing

transaction object, and to own and manage the outgoing transaction and its extensions. The same holds for the

data array and byte enable array. The methods deep_copy_from and update_original_from are provided so

that a transaction bridge can perform a deep copy of a transaction object, including the data and byte enable

arrays and the extension objects. If the bridge adds further extensions to the outgoing transaction, those

extensions would be owned by the bridge.

The management of extensions is described more fully in clause 7.5 Generic payload memory management.

7.20.4 Rules

a) An extension can be added by an initiator, interconnect or target component. In particular, the creation of

extensions is not restricted to initiators.

b) Any number of extensions may be added to each instance of the generic payload.

c) In the case of an ignorable extension, any component (excepting the component that added the extension)

is allowed to ignore the extension, and ignorable extensions are not mandatory extensions. Having a

component fail because of either the absence of an ignorable extension or the absence of a response to an

ignorable extension would destroy interoperability.

d) There is no built-in mechanism to enforce the presence of a given extension, nor is there a mechanism to

ensure that an extension is ignorable.

e) The semantics of each extension shall be application-defined. There are no pre-defined extensions.

f) An extension shall be created by deriving a user-defined class from the class tlm_extension, passing the

name of the user-defined class itself as a template argument to tlm_extension, then creating an object of

that class. The user-defined extension class may include members which represent extended attributes of

the generic payload.

g) The virtual method free of the class tlm_extension_base shall delete the extension object. This method

may be overridden to implement user-defined memory management of extension, but this is not

necessary.

h) The pure virtual function clone of class tlm_extension shall be defined in the user-defined extension

class to clone the extension object, including any extended attributes. This clone method is intended for

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 96

use in conjunction with generic payload memory management. It shall create a copy of any extension

object such that the copy can survive the destruction of the original object with no visible side-effects.

i) The pure virtual function copy_from of class tlm_extension shall be defined in the user-defined

extension class to modify the current extension object by copying the attributes of another extension

object.

j) The act of instantiating the class template tlm_extension shall cause the public data member ID to be

initialized, and this shall have the effect of registering the given extension with the generic payload object

and assigning a unique ID to the extension. The ID shall be unique across the whole executing program.

That is, each instantiation of the class template tlm_extension shall have a distinct ID, whereas all

extension objects of a given type shall share the same ID.

k) The generic payload shall behave as if it stored pointers to the extensions in a re-sizable array, where the

ID of the extension gives the index of the extension pointer in the array. Registering the extension with

the generic payload shall reserve an array index for that extension. Each generic payload object shall

contain an array capable of storing pointers to every extension registered in the currently executing

program.

l) The pointers in the extension array shall be null when the transaction is constructed.

m) Each generic payload object can store a pointer to at most one object of any given extension type (but to

many objects of different extensions types). (There exists a utility class instance_specific_extension,

which enables a generic payload object to reference several extension objects of the same type. See 9.4

Instance-specific extensions.)

n) The function max_num_extensions shall return the number of extension types, that is, the size of the

extension array. As a consequence, the extension types shall be numbered from 0 to

max_num_extensions()-1.

o) The methods set_extension, set_auto_extension, get_extension, clear_extension, and

release_extension are provided in several forms, each of which identify the extension to be accessed in

different ways: using a function template, using an extension pointer argument, or using an ID argument.

The functions with an ID argument are intended for specialist programming tasks such as when cloning a

generic payload object, and not for general use in applications.

p) The method set_extension(T*) shall replace the pointer to the extension object of type T in the array-of-

pointers with the value of the argument. The argument shall be a pointer to a registered extension. The

return value of the function shall be the previous value of the pointer in the generic payload that was

replaced by this call, which may be a null pointer. The method set_auto_extension(T*) shall behave

similarly, except that the extension shall be marked for automatic deletion.

q) The method set_extension(unsigned int, tlm_extension_base*) shall replace the pointer to the extension

object in the array-of-pointers at the array index given by the first argument with the value of the second

argument. The given index shall have been registered as an extension ID, otherwise the behavior of the

function is undefined. The return value of the function shall be the previous value of the pointer at the

given array index, which may be a null pointer. The method set_auto_extension(unsigned int,

tlm_extension_base*) shall behave similarly, except that the extension shall be marked for automatic

deletion

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 97

r) In the presence of a memory manager, a call to set_auto_extension for a given extension is equivalent to

a call to set_extension immediatedly followed by a call to release_extension for that same extension. In

the absence of a memory manager, a call to set_auto_extension will cause a run-time error.

s) If an extension is marked for automatic deletion, the given extension object should be deleted or pooled

by the implementation of the method free of a user-defined memory manager. Method free is called by

method release of class tlm_generic_payload when the reference count of the transaction object reaches

0. The extension object may be deleted by calling method reset of class tlm_generic_payload or by

calling method free of the extension object itself.

t) If the generic payload object already contained a non-null pointer to an extension of the type being set,

then the old pointer is overwritten.

u) The method functions get_extension(T*&) and T* get_extension() shall each return a pointer to the

extension object of the given type, if it exists, or a null pointer if it does not exist. The type T shall be a

pointer to an object of a type derived from tlm_extension. It is not an error to attempt to retrieve a non-

existent extension using this function template.

v) The method get_extension(unsigned int) shall return a pointer to the extension object with the ID given

by the argument. The given index shall have been registered as an extension ID, otherwise the behavior

of the function is undefined. If the pointer at the given index does not point to an extension object, the

function shall return a null pointer.

w) The methods clear_extension(const T*) and clear_extension() shall remove the given extension from

the generic payload object, that is, shall set the corresponding pointer in the extension array to null. The

extension may be specified either by passing a pointer to an extension object as an argument, or by using

the function template parameter type, for example clear_extension<ext_type>(). If present, the argument

shall be a pointer to an object of a type derived from tlm_extension. Method clear_extension shall not

delete the extension object.

x) The methods release_extension(T*) and release_extension() shall mark the extension for automatic

deletion if the transaction object has a memory manager, or otherwise shall delete the given extension by

calling the method free of the extension object and setting the corresponding pointer in the extension

array to null. The extension may be specified either by passing a pointer to an extension object as an

argument, or by using the function template parameter type, for example

release_extension<ext_type>(). If present, the argument shall be a pointer to an object of a type derived

from tlm_extension.

y) Note that the behavior of method release_extension depends upon whether or not the transaction object

has a memory manager. With a memory manager, the extension is merely marked for automatic deletion,

and continues to be accessible. In the absence of a memory manager, not only is the extension pointer

cleared but also the extension object itself is deleted. Care should be taken not to release a non-existent

extension object, because doing so will result in a run-time error.

z) The methods clear_extension and release_extension shall not be called for extensions marked for

automatic deletion, for example, an extension set using set_auto_extension or already released using

release_extension. Doing so may result in a run-time error.

aa) Each generic payload transaction should allocate sufficient space to store pointers to every registered

extension. This can be achieved in one of two ways, either by constructing the transaction object after

C++ static initialization, or by calling the method resize_extensions after static initialization but before

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 98

using the transaction object for the first time. In the former case, it is the responsibility of the generic

payload constructor to set the size of the extension array. In the latter case, it is the responsibility of the

application to call resize_extensions before accessing the extensions for the first time.

bb) The method resize_extensions shall increase the size of the extensions array in the generic payload to

accommodate every registered extension.

Example

// Showing an ignorable extension

// User-defined extension class

struct ID_extension: tlm::tlm_extension<ID_extension>

{

 ID_extension() : transaction_id(0) {}

 virtual tlm_extension_base* clone() const { // Must override pure virtual clone method

 ID_extension* t = new ID_extension;

 t->transaction_id = this->transaction_id;

 return t;

 }

 // Must override pure virtual copy_from method

 virtual void copy_from(tlm_extension_base const &ext) {

 transaction_id = static_cast<ID_extension const &>(ext).transaction_id;

 }

 unsigned int transaction_id;

};

// The initiator

struct Initiator: sc_module

{ ...

 void thread() {

 tlm::tlm_generic_payload trans;

 ...

 ID_extension* id_extension = new ID_extension;

 trans.set_extension(id_extension); // Add the extension to the transaction

 for (int i = 0; i < RUN_LENGTH; i += 4) {

 ...

 ++ id_extension->transaction_id; // Increment the id for each new transaction

 ...

 socket->b_transport(trans, delay);

 ...

// The target

virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& t)

{ ...

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 99

 ID_extension* id_extension;

 trans.get_extension(id_extension); // Retrieve the extension

 if (id_extension) { // Extension is not mandatory

 char txt[80];

 sprintf(txt, "Received transaction id %d", id_extension->transaction_id);

 SC_REPORT_INFO("TLM-2.0", txt);

 }

 ...

// Showing a new protocol traits class with a mandatory extension

struct cmd_extension: tlm::tlm_extension<cmd_extension>

{ // User-defined mandatory extension class

 cmd_extension(): increment(false) {}

 virtual tlm_extension_base* clone() const {

 cmd_extension* t = new cmd_extension;

 t->increment = this->increment;

 return t;

 }

 virtual void copy_from(tlm_extension_base const &ext) {

 increment = static_cast<cmd_extension const &>(ext).increment;

 }

 bool increment;

};

struct my_protocol_types // User-defined protocol traits class

{

 typedef tlm::tlm_generic_payload tlm_payload_type;

 typedef tlm::tlm_phase tlm_phase_type;

};

struct Initiator: sc_module

{

 tlm_utils::simple_initiator_socket<Initiator, 32, my_protocol_types> socket;

 ...

 void thread() {

 tlm::tlm_generic_payload trans;

 cmd_extension* extension = new cmd_extension;

 trans.set_extension(extension); // Add the extension to the transaction

 ...

 trans.set_command(tlm::TLM_WRITE_COMMAND); // Execute a write command

 socket->b_transport(trans, delay);

 ...

 trans.set_command(tlm::TLM_IGNORE_COMMAND);

 extension->increment = true; // Execute an increment command

 socket->b_transport(trans, delay);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 100

 ...

 ...

// The target

tlm_utils::simple_target_socket<Memory, 32, my_protocol_types> socket;

virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& t)

{

 tlm::tlm_command cmd = trans.get_command();

 ...

 cmd_extension* extension;

 trans.get_extension(extension); // Retrieve the command extension

 ...

 if (!extension) { // Check the extension exists

 trans.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

 return;

 }

 if (extension->increment) {

 if (cmd != tlm::TLM_IGNORE_COMMAND) { // Detect clash with read or write

 trans.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);

 return;

 }

 ++ m_storage[adr]; // Execute an increment command

 memcpy(ptr, &m_storage[adr], len);

 }

 ...

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 101

8 Base protocol and phases

8.1 Phases

8.1.1 Introduction

Class tlm_phase is the default phase type used by the non-blocking transport interface class templates and the

base protocol. A tlm_phase object represents the phase with an unsigned int value. Class tlm_phase is

assignment compatible with type unsigned int and with an enumeration having values corresponding to the

four phases of the base protocol, namely BEGIN_REQ, END_REQ, BEGIN_RESP, and END_RESP.

Because type tlm_phase is a class rather than an enumeration, it is able to support an overloaded stream

operator to display the value of the phase as ASCII text.

The set of four phases provided by tlm_phase_enum can be extended using the macro

DECLARE_EXTENDED_PHASE. This macro creates a singleton class derived from tlm_phase with a

method get_phase that returns the corresponding object. That object can be used as a new phase.

For maximal interoperability, an application should only use the four phases of tlm_phase_enum. If further

phases are required in order to model the details of a specific protocol, the intent is that

DECLARE_EXTENDED_PHASE should be used, since this retains assignment compatibility with type

tlm_phase.

The principle of ignorable versus non-ignorable or mandatory extensions applies to phases in the same way as

to generic payload extensions. In other words, ignorable phases are permitted by the base protocol. An

ignorable phase has to be ignorable by the recipient in the sense that the recipient can simply act as if it had

not received the phase transition, and consequently the sender has to be able to continue in the absence of any

response from the recipient. If a phase is not ignorable in this sense, a new protocol traits class should be

defined. See 7.2.2 Define a new protocol traits class containing a typedef for tlm_generic_payload.

8.1.2 Class definition

namespace tlm {

enum tlm_phase_enum {

 UNINITIALIZED_PHASE=0, BEGIN_REQ=1, END_REQ, BEGIN_RESP, END_RESP };

class tlm_phase{

public:

 tlm_phase();

 tlm_phase(unsigned int);

 tlm_phase(const tlm_phase_enum&);

 tlm_phase& operator= (const tlm_phase_enum&);

 operator unsigned int() const;

};

inline std::ostream& operator<< (std::ostream& , const tlm_phase&);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 102

#define DECLARE_EXTENDED_PHASE(name_arg) \

class tlm_phase_##name_arg : public tlm::tlm_phase{ \

public:\

 static const tlm_phase_##name_arg& get_phase();\

 implementation-defined \

}; \

static const tlm_phase_##name_arg& name_arg=tlm_phase_##name_arg::get_phase()

} // namespace tlm

8.1.3 Rules

a) The default constructor tlm_phase shall set the value of the phase to 0, corresponding to the enumeration

literal UNINITIALIZED_PHASE.

b) The methods tlm_phase(unsigned int), operator= and operator unsigned int shall get or set the value

of the phase using the corresponding unsigned int or enum.

c) The function operator<< shall write a character string corresponding to the name of the phase to the

given output stream. For example ―BEGIN_REQ‖.

d) The macro DECLARE_EXTENDED_PHASE(name_arg) shall create a new singleton class named

tlm_phase_name_arg, derived from tlm_phase, and having a public method get_phase that returns a

reference to the static object so created. The macro argument shall be used as the character string written

by operator<< to denote the corresponding phase.

e) The intent is that the object denoted by the static const name_arg represents the extended phase that may

be passed as a phase argument to nb_transport.

Example

DECLARE_EXTENDED_PHASE(ignore_me); // Declare two extended phases

DECLARE_EXTENDED_PHASE(internal_ph); // Only used within target

struct Initiator: sc_module

{ ...

 { ...

 phase = tlm::BEGIN_REQ;

 delay = sc_time(10, SC_NS);

 socket->nb_transport_fw(trans, phase, delay); // Send phase BEGIN_REQ to target

 phase = ignore_me; // Set phase variable to the extended phase

 delay = sc_time(12, SC_NS);

 socket->nb_transport_fw(trans, phase, delay); // Send the extended phase 2ns later

 ...

struct Target: sc_module

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 103

{

 ...

 SC_CTOR(Target)

 : m_peq("m_peq", this, &Target::peq_cb) {} // Register callback with PEQ

 virtual tlm::tlm_sync_enum nb_transport_fw(tlm::tlm_generic_payload& trans,

 tlm::tlm_phase& phase, sc_time& delay) {

 cout << "Phase = " << phase << endl; // use overloaded operator<< to print phase

 m_peq.notify(trans, phase, delay); // Move transaction to internal queue

 return tlm::TLM_ACCEPTED;

 }

 void peq_cb(tlm::tlm_generic_payload& trans, const tlm::tlm_phase& phase)

 { // PEQ callback

 sc_time delay;

 tlm::tlm_phase phase_out;

 if (phase == tlm::BEGIN_REQ) { // Received BEGIN_REQ from initiator

 phase_out = tlm::END_REQ;

 delay = sc_time(10, SC_NS);

 socket->nb_transport_bw(trans, phase_out, delay); // Send END_REQ back to initiator

 phase_out = internal_ph; // Use extended phase to signal internal event

 delay = sc_time(15, SC_NS);

 m_peq.notify(trans, phase_out, delay); // Put internal event into PEQ

 }

 else if (phase == internal_ph) // Received internal event

 {

 phase_out = tlm::BEGIN_RESP;

 delay = sc_time(10, SC_NS);

 socket->nb_transport_bw(trans, phase_out, delay); // Send BEGIN_RESP back to initiator

 }

 } // Ignore phase ignore_me from initiator

 tlm_utils::peq_with_cb_and_phase<Target, tlm::tlm_base_protocol_types> m_peq;

};

8.2 Base protocol

8.2.1 Introduction

The base protocol consists of a set of rules to ensure maximal interoperability between transaction level

models of components that interface to memory-mapped buses. The base protocol requires the use of the

classes of the TLM-2.0 interoperability layer listed here, together with the rules defined in this clause:

a) The TLM-2.0 core transport, direct memory and debug transport interfaces. See 4 TLM-2.0 Core

Interfaces

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 104

b) The socket classes tlm_initiator_socket and tlm_target_socket (or classes derived from these). See 6.2

Initiator and target sockets

c) The generic payload class tlm_generic_payload. See 7 Generic payload.

d) The phase class tlm_phase

The base protocol rules permit extensions to the generic payload and to the phases only if those extensions are

ignorable. Non-ignorable extensions require the definition of a new protocol traits class. See 7.2.1 Use the

generic payload directly, with ignorable extensions

The base protocol is represented by the pre-defined class tlm_base_protocol_types. However, this class

contains nothing but two type definitions. All components that use this class (as template argument to a

socket) are obliged by convention to respect the rules of the base protocol.

In cases where it is necessary to define a new protocol traits class (e.g. because the features of the base

protocol are insufficient to model a particular protocol), the rules associated with the new protocol traits class

override those of the base protocol. However, for consistency and interoperability it is recommended that the

rules and coding style associated with any new protocol traits class should follow those of the base protocol as

far as possible. See 7.2.2 Define a new protocol traits class containing a typedef for tlm_generic_payload

This section of the standard specifically concerns the base protocol, but nonetheless may be used as a guide

when modeling other protocols. Specific protocols represented by other protocol traits classes may include

additional phases and may adopt their own rules for timing annotation, transaction ordering, and so forth. In

doing so, they may cease to be compatible with the base protocol.

8.2.2 Class definition

namespace tlm {

struct tlm_base_protocol_types

{

 typedef tlm_generic_payload tlm_payload_type;

 typede tlm_phase tlm_phase_type;

};

} // namespace tlm

8.2.3 Base protocol phase sequences

a) The base protocol permits the use of the blocking transport interface, the non-blocking transport

interface, or both together. The blocking transport interface does not carry phase information. When used

with the base protocol, the constraints governing the order of calls to nb_transport are stronger than those

governing the order of calls to b_transport. Hence nb_transport is more for the approximately-timed

coding style, and b_transport for the loosely-timed coding style

b) The full sequence of phase transitions for a given transaction through a given socket is:

BEGIN_REQ → END_REQ → BEGIN_RESP → END_RESP

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 105

c) BEGIN_REQ and END_RESP shall be sent through initiator sockets only, END_REQ and

BEGIN_RESP through target sockets only.

d) In the case of the blocking transport interface, a transaction instance is associated with a single call to and

return from b_transport. The correspondence between the call to b_transport and BEGIN_REQ, and

the return from b_transport and BEGIN_RESP, is purely notional; b_transport has no associated

phases.

e) For the base protocol, each call to nb_transport and each return from nb_transport with a value of

TLM_UPDATED shall cause a phase transition. In other words, two consecutive calls to nb_transport

for the same transaction shall have different values for the phase argument. Ignorable phase extensions

are permitted, in which case the insertion of an extended phase shall count as a phase transition for the

purposes of this rule, even if the phase is ignored.

f) The phase sequence can be cut short by having nb_transport return a value of TLM_COMPLETED, but

only in one of the following ways. An interconnect component or target may return TLM_COMPLETED

when it receives BEGIN_REQ or END_RESP on the forward path. An interconnect component or

initiator may return TLM_COMPLETED when it receives BEGIN_RESP on the backward path. A return

value of TLM_COMPLETED indicates the end of the transaction with respect to a particular hop, in

which case the phase argument should be ignored by the caller (see 4.1.2.7 The tlm_sync_enum return

value). TLM_COMPLETED does not imply successful completion, so the initiator should check the

response status of the transaction for success or failure.

g) A transition to the phase END_RESP shall also indicate the end of the transaction with respect to a

particular hop, in which case the callee is not obliged to return a value of TLM_COMPLETED.

Examples of early completion
Figure 13

Initiator Target

-, BEGIN_REQ, 0ns

TLM_COMPLETED, -, -

Call

Return

TLM_COMPLETED, -, -

-, BEGIN_RESP, 0ns Call

Return

-, BEGIN_REQ, 0ns

TLM_ACCEPTED, -, -

Call

Return

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 106

h) When TLM_COMPLETED is returned in an upstream direction after having received BEGIN_REQ, this

carries with it an implicit END_REQ and an implicit BEGIN_RESP. Hence the initiator should check the

response status of the generic payload, and may send BEGIN_REQ for the next transaction immediately.

i) Since TLM_COMPLETED returned after having received BEGIN_REQ carries with it an implicit

BEGIN_RESP, this situation is forbidden by the response exclusion rule if there is already a response in

progress through a given socket. In this situation the callee should have returned TLM_ACCEPTED

instead of TLM_COMPLETED and should wait for END_RESP before sending the next response

upstream.

j) Since TLM_COMPLETED returned after having received BEGIN_REQ indicates the end of the

transaction, an interconnect component or initiator is forbidden from then sending END_RESP for that

same transaction through that same socket.

k) When TLM_COMPLETED is returned in a downstream direction by a component after having received

BEGIN_RESP, this carries with it an implicit END_RESP.

l) If a component receives a BEGIN_RESP from a downstream component without having first received an

END_REQ for that same transaction, the initiator shall assume an implicit END_REQ immediately

preceding the BEGIN_RESP. This is only the case for the same transaction; a BEGIN_RESP does not

imply an END_REQ for any other transaction, and a target that receives a BEGIN_REQ cannot infer an

END_RESP for the previous transaction.

m) The above points hold regardless of the value of the timing annotation argument to nb_transport.

n) A base protocol transaction is complete (with respect to a particular hop) when TLM_COMPLETED is

returned on either path, or when END_RESP is sent on the forward path or the return path.

o) In the case where END_RESP is sent on the forward path, the callee may return TLM_ACCEPTED or

TLM_COMPLETED. The transaction is complete in either case.

p) A given transaction may complete at different times on different hops. A transaction object passed to

nb_transport is obliged to have a memory manager, and the lifetime of the transaction object ends when

the reference count of the generic payload reaches zero. Any component that calls the acquire method of

a generic payload transaction object should also call the release method at or before the completion of

the transaction. See 7.5 Generic payload memory management

q) If a component receives an illegal or out-of-order phase transition, this is an error on the part of the

sender. The behavior of the recipient is undefined, meaning that a run-time error may be caused.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 107

8.2.4 Permitted phase transitions

Taking all of the rules in the previous clause into account, the set of permitted phase transitions over a given

hop for the base protocol is shown in the following table.

Previous

state

 Calling

path

Phase

argument on

call

Phase

argument on

return

Status on

return

Response

valid

End-

of-

life

 Next

state

//rsp Forward BEGIN_REQ - Accepted req

//rsp Forward BEGIN_REQ END_REQ Updated //req

//rsp Forward BEGIN_REQ BEGIN_RESP Updated  rsp

//rsp Forward BEGIN_REQ - Completed   //rsp

req Backward END_REQ - Accepted //req

req Backward BEGIN_RESP - Accepted  rsp

req Backward BEGIN_RESP END_RESP Updated   //rsp

req Backward BEGIN_RESP - Completed   //rsp

//req Backward BEGIN_RESP - Accepted  rsp

//req Backward BEGIN_RESP END_RESP Updated   //rsp

//req Backward BEGIN_RESP - Completed   //rsp

rsp Forward END_RESP - Accepted   //rsp

rsp Forward END_RESP - Completed   //rsp

a) req, //req, rsp, //rsp stand for BEGIN_REQ, END_REQ, BEGIN_RESP, and END_RESP respectively.

b) These phase state transitions are independent of the value of the sc_time argument to nb_transport (the

timing annotation). In other words, a call to nb_transport will cause the state transition shown in the table

regardless of the value of the timing annotation. (The timing annotation may have the effect of delaying

the subsequent execution of the transaction.)

c) The previous state column shows the state of a given hop before a call to nb_transport.

d) The calling path column indicates whether the corresponding method is called on the forward path

(nb_transport_fw) or backward path (nb_transport_bw).

e) The phase argument on call column gives the value of the phase argument on the call to nb_transport.

This will be the phase presented to the callee.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 108

f) The phase argument on return column gives the value of the phase argument on return from

nb_transport. The phase argument is only valid if the method returns TLM_UPDATED.

g) The status on return column gives the return value of the nb_transport method, Accepted

(TLM_ACCEPTED), Updated (TLM_UPDATED), or Completed (TLM_COMPLETED).

h) The response valid column is checked if the response status attribute of the transaction is valid on return

from the nb_transport method.

i) The end-of-life column is checked if the transaction has reached the end of its lifetime with respect to

this hop, that is, if no further nb_transport calls are permitted for the given transaction over the given

hop.

j) The next state column shows the state of a given hop after return from nb_transport.

k) A phase transition can be caused either by the caller (indicated by a ‗-‘ in the phase argument on return

column) or by the callee.

l) Ignorable phase extensions may be inserted at any point between BEGIN_REQ and END_RESP

m) A valid response does not indicate successful completion. The transaction may or may not have been

successful.

n) Figure 14 on the next page presents, in a graphical format, the nb_transport call sequences permitted by

the base protocol over a given hop. A traversal of the graph from Start to End gives a permitted call

sequence for a single transaction instance. The rectangles show calls to nb_transport together with the

value of the phase argument, the rounded rectangles show the status and where appropriate the value of

the phase argument on return. The larger shaded rectangles show phase transitions.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 109

nb_transport Call Sequence for each Base Protocol Transaction Figure 14

Start

End

nb_transport_fw / BEGIN_REQ

nb_transport_bw / END_REQ

nb_transport_bw / BEGIN_RESP

nb_transport_fw / END_RESP

TLM_ACCEPTED

TLM_ACCEPTED

TLM_ACCEPTED

TLM_ACCEPTEDTLM_COMPLETED

TLM_UPDATED / END_REQ

TLM_UPDATED / BEGIN_RESP

TLM_UPDATED / END_RESP

Call

Return

Legend:

Phase transition

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 110

8.2.5 Ignorable phases

Extended phases may be used with the base protocol provided that they are ignorable phases. An ignorable

phase may be ignored by its recipient.

a) In general, the recommended way to add extended phases to the four phases of the base protocol is to

define a new protocol traits class. See 7.2.2 Define a new protocol traits class containing a typedef for

tlm_generic_payload. Ignorable phases are a special and restricted case of extended phases. The main

purpose of ignorable phases is to permit extra timing points to be added to the base protocol in order to

increase the timing accuracy of the model. For example, an ignorable phase could mark the time of the

start of the data transfer from initiator to target.

b) In the case of a call to nb_transport, if it is the callee that is ignoring the phase it shall return a value of

TLM_ACCEPTED. In the case that the callee returns TLM_UPDATED, the caller may ignore the phase

being passed on the return path but is not obliged to take any specific action to indicate that the phase is

being ignored.

c) The nb_transport interface does not provide any way for the caller of nb_transport to distinguish

between the case where the callee is ignoring the phase, and the case where the callee will respond later

on the opposite path. The callee shall return TLM_ACCEPTED in either case.

d) The presence of an ignorable phase shall not change the order or the semantics of the four phases

BEGIN_REQ, END_REQ, BEGIN_RESP, and END_RESP of the base protocol, and is not permitted to

result in any of the rules of the base protocol being broken.

e) An ignorable phase shall not occur before BEGIN_REQ or after END_RESP for a given transaction

through a given socket. The presence of an ignorable phase before BEGIN_REQ or after END_RESP

would violate the base protocol, and is an error.

f) The presence of an ignorable phase shall not change the rules concerning the validity of the generic

payload attributes or the rules for modifying those attributes. For example, on receipt of an ignorable

phase, an interconnect component is only permitted to modify the address attribute, DMI allowed

attribute, and extensions. See 7.7 Default values and modifiability of attributes.

g) With the exception of transparent components as defined below, if the recipient of an ignorable phase

does not recognize that phase (that is, the phase is being ignored), the recipient shall not propagate that

phase on the forward, the backward or the return path. In other words, a component is only permitted to

pass a phase as an argument to an nb_transport call if it fully understands the semantics of that phase.

h) If the recipient of an ignorable phase does recognize that phase, provided that the base protocol is not

violated, the behavior of that component is otherwise outside the scope of the base protocol and is

undefined by the base protocol. The recipient should obey the semantics of the extended protocol to

which the phase belongs.

i) By definition, a component that sends an ignorable phase cannot require or demand any kind of response

from the components to which that phase is sent other than the minimal response of nb_transport

returning a value of TLM_ACCEPTED. A phase that demands a response is not ignorable, by definition,

in which case the recommended approach is to define a new protocol traits class rather than using

extensions to the base protocol. This prevents the binding of sockets that represent incompatible

protocols.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 111

j) On the other hand, a base-protocol-compliant component that does recognize an incoming extended

phase may respond by sending another extended phase on the opposite path according to the rules of

some extended protocol agreed in advance. This possibility is permitted by the TLM-2.0 standard,

provided that the rules of the base protocol are not broken. For example, such an extended protocol could

make use of generic payload extensions.

k) It is possible to create so-called transparent interconnect components, which immediately and directly

pass through any TLM-2.0 interface method calls between a target socket and an initiator socket

contained within the same component. The sole intent of recognizing transparent components in this

standard is to allow for checkers and monitors, which typically have one target socket, one initiator

socket, and pass through all transactions in both directions without modification.

l) Within a transparent component, the implementation of any TLM-2.0 core interface method shall not

consume any simulation time, insert any delay, or call wait, but shall immediately make the identical

interface method call through the opposing socket (initiator socket to target socket or target socket to

initiator socket), passing through all its arguments. Such an interface method shall not modify the value

of any argument, including the transaction object, the phase and the delay, with the one exception of

generic payload extensions. The routing through such transparent components shall be fixed, and not

depend on transaction attributes or phases.

m) As a consequence of the above rules, a transparent component would pass through any extended phase or

ignorable phase in either direction.

Example

An example of an ignorable phase generated by an initiator would be a phase to mark the first beat of the data

transfer from the initiator in the case of a write command. An interconnect component or target that

recognized this phase could distinguish between the time at which the command and address become

Ignorable Phases

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Initiator Target

Figure 15

BEGIN_DATA (ignored)

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Initiator Target

BEGIN_DATA (used)

SPLIT (ignored) SPLIT (used)

BEGIN_REQ (sent early)

END_REQ

BEGIN_REQ (after RESP)

END_REQ

Timing

reference

for

response

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 112

available and the start of the data transfer. A target that ignored this phase would have to use the

BEGIN_REQ phase as its single timing reference for the availability of the command, address and data.

An example of an ignorable phase generated by a target would be a phase to mark a split transaction. An

initiator that recognized this phase could send the next request immediately upon receiving the split phase,

knowing that the target would be ready to process it. An initiator that ignored the split phase might wait until

it had received a response to the first request before sending the second request.

8.2.6 Base protocol timing parameters and flow control

a) With four phases, it is possible to model the request accept delay (or minimum initiation interval between

sending successive transactions), the latency of the target, and the response accept delay. This kind of

timing granularity is appropriate for the approximately-timed coding style.

b) For a write command, the BEGIN_REQ phase marks the time when the data becomes available for

transfer from initiator through interconnect component to target. Notionally, the transition to the

BEGIN_REQ phase corresponds to the start of the first beat of the data transfer. It is the responsibility of

the downstream component to calculate the transfer time, and to send END_REQ back upstream when it

is ready to receive the next transfer. It would be natural for the downstream component to delay the

END_REQ until the end of the final beat of the data transfer, but it is not obliged to do so.

c) For a read command, the BEGIN_RESP phase marks the time when the data becomes available for

transfer from target through interconnect component to initiator. Notionally, the transition to the

BEGIN_RESP phase corresponds to the start of the first beat of the data transfer. It is the responsibility

of the upstream component to calculate the transfer time, and to send END_RESP back downstream

Approximately-timed timing parameters

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Initiator Target

Request accept delay

Response accept delay

Latency of target

Figure 16

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 113

when it is ready to receive the next transfer. It would be natural for the upstream component to delay the

END_RESP until the end of the final beat of the data transfer, but it is not obliged to do so.

d) For a read command, if a downstream component completes a transaction early by returning

TLM_COMPLETED from nb_transport_fw, it is the responsibility of the upstream component to

account for the data transfer time in some other way, if it wishes to do so (since it is not permitted to send

END_RESP).

e) For the base protocol, an initiator or interconnect component shall not send a new transaction through a

given socket with phase BEGIN_REQ until it has received END_REQ or BEGIN_RESP from the

downstream component for the immediately preceding transaction or until the downstream component

has completed the previous transaction by returning the value TLM_COMPLETED from

nb_transport_fw. This is known as the request exclusion rule.

f) For the base protocol, a target or interconnect component shall not respond to a new transaction through a

given socket with phase BEGIN_RESP until it has received END_RESP from the upstream component

for the immediately preceding transaction or until a component has completed the previous transaction

over that hop by returning TLM_COMPLETED. This is known as the response exclusion rule.

g) All the rules governing phase transitions, including the request and response exclusion rules, shall be

based on method call order alone, and shall not be affected by the value of the time argument (the timing

annotation).

h) Successive transactions sent through a given socket using the non-blocking transport interface can be

pipelined. By responding to each BEGIN_REQ (or BEGIN_RESP) with an END_REQ (or END_RESP),

an interconnect component can permit any number of transaction objects to be in flight at the same time.

By not responding immediately with END_REQ (or END_RESP), an interconnect component can

exercise flow control over the stream of transaction objects coming from an initiator (or target).

i) This rule excluding the possibility of two outstanding requests or responses through a given socket shall

only apply to the non-blocking transport interface, and shall have no direct effect on calls to b_transport.

(The rule may have an indirect effect on a call to b_transport in the case that b_transport itself calls

nb_transport_fw.)

j) For a given transaction, BEGIN_REQ shall always start from an initiator and be propagated through zero

or more interconnect components until it is received by a target. For a given transaction, an interconnect

component is not permitted to send BEGIN_REQ to a downstream component before having received

BEGIN_REQ from an upstream component.

k) For a given transaction, BEGIN_RESP shall always start from a target and be propagated through zero or

more interconnect components until it is received by an initiator. For a given transaction, an interconnect

component is not permitted to send BEGIN_RESP to an upstream component before having received

BEGIN_RESP from a downstream component. This applies whether BEGIN_RESP is explicit or is

implied by TLM_COMPLETED.

l) For a given transaction, an interconnect component may send END_REQ to an upstream component

before having received END_REQ from a downstream component. Similarly, an interconnect component

may send END_RESP to a downstream component before having received END_RESP from an

upstream component. This applies whether END_REQ and END_RESP are explicit or implicit.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 114

m) END_REQ and END_RESP are primarily for flow control between adjacent components. These two

phases do not signal the validity of any standard generic payload attributes. Because these two phases are

not propagated causally from end-to-end, they cannot reliably be used to signal the validity of extensions

from initiator-to-target or target-to-initiator, but they can be used to signal the validity of extensions

between two adjacent components.

n) Whether or not an interconnect component is permitted to send an extended phase before having received

the corresponding phase depends on the rules associated with the extended phase in question.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 115

Causality with b_transport
Figure 17

Initiator TargetInterconnect Interconnect

b_transport

return

b_transport

return

b_transport

return

Initiator sets

attributes

Target

modifies

attributes

Initiator

checks

response

Modifies

address

Modifies

address

Causality with nb_transport
Figure 18

Req in progress Req in progress

Resp in progress

Resp in progress

Resp in progress

Req in progress

Initiator Target

BEGIN_REQ

Interconnect Interconnect

END_REQ

BEGIN_RESP

END_RESP

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Target

modifies

attributes

Initiator

checks

response

Initiator sets

attributes

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 116

Example

The following pseudo-code illustrates the interaction between timing annotation and the request and

response exclusion rules:

void initiator_1_thread_process()

{

 // The initiator sends a request to be executed at +1000ns

 phase = BEGIN_REQ; delay = sc_time(1000, SC_NS);

 status = socket->nb_transport_fw (T1, phase, delay);

 assert(status == TLM_UPDATED && phase == END_REQ && delay == sc_time(1010, SC_NS));

 // END_REQ is returned immediately to be executed at +1010ns

 // Note that this is not a recommended coding style

 // With loosely-timed, the initiator would have called b_transport

 // With approximately-timed, the downstream component would have returned TLM_ACCEPTED

 // in order to synchronize, and the initiator would have been forced to wait for END_REQ

 // The initiator is allowed to send the next request immediately, to be executed at +1050ns

 phase = BEGIN_REQ; delay = sc_time(1050, SC_NS);

 status = socket->nb_transport_fw (T2, phase, delay);

 assert(status == TLM_UPDATED && phase == END_REQ && delay == sc_time(1060, SC_NS));

 // The initiator is technically allowed to send the next request at an earlier local time of +500ns,

 // although the decreased timing annotation is not a recommended coding style

 phase = BEGIN_REQ; delay = sc_time(500, SC_NS);

 status = socket->nb_transport_fw (T3, phase, delay);

 assert(status == TLM_UPDATED && phase == END_REQ && delay == sc_time(510, SC_NS));

 // The initiator now yields control, allowing other initiators to resume and simulation time to advance

 wait(…);

}

void initiator_2_thread_process()

{

 // Assume the calls below are appended to the transaction stream sent from the first initiator above

 // The second initiator sends a request to be executed at +10ns

 // The timing annotation as seen downstream has decreased from +510ns to +10ns

 // This is typical behavior for loosely-timed initiators

 phase = BEGIN_REQ; delay = sc_time(10, SC_NS);

 status = socket->nb_transport_fw (T4, phase, delay);

 assert(status == TLM_UPDATED && phase == END_REQ && delay == sc_time(30, SC_NS));

 // END_REQ is returned immediately to be executed at +30ns

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 117

 // The initiator sends the next request to be executed at +20ns, which overlaps with the previous request

 // This is technically allowed because the current phase of the hop is END_REQ, but is not recommended

 phase = BEGIN_REQ; delay = sc_time(20, SC_NS);

 status = socket->nb_transport_fw (T5, phase, delay);

 assert(status == TLM_UPDATED && phase == END_REQ && delay == sc_time(40, SC_NS));

 // END_REQ is returned immediately to be executed at +40ns

 // The initiator sends the next request to be executed at +0ns, which is before the previous two requests

 // This is technically allowed because the current phase of the hop is END_REQ, but is not recommended

 phase = BEGIN_REQ; delay = sc_time(0, SC_NS);

 status = socket->nb_transport_fw (T6, phase, delay);

 assert(status == TLM_UPDATED && phase == END_REQ && delay == sc_time(60, SC_NS));

 // END_REQ is returned immediately to be executed at +60ns, overlapping the two previous requests

 // This is technically allowed, but is not recommended

 wait(…);

}

8.2.7 Base protocol rules concerning timing annotation

a) These rules should be read in conjunction with 4.1.3 Timing annotation with the transport interfaces

b) There are constraints on the way in which the implementations of b_transport and nb_transport are

permitted to modify the time argument t such that the effective local time sc_time_stamp() + t is non-

decreasing between function call and return. See 4.1.3.1 The sc_time argument

c) For successive calls to and returns from nb_transport through a given socket for a given transaction, the

sequence of effective local times shall be non-decreasing. The effective local time is given by the

expression sc_time_stamp() + t, where t is the time argument to nb_transport. For this purpose, both

calls to and returns from the function shall be considered as part of a single sequence. This applies on the

forward and backward paths alike. The intent is that time should not run backwards for a given

transaction.

d) The preceding rule also applies between the call to and the return from b_transport. Again, see 4.1.3.1

The sc_time argument

e) Moreover, for a given transaction object, as requests are propagated from initiator towards target and

responses are propagated from target back towards initiator, the sequence of effective local times given

by each successive transport method call and return shall be non-decreasing. Request propagation in this

sense includes calls to b_transport and the BEGIN_REQ phase. Response propagation includes returns

from b_transport, the BEGIN_RESP phase, and TLM_COMPLETED.

f) The effective local time may be increased by increasing the value of the timing annotation (the time

argument), by advancing SystemC simulation time (b_transport only), or both.

g) For different transaction objects, there is no obligation that the effective local times of calls to

b_transport and nb_transport shall be non-decreasing. Nonetheless, each initiator process is generally

recommended to call b_transport and/or nb_transport in non-decreasing effective local time order.

Otherwise, downstream components would infer that the out-of-order transactions had originated from

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 118

separate initiators and would be free to choose the order in which those particular transactions were

executed. However, transactions with out-of-order effective local times may arise wherever streams of

transactions from different loosely-timed initiators converge.

h) For a given socket, an initiator is allowed to pass the same transaction object at different times through

the blocking and non-blocking transport interfaces, the direct memory interface, and the transport debug

interface, Also, an initiator is permitted to re-use the same transaction object for different transaction

instances, all subject to the memory management rules of the generic payload. See 7.5 Generic payload

memory management.

8.2.8 Base protocol rules concerning b_transport

a) b_transport calls are re-entrant. The implementation of b_transport can call wait, and meanwhile

another call to b_transport can be made for a different transaction object from a different initiator with

no constraint on the timing annotation.

b) In the case that there are multiple processes within the same initiator module, each process shall be

regarded as being a separate initiator with respect to the transaction ordering rules. Specifically, there are

no constraints on the ordering of b_transport calls made from different threads in the same module,

regardless of whether those calls are made through the same initiator socket or through different sockets.

c) An interconnect or target can always deduce that multiple concurrent b_transport calls come from

different initiator threads and from a different process to any concurrent nb_transport_fw calls, and

therefore that there are no constraints on the mutual order of those calls. With b_transport, one request

is allowed to overtake another.

d) It is forbidden to make a re-entrant call to b_transport for the same transaction object through the same

socket.

Example

The following pseudo-code fragments show a re-entrant b_transport call:

// Two initiator thread processes

void thread1()

{

 socket->b_transport(T1, sc_time(100, SC_NS));

}

void thread2()

{

 wait(10, SC_NS);

 socket->b_transport(T2, sc_time(50, SC_NS)); // T2 overtakes T1

}

// Implementation of b_transport in the target

void b_transport(TRANS& trans, sc_time& t)

{

 wait(t);

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 119

 execute(trans); // T1 executed at 100ns, T2 executed at 60ns

 t = SC_ZERO_TIME;

}

8.2.9 Base protocol rules concerning request and response ordering

The intent of the following rules is to ensure that when an initiator sends a series of pipelined requests to a

particular target, those requests will be executed at the target in the same order as they were sent from the

initiator. Because the generic payload transaction stores neither the identity of the initiator nor the identity of

the target, the initiator can only be inferred from the identity of the incoming socket, and the target can only

be inferred from the values of the address and command attributes. The execution order of requests sent to

non-overlapping addresses is not guaranteed.

a) The base protocol permits incoming requests or responses arriving through different sockets to be

mutually delayed, interleaved, or executed in any order. For example, an interconnect component may

assign a higher priority to requests arriving through a particular target socket or having a particular data

length, allowing them to overtake lower priority requests. As another example, an interconnect

component may re-order responses arriving back through different initiator sockets to match the order in

which the corresponding requests were originally received.

b) Request routing shall be deterministic and shall depend only on the address and command attributes of

the transaction object. (These are the only attributes common to the transport, DMI and debug transport

interfaces.) The address map shall not be modified while there are transactions in progress.

c) If an initiator or interconnect component sends multiple concurrent requests with overlapping addresses

on the forward path, those requests shall be routed through the same initiator socket. Multiple concurrent

requests means requests for which the corresponding responses have not yet been received from the

target. Overlapping addresses means that at least one byte in the data arrays of the transaction objects

shares the same address. Read and write requests to the same address may be routed through different

sockets provided they are not concurrent.

d) If an interconnect component (or a target) receives multiple concurrent requests with overlapping

addresses through the same target socket by means of incoming calls to nb_transport_fw, those requests

shall be sent forward (or executed, respectively) in the same order as they were received. The same order

means the same interface method call order. (Note that if the interface method call order and the effective

local time order of a set of transactions were to differ, any component receiving those transactions would

be permitted to execute them in any order, regardless of the address. Also note that this rule holds even if

the requests in question originate from different initiators.)

e) Note that the preceding rule does not apply for incoming b_transport calls, for which there are no

constraints on the order of multiple concurrent requests. On the other hand, if incoming

nb_transport_fw calls are converted to outgoing b_transport calls, the b_transport calls must be

serialized to enforce the ordering rules of the nb_transport calls.

f) On the other hand, an interconnect component or target is permitted to re-order multiple concurrent

requests that were received through different target sockets, or are sent through different initiator sockets,

or whose addresses do not overlap, or for incoming b_transport calls.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 120

g) Responses may be re-ordered. There is no guarantee that responses will arrive back at an initiator in the

same order as the corresponding requests were sent.

h) Note that it would be technically possible with the base protocol to use an ignorable extension that

allowed an interconnect component to re-order multiple concurrent requests, in which case the initiator

that added the extension must be able to tolerate out-of-order execution at the target. On the other hand,

an extension that forced responses to arrive back in the same order as requests were sent would not be an

ignorable extension, and hence would not be permitted by the base protocol.

8.2.10 Base protocol rules for switching between b_transport and nb_transport

a) Each thread within an initiator or an interconnect component is permitted to switch between calling

b_transport and nb_transport_fw for different transaction objects. The intent is to permit an initiator to

make occasional switches between the loosely-timed and approximately-timed coding styles. An initiator

that interleaves calls to b_transport and nb_transport_fw should have low expectations with regard to

timing accuracy.

b) Every interconnect component and target is obliged to support both the blocking and non-blocking

transport interfaces, and to maintain any internal state information such that it is accessible from both

interfaces. This applies to incoming interface method calls received through the same socket or through

different sockets.

c) A thread within an initiator or an interconnect component shall not call both b_transport and

nb_transport_fw for the same transaction instance. Note that a thread may call both b_transport and

nb_transport_fw for the same transaction object provided that object represents a different transaction

instance on each occasion.

d) It is recommended that a thread within an initiator or interconnect component should not call

b_transport if there is still a transaction in progress from a previous nb_transport_fw call from that

same thread, that is, when there is a previous transaction with a non-zero reference count. Otherwise, a

downstream component could wrongly deduce that the two transactions had come from separate

initiators.

e) The convenience socket simple_target_socket provides an example of how a base protocol target can

support both the blocking and the non-blocking transport interfaces while only being required to

implement one of b_transport and nb_transport_fw. See 9.1.2 Simple sockets.

8.2.11 Other base protocol rules

a) A given transaction object shall not be sent through multiple parallel sockets or along multiple parallel

paths simultaneously. Each transaction instance shall take a unique well-defined path through a set of

components and sockets which shall remain fixed for the lifetime of the transaction instance and is

common to the transport, direct memory and debug transport interfaces. Of course, different transactions

sent through a given socket may take different paths, that is, they may be routed differently. Also, note

that a component may choose dynamically whether to act as an interconnect component or as a target.

b) An upstream component should not know and should not need to know whether it is connected to an

interconnect component or directly to a target. Similarly, a downstream component should not know and

should not need to know whether it is connected to an interconnect component or directly to an initiator.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 121

c) For a write transaction (TLM_WRITE_COMMAND), a response status of TLM_OK_RESPONSE shall

indicate that the write command has completed successfully at the target. The target is obliged to set the

response status before returning from b_transport, before sending BEGIN_RESP along the backward or

return path, or before returning TLM_COMPLETED. In other words, an interconnect component is not

permitted to signal the completion of a write transaction without having had confirmation of successful

completion from the target. The intent of this rule is to guarantee the coherency of the storage within the

target simulation model.

d) For a read transaction (TLM_READ_COMMAND), a response status of TLM_OK_RESPONSE shall

indicate that the read command has completed and the generic payload data array has been modified by

the target. The target is obliged to set the response status before returning from b_transport, before

sending BEGIN_RESP along the backward or return path, or before returning TLM_COMPLETED.

8.2.12 Summary of base protocol transaction ordering rules

The following table gives a summary of the transaction ordering rules for the base protocol. For a full

description of the rules, refer to the clauses above.

The base protocol ordering rules are a union of the rules from three categories: rules of the core transport

interfaces concerning timing annotation, rules specific to the base protocol concerning causality and phases,

and rules specific to the base protocol that ensure that pipelined requests are executed at the target in the order

expected by the initiator.

Circumstance Ordering rule

Effective local time order different from interface

method call order

Recipient may execute or route transactions in any

order. Takes precedence over all other rules

Successive transport method calls and returns for the

same transaction through the same socket

Effective local time order shall be non-decreasing

Successive transport method calls from the same

initiator process

Effective local time order is recommended to be non-

decreasing

Successive transport method calls from the same

initiator process

Recommended not to call b_transport if previous

nb_transport transaction is still alive

Successive transport method calls for different

transactions through the same socket

No obligation on effective local time order, but

recommended to be non-decreasing if incoming

transaction stream was non-decreasing

With nb_transport only, two requests or two

responses outstanding through the same socket

Forbidden

Transactions incoming through different sockets No obligations on the order in which they are

executed or routed on

Multiple concurrent requests with overlapping

addresses

If routed forward, shall be sent through the same

socket

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 122

Multiple concurrent requests with overlapping

addresses incoming through the same socket using

nb_transport

Shall be executed or routed forward in the same order

as they were received

Multiple concurrent requests incoming using

b_transport

No obligations on the order in which they are

executed or routed forward

Multiple concurrent responses No obligations on the order in which they are

executed or routed back

8.2.13 Guidelines for creating base-protocol-compliant components

This clause contains a set of guidelines for creating base protocol components. This is just a brief restatement

of some of the rules presented more fully elsewhere in this document, and is provided for convenience.

8.2.13.1 Guidelines for creating a base protocol initiator

a) Instantiate one initiator socket of class tlm_initiator_socket (or a derived class) for each connection to a

memory-mapped bus.

b) Allow the tlm_initiator_socket to take the default value tlm_base_protocol_types for the template

TYPES argument.

c) Implement the methods nb_transport_bw and invalidate_direct_mem_ptr. (An initiator can avoid the

need to implement these methods explicitly by instantiating the convenience socket

simple_initiator_socket.)

d) Set every attribute of each generic payload transaction object before passing it as an argument to

b_transport or nb_transport_fw, remembering in particular to reset the response status and DMI hint

attributes before the call. (The byte enable length attribute need not be set in the case where the byte

enable pointer attribute is 0, and extensions need not be used.)

e) When using the generic payload extension mechanism, ensure that any extensions are ignorable by the

target and any interconnect component.

f) Obey the base protocol rules concerning phase sequencing, flow control, timing annotation, and

transaction ordering.

g) On completion of the transaction (or after receiving BEGIN_RESP), check the value of the response

status attribute.

8.2.13.2 Guidelines for creating an initiator that calls nb_transport

a) Before passing a transaction as an argument to nb_transport_fw, set a memory manager for the

transaction object and call the acquire method of the transaction. Call the release method when the

transaction is complete.

b) When calling nb_transport_fw, set the phase argument to BEGIN_REQ or END_RESP according to

state of the transaction. Do not send BEGIN_REQ before having received (or inferred) the END_REQ

from the previous transaction

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 123

c) When making a series of calls to nb_transport_fw for a given transaction, ensure that the effective local

times (simulation time + timing annotation) form a non-decreasing sequence of values.

d) Respond appropriately to the incoming phase values END_REQ and BEGIN_RESP whether received on

the backward path (a call to nb_transport_bw), the return path (TLM_UPDATED returned from

nb_transport_fw), or implicitly (for example, TLM_COMPLETED returned from nb_transport_fw).

Incoming phase values of BEGIN_REQ and END_RESP would be illegal. Treat all other incoming phase

values as being ignorable.

8.2.13.3 Guidelines for creating a base protocol target

a) Instantiate one target socket of class tlm_target_socket (or a derived class) for each connection to a

memory-mapped bus.

b) Allow the tlm_target_socket to take the default value tlm_base_protocol_types for the template

TYPES argument.

c) Implement the methods b_transport, nb_transport_fw, get_direct_mem_ptr, and transport_dbg. (A

target can avoid the need to implement every method explicitly by using the convenience socket

simple_target_socket.)

d) In the implementations of the methods b_transport and nb_transport_fw, inspect and act upon the

value of every attribute of the generic payload with the exception of the response status, the DMI hint,

and any extensions. Rather than implementing the full functionality of the generic payload, a target may

choose to respond to a given attribute by generating an error response. Set the value of the response status

attribute to indicate the success or failure of the transaction.

e) Obey the base protocol rules concerning phase sequencing, flow control, timing annotation, and

transaction ordering.

f) In the implementation of get_direct_mem_ptr, either return the value false, or inspect and act upon the

values of the command and address attributes of the generic payload and set the return value and all the

attributes of the DMI descriptor appropriately (class tlm_dmi).

g) In the implementation of transport_dbg, either return the value 0, or inspect and act upon the values of

the command, address, data length, and data pointer attributes of the generic payload.

h) For each interface, the target may inspect and act upon any ignorable extensions in the generic payload,

but is not obliged to do so.

8.2.13.4 Guidelines for creating a target that calls nb_transport

a) When calling nb_transport_bw, set the phase argument to END_REQ or BEGIN_RESP according to

state of the transaction. Do not send BEGIN_RESP before having received (or inferred) END_RESP

from the previous transaction.

b) When making a series of calls to nb_transport_bw for a given transaction, ensure that the effective local

times (simulation time + timing annotation) form a non-decreasing sequence of values.

c) Respond appropriately to the incoming phase values BEGIN_REQ and END_RESP, whether received on

the forward path (a call to nb_transport_fw), the return path (TLM_UPDATED returned from

nb_transport_bw), or implicitly (for example, TLM_COMPLETED returned from nb_transport_bw).

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 124

Incoming phase values of END_REQ and BEGIN_RESP would be illegal. Treat all other incoming phase

values as being ignorable.

d) In the implementation of nb_transport_fw, when needing to keep a pointer or reference to a transaction

object beyond the return from the method, call the acquire method of the transaction. Call the release

method when the transaction object is finished with.

8.2.13.5 Guidelines for creating a base protocol interconnect component

a) Instantiate one initiator or target socket of class tlm_initiator_socket or tlm_target_socket (or derived

classes) for each connection to a memory-mapped bus.

b) Allow each socket to take the default value tlm_base_protocol_types for the template TYPES argument.

c) Implement the methods nb_transport_bw and invalidate_direct_mem_ptr for each initiator socket, and

the methods b_transport, nb_transport_fw, get_direct_mem_ptr, and transport_dbg for each target

socket. (The need to implement every method explicitly can be avoided by using the convenience

sockets.)

d) Pass on incoming interface method calls as appropriate on both the forward and backward paths,

honoring the request and response exclusion rules, the transaction ordering rules, and the rule that no

further calls are allowed following TLM_COMPLETED. Do not pass on ignorable phases. The

implementations of the get_direct_mem_ptr and transport_dbg methods may return the values false

and 0 respectively without forwarding the transaction object.

e) In the implementation of the transport interfaces, the only generic payload attributes modifiable by an

interconnect component are the address, DMI hint, and extensions. Do not modify any other attributes. A

component needing to modify any other attributes should construct a new transaction object, and thereby

become an initiator in its own right.

f) Decode the generic payload address attribute on the forward path and modify the address attribute if

necessary according to the location of the target in the system memory map. This applies to the transport,

direct memory, and debug transport interfaces.

g) In the implementation of the transport interfaces, obey the base protocol rules concerning phase

sequencing, flow control, timing annotation, and transaction ordering.

h) In the implementation of get_direct_mem_ptr, do not modify the DMI descriptor attributes on the

forward path. Do modify the DMI pointer, DMI start address and end address, and DMI access attributes

appropriately on the return path.

i) In the implementation of invalidate_direct_mem_ptr, modify the address range arguments before

passing the call along the backward path.

j) In the implementation of nb_transport_fw, when needing to keep a pointer or reference to a transaction

object beyond the return from the function, call the acquire method of the transaction. Call the release

method when the transaction object is finished with.

k) For each interface, the interconnect component may inspect and act upon any ignorable extensions in the

generic payload, but is not obliged to do so. If the transaction needs to be extended further, make sure any

extensions are ignorable by the other components. Honor the generic payload memory management rules

for extensions.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 125

9 Utilities

The utilities comprise a set of classes that are provided for convenience and to help ensure a consistent coding

style. The utilities do not belong to the interoperability layer, so use of the utilities is not a requirement for

interoperability.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 126

9.1 Convenience sockets

9.1.1 Introduction

There is a family of convenience sockets, each socket implementing some additional functionality to make

component models easier to write. The convenience sockets are derived from the classes

tlm_initiator_socket and tlm_target_socket. They are not part of the TLM-2.0 interoperability layer, but are

to be found in the namespace tlm_utils.

9.1.1.1 Summary of standard and convenience socket types

The convenience sockets are summarized in the following table.

Register callbacks? The socket provides methods to register callbacks for incoming interface method calls,

rather than having the socket be bound to an object that implements the corresponding interfaces.

Multi-ports? The socket class template provides number-of-bindings and binding policy template arguments

such that a single initiator socket can be bound to multiple target sockets and vice versa.

b – nb conversion? The target socket is able to convert incoming calls to b_transport into nb_transport_fw

calls, and vice versa. A ‗-‘ indicates an initiator socket.

Tagged? Incoming interface method calls are tagged with an id to indicate the socket through which they

arrived

Class Register

callbacks?

Multi-

ports?

b / nb

conversion?

Tagged?

tlm_initiator_socket no yes - no

tlm_target_socket no yes no no

simple_initiator_socket yes no - no

simple_initiator_socket_tagged yes no - yes

simple_target_socket yes no yes no

simple_target_socket_tagged yes no yes yes

passthrough_target_socket yes no no no

passthrough_target_socket_tagged yes no no yes

multi_passthrough_initiator_socket yes yes - yes

multi_passthrough_target_socket yes yes no yes

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 127

9.1.1.2 Socket binding table

The bindings permitted between the standard and convenience socket types are summarized in the following

table. Each binding is of the form From(To) or From.bind(To), where From and To are sockets of the given

type.

To tlm-init simple-init multi-init tlm-targ simple-targ multi-targ

From

tlm-init 1 1 1 N:1

simple-init 1 1 1 N:1

multi-init 1 1:M 1:M N:M

tlm-targ 1* 1* 1 1

simple-targ 1* 1*

multi-targ 1

The above table is organized into four quarters as follows:

Hierarchical child-to-parent binding Initiator-to-target binding

Reverse binding operators Hierarchical parent-to-child binding

Key

tlm-init tlm_initiator_socket

simple-init simple_initiator_socket or passthrough_initiator_socket

multi-init multi_passthrough_initiator_socket

tlm-targ tlm_target_socket

simple-targ simple_target_socket or simple_target_socket_tagged or

passthrough_target_socket or passthrough_target_socket_tagged

multi-targ multi_passthrough_target_socket

1* The binding is from inititiator to target, despite the method call being in

the direction target.bind(initiator)

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 128

9.1.2 Simple sockets

9.1.2.1 Introduction

The simple sockets are so-called because they are intended to be simple to use. They are derived from the

interoperability layer sockets tlm_initiator_socket and tlm_target_socket, so can be bound directly to

sockets of those types.

Instead of having to bind a socket to an object that implements the corresponding interface, each simple

socket provides methods for registering callback methods. Those callbacks are in turn called whenever an

incoming interface method call arrives. Callback methods may be registered for each of the interfaces

supported by the socket.

The user of a simple socket may register a callback for every interface method, but is not obliged to do so. In

particular, for the simple target socket, the user need only register one of b_transport and nb_transport_fw,

in which case incoming calls to the unregistered method will be converted automatically to calls to the

registered method. This conversion process is non-trivial, and is dependent upon the rules of the base protocol

being respected by the initiator and target.. The passthrough_target_socket is a variant of the

simple_target_socket that does not support conversion between blocking and non-blocking calls.

The current implementation of simple sockets makes use of dynamic processes. Hence, when compiling

applications that use simple sockets with current released versions of the OSCI proof-of-concept simulator, it

is necessary to define the macro SC_INCLUDE_DYNAMIC_PROCESSES before including the SystemC

header file.

9.1.2.2 Class definition

namespace tlm_utils {

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types

>

class simple_initiator_socket : public tlm::tlm_initiator_socket<BUSWIDTH, TYPES>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 simple_initiator_socket();

 explicit simple_initiator_socket(const char* n);

 void register_nb_transport_bw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::sc_time&));

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 129

 void register_invalidate_direct_mem_ptr(

 MODULE* mod,

 void (MODULE::*cb)(sc_dt::uint64, sc_dt::uint64));

};

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types

>

class simple_target_socket : public tlm::tlm_target_socket<BUSWIDTH, TYPES>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 simple_target_socket();

 explicit simple_target_socket(const char* n);

 tlm::tlm_bw_transport_if<TYPES> * operator ->();

 void register_nb_transport_fw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::sc_time&));

 void register_b_transport(

 MODULE* mod,

 void (MODULE::*cb)(transaction_type&, sc_core::sc_time&));

 void register_transport_dbg(

 MODULE* mod,

 unsigned int (MODULE::*cb)(transaction_type&));

 void register_get_direct_mem_ptr(

 MODULE* mod,

 bool (MODULE::*cb)(transaction_type&, tlm::tlm_dmi&));

};

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types

>

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 130

class passthrough_target_socket : public tlm::tlm_target_socket<BUSWIDTH, TYPES>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 passthrough_target_socket();

 explicit passthrough_target_socket(const char* n);

 void register_nb_transport_fw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::sc_time&));

 void register_b_transport(

 MODULE* mod,

 void (MODULE::*cb)(transaction_type&, sc_core::sc_time&));

 void register_transport_dbg(

 MODULE* mod,

 unsigned int (MODULE::*cb)(transaction_type&));

 void register_get_direct_mem_ptr(

 MODULE* mod,

 bool (MODULE::*cb)(transaction_type&, tlm::tlm_dmi&));

};

} // namespace tlm_utils

9.1.2.3 Header file

The class definitions for the simple sockets shall be in the header files tlm_utils/simple_initiator_socket.h,

tlm_utils/simple_target_socket.h, and tlm_utils/passthrough_target_socket.h.

9.1.2.4 Rules

a) Each constructor shall call the constructor of the corresponding base class passing through the char*

argument, if there is one. In the case of the default constructors, the char* argument of the base class

constructor shall be set to sc_gen_unique_name ("simple_initiator_socket"), sc_gen_unique_name (

"simple_target_socket"), or sc_gen_unique_name ("passthrough_target_socket") respectively.

b) A simple_initiator_socket can be bound to a simple_target_socket or a passthrough_target_socket by

calling the bind method or operator() of either socket, with precisely the same effect. In either case, the

forward path lies in the direction from the initiator socket to the target socket.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 131

c) A simple_initiator_socket can be bound to a tlm_target_socket, and a tlm_initiator_socket can be

bound to a simple_target_socket or to a passthrough_target_socket.

d) A simple_initiator_socket, simple_target_socket or passthrough_target_socket can only implement

incoming interface method calls by registering callbacks, not by being bound hierarchically to another

socket on a child module. On the other hand, a simple_initiator_socket of a child module can be bound

hierarchically to a tlm_initiator_socket of a parent module, and a tlm_target_socket of a parent module

can be bound hierarchically to a simple_target_socket or passthrough_target_socket of a child

module.

e) A target is not obliged to register a b_transport callback with a simple target socket provided it has

registered an nb_transport_fw callback, in which case an incoming b_transport call will automatically

cause the target to call the method registered for nb_transport_fw. In this case, the method registered for

nb_transport_fw shall implement with the rules of the base protocol. See 9.1.2.5 Simple target socket

b/nb conversion

f) A target is not obliged to register an nb_transport_fw callback with a simple target socket provided it

has registered a b_transport callback, in which case an incoming nb_transport_fw call will

automatically cause the target to call the method registered for b_transport and subsequently to call

nb_transport_bw on the backward path.

g) If a target does not register either a b_transport or an nb_transport_fw callback with a simple target

socket, this will result in a run-time error if and only if the corresponding method is called

h) A target should register b_transport and nb_transport_fw callbacks with a passthrough target socket.

Not doing so will result in a run-time error if and only if the corresponding method is called.

i) A target is not obliged to register a transport_dbg callback with a simple target socket or a passthrough

target socket, in which case an incoming transport_dbg call shall return with a value of 0.

j) A target is not obliged to register a get_direct_mem_ptr callback with a simple target socket or a

passthrough target socket, in which case an incoming get_direct_mem_ptr call shall return with a value

of false.

k) An initiator should register an nb_transport_bw callback with a simple initiator socket. Not doing so

will result in a run-time error if and only if the nb_transport_bw method is called.

l) An initiator is not obliged to register an invalidate_direct_mem_ptr callback with a simple initiator

socket, in which case an incoming invalidate_direct_mem_ptr call shall be ignored.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 132

9.1.2.5 Simple target socket b/nb conversion

a) In the case that a b_transport or nb_transport_fw method is called through a socket of class

simple_target_socket but no corresponding callback is registered, the simple target socket will act as an

adapter between the two interfaces.

b) When the simple target socket acts as an adapter, it shall honor the rules of the base protocol both from

the point of view of the initiator and from the point of view of the implementation of the b_transport or

nb_transport_fw methods in the target. See 8.2 Base protocol

c) The socket shall pass through the given transaction object without modification and shall not construct a

new transaction object.

d) In the case that only the nb_transport_fw callback has been registered by the target, the initiator is not

permitted to call nb_transport_fw while there is an earlier b_transport call from the initiator still in

progress. This is a limitation of the current implementation of the simple target socket.

e) Figure 19 shows the case where an initiator calls nb_transport_fw, but the target only registers a

b_transport callback with the simple target socket. The initiator sends BEGIN_REQ, to which the

socket returns TLM_ACCEPTED. The socket then calls b_transport, and on return sends BEGIN_RESP

back to the initiator, to which the initiator returns TLM_COMPLETED. Since it is not permissible in

SystemC to call a blocking method directly from a non-blocking method, the socket is obliged to call

b_transport from a separate internal thread process, not directly from nb_transport_fw.

f) Figure 19 shows just one possible scenario. On the final transition, the initiator could have returned

TLM_ACCEPTED, in which case the socket would expect to receive a subsequent END_RESP from the

initiator. Also, the target could have called wait from within b_transport.

Simple target socket nb/b adapter

Initiator Target

nb_transport_fw(t, BEGIN_REQ, 5ns)

TLM_ACCEPTED

Call

Return

Simulation time = 100ns

Simulation time = 105ns

TLM_COMPLETED

nb_transport_bw(t, BEGIN_RESP, 0ns) Call

Return

Simulation time = 115ns

Figure 19

Socket

b_transport(t, 0ns)

b_transport(t, 10ns)

Call

Return

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 133

g) Figure 20 shows the case where an initiator calls b_transport, but the target only registers an

nb_transport_fw callback with the simple target socket. The initiator calls b_transport, then the socket

and the target handshake using nb_transport and obeying the rules of the base protocol. The target may

or may not send the END_REQ phase; it may jump straight to the BEGIN_RESP phase. The socket

returns TLM_COMPLETED from the call to nb_transport_bw for the BEGIN_RESP phase.

Example

#define SC_INCLUDE_DYNAMIC_PROCESSES

#include "tlm.h"

#include "tlm_utils/simple_initiator_socket.h" // Header files from utilities

#include "tlm_utils/simple_target_socket.h"

struct Initiator: sc_module

{

 tlm_utils::simple_initiator_socket<Initiator, 32, tlm::tlm_base_protocol_types> socket;

 SC_CTOR(Initiator)

 : socket("socket") // Construct and name simple socket

 { // Register callbacks with simple socket

 socket.register_nb_transport_bw(this, &Initiator::nb_transport_bw);

 socket.register_invalidate_direct_mem_ptr(this, &Initiator::invalidate_direct_mem_ptr);

 }

Simple target socket b/nb adapter

Initiator Target

nb_transport_fw(t, BEGIN_REQ, 0ns)

TLM_ACCEPTED

Call

Return

Simulation time = 100ns

Simulation time = 110ns

TLM_COMPLETED

nb_transport_bw(t, BEGIN_RESP, 0ns) Call

Return

Simulation time = 120ns

Figure 20

Socket

b_transport(t, 10ns)

b_transport(t, 0ns)

Call

Return

TLM_ACCEPTED

nb_transport_bw(t, END_REQ, 0ns) Call

Return

Simulation time = 130ns

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 134

 virtual tlm::tlm_sync_enum nb_transport_bw(

 tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_time& delay) {

 return tlm::TLM_COMPLETED; // Dummy implementation

 }

 virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::uint64 end_range)

 { } // Dummy implementation

};

struct Target: sc_module // Target component

{

 tlm_utils::simple_target_socket<Target, 32, tlm::tlm_base_protocol_types> socket;

 SC_CTOR(Target)

 : socket("socket") // Construct and name simple socket

 { // Register callbacks with simple socket

 socket.register_nb_transport_fw(this, &Target::nb_transport_fw);

 socket.register_b_transport(this, &Target::b_transport);

 socket.register_get_direct_mem_ptr(this, &Target::get_direct_mem_ptr);

 socket.register_transport_dbg(this, &Target::transport_dbg);

 }

 virtual void b_transport(tlm::tlm_generic_payload& trans, sc_time& delay)

 { } // Dummy implementation

 virtual tlm::tlm_sync_enum nb_transport_fw(

 tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_time& delay) {

 return tlm::TLM_ACCEPTED; // Dummy implementation

 }

 virtual bool get_direct_mem_ptr(tlm::tlm_generic_payload& trans, tlm::tlm_dmi& dmi_data)

 { return false; } // Dummy implementation

 virtual unsigned int transport_dbg(tlm::tlm_generic_payload& r)

 { return 0; } // Dummy implementation

};

SC_MODULE(Top)

{

 Initiator *initiator;

 Target *target;

 SC_CTOR(Top) {

 initiator = new Initiator("initiator");

 target = new Target("target");

 initiator->socket.bind(target->socket); // Bind initiator socket to target socket

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 135

 }

};

9.1.3 Tagged simple sockets

9.1.3.1 Introduction

The tagged simple sockets are a variation on the simple sockets that tag incoming interface method calls with

an integer id that allows the callback to identify through which socket the incoming call arrived. This is useful

in the case where the same callback method is registered with multiple initiator sockets or multiple target

sockets. The id is specified when the callback is registered, and gets inserted as an extra first argument to the

callback method.

9.1.3.2 Header file

The class definitions for the tagged simple sockets shall be in the same header files as the corresponding

simple sockets, that is tlm_utils/simple_initiator_socket.h, tlm_utils/simple_target_socket.h, and

tlm_utils/passthrough_target_socket.h.

9.1.3.3 Class definition

namespace tlm_utils {

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types

>

class simple_initiator_socket_tagged : public tlm::tlm_initiator_socket<BUSWIDTH, TYPES>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 simple_initiator_socket_tagged();

 explicit simple_initiator_socket_tagged(const char* n);

 void register_nb_transport_bw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(int, transaction_type&, phase_type&, sc_core::sc_time&),

 int id);

 void register_invalidate_direct_mem_ptr(

 MODULE* mod,

 void (MODULE::*cb)(int, sc_dt::uint64, sc_dt::uint64),

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 136

 int id);

};

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types

>

class simple_target_socket_tagged : public tlm::tlm_target_socket<BUSWIDTH, TYPES>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 typedef tlm::tlm_fw_transport_if<TYPES> fw_interface_type;

 typedef tlm::tlm_bw_transport_if<TYPES> bw_interface_type;

 typedef tlm::tlm_target_socket<BUSWIDTH, TYPES> base_type;

 simple_target_socket_tagged();

 explicit simple_target_socket_tagged(const char* n);

 tlm::tlm_bw_transport_if<TYPES> * operator ->();

 void register_nb_transport_fw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(int id, transaction_type&, phase_type&, sc_core::sc_time&),

 int id);

 void register_b_transport(

 MODULE* mod,

 void (MODULE::*cb)(int id, transaction_type&, sc_core::sc_time&),

 int id);

 void register_transport_dbg(

 MODULE* mod,

 unsigned int (MODULE::*cb)(int id, transaction_type&),

 int id);

 void register_get_direct_mem_ptr(

 MODULE* mod,

 bool (MODULE::*cb)(int id, transaction_type&, tlm::tlm_dmi&),

 int id);

};

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 137

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types

>

class passthrough_target_socket_tagged : public tlm::tlm_target_socket<BUSWIDTH, TYPES>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 passthrough_target_socket_tagged();

 explicit passthrough_target_socket_tagged(const char* n);

 void register_nb_transport_fw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(int id, transaction_type&, phase_type&, sc_core::sc_time&),

 int id);

 void register_b_transport(

 MODULE* mod,

 void (MODULE::*cb)(int id, transaction_type&, sc_core::sc_time&),

 int id);

 void register_transport_dbg(

 MODULE* mod,

 unsigned int (MODULE::*cb)(int id, transaction_type&),

 int id);

 void register_get_direct_mem_ptr(

 MODULE* mod,

 bool (MODULE::*cb)(int id, transaction_type&, tlm::tlm_dmi&),

 int id);

};

} // namespace tlm_utils

9.1.3.4 Rules

a) Each constructor shall call the constructor of the corresponding base class passing through the char*

argument, if there is one. In the case of the default constructors, the char* argument of the base class

constructor shall be set to sc_gen_unique_name ("simple_initiator_socket_tagged"),

sc_gen_unique_name ("simple_target_socket_tagged"), or sc_gen_unique_name (

"passthrough_target_socket_tagged") respectively.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 138

b) Apart from the int id tag, the tagged simple sockets behave in the same way as the untagged simple

sockets.

c) A given callback method can be registered with multiple sockets instances using different tags. This is

the purpose of the tagged sockets.

d) The int id tag is specified as the final argument of the methods used to register the callbacks. The socket

shall prepend this tag as the first argument of the corresponding callback method.

e) A tagged simple socket is not a multi-socket. A tagged simple socket cannot be bound to multiple sockets

on other components. See 9.1.4 Multi-sockets.

9.1.4 Multi-sockets

9.1.4.1 Introduction

The multi-sockets are a variation on the tagged simple sockets that permit a single socket to be bound to

multiple sockets on other components. In contrast to the tagged simple sockets, which identify through which

socket an incoming call arrives, a multi-socket callback is able to identify from which socket on another

component an incoming interface method call arrives, using the multi-port index number as the tag. Unlike

the other convenience sockets, the multi-sockets also support hierarchical child-to-parent socket binding on

both the initiator and target side.

9.1.4.2 Header file

The class definitions for the multi-sockets shall be in the header files

tlm_utils/multi_passthrough_initiator_socket.h and tlm_utils/multi_passthrough_target_socket.h.

9.1.4.3 Class definition

namespace tlm_utils {

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types,

 unsigned int N=0,

 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND

>

class multi_passthrough_initiator_socket : public multi_init_base< BUSWIDTH, TYPES, N, POL>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 typedef multi_init_base<BUSWIDTH, TYPES, N, POL> base_type;

 typedef typename base_type::base_target_socket_type base_target_socket_type;

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 139

 multi_passthrough_initiator_socket();

 multi_passthrough_initiator_socket(const char* name);

 ~multi_passthrough_initiator_socket();

 void register_nb_transport_bw(

 MODULE* mod,

 sync_enum_type (MODULE::*cb)(int, transaction_type&, phase_type&, sc_core::sc_time&));

 void register_invalidate_direct_mem_ptr(

 MODULE* mod,

 void (MODULE::*cb)(int, sc_dt::uint64, sc_dt::uint64));

 // Override virtual functions of the tlm_initiator_socket:

 virtual tlm::tlm_bw_transport_if<TYPES>& get_base_interface();

 virtual sc_core::sc_export<tlm::tlm_bw_transport_if<TYPES> >& get_base_export();

 void bind(base_target_socket_type& s);

 void operator() (base_target_socket_type& s);

 // SystemC standard callback

 // multi_passthrough_initiator_socket::before_end_of_elaboration must be called from

 // any derived class

 void before_end_of_elaboration();

 // Bind multi initiator socket to multi initiator socket (hierarchical bind)

 void bind(base_type& s);

 void operator() (base_type& s);

 tlm::tlm_fw_transport_if<TYPES>* operator[](int i);

 unsigned int size();

};

template <

 typename MODULE,

 unsigned int BUSWIDTH = 32,

 typename TYPES = tlm::tlm_base_protocol_types,

 unsigned int N=0,

 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND

>

class multi_passthrough_target_socket : public multi_target_base< BUSWIDTH, TYPES, N, POL>

{

public:

 typedef typename TYPES::tlm_payload_type transaction_type;

 typedef typename TYPES::tlm_phase_type phase_type;

 typedef tlm::tlm_sync_enum sync_enum_type;

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 140

 typedef sync_enum_type

 (MODULE::*nb_cb)(int, transaction_type&, phase_type&, sc_core::sc_time&);

 typedef void (MODULE::*b_cb)(int, transaction_type&, sc_core::sc_time&);

 typedef unsigned int (MODULE::*dbg_cb)(int, transaction_type& txn);

 typedef bool (MODULE::*dmi_cb)(int, transaction_type& txn, tlm::tlm_dmi& dmi);

 typedef multi_target_base<BUSWIDTH, TYPES, N, POL> base_type;

 typedef typename base_type::base_initiator_socket_type base_initiator_socket_type;

 typedef typename base_type::initiator_socket_type initiator_socket_type;

 multi_passthrough_target_socket();

 multi_passthrough_target_socket(const char* name);

 ~multi_passthrough_target_socket();

 void register_nb_transport_fw (MODULE* mod, nb_cb cb);

 void register_b_transport (MODULE* mod, b_cb cb);

 void register_transport_dbg (MODULE* mod, dbg_cb cb);

 void register_get_direct_mem_ptr (MODULE* mod, dmi_cb cb);

 // Override virtual functions of the tlm_target_socket:

 virtual tlm::tlm_fw_transport_if<TYPES>& get_base_interface();

 virtual sc_core::sc_export<tlm::tlm_fw_transport_if<TYPES> >& get_base_export();

 // SystemC standard callback

 // multi_passthrough_target_socket::end_of_elaboration must be called from any derived class

 void end_of_elaboration();

 void bind(base_type& s);

 void operator() (base_type& s);

 tlm::tlm_bw_transport_if<TYPES>* operator[] (int i);

 unsigned int size();

};

} // namespace tlm_utils

9.1.4.4 Rules

a) The base classes multi_init_base and multi_target_base are implementation-defined, and should not be

used directly by applications.

b) Each constructor shall call the constructor of the corresponding base class passing through the char*

argument, if there is one. In the case of the default constructors, the char* argument of the base class

constructor shall be set to sc_gen_unique_name ("multi_passthrough_initiator_socket"), or

sc_gen_unique_name ("multi_passthrough_target_socket") respectively.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 141

c) Class multi_passthrough_initiator_socket and class multi_passthrough_target_socket each act as

multi-sockets, that is, a single initiator socket can be bound to multiple target sockets, and a single target

socket can be bound to multiple initiator sockets. The two class templates have template parameters

specifying the number of bindings and the port binding policy, which are used within the class

implementation to parameterize the associated sc_port template instantiation.

d) A single multi_passthrough_initiator_socket can be bound to many tlm_target_sockets and/or many

simple_target_sockets and/or many passthrough_target_sockets and/or many

multi_passthrough_target_sockets. Many tlm_initiator_sockets and/or simple_initiator_sockets

and/or multi_passthrough_initiators_sockets can be bound to a single

multi_passthrough_target_socket.

e) A multi_passthrough_initiator_socket can be bound hierarchically to exactly one other

multi_passthrough_initiator_socket. A multi_passthrough_target_socket can be bound hierarchically

to exactly one other multi_passthrough_target_socket. Other than these two specific cases, a multi-

socket cannot be bound hierarchically to another socket. The multiple binding capabilities of multi-

sockets do not apply to hierarchical binding, but only apply when binding one or more initiator sockets to

one or more target sockets.

f) The binding operators can only be used in the direction initiator-socket-to-target-socket. In other words,

unlike classes tlm_target_socket and simple_target_socket, class multi_passthrough_target_socket

does not have operators to bind a target socket to an initiator socket.

g) In the case of hierarchical binding, an initiator multi-socket of a child module shall be bound to an

initiator multi-socket of a parent module, and a target multi-socket of a parent module bound to a target

multi-socket of a child module. This is consistent with the initiator-to-target binding direction rule given

above.

h) If an object of class multi_passthrough_initiator_socket or multi_passthrough_target_socket is

bound multiple times, then the method operator[] can be used to address the corresponding object to

which the socket is bound. The index value is determined by the order in which the methods bind or

operator() were called to bind the sockets. This same index value is used to determine the id tag passed

to a callback.

i) For example, consider a multi_passthrough_initiator_socket bound to two separate targets. The calls

socket[0]->nb_transport_fw(...) and socket[1]->nb_transport_fw() would address the two targets, and

incoming nb_transport_bw() method calls from those two targets would carry the tags 0 and 1

respectively.

j) The method size shall return the number of socket instances to which the current multi-socket has been

bound. As for SystemC multi-ports, if size is called during elaboration and before the callback

end_of_elaboration, the value returned is implementation-defined because the time at which port

binding is completed is implementation-defined.

k) In the absence of hierarchical binding to a multi-socket on a child module, a target should register

b_transport and nb_transport_fw callbacks with a target multi-socket. Not doing so will result in a run-

time error if and only if the corresponding method is called.

l) In the absence of hierarchical binding to a multi-socket on a child module, a target is not obliged to

register a transport_dbg callback with a target multi-socket, in which case an incoming transport_dbg

call shall return with a value of 0.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 142

m) In the absence of hierarchical binding to a multi-socket on a child module, a target is not obliged to

register a get_direct_mem_ptr callback with a target multi-socket, in which case an incoming

get_direct_mem_ptr call shall return with a value of false.

n) In the absence of hierarchical binding to a multi-socket on a child module, an initiator should register an

nb_transport_bw callback with an initiator multi-socket. Not doing so will result in a run-time error if

and only if the nb_transport_bw method is called.

o) In the absence of hierarchical binding to a multi-socket on a child module, an initiator is not obliged to

register an invalidate_direct_mem_ptr callback with an initiator multi-socket, in which case an

incoming invalidate_direct_mem_ptr call shall be ignored.

Example

// Initiator component with a multi-socket

struct Initiator: sc_module

{

 tlm_utils::multi_passthrough_initiator_socket<Initiator> socket;

 SC_CTOR(Initiator) : socket("socket") {

 // Register callback methods with socket

 socket.register_nb_transport_bw(this, &Initiator::nb_transport_bw);

 socket.register_invalidate_direct_mem_ptr(this, &Initiator::invalidate_direct_mem_ptr);

 ...

};

struct Initiator_parent: sc_module

{

 tlm_utils::multi_passthrough_initiator_socket<Initiator_parent> socket;

 Initiator *initiator;

 SC_CTOR(Initiator_parent) : socket("socket") {

 initiator = new Initiator("initiator");

 // Hierarchical binding of initiator socket on child to initiator socket on parent

 initiator->socket.bind(socket);

 }

};

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 143

struct Target: sc_module

{

 tlm_utils::multi_passthrough_target_socket<Target> socket;

 SC_CTOR(Target) : socket("socket") {

 // Register callback methods with socket

 socket.register_nb_transport_fw(this, &Target::nb_transport_fw);

 socket.register_b_transport(this, &Target::b_transport);

 socket.register_get_direct_mem_ptr(this, &Target::get_direct_mem_ptr);

 socket.register_transport_dbg(this, &Target::transport_dbg);

 ...

};

// Target component with a multi-socket

struct Target_parent: sc_module

{

 tlm_utils::multi_passthrough_target_socket<Target_parent> socket;

 Target *target;

 SC_CTOR(Target_parent) : socket("socket") {

 target = new Target("target");

 // Hierarchical binding of target socket on parent to target socket on child

Hierarchical Binding of Multi-sockets
Figure 21

Initiator

child module

multi_passthrough_initiator_socket

Initiator_parent

Target

child module

Target_parent

multi_passthrough_target_socket

Initiator

child module

Initiator_parent

Target

child module

Target_parent

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 144

 socket.bind(target->socket);

 }

};

SC_MODULE(Top)

{

 Initiator_parent *initiator1;

 Initiator_parent *initiator2;

 Target_parent *target1;

 Target_parent *target2;

 SC_CTOR(Top)

 {

 // Instantiate two initiator and two target components

 initiator1 = new Initiator_parent("initiator1");

 initiator2 = new Initiator_parent("initiator2");

 target1 = new Target_parent ("target1");

 target2 = new Target_parent ("target2");

 // Bind two initiator multi-sockets to two target multi-sockets

 initiator1->socket.bind(target1->socket);

 initiator1->socket.bind(target2->socket);

 initiator2->socket.bind(target1->socket);

 initiator2->socket.bind(target2->socket);

 }

};

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 145

9.2 Quantum keeper

9.2.1 Introduction

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount of time

known as the time quantum. See 5 Global quantum

The utility class tlm_quantumkeeper provides a set of methods for managing and interacting with the time

quantum. When using temporal decoupling, use of the quantum keeper is recommended in order to maintain a

consistent coding style. However, it is straightforward in principle to implement temporal decoupling directly

in SystemC. Whether or not the utility class tlm_quantumkeeper is used, all temporally decoupled models

should reference the global quantum maintained by the class tlm_global_quantum.

Class tlm_quantumkeeper is in namespace tlm_utils.

For a general description of temporal decoupling, see 3.3.2 Loosely-timed coding style and temporal

decoupling

For a description of timing annotation, see 4.1.3 Timing annotation with the transport interfaces

9.2.2 Header file

The class definitions for the quantum keeper shall be in the header file tlm_utils/tlm_quantumkeeper.h.

9.2.3 Class definition

namespace tlm_utils {

class tlm_quantumkeeper

{

public:

 static void set_global_quantum(const sc_core::sc_time&);

 static const sc_core::sc_time& get_global_quantum();

 tlm_quantumkeeper();

 virtual ~tlm_quantumkeeper();

 virtual void inc(const sc_core::sc_time&);

 virtual void set(const sc_core::sc_time&);

 virtual sc_core::sc_time get_current_time() const;

 virtual sc_core::sc_time get_local_time();

 virtual bool need_sync() const;

 virtual void sync();

 void set_and_sync(const sc_core::sc_time& t)

 {

 set(t);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 146

 if (need_sync())

 sync();

 }

 virtual void reset();

protected:

 virtual sc_core::sc_time compute_local_quantum();

};

} // namespace tlm_utils

9.2.4 General guidelines for processes using temporal decoupling

a) For maximum simulation speed, all initiators should use temporal decoupling, and the number of other

runnable SystemC processes should be zero or minimized.

b) In an ideal scenario, the only runnable SystemC processes will belong to temporally decoupled initiators,

and each process will run ahead to the end of its time quantum before yielding to the SystemC kernel.

c) A temporally decoupled initiator is not obliged to use a time quantum if communication with other

processes is explicitly synchronized. Where a time quantum is used, it should be chosen to be less than

the typical communication interval between initiators, otherwise important process interactions may be

lost, and the model broken.

d) Yield means call wait in the case of a thread process, or return from the function in the case of a method

process.

e) Temporal decoupling runs in the context of the standard SystemC simulation kernel, so events can be

scheduled, processes suspended and resumed, and loosely-timed models can be mixed with other coding

styles.

f) There is no obligation for every initiator to use temporal decoupling. Processes with and without

temporal decoupling can be mixed. However, any process that is not temporally decoupled is likely to

become a simulation speed bottleneck.

g) Each temporally decoupled initiator may accumulate any local processing delays and communication

delays in a local variable, referred to in this clause as the local time offset. It is recommended that the

quantum keeper should be used to maintain the local time offset.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 147

h) Calls to the sc_time_stamp method will return the simulation time as it was at or near the start of the

current time quantum.

i) The local time offset is unknown to the SystemC scheduler. When using the transport interfaces, the local

time offset should be passed as an argument to the b_transport or nb_transport methods.

j) Use of the nb_transport method with temporal decoupling and the quantum keeper is not ruled out, but is

not usually advantageous because the speed advantage to be gained from temporal decoupling would be

nullified by the high degree of inter-process communication inherent in the approximately-timed coding

style.

k) The order in which processes resume within the quantum is under the control of the SystemC scheduler,

and by the rules of SystemC, is indeterminate. In the absence of any explicit synchronization mechanism,

if a variable is modified by one such process and read by another, the value to be read will be

indeterminate. The new value may become available in the current quantum or the next quantum,

assuming it only changes relatively infrequently compared to the quantum length, and the application

would need to be tolerant of precisely when the new value becomes available. If this is not the case, the

application should guard the variable access with an appropriate synchronization mechanism.

l) Any access to a variable or object from a temporally decoupled process will give the value it had at the

start of the current time quantum unless it has been modified by the current process or by another

temporally decoupled process that has already run in the current quantum. In particular, any sc_signal

accessed from a temporally decoupled process will have the same value it had at the start of the current

time quantum. This is a consequence of the fact that conventional SystemC simulation time (as returned

by sc_time_stamp) does not advance within the quantum.

Quantum Keeper Terminology
Figure 22

Global quantum

sc_time_stamp()

Local quantum

Effective local time

Local time offset

Initiator 1, first to run in 2nd quantum

Initiator 2, currently running

Initiator 3, not yet run in 2nd quantum

Local time offset

Effective local time

Global quantum

Integer multiple of

global quantum

Time

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 148

9.2.5 Class tlm_quantumkeeper

a) The constructor shall set the local time offset to SC_ZERO_TIME but shall not call the virtual method

compute_local_quantum. Because the constructor does not calculate the local quantum, an application

should call the method reset immediately after constructing a quantum keeper object.

b) The implementation of class tlm_quantum_keeper shall not create a static object of class sc_time, but

the constructor may create objects of class sc_time. This implies that an application may call function

sc_core::sc_set_time_resolution before, and only before, constructing the first quantum keeper object.

c) The method set_global_quantum shall set the value of the global quantum to the value passed as an

argument, but shall not modify the local quantum. The method get_global_quantum shall return the

current value of the global quantum. After calling set_global_quantum it is recommended to call the

method reset to recalculate the local quantum.

d) The method get_local_time shall return the value of the local time offset.

e) The method get_current_time shall return the value of the effective local time, that is, sc_time_stamp()

+ local_time_offset

f) The method inc shall add the value passed as an argument to the local time offset.

g) The method set shall set the value of the local time offset to the value passed as an argument.

h) The method need_sync shall return the value true if and only if the local time offset is greater than the

local quantum.

i) The method sync shall call wait(local_time_offset) to suspend the process until simulation time equals

the effective local time, and shall then call method reset..

j) The method set_and_sync is a convenience method to call set, need_sync, and sync in sequence. It

should not be overridden.

k) The method reset shall call the method compute_local_quantum and shall set the local time offset back

to SC_ZERO_TIME.

l) The method compute_local_quantum of class tlm_quantumkeeper shall call the method

compute_local_quantum of class tlm_global_quantum, but may be overridden in order to calculate a

smaller value for the local quantum.

m) The class tlm_quantumkeeper should be considered the default implementation for the quantum keeper.

Applications may derive their own quantum keeper from class tlm_quantumkeeper and override the

method compute_local_quantum, but this is unusual.

n) When the local time offset is greater than or equal to the local quantum, the process should yield to the

kernel. It is strongly recommended that the process does this by calling the sync method.

o) There is no mechanism to enforce synchronization at the end of the time quantum. It is the responsibility

of the initiator to check need_sync and call sync as needed.

p) The b_transport method may itself yield such that the value of sc_time_stamp can be different before

and after the call. The value of the local time offset and any timing annotations are always expressed

relative to the current value of sc_time_stamp. On return from b_transport or nb_transport_fw, it is

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 149

the responsibility of the initiator to set the local time offset of the quantum keeper by calling the set

method, then check for synchronization by calling the need_sync method.

q) If an initiator needs to synchronize before the end of the time quantum, that is, if an initiator needs to

suspend execution so that simulation time can catch up with the local time, it may do so by calling the

sync method or by explicitly waiting on an event. This gives any other processes the chance to execute,

and is known as synchronization-on-demand.

r) Making frequent calls to sync will reduce the effectiveness of temporal decoupling.

Example

struct Initiator: sc_module // Loosely-timed initiator

{

 tlm_utils::simple_initiator_socket<Initiator> init_socket;

 tlm_utils::tlm_quantumkeeper m_qk; // The quantum keeper

 SC_CTOR(Initiator) : init_socket("init_socket") {

 SC_THREAD(thread); // The initiator process

 ...

 m_qk.set_global_quantum(sc_time(1, SC_US)); // Replace the global quantum

 m_qk.reset(); // Re-calculate the local quantum

 }

 void thread() {

 tlm::tlm_generic_payload trans;

 sc_time delay;

 trans.set_command(tlm::TLM_WRITE_COMMAND);

 trans.set_data_length(4);

 for (int i = 0; i < RUN_LENGTH; i += 4) {

 int word = i;

 trans.set_address(i);

 trans.set_data_ptr((unsigned char*)(&word));

 delay = m_qk.get_local_time(); // Annotate b_transport with local time

 init_socket->b_transport(trans, delay);

 qk.set(delay); // Update qk with time consumed by target

 m_qk.inc(sc_time(100, SC_NS)); // Further time consumed by initiator

 if (m_qk.need_sync()) m_qk.sync(); // Check local time against quantum

 }

 }

 ...

};

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 150

9.3 Payload event queue

9.3.1 Introduction

A payload event queue (PEQ) is a class that maintains a queue of SystemC event notifications, where each

notification carries an associated transaction object. Each transaction is written into the PEQ annotated with a

delay, and each transaction emerges from the back of the PEQ at a time calculated from the current simulation

time plus the annotated delay.

Two payload event queues are provided as utilities. As well as being useful in their own right, the PEQ is of

conceptual relevance in understanding the semantics of timing annotation with the approximately-timed

coding style. However, it is possible to implement approximately-timed models without using the specific

payload event queues given here. In an approximately-timed model, it is often appropriate for the recipient of

a transaction passed using nb_transport to put the transaction into a PEQ with the annotated delay. The PEQ

will schedule the timing point associated with the nb_transport call to occur at the correct simulation time.

Transactions are inserted into a PEQ by calling the notify method of the PEQ, passing a delay as an argument.

There is also a notify method that schedules an immediate notification. The delay is added to the current

simulation time (sc_time_stamp) to calculate the time at which the transaction will emerge from the back end

of the PEQ. The scheduling of the events is managed internally using a SystemC timed event notification,

exploiting the property of class sc_event that if the notify method is called whilst there is a notification

pending, the notification with the earliest simulation time will remain while the other notification gets

cancelled.

Transactions emerge in different ways from the two PEQ variants. In the case of peq_with_get, the method

get_event returns an event that is notified whenever a transaction is ready to be retrieved. The method

get_next_transaction should be called repeatedly to retrieve any available transactions one at a time.

In the case of peq_with_cb_and_phase, a callback method is registered as a constructor argument, and that

method is called as each transaction emerges. This particular PEQ carries both a transaction object and a

phase object with each notification, and both are passed as arguments to the callback method.

For an example, see 8.1 Phases

The current implementation of peq_with_cb_and_phase makes use of dynamic processes. Hence, when

compiling applications that use peq_with_cb_and_phase with current released versions of the OSCI proof-

of-concept simulator, it is necessary to define the macro SC_INCLUDE_DYNAMIC_PROCESSES before

including the SystemC header file.

9.3.2 Header file

The class definitions for the two payload event queues shall be in the header files tlm_utils/peq_with_get.h

and tlm_utils/peq_with_cb_and_phase.h.

9.3.3 Class definition

namespace tlm_utils {

template <class PAYLOAD>

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 151

class peq_with_get : public sc_core::sc_object

{

public:

 typedef PAYLOAD transaction_type;

 peq_with_get(const char* name);

 void notify(transaction_type& trans, const sc_core::sc_time& t);

 void notify(transaction_type& trans);

 transaction_type* get_next_transaction();

 sc_core::sc_event& get_event();

 void cancel_all();

};

template<typename OWNER, typename TYPES=tlm::tlm_base_protocol_types>

class peq_with_cb_and_phase : public sc_core::sc_object

{

public:

 typedef typename TYPES::tlm_payload_type tlm_payload_type;

 typedef typename TYPES::tlm_phase_type tlm_phase_type;

 typedef void (OWNER::*cb)(tlm_payload_type&, const tlm_phase_type&);

 peq_with_cb_and_phase(OWNER* , cb);

 peq_with_cb_and_phase(const char* , OWNER* , cb);

 ~peq_with_cb_and_phase();

 void notify (tlm_payload_type& , const tlm_phase_type& , const sc_core::sc_time&);

 void notify (tlm_payload_type& , const tlm_phase_type&);

 void cancel_all();

};

} // namespace tlm_utils

9.3.4 Rules

a) The notify method shall insert a transaction into the PEQ. The transaction shall emerge from the PEQ at

time t1 + t2, where t1 is the value returned from sc_time_stamp() at the time notify is called, and t2 is

the value of the sc_time argument to notify. In the case of immediate notification, the transaction shall

emerge in the current evaluation phase of the SystemC scheduler.

b) Transactions may be queued in any order and emerge in the order given by the previous rule.

Transactions do not necessarily emerge in the order in which they were inserted.

c) There is no limit to the number of transactions that may be in the PEQ at any given time.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 152

d) If several transactions are queued to emerge at the same time, they shall all emerge in the same evaluation

phase (that is, the same delta cycle) in the order in which they were inserted.

e) The cancel_all method shall immediately remove all queued transactions from the PEQ, effectively

restoring the PEQ to the state it had immediately after construction. This is the only way to remove

transactions from a PEQ.

f) The PAYLOAD template argument to class peq_with_get shall be the name of the transaction type used

by the PEQ.

g) The get_event method shall return a reference to an event that is notified when the next transaction is

ready to emerge from the PEQ. If more than one transaction is ready to emerge in the same evaluation

phase (that is, in the same delta cycle), the event is notified once only.

h) The get_next_transaction method shall return a pointer to a transaction object that is ready to emerge

from the PEQ, and shall remove the transaction object from the PEQ. If a transaction is not retrieved

from the PEQ in the evaluation phase in which the corresponding event notification occurs, it will still be

available for retrieval on a subsequent call to get_next_transaction at the current time or at a later time.

i) If there are no more transactions to be retrieved in the current evaluation phase, get_next_transaction

shall return a null pointer.

j) The TYPES template argument to class peq_with_cb_and_phase shall be the name of the protocol traits

class containing the transaction and phase types used by the PEQ.

k) The OWNER template argument to class peq_with_cb_and_phase shall be the type of the class of

which the PEQ callback method is a member. This will usually be the parent module of the PEQ instance.

l) The OWNER* argument to the constructor peq_with_cb_and_phase shall be a pointer to the object of

which the PEQ callback method is a member. This will usually be the parent module of the PEQ instance.

m) The cb argument to the constructor peq_with_cb_and_phase shall be the name of the PEQ callback

method, which shall be a member function.

n) The implementation of class peq_with_cb_and_phase shall call the PEQ callback method whenever a

transaction object is ready to emerge from the PEQ. The first argument of the callback is a reference to

the transaction object and the second argument a reference to the phase object, as passed to the

corresponding notify method.

o) The implementation shall call the PEQ callback method from a SystemC method process, so the callback

method shall be non-blocking.

p) The implementation shall only call the PEQ callback method once for each transaction. After calling the

PEQ callback method, the implementation shall remove the transaction object from the PEQ. The PEQ

callback method may be called multiple times in the same evaluation phase.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 153

9.4 Instance-specific extensions

9.4.1 Introduction

The generic payload contains an array of pointers to extension objects such that each transaction object can

contain at most one instance of each extension type. This mechanism alone does not directly permit multiple

instances of the same extension to be added to a given transaction object. This clause describes a set of

utilities that provide instance-specific extensions, that is, multiple extensions of the same type added to a

single transaction object.

An instance-specific extension type is created using a class template instance_specific_extension, used in a

similar manner to class tlm_extension. Unlike tlm_extension, applications are not required or permitted to

implement virtual clone and copy_from methods. The access methods are restricted to set_extension,

get_extension, clear_extension and resize_extensions. Automatic deletion of instance-specific extensions is

not supported, so a component calling set_extension should also call clear_extension. As for class

tlm_extension, method resize_extensions need only be called if a transaction object is constructed during

static initialization.

An instance-specific extension is accessed using an object of type instance_specific_extension_accessor.

This class provides a single method operator() which returns a proxy object through which the access

methods can be called. Each object of type instance_specific_extension_accessor gives access to a distinct

set of extension objects, even when used with the same transaction object.

In the class definition below, terms in italics are implementation-defined names that should not be used

directly by an application..

9.4.2 Header file

The class definitions for the instance-specific extensions shall be in the header file

tlm_utils/instance_specific_extensions.h

9.4.3 Class definition

namespace tlm_utils {

template <typename T>

class instance_specific_extension : public implementation-defined {

public:

 virtual ~instance_specific_extension();

};

template<typename U>

class proxy {

public:

 template <typename T> T* set_extension(T*);

 template <typename T> void get_extension(T*&) const;

 template <typename T> void clear_extension(const T*);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 154

 void resize_extensions();

};

class instance_specific_extension_accessor {

public:

 instance_specific_extension_accessor();

 template<typename T> proxy< implementation-defined >& operator() (T&);

};

} // namespace tlm_utils

Example

struct my_extn : tlm_utils::instance_specific_extension<my_extn> {

 int num; // User-defined extension attribute

};

struct Interconnect: sc_module

{

 tlm_utils::simple_target_socket<Interconnect> targ_socket;

 tlm_utils::simple_initiator_socket<Interconnect> init_socket;

 ...

 tlm_utils::instance_specific_extension_accessor accessor;

 static int count;

 virtual tlm::tlm_sync_enum nb_transport_fw(

 tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_time& delay)

 {

 my_extn* extn;

 accessor(trans).get_extension(extn); // Get existing extension

 if (extn) {

 accessor(trans).clear_extension(extn); // Delete existing extension

 } else {

 extn = new my_extn;

 extn->num = count++;

 accessor(trans).set_extension(extn); // Add new extension

 }

 return init_socket->nb_transport_fw(trans, phase, delay);

 } ...

};

... SC_CTOR(Top) {

 // Transaction object passes through two instances of Interconnect

 interconnect1 = new Interconnect("interconnect1");

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 155

 interconnect2 = new Interconnect("interconnect2");

 interconnect1->init_socket.bind(interconnect2->targ_socket);

 ...

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 156

10 TLM-1 and analysis ports

The following TLM-1 core interfaces together with the tlm_fifo channel, the analysis interface, and the

analysis ports are still current OSCI standards and are shipped with the TLM-2.0 software distribution.

However, they are separate from the main body of the TLM-2.0 standard, and not documented in detail here.

10.1 TLM-1 core interfaces

The transport method with the signature transport(const REQ& , RSP&) was not part of TLM-1, but has

been added in TLM-2.0.

namespace tlm {

// Bidirectional blocking interfaces

template < typename REQ , typename RSP >

class tlm_transport_if : public virtual sc_core::sc_interface

{

public:

 virtual RSP transport(const REQ&) = 0;

 virtual void transport(const REQ& req , RSP& rsp) { rsp = transport(req); }

};

// Uni-directional blocking interfaces

template < typename T >

class tlm_blocking_get_if : public virtual sc_core::sc_interface

{

public:

 virtual T get(tlm_tag<T> *t = 0) = 0;

 virtual void get(T &t) { t = get(); }

};

template < typename T >

class tlm_blocking_put_if : public virtual sc_core::sc_interface

{

public:

 virtual void put(const T &t) = 0;

};

// Uni-directional non blocking interfaces

template < typename T >

class tlm_nonblocking_get_if : public virtual sc_core::sc_interface

{

public:

 virtual bool nb_get(T &t) = 0;

 virtual bool nb_can_get(tlm_tag<T> *t = 0) const = 0;

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 157

 virtual const sc_core::sc_event &ok_to_get(tlm_tag<T> *t = 0) const = 0;

};

template < typename T >

class tlm_nonblocking_put_if : public virtual sc_core::sc_interface

{

public:

 virtual bool nb_put(const T &t) = 0;

 virtual bool nb_can_put(tlm_tag<T> *t = 0) const = 0;

 virtual const sc_core::sc_event &ok_to_put(tlm_tag<T> *t = 0) const = 0;

};

// Combined uni-directional blocking and non blocking

template < typename T >

class tlm_get_if :

 public virtual tlm_blocking_get_if< T > ,

 public virtual tlm_nonblocking_get_if< T > {};

template < typename T >

class tlm_put_if :

 public virtual tlm_blocking_put_if< T > ,

 public virtual tlm_nonblocking_put_if< T > {};

// Peek interfaces

template < typename T >

class tlm_blocking_peek_if : public virtual sc_core::sc_interface

{

public:

 virtual T peek(tlm_tag<T> *t = 0) const = 0;

 virtual void peek(T &t) const { t = peek(); }

};

template < typename T >

class tlm_nonblocking_peek_if : public virtual sc_core::sc_interface

{

public:

 virtual bool nb_peek(T &t) const = 0;

 virtual bool nb_can_peek(tlm_tag<T> *t = 0) const = 0;

 virtual const sc_core::sc_event &ok_to_peek(tlm_tag<T> *t = 0) const = 0;

};

template < typename T >

class tlm_peek_if :

 public virtual tlm_blocking_peek_if< T > ,

 public virtual tlm_nonblocking_peek_if< T > {};

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 158

// Get_peek interfaces

template < typename T >

class tlm_blocking_get_peek_if :

 public virtual tlm_blocking_get_if<T> ,

 public virtual tlm_blocking_peek_if<T> {};

template < typename T >

class tlm_nonblocking_get_peek_if :

 public virtual tlm_nonblocking_get_if<T> ,

 public virtual tlm_nonblocking_peek_if<T> {};

template < typename T >

class tlm_get_peek_if :

 public virtual tlm_get_if<T> ,

 public virtual tlm_peek_if<T> ,

 public virtual tlm_blocking_get_peek_if<T> ,

 public virtual tlm_nonblocking_get_peek_if<T>

 {};

} // namespace tlm

10.2 TLM-1 fifo interfaces

namespace tlm {

// Fifo debug interface

template< typename T >

class tlm_fifo_debug_if : public virtual sc_core::sc_interface

{

public:

 virtual int used() const = 0;

 virtual int size() const = 0;

 virtual void debug() const = 0;

 // non blocking peek and poke - no notification. n is index of data :

 // 0 <= n < size(), where 0 is most recently written, and size() – 1 is oldest ie the one about to be read.

 virtual bool nb_peek(T & , int n) const = 0;

 virtual bool nb_poke(const T & , int n = 0) = 0;

};

// Fifo interfaces

template < typename T >

class tlm_fifo_put_if :

 public virtual tlm_put_if<T> ,

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 159

 public virtual tlm_fifo_debug_if<T> {};

template < typename T >

class tlm_fifo_get_if :

 public virtual tlm_get_peek_if<T> ,

 public virtual tlm_fifo_debug_if<T> {};

} // namespace tlm

10.3 tlm_fifo

namespace tlm {

template <typename T>

class tlm_fifo :

 public virtual tlm_fifo_get_if<T>,

 public virtual tlm_fifo_put_if<T>,

 public sc_core::sc_prim_channel

{

public:

 explicit tlm_fifo(int size_ = 1);

 explicit tlm_fifo(const char* name_, int size_ = 1);

 virtual ~tlm_fifo();

 T get(tlm_tag<T> *t = 0);

 bool nb_get(T&);

 bool nb_can_get(tlm_tag<T> *t = 0) const;

 const sc_core::sc_event &ok_to_get(tlm_tag<T> *t = 0) const;

 T peek(tlm_tag<T> *t = 0) const;

 bool nb_peek(T&) const;

 bool nb_can_peek(tlm_tag<T> *t = 0) const;

 const sc_core::sc_event &ok_to_peek(tlm_tag<T> *t = 0) const;

 void put(const T&);

 bool nb_put(const T&);

 bool nb_can_put(tlm_tag<T> *t = 0) const;

 const sc_core::sc_event& ok_to_put(tlm_tag<T> *t = 0) const;

 void nb_expand(unsigned int n = 1);

 void nb_unbound(unsigned int n = 16);

 bool nb_reduce(unsigned int n = 1);

 bool nb_bound(unsigned int n);

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 160

 bool nb_peek(T & , int n) const;

 bool nb_poke(const T & , int n = 0);

 int used() const;

 int size() const;

 void debug() const;

 static const char* const kind_string;

 const char* kind() const;

};

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 161

10.4 Analysis interface and analysis ports

Analysis ports are intended to support the distribution of transactions to multiple components for analysis,

meaning tasks such as checking for functional correctness or collecting functional coverage statistics. The key

feature of analysis ports is that a single port can be bound to multiple channels or subscribers such that the

port itself replicates each call to the interface method write with each subscriber. An analysis port can be

bound to zero or more subscribers or other analysis ports, and can be unbound.

Each subscriber implements the write method of the tlm_analysis_if. The method is passed a const reference

to a transaction, which a subscriber may process immediately. Otherwise, if the subscriber wishes to extend

the lifetime of the transaction, it is obliged to take a deep copy of the transaction object, at which point the

subscriber effectively becomes the initiator of a new transaction and is thus responsible for the memory

management of the copy.

Analysis ports should not be used in the main operational pathways of a model, but only where data is tapped

off and passed to the side for analysis. Interface tlm_analysis_if is derived from tlm_write_if. The latter

interface is not specific to analysis, and may be used for other purposes. For example, see 9.3 Payload event

queue.

The tlm_analysis_fifo is simply an infinite tlm_fifo that implements the tlm_analysis_if to write a

transaction to the fifo. The tlm_fifo also supports the tlm_analysis_triple, which consists of a transaction

together with explicit start and end times.

10.4.1 Class definition

namespace tlm {

// Write interface

template <typename T>

class tlm_write_if : public virtual sc_core::sc_interface {

public:

 virtual void write(const T&) = 0;

};

template <typename T>

class tlm_delayed_write_if : public virtual sc_core::sc_interface {

public:

 virtual void write(const T& , const sc_core::sc_time&) = 0;

};

// Analysis interface

template < typename T >

class tlm_analysis_if : public virtual tlm_write_if<T>

{

};

template < typename T >

class tlm_delayed_analysis_if : public virtual tlm_delayed_write_if<T>

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 162

{

};

// Analysis port

template < typename T>

class tlm_analysis_port : public sc_core::sc_object , public virtual tlm_analysis_if< T >

{

public:

 tlm_analysis_port();

 tlm_analysis_port(const char *);

 // bind and () work for both interfaces and analysis ports, since analysis ports implement the analysis

interface

 void bind(tlm_analysis_if<T> &);

 void operator() (tlm_analysis_if<T> &);

 bool unbind(tlm_analysis_if<T> &);

 void write(const T &);

};

// Analysis triple

template< typename T>

struct tlm_analysis_triple {

 sc_core::sc_time start_time;

 T transaction;

 sc_core::sc_time end_time;

 // Constructors

 tlm_analysis_triple();

 tlm_analysis_triple(const tlm_analysis_triple &triple);

 tlm_analysis_triple(const T &t);

 operator T() { return transaction; }

 operator const T& () const { return transaction; }

};

// Analysis fifo - an unbounded tlm_fifo

template< typename T >

class tlm_analysis_fifo :

 public tlm_fifo< T > ,

 public virtual tlm_analysis_if< T > ,

 public virtual tlm_analysis_if< tlm_analysis_triple< T > > {

public:

 tlm_analysis_fifo(const char *nm) : tlm_fifo<T>(nm, -16) {}

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 163

 tlm_analysis_fifo() : tlm_fifo<T>(-16) {}

 void write(const tlm_analysis_triple<T> &t) { nb_put(t); }

 void write(const T &t) { nb_put(t); }

};

} // namespace tlm

10.4.2 Rules

a) tlm_write_if and tlm_analysis_if (and their delayed variants) are unidirectional, non-negotiated, non-

blocking transaction-level interfaces, meaning that the callee has no choice but to immediately accept the

transaction passed as an argument.

b) The constructor shall pass any character string argument to the constructor belonging to the base class

sc_object to set the string name of the instance in the module hierarchy.

c) The bind method shall register the subscriber passed as an argument with the analysis port instance so

that any call to the write method shall be passed on to the registered subscriber. Multiple subscribers may

be registered with a single analysis port instance.

d) The operator() shall be equivalent to the bind method.

e) There may be zero subscribers registered with any given analysis port instance, in which case calls to the

write method shall not be propagated.

f) The unbind method shall reverse the effect of the bind method, that is, the subscriber passed as an

argument shall be removed from the list of subscribers to that analysis port instance.

g) The write method of class tlm_analysis_port shall call the write method of every subscriber registered

with that analysis port instance, passing on the argument as a const reference.

h) The write method is non-blocking. It shall not call wait.

i) The write method shall not modify the transaction object passed as a const reference argument, nor shall

it modify any data associated with the transaction object (such as the data and byte enable arrays of the

generic payload).

j) If the implementation of the write method in a subscriber is unable to process the transaction before

returning control to the caller, the subscriber shall be responsible for taking a deep copy of the transaction

object and for managing any memory associated with that copy thereafter.

k) The constructors of class tlm_analysis_fifo shall each construct an unbounded tlm_fifo.

l) The write methods of class tlm_analysis_fifo shall call the nb_put method of the base class tlm_fifo,

passing on their argument to nb_put.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 164

Example

struct Trans // Analysis transaction class

{

 int i;

};

struct Subscriber: sc_object, tlm::tlm_analysis_if<Trans>

{

 Subscriber(const char* n) : sc_object(n) {}

 virtual void write(const Trans& t)

 {

 cout << "Hello, got " << t.i << "\n"; // Implementation of the write method

 }

};

SC_MODULE(Child)

{

 tlm::tlm_analysis_port<Trans> ap;

 SC_CTOR(Child) : ap("ap")

 {

 SC_THREAD(thread);

 }

 void thread()

 {

 Trans t = {999};

 ap.write(t); // Interface method call to the write method of the analysis port

 }

};

SC_MODULE(Parent)

{

 tlm::tlm_analysis_port<Trans> ap;

 Child* child;

 SC_CTOR(Parent) : ap("ap")

 {

 child = new Child("child");

 child->ap.bind(ap); // Bind analysis port of child to analysis port of parent

 }

};

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 165

SC_MODULE(Top)

{

 Parent* parent;

 Subscriber* subscriber1;

 Subscriber* subscriber2;

 SC_CTOR(Top)

 {

 parent = new Parent("parent");

 subscriber1 = new Subscriber("subscriber1");

 subscriber2 = new Subscriber("subscriber2");

 parent->ap.bind(*subscriber1); // Bind analysis port to two separate subscribers

 parent->ap.bind(*subscriber2); // This is the key feature of analysis ports

 }

};

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 166

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 167

11 Glossary

Blue = taken from the SystemC LRM

This glossary contains brief, informal descriptions for a number of terms and phrases used in this standard.

Where appropriate, the complete, formal definition of each term or phrase is given in the main body of the

standard. Each glossary entry contains either the clause number of the definition in the main body of the

standard or an indication that the term is defined in ISO/IEC 14882:2003 or IEEE Std 1666 -2005.

adapter: A module that connects a transaction level interface to a pin level interface (in the general sense of

the word interface) or that connects together two transaction level interfaces, often at different abstraction

levels. An adapter may be used to convert between two sockets specialized with different protocol types. See

bridge, transactor.

approximately timed: A modeling style for which there exists a one-to-one mapping between the externally

observable states of the model and the states of some corresponding detailed reference model such that the

mapping preserves the sequence of state transitions but not their precise timing. The degree of timing

accuracy is undefined. See cycle approximate.

attribute (of a transaction): Data that is part of and carried with the transaction and is implemented as a

member of the transaction object. These may include attributes inherent in the bus or protocol being modeled,

and attributes that are artefacts of the simulation model (a timestamp, for example).

automatic deletion: A generic payload extension marked for automatic deletion will be deleted at the end of

the transaction lifetime, that is, when the transaction reference count reaches 0.

backward path: The calling path by which a target or interconnect component makes interface method calls

back in the direction of another interconnect component or the initiator.

base protocol: A protocol traits class consisting of the generic payload and tlm_phase types, together with an

associated set of protocol rules which together ensure maximal interoperability between transaction-level

models

bidirectional interface: A TLM-1 transaction level interface in which a pair of transaction objects, the

request and the response, are passed in opposite directions, each being passed according to the rules of the

unidirectional interface. For each transaction object, the transaction attributes are strictly readonly in the

period between the first timing point and the end of the transaction lifetime.

blocking: Permitted to call the wait method. A blocking function may consume simulation time or perform a

context switch, and therefore shall not be called from a method process. A blocking interface defines only

blocking functions.

blocking transport interface: A blocking interface of the TLM-2.0 standard which contains a single method

b_transport. Beware that there still exists a blocking transport method named transport, part of TLM-1.

bridge: A component connecting two segments of a communication network together. A bus bridge is a

device that connects two similar or dissimilar memory-mapped buses together. See adapter, transaction

bridge, transactor.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 168

caller: In a function call, the sequence of statements from which the given function is called. The referent of

the term may be a function, a process, or a module. This term is used in preference to initiator to refer to the

caller of a function as opposed to the initiator of a transaction.

callee: In a function call, the function that is called by the caller. This term is used in preference to target to

refer to the function body as opposed to the target of a transaction.

channel: A class that implements one or more interfaces or an instance of such a class. A channel may be a

hierarchical channel or a primitive channel or, if neither of these, it is strongly recommended that a channel at

least be derived from class sc_object. Channels serve to encapsulate the definition of a communication

mechanism or protocol. (SystemC term)

child: An instance that is within a given module. Module A is a child of module B if module A is within

module B. (SystemC Term)

combined interfaces: Pre-defined groups of core interfaces used to parameterize the socket classes. There are

four combined interfaces: the blocking and non-blocking forward and backward interfaces.

component: An instance of a SystemC module. This standard recognizes three kinds of component; the

initiator, interconnect component, and target.

convenience socket: A socket class, derived from tlm_initiator_socket or tlm_target_socket, that

implements some additional functionality and is provided for convenience. Several convenience sockets are

provided as utilities.

core interface: One of the specific transaction level interfaces defined in this standard, including the blocking

and non-blocking transport interface, the direct memory interface, and the debug transport interface. Each

core interface is an interface proper. The core interfaces are distinct from the generic payload API.

cycle accurate: A modeling style in which it is possible to predict the state of the model in any given cycle at

the external boundary of the model and thus to establish a one-to-one correspondence between the states of

the model and the externally observable states of a corresponding RTL model in each cycle, but which is not

required to explicitly re-evaluate the state of the entire model in every cycle or to explicitly represent the state

of every boundary pin or internal register. This term is only applicable to models that have a notion of cycles.

cycle approximate: A model for which there exists a one-to-one mapping between the externally observable

states of the model and the states of some corresponding cycle accurate model such that the mapping

preserves the sequence of state transitions but not their precise timing. The degree of timing accuracy is

undefined. This term is only applicable to models that have a notion of cycles.

cycle count accurate, cycle count accurate at transaction boundaries: A modeling style in which it is

possible to establish a one-to-one correspondence between the states of the model and the externally

observable states of a corresponding RTL model as sampled at the timing points marking the boundaries of a

transaction. A cycle count accurate model is not required to be cycle accurate in every cycle, but is required to

accurately predict both the functional state and the number of cycles at certain key timing points as defined by

the boundaries of the transactions through which the model communicates with other models.

declaration: A C++ language construct that introduces a name into a C++ program and specifies how the

C++ compiler is to interpret that name. Not all declarations are definitions. For example, a class declaration

specifies the name of the class but not the class members, while a function declaration specifies the function

parameters but not the function body. (See definition.) (C++ term)

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 169

definition: The complete specification of a variable, function, type, or template. For example, a class

definition specifies the class name and the class members, and a function definition specifies the function

parameters and the function body. (See declaration.) (C++ term)

effective local time: The current time within a temporally decoupled initiator. effective_local_time =

sc_time_stamp() + local_time_offset

exclusion rule: A rule of the base protocol that prevents a request or a response being sent through a socket if

there is already a request or a response (respectively) in progress through that socket. The base protocol has

two exclusion rules, the request exclusion rule and the response exclusion rule, which act independently of

one another.

extension: A user-defined object added to and carried around with a generic payload transaction object, or a

user-defined class that extends the set of values that are assignment compatible with the tlm_phase type. An

ignorable extension may be used with the base protocol, but a non-ignorable or mandatory extension requires

the definition of a new protocol traits class.

forward path: The calling path by which an initiator or interconnect component makes interface method calls

forward in the direction of another interconnect component or the target.

generic payload: A specific set of transaction attributes and their semantics together defining a transaction

payload which may be used to achieve a degree of interoperability between loosely timed and approximately

timed models for components communicating over a memory-mapped bus. The same transaction class is used

for all modeling styles.

global quantum: The default time quantum used by every quantum keeper and temporally decoupled

initiator. The intent is that all temporally decoupled initiators should typically synchronize on integer

multiples of the global quantum, or more frequently on demand.

hierarchical binding: Binding a socket on a child module to a socket on a parent module, or a socket on a

parent module to a socket on a child module, passing transactions up or down the module hierarchy.

hop: The interface method call path between two adjacent components en route from initiator to target. A hop

consists of one initiator socket bound to one target socket. In order to be transported from initiator to target, a

transaction may need to pass over multiple hops. The number of hops between an initiator and a target is

always one greater than the number of interconnect components.

ignorable extension: A generic payload extension that may be ignored by any component other than the

component that set the extension. An ignorable extension is not required to be present. Ignorable extensions

are permitted by the base protocol.

ignorable phase: A phase, created by the macro DECLARE_EXTENDED PHASE, that may be ignored by

any component that receives the phase and that cannot demand a response of any kind. Ignorable phases are

permitted by the base protocol.

initiator: A module that can initiate transactions. The initiator is responsible for initializing the state of the

transaction object, and for deleting or reusing the transaction object at the end of the transaction‘s lifetime. An

initiator is usually a master and a master is usually an initiator, but the term initiator means that a component

can initiate transactions, whereas the term master means that a component can take control of a bus. In the

case of the TLM-1 interfaces, the term initiator as defined here may not be strictly applicable, so the terms

caller and callee may be used instead for clarity.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 170

initiator socket: A class containing a port for interface method calls on the forward path and an export for

interface method calls on the backward path. A socket overloads the SystemC binding operators to bind both

the port and the export.

interconnect component: A module that accesses a transaction object, but does not act as an initiator or a

target with respect to that transaction. An interconnect component may or may not be permitted to modify the

attributes of the transaction object, depending on the rules of the payload. An arbiter or a router would

typically be modeled as an interconnect component, the alternative being to model it as a target for one

transaction and an initiator for a separate transaction.

interface: A class derived from class sc_interface. An interface proper is an interface, and in the object-

oriented sense a channel is also an interface. However, a channel is not an interface proper. (SystemC term)

Interface Method Call (IMC): A call to an interface method. An interface method is a member function

declared within an interface. The IMC paradigm provides a level of indirection between a method call and the

implementation of the method within a channel such that one channel can be substituted with another without

affecting the caller. (SystemC term)

interface proper: An abstract class derived from class sc_interface but not derived from class sc_object. An

interface proper declares the set of methods to be implemented within a channel and to be called through a

port. An interface proper contains pure virtual function declarations, but typically contains no function

definitions and no data members. (SystemC term)

interoperability: The ability of two or more transaction level models from diverse sources to exchange

information using the interfaces defined in this standard. The intent is that models that implement common

memory-mapped bus protocols in the programmers view use case should be interoperable without the need

for explicit adapters. Furthermore, the intent is to reduce the amount of engineering effort needed to achieve

interoperability for models of divergent protocols or use cases, although it is expected that adapters will be

required in general.

interoperability layer: The subset of classes in this standard that are necessary for interoperability. The

interoperability layer comprises the TLM-2.0 core interfaces, the initiator and target sockets, the generic

payload, tlm_global_quantum and tlm_phase. Closely related to the base protocol.

lifetime (of an object): The lifetime of an object starts when storage is allocated and the constructor call has

completed, if any. The lifetime of an object ends when storage is released or immediately before the

destructor is called, if any. (C++ term)

lifetime (of a transaction): The period of time that starts when the transaction becomes valid and ends when

the transaction becomes invalid. Because it is possible to pool or re-use transaction objects, the lifetime of a

transaction object may be longer than the lifetime of the corresponding transaction. For example, a transaction

object could be a stack variable passed as an argument to multiple put calls of the TLM-1 interface.

local quantum: The amount of simulation time remaining before the initiator is required to synchronize.

Typically, the local quantum equals the current simulation time subtracted from the next largest integer

multiple of the global quantum, but this calculation can be overridden for a given quantum keeper.

local time offset: Time as measured relative to the most recent quantum boundary in a temporally decoupled

initiator. The timing annotation arguments to the b_transport and nb_transport methods are local time

offsets. effective_local_time = sc_time_stamp() + local_time_offset

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 171

loosely timed: A modeling style that represents minimal timing information sufficient only to support

features necessary to boot an operating system and to manage multiple threads in the absence of explicit

synchronization between those threads. A loosely timed model may include timer models and a notional

arbitration interval or execution slot length. Some users adopt the practice of inserting random delays into

loosely timed descriptions in order to test the robustness of their protocols, but this practice does not change

the basic characteristics of the modeling style.

master: This term has no precise technical definition in this standard, but is used to mean a module or port

that can take control of a memory-mapped bus in order to initiate bus traffic, or a component that can execute

an autonomous software thread and thus initiate other system activity. Generally, a bus master would be an

initiator.

memory manager: A user-defined class that performs memory management for a generic payload

transaction object. A memory manager must provide a free method, called when the reference count of the

transaction reaches 0.

method: A function that implements the behavior of a class. This term is synonymous with the C++ term

member function. In SystemC, the term method is used in the context of an interface method call. Throughout

this standard, the term member function is used when defining C++ classes (for conformance to the C++

standard), and the term method is used in more informal contexts and when discussing interface method calls.

(SystemC term)

multi-socket: One of a family of convenience sockets that can be bound to multiple sockets belonging to

other components. An initiator multi-socket can be bound to more than one target socket, and more than one

initiator socket can be bound to a single target multi-socket. When calling interface methods through multi-

sockets, the destinations are distinguished using the subscript operator.

nb_transport: The nb_transport_fw and nb_transport_bw methods. In this document, the italicized term

nb_transport is used to describe both methods in situations where there is no need to distinguish between

them.

non-blocking: Not permitted to call the wait method. A non-blocking function is guaranteed to return

without consuming simulation time or performing a context switch, and therefore may be called from a thread

process or from a method process. A non-blocking interface defines only non-blocking functions.

non-blocking transport interface: A non-blocking interface of the TLM-2.0 standard. There a two such

interfaces, containing methods named nb_transport_fw and nb_transport_bw.

object: A region of storage. Every object has a type and a lifetime. An object created by a definition has a

name, whereas an object created by a new expression is anonymous. (C++ term)

opposite path: The path in the opposite direction to a given path. For the forward path, the opposite path is

the forward return path or the backward path. For the backward path, the opposite path is the forward path or

the backward return path.

parent: The inverse relationship to child. Module A is the parent of module B if module B is a child of

module A. (SystemC term)

payload event queue (PEQ): A class that maintains a queue of SystemC event notifications, where each

notification carries an associated transaction object. Transactions are put into the queue annotated with a

delay, and each transaction pops out of the back of queue at the time it was put in plus the given delay. Useful

when combining the non-blocking interface with the approximately-timed coding style.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 172

phase: A period in the lifetime of a transaction. The phase is passed as an argument to the non-blocking

transport method. Each phase transition is associated with a timing point. The timing point may be delayed by

an amount given by the time argument to nb_transport.

phase transition: A change to the value of the phase argument of the non-blocking transport method as

marked by each call to nb_transport and each return from nb_transport with a value of TLM_UPDATED.

programmers view (PV): The use case of the software programmer who requires a functionally accurate,

loosely timed model of the hardware platform for booting an operating system and running application

software.

protocol traits class: A class containing a typedef for the type of the transaction object and the phase type,

which is used to parameterize the combined interfaces, and effectively defines a unique type for a protocol.

quantum: In temporal decoupling, the amount a process is permitted to run ahead of the current simulation

time.

quantum keeper: A utility class used to store the local time offset from the current simulation time, which it

checks against a local quantum.

request: For the base protocol, the stage during the lifetime of a transaction when information is passed from

the initiator to the target. In effect, the request transports generic payload attributes from the initiator to the

target, including the command, the address, and for a write command, the data array. (The transaction is

actually passed by reference and the data array by pointer.)

response: For the base protocol, the stage during the lifetime of a transaction when information is passed

from the target back to the initiator. In effect, the response transports generic payload attributes from the

target back to the initiator, including the response status, and for a read command, the data array. (The

transaction is actually passed by reference and the data array by pointer.)

return path: The control path by which the call stack of a set of interface method calls is unwound along

either the forward path or the backward path. The return path for the forward path can carry information from

target to initiator, and the return path for the backward path can carry information from initiator to target.

simple socket: One of a family of convenience sockets that are simple to use because they allows callback

methods to be registered directly with the socket object rather than the socket having to be bound to another

object that implements the required interfaces. The simple target socket avoids the need for a target to

implement both blocking and non-blocking transport interfaces by providing automatic conversion between

the two.

slave: This term has no precise technical definition in this standard, but is used to mean a reactive module or

port on a memory-mapped bus that is able to respond to commands from bus masters, but is not able itself to

initiate bus traffic. Generally, a slave would be modeled as a target.

socket: See initiator socket and target socket

standard error response: The behavior prescribed by this standard for a generic payload target that is unable

to execute a transaction successfully. A target should either a) execute the transaction successfully or b) set

the response status attribute to an error response or c) call the SystemC report handler.

sticky extension: A generic payload extension object that is not deleted (either automatically or explicitly) at

the end of life of the transaction object, and thus remains with the transaction object when it is pooled. Sticky

extensions are not deleted by the memory manager.

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 173

synchronize: To yield such that other processes may run, or when using temporal decoupling, to yield and

wait until the end of the current time quantum.

synchronization-on-demand: The action of a temporally decoupled process when it yields control back to

the SystemC scheduler so that simulation time may advance and other processes run in addition to the

synchronization points that may occur routinely at the end of each quantum.

tagged socket: One of a family of convenience sockets that add an int id tag to every incoming interface

method call in order to identify the socket (or element of a multi-socket) through which the transaction

arrived.

target: A module that represents the final destination of a transaction, able to respond to transactions

generated by an initiator, but not itself able to initiate new transactions. For a write operation, data is copied

from the initiator to one or more targets. For a read operation, data is copied from one target to the initiator. A

target may read or modify the state of the transaction object. In the case of the TLM-1 interfaces, the term

target as defined here may not be strictly applicable, so the terms caller and callee may be used instead for

clarity.

target socket: A class containing a port for interface method calls on the backward path and an export for

interface method calls on the forward path. A socket also overloads the SystemC binding operators to bind

both port and export.

temporal decoupling: The ability to allow one or more initiators to run ahead of the current simulation time

in order to reduce context switching and thus increase simulation speed.

timing annotation: The sc_time argument to the b_transport and nb_transport methods. A timing

annotation is a local time offset. The recipient of a transaction is required to behave as if it had received the

transaction at effective_local_time = sc_time_stamp() + local_time_offset.

timing point: A significant time within the lifetime of a transaction. A loosely-timed transaction has two

timing points corresponding to the call to and return from b_transport. An approximately-timed base

protocol transaction has four timing points, each corresponding to a phase transition.

TLM-1: The first major version of the OSCI Transaction Level Modeling standard. TLM-1 was released in

2005.

TLM-2.0: The second major version of the OSCI Transaction Level Modeling standard. This document

describes TLM-2.0.

traits class: In C++ programming, a class that contains definitions such as typedefs that are used to specialize

the behavior of a primary class, typically by having the traits class passed as a template argument to the

primary class. The default template parameter provides the default traits for the primary class.

transaction: An abstraction for an interaction or communication between two or more concurrent processes.

A transaction carries a set of attributes and is bounded in time, meaning that the attributes are only valid

within a specific time window. The timing associated with the transaction is limited to a specific set of timing

points, depending on the type of the transaction. Processes may be permitted to read or modify attributes of

the transaction, depending on the protocol.

transaction bridge: A component that acts as the target for an incoming transaction and as the initiator for an

outgoing transaction, usually for the purpose of modeling a bus bridge. See bridge

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 174

transaction instance: A unique instance of a transaction. A transaction instance is represented by one

transaction object, but the same transaction object may be re-used for several transaction instances.

transaction object: The object that stores the attributes associated with a transaction. The type of the

transaction object is passed as a template argument to the core interfaces.

transaction level (TL): The abstraction level at which communication between concurrent processes is

abstracted away from pin wiggling to transactions. This term does not imply any particular level of

granularity with respect to the abstraction of time, structure, or behavior.

transaction level model, transaction level modeling (TLM): A model at the transaction level and the act of

creating such a model, respectively. Transaction level models typically communicate using function calls, as

opposed to the style of setting events on individual pins or nets as used by RTL models.

transactor: A module that connects a transaction level interface to a pin level interface (in the general sense

of the word interface) or that connects together two or more transaction level interfaces, often at different

abstraction levels. In the typical case, the first transaction level interface represents a memory-mapped bus or

other protocol, the second interface represents the implementation of that protocol at a lower abstraction level.

However, a single transactor may have multiple transaction level or pin level interfaces. See adapter, bridge.

transparent component: A interconnect component with the property that all incoming interface method

calls are propagated immediately through the component without delay and without modification to the

arguments or to the transaction object (extensions excepted). The intent of a transparent component is to allow

checkers and monitors to pass ignorable phases.

transport interface: The one and only bidirectional core interface in TLM-1. The transport interface passes a

request transaction object from caller to callee, and returns a response transaction object from callee to caller.

TLM-2.0 adds separate blocking and non-blocking transport interfaces.

unidirectional interface: A TLM-1.0 transaction level interface in which the attributes of the transaction

object are strictly readonly in the period between the first timing point and the end of the transaction lifetime.

Effectively, the information represented by the transaction object is strictly passed in one direction either from

caller to callee or from callee to caller. In the case of void put(const T& t), the first timing point is marked

by the function call. In the case of void get(T& t), the first timing point is marked by the return from the

function. In the case of T get(), strictly speaking there are two separate transaction objects, and the return

from the function marks the degenerate end-of-life of the first object and the first timing point of the second.

untimed: A modeling style in which there is no explicit mention of time or cycles, but which includes

concurrency and sequencing of operations. In the absence of any explicit notion of time as such, the

sequencing of operations across multiple concurrent threads must be accomplished using synchronization

primitives such as events, mutexes and blocking FIFOs. Some users adopt the practice of inserting random

delays into untimed descriptions in order to test the robustness of their protocols, but this practice does not

change the basic characteristics of the modeling style.

utilities: A set of classes of the TLM-2.0 standard that are provided for convenience only, and are not strictly

necessary to achieve interoperability between transaction-level models.

valid: The state of an object returned from a function by pointer or by reference, during any period in which

the object is not deleted and its value or behavior remains accessible to the application. (SystemC term)

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 175

within: The relationship that exists between an instance and a module if the constructor of the instance is

called from the constructor of the module, and also provided that the instance is not within a nested module.

(SystemC term)

yield: Return control to the SystemC scheduler. For a thread process, to yield is to call wait. For a method

process, to yield is to return from the function.

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 176

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 177

12 Index

Abstraction level, 5

Accept delay, 112

acquire, 68, 106

Adapter, 63

b/nb conversion, 132

bridge, 61

Address alignment, 87, 88

Address attribute, 72, 73, 75

and DMI, 38, 73

and endianness, 88

and transport_dbg, 46, 73

overlapping, 119

allow_none, 39

allow_read, 39

allow_read_write, 39

allow_write, 39

Analysis port, 161

Approximately-timed, 9

message sequence chart, 26

PEQ, 150

phase sequence, 104

timing annotation, 31

timing parameters, 112

Arithmetic mode

and endianness, 87, 91

Auto-extension, 96

b/nb conversion, 132

b_transport, 16

and simple sockets, 123

and timing annotation, 117

base protocol, 113, 118

message sequence chart, 18

re-entrant, 118

simple socket, 131

switching to nb_transport, 120

Backward path, 12, 22, 24

and causality, 113

and DMI, 42

and sockets, 51

message sequence chart, 26

nb_transport, 22

Base protocol, 103

and causality, 113

and memory management, 106

b_transport, 118

exclusion rule, 113

flow control, 114

guidelines, 122

phase sequence, 104

phase transitions, 107

switching between coding styles, 120

timing annotation, 117

transaction ordering, 119

BEGIN_REQ, 101

BEGIN_RESP, 101

base protocol, 106

Big-endian, 88, 90

bind, 56, 130, 163

Binding, 51, 56, 127, 141

hierarchical, 56, 127, 141

Blocking transport interface, 16

vs non-blocking, 10

Bridge, 13, 61, 63, 71, 95

BUSWIDTH, 56, 76, 86

Byte enable array, 72, 77

and deep_copy_from, 70

and endianness, 86

and update_original_from, 70

Byte enable length attribute, 72, 78

Byte enable pointer attribute, 72, 77

Byte order mode

and endianness, 91

Callback, 131, 152

cancel_all, 152

Causality

and base protocol, 113

clear_extension, 69, 97, 153

clone, 70, 95

Coding style, 5, 6

Combined interfaces, 13, 50

Command attribute, 72, 74

and DMI, 38

and transport_dbg, 46

compute_local_quantum, 49, 148

Convenience socket, 126

Conversion function

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 178

b/nb adapter, 132

endianness, 91

copy_from, 70, 96

Core interface, 1

Cycle-accurate, 10

Data array, 72, 73, 75

and bridge, 95

and deep_copy_from, 70

and destructor, 71

and DMI, 39

and endianness, 86, 87

and transport_dbg, 47

and update_original_from, 70

Data length attribute, 72, 76

and endianness, 88

and transport_dbg, 46

Data pointer attribute, 72, 75

and transport_dbg, 46

Data transfer time, 112

Debug transport interface, 13, 45, See

transport_dbg

DECLARE_EXTENDED_PHASE, 101

deep_copy_from, 70, 95

Delay

approximately-timed, 9, 112

base protocol, 112

timing annotation, 30

Direct memory interface, 13, 35

Directory structure, 2

DMI, 13, 35

and temporal decoupling, 43

latency, 41

overlapping regions, 41

vs transport, 42

DMI allowed attribute, 43, 72, 79

modification at target, 73

DMI descriptor, 39

DMI hint, 43, 79

modification at target, 73

DMI_ACCESS_NONE, 40

DMI_ACCESS_READ, 40

DMI_ACCESS_READ_WRITE, 40

DMI_ACCESS_WRITE, 40

dmi_data, 37

docs directory, 3

doxygen directory, 3

Draft version, 1

Early completion

base protocol, 105

message sequence chart, 28

Effective local time, 30, 117

end_of_elaboration

and size of socket, 141

END_REQ, 101

base protocol, 106

END_RESP, 101

base protocol, 105

Endianness, 86

conversion functions, 91

helper functions, 90

Example

analysis port, 164

attributes, 82

b_transport, 32, 118

bind, 59

byte enable, 84

DECLARE_EXTENDED_PHASE, 102

exclusion rules, 116

extension, 98

generic payload, 82

get_direct_mem_ptr, 40

hierarchical binding, 142

instance-specific extension, 154

multi-socket, 142

nb_transport, 32

protocol, 99

quantum keeper, 149

reentrancy, 118

response status, 83

simple socket, 133

synchronization-on-demand, 32

timing annotation, 116

tlm_initiator_socket, 57

tlm_target_socket, 58

traits class, 99

examples directory, 3

Exclusion rule, 113

Extension, 94

and DMI, 35, 38

and interoperability, 61

and response status, 81

and transport_dbg, 45

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 179

array, 95, 96

auto-deletion, 96

ignorable, 62, 81, 94, 104, 120

instance-specific, 153

mandatory, 94

object, 95

pointer, 96

Flow control, 114

Forward path, 12, 22, 24

and causality, 113

and DMI, 37

and sockets, 51

nb_transport, 22

free

tlm_extension_base, 95, 97

tlm_mm_interface, 67, 69, 97

free_all_extensions, 70

from_hostendian, 92

Generic payload, 2, 61, 65

and base protocol, 104

and DMI, 38

and DMI hint, 43

and transport_dbg, 45

attributes, 72

endianness, 86

extensions, 61, 94

guidelines, 122

instance-specific extension, 153

memory management, 67

standard error response, 81

get

tlm_global_quantum, 49

get_address, 75

get_base_export, 57

get_base_port, 57

get_bus_width, 56

get_byte_enable_length, 78

get_byte_enable_ptr, 77

get_command, 74

get_current_time, 148

get_data_length, 76

get_data_ptr, 75

get_direct_mem_ptr, 36, 39, 41

and DMI hint, 43

and memory management, 68

and payload attributes, 73

and simple sockets, 123, 131

get_dmi_allowed, 79

get_dmi_ptr, 39

get_end_address, 40

get_event, 152

get_extension, 97, 153

get_global_quantum, 148

get_granted_access, 39

get_host_endianness, 90

get_local_time, 148

get_next_transaction, 152

get_phase, 101

get_read_latency, 41

get_ref_count, 68, 69

get_response_status, 79

get_response_string, 80

get_start_address, 40

get_streaming_width, 78

get_write_latency, 41

Global quantum, 8, 48, 145

has_host_endianess, 90

has_mm, 68, 70

Header file, 14

global quantum, 48

instance-specific extension, 153

multi-socket, 138

PEQ, 150

quantum keeper, 145

simple socket, 130

tagged simple socket, 135

Helper function

endianness, 90

Hierarchical binding, 56, 127, 141

Hop, 12

and phase argument, 23

and phase transitions, 107

and TLM_COMPLETED, 105, 106

host_has_little_endianness, 90

Host-endian, 87, 91

ID

of extension, 96

Ignorable

extension, 35, 45, 62, 81, 94, 104, 120

phase, 24, 101, 104, 105, 108, 110

inc

tlm_quantumkeeper, 148

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 180

Initiation interval, 112

Initiator, 11

and DMI access, 40

and DMI hint, 44

and memory management, 38, 67

and sync, 24

and timing annotation, 30

and transaction re-use, 17

base protocol guidelines, 122

role, 73

Initiator socket, 51

instance

tlm_global_quantum, 49

Instance-specific extension, 153

Interconnect, 11

and address attribute, 73

and address translation, 41

and b_transport, 17

and byte enable, 77

and DMI, 37

and DMI address space, 41

and DMI hint, 73

and ignorable phase, 110

and memory management, 68

and response status attribute, 80

and TLM_IGNORE_COMMAND, 74

and transport_dbg, 46

base protocol guidelines, 124

bridge, 63

DMI and side-effects, 43

pipelining, 113

role, 73

transparent component, 111

Interoperability

and base protocol, 103

and endianness, 86

and extensions, 61

and generic payload, 61

and phases, 101

and sockets, 13

and utilities, 125

interfaces, 10

layer, 1

invalidate_direct_mem_ptr, 41, 42

and simple socket, 131

is_dmi_allowed, 79

is_none_allowed, 39

is_read, 74

is_read_allowed, 39

is_read_write_allowed, 39

is_response_error, 80

is_response_ok, 80

is_write, 74

is_write_allowed, 39

ISS, 8

kind, 56, 57

Latency

and BUSWIDTH, 76

and DMI, 35, 41

approximately-timed, 112

Least significant, 86

Lifetime, 12, 23, 67, 69, 72, 81, 106, 108

Little-endian, 88, 90

Local time, 30, 117, 147

Loosely-timed, 7, 8

b_transport, 16

global quantum, 48

switching between coding styles, 120

timing annotation, 31

LSB, 86

malloc, 68

Mandatory extension, 94

max_num_extensions, 96

memcpy, 75

Memory management

and hops, 106

extensions, 95, 97

generic payload, 67, 71

get_direct_mem_ptr, 68

transport_dbg, 68

Memory-mapped bus, 1, 16, 61, 82, 103

Message sequence chart

approximately-timed, 112

b/nb adapter, 133

blocking transport, 18

early completion, 28

ignorable phase, 111

nb/b adapter, 132

quantum, 20

temporal decoupling, 19

timing annotation, 29

timing point, 27

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 181

using the backward path, 26

using the return path, 27

Method process, 17, 22, 24, 146, 152

Most significant, 86

MSB, 86

multi_passthrough_initiator_socket, 138

multi_passthrough_target_socket, 139

Multi-socket, 57, 127, 138

Multitasking, 6

Namespace, 14

nb_transport, 22

and base protocol, 104

and memory management, 68

and simple sockets, 123

and timing annotation, 30, 117

called from b_transport, 17

ignorable phase, 110

phase argument, 23

phase transitions, 107

simple socket, 131

switching to b_transport, 120

nb_transport_bw, 22

nb_transport_fw, 22

need_sync, 148

new, 68

Non-blocking transport, 21

notify, 151

operator(), 56, 130, 141, 163

operator[], 57, 141

operator<<, 102

operator->, 56

Overlapping addresses, 119

Part-word access, 88

passthrough_target_socket, 129

passthrough_target_socket_tagged, 137

Payload event queue, 150

PEQ, 150

peq_with_cb_and_phase, 151

peq_with_get, 151

Phase

argument to nb_transport, 23

base protocol, 104

ignorable, 110

message sequence chart, 26

PEQ, 150

template argument, 22

tlm_phase, 101

transitions, 107

Pipelining, 22, 26, 113

Pool

memory management, 67, 72, 97

Protocol traits class, 50, 63, 104

Quantum, 8

global quantum, 48

message sequence chart, 20

quantum keeper, 48, 145

Recipient

of a transaction, 30

of an ignorable phase, 110

Re-entrancy

b_transport, 118

Reference count, 67, 68, 72, 97, 120

release, 68, 69, 97, 106

release_extension, 69, 97

Request exclusion rule, 113

reset

generic payload, 67, 68, 69, 97

quantum keeper, 148

resize_extensions, 97, 153

Response exclusion rule, 113

Response status attribute, 72, 79

and DMI, 38

and extensions, 81

modification at target, 73

update_original_from, 70

Return path, 12

message sequence chart, 27

Routing

and address attribute, 73

base protocol, 119

sc_gen_unique_name

and sockets, 55

SC_INCLUDE_DYNAMIC_PROCESSES, 14,

128

SC_INFO

standard error response, 82

sc_port, 55

sc_set_time_resolution, 148

sc_time

argument to nb_transport, 30

sc_time_stamp

and b_transport, 17

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 182

and temporal decoupling, 147

and the base protocol, 117

and the global quantum, 48, 49

and the PEQ, 150

and the quantum keeper, 148

and the scheduler, 7

and timing annotation, 30

SC_WARNING

standard error response, 82

Scheduler, 7

set

quantum keeper, 148

tlm_global_quantum, 49

set_address, 75

set_and_sync, 148

set_auto_extension, 70, 96

set_byte_enable_length, 78

set_byte_enable_ptr, 77

set_command, 74

set_data_length, 76

set_data_ptr, 75

set_dmi_allowed, 79

set_dmi_ptr, 39

set_end_address, 40

set_extension, 69, 96, 153

set_global_quantum, 148

set_granted_access, 39

set_mm, 68

set_read, 74

set_read_latency, 41

set_response_status, 79

set_start_address, 40

set_streaming_width, 78

set_write, 74

set_write_latency, 41

Simple socket, 128

and nb_transport, 22

b/nb conversion, 132

binding, 127

tagged, 135

simple_initiator_socket, 128

simple_initiator_socket_tagged, 135

simple_target_socket, 129

and memory management, 68

simple_target_socket_tagged, 136

size, 56, 141

Socket, 13, 51

binding, 127

convenience, 126

multi-socket, 138

simple, 128

tagged, 135

Standard error response, 81

Streaming width attribute, 72, 78

Switching between coding styles, 9, 120

sync, 24, 148

Synchronization, 6, 8, 24

Synchronization-on-demand, 31, 149

Tagged simple socket, 135

Target, 11

base protocol guidelines, 123

role, 73

Target socket, 51

Temporal decoupling, 7, 145

and DMI, 43

guidelines, 146

message sequence chart, 19

Thread process, 22, 24, 132, 146

Time warp, 7

Timing accuracy, 9

Timing annotation, 30, 117

b_transport, 17

message sequence chart, 29

Timing point, 6

b_transport, 16, 17

message sequence chart, 27

nb_transport, 21, 23

timing annotation, 30

tlm

namespace, 14

tlm.h, 14

TLM_ACCEPTED, 24

message sequence chart, 26

TLM_ADDRESS_ERROR_RESPONSE, 75

tlm_analysis_fifo, 162

tlm_analysis_if, 161

tlm_analysis_port, 162

tlm_analysis_triple, 162

tlm_base_initiator_socket, 52

tlm_base_initiator_socket_b, 52

tlm_base_protocol_types, 50, 62, 104

tlm_base_target_socket, 53

OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 183

tlm_base_target_socket_b, 52

TLM_BIG_ENDIAN, 90

tlm_blocking_transport_if, 17

TLM_BURST_ERROR_RESPONSE, 76, 79

tlm_bw_direct_mem_if, 36

tlm_bw_nonblocking_transport_if, 21

tlm_bw_transport_if, 51

TLM_BYTE_DISABLED, 77

TLM_BYTE_ENABLE_ERROR_RESPONSE,

77, 78

TLM_BYTE_ENABLED, 77

tlm_command, 65

TLM_COMMAND_ERROR_RESPONSE, 74

TLM_COMPLETED, 24

base protocol, 105

data transfer time, 113

message sequence chart, 28

response status attribute, 81

tlm_copyright, 14

tlm_delayed_write_if, 161

tlm_dmi, 35, 39

tlm_endianness, 90

tlm_extension, 64, 95

tlm_extension_base, 64

tlm_fifo, 159

tlm_fw_direct_mem_if, 36, 38

tlm_fw_nonblocking_transport_if, 21

tlm_fw_transport_if, 50

TLM_GENERIC_ERROR_RESPONSE, 80

tlm_generic_payload. See Generic payload

tlm_global_quantum, 48

TLM_IGNORE_COMMAND, 74, 76

and DMI, 38

and response status, 80

and transport_dbg, 46

TLM_INCOMPLETE_RESPONSE, 80

tlm_initiator_socket, 57

TLM_LITTLE_ENDIAN, 90

tlm_mm_interface, 64, 67, 69, 71

TLM_OK_RESPONSE, 80

tlm_phase, 22, 101, 104

tlm_phase_enum, 101

tlm_quantumkeeper, 145

TLM_READ_COMMAND, 74

and transport_dbg, 46

DMI, 38

tlm_release, 14

tlm_response_status, 65

tlm_sync_enum, 24

tlm_target_socket, 57

tlm_transport_dbg_if, 45

TLM_UNKNOWN_ENDIAN, 90

TLM_UPDATED, 24

base protocol, 105

message sequence chart, 27

tlm_utils

namespace, 14

tlm_version, 14

TLM_VERSION, 14

tlm_version.h, 14

TLM_WRITE_COMMAND, 74

and transport_dbg, 46

DMI, 38

tlm_write_if, 161

TLM-1, 34, 156

to_hostendian, 92

Traits class, 50, 63, 104

Transaction ordering

and timing annotation, 30, 117

b_transport, 118

base protocol, 119

summary, 121

Transaction-level, 5

Transparent component, 111

Transport interface, 10, 16

vs DMI, 42

transport_dbg, 46

and memory management, 68

and payload attributes, 73

and simple sockets, 123, 131

uint64, 39, 41

unbind, 163

UNINITIALIZED_PHASE, 101

unit_test directory, 3

Untimed

coding style, 5, 7

update_extensions_from, 71

update_original_from, 70

Use case, 5

use_byte_enable_on_read, 70

Utilities, 125

Version information, 14

 OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL

 Copyright © 2007-2009 by the Open SystemC Initiative (OSCI) 184

wait

and b_transport, 17

and DMI, 37

and nb_transport, 22

and temporal decoupling, 146

and tlm_sync_enum, 24

and transport_dbg, 47

Width conversion, 89

Word

and endianness, 86, 91

write, 163

Yield

and DMI, 43

and quantum keeper, 148

and synchronization, 8

and temporal decoupling, 146

and tlm_sync_enum, 24

loosely-timed, 7

	OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL
	Contributors
	Contents
	Overview
	Scope
	Source code and documentation

	References
	Bibliography

	Introduction
	Background
	Transaction-level modeling, use cases and abstraction
	Coding styles
	Untimed coding style
	Loosely-timed coding style and temporal decoupling
	Synchronization in loosely-timed models
	Approximately-timed coding style
	Characterization of loosely-timed and approximately-timed coding styles
	Switching between loosely-timed and approximately-timed modeling
	Cycle-accurate modeling
	Blocking versus non-blocking transport interfaces
	Use cases and coding styles

	Initiators, targets, sockets, and transaction bridges
	DMI and debug transport interfaces
	Combined interfaces and sockets
	Namespaces
	Header files and version numbers
	Software version information
	Definitions
	Rules

	TLM-2.0 Core Interfaces
	Transport interfaces
	Blocking transport interface
	Introduction
	Class definition
	The TRANS template argument
	Rules
	Message sequence chart – blocking transport
	Message sequence chart – temporal decoupling
	Message sequence chart – the time quantum

	Non-blocking transport interface
	Introduction
	Class definition
	The TRANS and PHASE template arguments
	The nb_transport_fw and nb_transport_bw calls
	The trans argument
	The phase argument
	The tlm_sync_enum return value
	tlm_sync_enum summary
	Message sequence chart – using the backward path
	Message sequence chart – using the return path
	Message sequence chart – early completion
	Message sequence chart – timing annotation

	Timing annotation with the transport interfaces
	The sc_time argument

	Migration path from TLM-1

	Direct memory interface
	Introduction
	Class definition
	get_direct_mem_ptr method
	template argument and tlm_generic_payload class
	tlm_dmi class
	invalidate_direct_mem_ptr method
	DMI versus transport
	DMI and temporal decoupling
	Optimization using a DMI hint

	Debug transport interface
	Introduction
	Class definition
	TRANS template argument and tlm_generic_payload class
	Rules

	Global quantum
	Introduction
	Header file
	Class definition
	Class tlm_global_quantum

	Combined interfaces and sockets
	Combined interfaces
	Introduction
	Class definition

	Initiator and target sockets
	Introduction
	Class definition
	Classes tlm_base_initiator_socket_b and tlm_base_target_socket_b
	Classes tlm_base_initiator_socket and tlm_base_target_socket
	Classes tlm_initiator_socket and tlm_target_socket

	Generic payload
	Introduction
	Extensions and interoperability
	Use the generic payload directly, with ignorable extensions
	Define a new protocol traits class containing a typedef for tlm_generic_payload
	Define a new protocol traits class and a new transaction type

	Generic payload attributes and methods
	Class definition
	Generic payload memory management
	Constructors, assignment, and destructor
	Default values and modifiability of attributes
	Command attribute
	Address attribute
	Data pointer attribute
	Data length attribute
	Byte enable pointer attribute
	Byte enable length attribute
	Streaming width attribute
	DMI allowed attribute
	Response status attribute
	The standard error response

	Endianness
	Introduction
	Rules

	Helper functions to determine host endianness
	Introduction
	Definition
	Rules

	Helper functions for endianness conversion
	Introduction
	Definition
	Rules

	Generic payload extensions
	Introduction
	Ignorable extensions
	Non-ignorable and mandatory extensions

	Rationale
	Extension pointers, objects and transaction bridges
	Rules

	Base protocol and phases
	Phases
	Introduction
	Class definition
	Rules

	Base protocol
	Introduction
	Class definition
	Base protocol phase sequences
	Permitted phase transitions
	Ignorable phases
	Base protocol timing parameters and flow control
	Base protocol rules concerning timing annotation
	Base protocol rules concerning b_transport
	Base protocol rules concerning request and response ordering
	Base protocol rules for switching between b_transport and nb_transport
	Other base protocol rules
	Summary of base protocol transaction ordering rules
	Guidelines for creating base-protocol-compliant components
	Guidelines for creating a base protocol initiator
	Guidelines for creating an initiator that calls nb_transport
	Guidelines for creating a base protocol target
	Guidelines for creating a target that calls nb_transport
	Guidelines for creating a base protocol interconnect component

	Utilities
	Convenience sockets
	Introduction
	Summary of standard and convenience socket types
	Socket binding table

	Simple sockets
	Introduction
	Class definition
	Header file
	Rules
	Simple target socket b/nb conversion

	Tagged simple sockets
	Introduction
	Header file
	Class definition
	Rules

	Multi-sockets
	Introduction
	Header file
	Class definition
	Rules

	Quantum keeper
	Introduction
	Header file
	Class definition
	General guidelines for processes using temporal decoupling
	Class tlm_quantumkeeper

	Payload event queue
	Introduction
	Header file
	Class definition
	Rules

	Instance-specific extensions
	Introduction
	Header file
	Class definition

	TLM-1 and analysis ports
	TLM-1 core interfaces
	TLM-1 fifo interfaces
	tlm_fifo
	Analysis interface and analysis ports
	Class definition
	Rules

	Glossary
	Index

