accellera

SYSTEMS INITIATIVE

SystemC Configuration, Control and
Inspection Standard

Version 1.0

June 2018

Description
This is the SystemC Configuration, Control and Inspection (CCI) Language Reference Manual.

Keywords

Accellera Systems Initiative, SystemC, Configuration, CCI

Copyright © 2018 Accellera Systems Initiative. All rights reserved.
Accellera Systems Initiative, 8698 Elk Grove Blvd, Suite 1 #114, Elk Grove, CA 95624, USA.

SystemC® CCI 1.0 Language Reference Manual June 2018

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera by the Technical
Committee and its Working Groups. Accellera develops its standards through a consensus development process,
approved by its members and board of directors, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the consensus
development process, Accellera does not independently evaluate, test, or verify the accuracy of any of the information
contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or
other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a
specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera Standards
documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of an Accellera Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change due to developments in the state of the art
and comments received from users of the standard. Every Accellera Standard is subjected to review periodically for
revision and update. Users are cautioned to check to determine that they have the latest edition of any Accellera
Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely upon
the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate
reasonable action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests.
For this reason, Accellera and the members of the Technical Committee and its Working Groups are not able to provide
an instant response to interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments. Comments on standards and requests for interpretations should be
addressed to:

Accellera Systems Initiative

8698 Elk Grove Blvd, Suite 1 #114
Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent
rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection
therewith. Accellera Systems Initiative shall not be responsible for identifying patents for which a license may be required by an
Accellera Systems Initiative standard or for conducting inquiries into the legal validity or scope of those patents that are brought
to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to
indicate compliance with the materials set forth herein.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. ii

SystemC® CCI 1.0 Language Reference Manual June 2018

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by
Accellera Systems Initiative Inc., provided that permission is obtained from and any required fee, if any, is paid to
Accellera. To arrange for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove
Blvd, Suite 1 #114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to
photocopy portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the SystemC Configuration, Control and Inspection standard are welcome. They
should be sent to the Working Group’s email reflector:

cciwg@lists.accellera.org
The current Working Group web page is:

www.accellera.org/activities/working-groups/systemc-cci

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility
to determine the applicable regulations and comply with them.

Introduction

This document defines the SystemC Configuration, Control and Inspection standard as a collection of C++ Application
Programming Interfaces (APIs) layered on top of the SystemC language standard; familiarity with the existing ISO
C++ and IEEE 1666 SystemC standards is presumed.

SystemC Configuration represents phase one of the Configuration, Control and Inspection (CCI) standards for model-
to-tool interoperability. The primary use case is configuring variable properties of the structure and behavior of a
model. This standard facilitates consistent configurability of SystemC models from different providers and promotes
a consistent user experience across compliant tools.

Stakeholders in SystemC Configuration include suppliers of electronic components and systems using SystemC to
develop configurable models of their intellectual property, and Electronic Design Automation (EDA) companies that
implement SystemC Configuration class libraries and supporting tools.

This standard is not intended to serve as a user’s guide or provide an introduction to SystemC Configuration. Readers
requiring a SystemC Configuration tutorial or information on its intended use should consult the Accellera Systems
Initiative web site (www.accellera.org).

Contributors

The development of the SystemC Configuration, Control and Inspection Language Reference Manual was sponsored
by the Accellera Systems Initiative and was created under the leadership of the following people:

Trevor Wieman, Intel (SystemC CCI Working Group Chair)
Bart Vanthournout, Synopsys (SystemC CCI Working Group Vice-Chair)

While developing this standard, the SystemC CCI Working Group had the following membership:

Daniel Aarno, Intel Laurent Bernard, ST

Sergei Ananko, Intel Bishnupriya Bhattacharya, Cadence
George Andre, Intel David Black, Doulos

Guillaume Audeon, ARM Bill Bunton, Intel

John Aynsley, Doulos Mark Burton, GreenSocs

Martin Barnasconi, NXP Sheshadri Chakravarthy, TI

Copyright © 2018 Accellera Systems Initiative. All rights reserved. iii

http://www.accellera.org/

SystemC® CCI 1.0 Language Reference Manual

Somarka Chakravarti, Intel
Ying-Tsai Chang, Synopsys
Bryan Coish, Intel
Zaitrarrio Collier, Intel
Jerome Cornet, ST

Ola Dabhl, Ericsson

Samik Das, Cadence
Guillaume Delbergue, Ericsson
Ajit Dingankar, Intel

Jakob Engblom, Intel

Alan Fitch, Ericsson

Eric Frejd, Ericsson

Enrico Galli, Intel

Vishal Goel, TI

Thomas Goodfellow, OFFIS
Karthick Gururaj, Vayavya
Philipp A Hartmann, Intel
Gino Hauwermeiren, Synopsys
Tor Jeremiassen, TI
Chandra Katuri, Cadence
Suresh Kumar, ST

Erik Landry, Intel

Glenn Leary, Intel

Lei Liang, Ericsson

David Long, Doulos
Laurent Maillet-Contoz, ST
Svetlin Manavski, ARM
Scott McMahon, Intel

Special thanks

June 2018

Victoria Mitchell, Intel

Asif Mondal, TI

Indraneel Mondal, Synopsys
Vincent Motel, Cadence

Rajiv Narayan, Qualcomm
Blake Nicholas, Intel

Ahmed Nizamudheen, TI
Atanas Parashkevov, Australian Semi
P V S Phaneendra, CircuitSutra
Sonal Poddar, Intel

Udaya Ranga, TI

Abhishek Saksena, Intel

Rauf Salimi Khaligh, Intel
Christian Sauer, Cadence
Martin Schnieringer, Bosch
Ravi Singh, Intel

Gary Snyder, Intel

Henrik Svensson, Ericsson
Ramachandran Swaminathan, TI
Yossi Veller, Mentor

CD Venkatesh, Intel

Girish Verma, CircuitSutra
Eric Wallace, Intel

Andy Walton, Intel

Jesus Yuriar, Intel

Hakan Zeffer, Intel

Rafael Zuralski, Cadence

The SystemC CCI Working Group would like to express gratitude to the following organizations for their
extraordinary contributions to development of the Configuration standard:

e GreenSocs, for contributing a complete Configuration solution which served as a concrete reference in
defining the standard and also as a foundation for the reference implementation

e Ericsson, for funding resources to fully develop the SystemC Configuration reference implementation

Copyright © 2018 Accellera Systems Initiative. All rights reserved. iv

SystemC® CCI 1.0 Language Reference Manual June 2018

Contents
N 0 11T VT 1
1.1 Yoo -2 1
1.2 LT T oo =2 PPN 1
1.3 Relationship with C++ (ISO/IEC 14882:2011)ccueeeeeueeeieeieeieeieseeseeseesteesaeeeesseaseessaeseesasssesseesseessseans 1
1.4 ReIAtIONSRIP WIth SYSTEMICi....c....eveeeeeeeeeeee ettt e et e e ettt e e et e e et e e e aatteaeeasssaeessseaasassesassssnaanssseeen 1
1.5 (G0l Lo Ty Tol= o) gl 4 =T Lo =1 SRS 1
2. NOIMaAtiVe REfErENCES.....ccccevrurrriiiiiiiiiinnteiiiniiiisnteesissssssssssssesssnsssssssssssssnsssssssssssses 3
3. Terminology and conventions used in this standardcccciiiiiiiiiiiiiiiiieeeeeeeseeeeeen 4
3.1 L2221 [eLe] (oo) V2SR UUPRRNS 4
3.1.1 Shall, ShOUId, MAY, CAN...eeiiiiieeee et e e e e e et te e e e e e e e e abbaaeeeeeeeeenssaaeeaaaeseennnnns 4
3.1.2 Application, IMPIEMENTATIONuiiiiii e e e e e e e e bar e e e e e e e e baebeeeeeeseennnees
3.1.3 Call, called from, derived from
3.14 Y oL Tol 1o €=Tel o o or=Y IR (=Y o o TSP
3.2 SYNTACLICA] CONVEINTIONS ..ottt e e ettt e et e ettt e e ettt e e e e asteeesasaeaeasseaeeaassaaeaasssasastasanansseaennnnes 4
3.21 IMplementatioN-defiNEd........cocuiii i e e e e e e e e s r b e e e enta e e eennaeas 4
3.2.2 EHIPSES (112) ceeereeeeeeitieeeetie e eete e ettt e e ettt e e ettt e e ettt e e eeaseeeeeaaee e e sbeseeassaeeeaasaeae e sseseeansaeeeansasaeesbeseenntaeeeannaeas 5
3.2.3 ClaSS MAIMIES. ..ttt ettt et e ettt e s st e e e s bt e e e s abte e s e bt e e e sabbeeesaabaeessaseaeesanbeeesanbaeesaasbaeesabeeesanbaeeennns 5
3.2.4 Configuration, Control and Inspection (CCl) N@aming Patterns........ccceeeeeiueeeeiiiieeeeiiee e e e eeiree e 5
3.3 TYPOGIAPNICA] CONVENTIONSoeveeeeeeeeeeeee et e ettt e e e e ettt e e e e e e sttt aaaeeesssttssaaaaaeesassssasaaasessssssnens 5
34 Semantic CONVENTIONSeeeeeeeemeeiieeeeeeeeeee e
3.4.1 Class definitions and the inheritance hierarchy
34.2 Function definitions and SId@-ffECtSoiiiiiriiiii e e 6
343 1D CoT=] o) f [0 3OO O OO ORROON 6
3.4.4 Functions whose return type is a reference or @ POINTErccccuviiiiiieeiccciieee e e 6
3.4.5 Functions that return *this or a pass-by-reference argumentcccceeieiiiieciiii e, 6
3.4.6 FUNCtions that return CONST CRAT ™ wiiiiiiieeeeee e st s s e sree s 6
3.4.7 Non-compliant applications @Nd ©ITOISuiiiiiiee et et e e e e e e rrre e e e e e e e e nraaeeeeaeeenen 6
3.5 INOLES AN EXAMPIES..........eeeeeeeeeeeeeeeee ettt e e e e ettt e e e e e ettt a e e e e e s s saaseaaaeeesastsssanaaaeeassssssanaaasaan 7
4. CClarChit@CtUre OVEIVIBWeeeeeeeeeueneenesnssnssssssmsss 8
5. Configuration iNterfaces.......ccuuiiiiiiiiiiiiiiiiiiiiiiiir e e e e s e e aaaens 10
5.1 J V0T 1=Xy oo Tol =2 TSP PSP PPPPPSPPPOPPPPPOPPPRPRE 10
5.2 CONFiGUIALION REAUEK filE ..ottt ettt ae ettt e e tte e sateesbaeenaneeses 10
53 ENUM@IATIONS ...ttt ettt e e ettt et e e ettt e e e e e e s asa bt e e e e e s eaaastteeeaaeeasaassseneas 10
53.1 (oo I o= 1= 10 A W 1 1 10N = o] 1T 4] T UUTR 10
5.3.2 CCI_PAramM_data _CatBBONYuuuiiiiieee ittt e e et e e e e e et e e e e e e e e e aataareeaeeeesntbaaeeaeeeesnsanaeeaans 11
5.3.3 O A Y P i 11
5.4 (00T =0 T (=T o Lol =2 RSP 11
54.1 (ool I o T 141 4 I-) Ko] SRR T T U T T T TP 11
5.4.2 Lolol T o Y- [=0 o K 1 RSP 13
5.4.3 ool T o o] =T o 1 RSP S 20
5.5 Variant type PAIrAMELEI VAIUESuueeeeeeeeeeeee ettt e e e ettt e e e e e ettt e e e e e e sassatasaaaesaesssssansaaaeaanaes 26

Copyright © 2018 Accellera Systems Initiative. All rights reserved. v

SystemC® CCI 1.0 Language Reference Manual June 2018

5.5.1 (ool Y=] [V TI or=Y {=T={o] oY SRR 26
5.5.2 Lolol T 7 | LU TSP 26
5.5.3 Lolol TR Z |18 LT Ly RS 32
5.5.4 ool IR V7 | LU LT 4 =1 o PSSP 34

5.6 Lo 1o T4 (=] PP PR 36
5.6.1 (ool I o =1 =10 (WO L2} 42 01T [T 36
5.6.2 (ool I o =1 =11 1 W 4 =T IO UUTRR 37
5.6.3 CCi_param_UNtYPed _NaNAIEcoi i e e e a e e e e aaaaaaa s 41
5.6.4 CCi_param_typed _NandIeeee i e e e e e e e e e e raaaaaa s 44
5.6.5 CCI_PAraM WO _BVENT e e e e e s e e e e e s e e e s e s e s e sesesesesesesesasanss 46

5.7 BIOKEIS .ottt ettt et ettt et s e et s bt e bt e et e et e e e e bt e e bt e e bt e e e e s baesbe e s beeeteenas 47
5.7.1 Folol T o o] =T gl o =1 T LTSS 47
5.7.2 (ool o] o] CT gl 14 = 1A TV ={] (S UUUR 49
5.7.3 REFEIENCE DIOKEIS. .ttt st e st e s sttt e e st be e e s s abae e e sabbeeesaraeessnbaeessanes 49

5.8 Lo =14 o T 14T PPt 50
5.9 INAME SUPPOIE FUNCLIONSevveeeeeeeeeeee ettt ettt e e e e ettt e e e e e e et aaaeesaasasseaaaaesaesasssenasaseaasssssnees 51
I L Y= T Y (o W 2] o a4 Lo 1 (o) SR 52
Annex A Introduction to SystemC CoNnfiguration.........cccccccccccneennnenennnennnnnesssnsnns 53
ANNEX B GlOSSANY ..cuueeeeeeeeeennennnnnnnnnnnnnsnsssnsssnsnssnnnns 57
Annex C SystemC Configuration modeler guidelines..........cccccccueeeeeeeeennnnnnnnnnnnnenenennnnnnnnnsmsssssssssssssssssssssssssnsnns 59
Annex D Enabling user-defined parameter value types........ccccccceccnennnnnnnnnnnnnnnensnssssssssssssssssssssssssssssssssssssssnsnns 60
3T = R 62

Copyright © 2018 Accellera Systems Initiative. All rights reserved. Vi

SystemC® CCI 1.0 Language Reference Manual June 2018

1. Overview

1.1 Scope

This standard defines SystemC® Configuration as an ANSI standard C++ class library used to make SystemC models
configurable. The standard does not specify a file format for specifying configuration parameter values.

1.2 Purpose

The general purpose of SystemC Configuration is to provide a standard for developing configurable SystemC models
and supporting the development of configuration tools.

The specific purpose of this standard is to provide precise and complete definitions of (1) the SystemC Configuration
class library and (2) the interfaces necessary to implement brokers and to integrate existing parameter solutions.

1.3 Relationship with C++ (ISO/IEC 14882:2011)

This standard is closely related to the C++ programming language and adheres to the terminology used in
ISO/IEC 14882:2011. This standard does not seek to restrict the usage of the C++ programming language;
an application using the SystemC Configuration standard may use any of the facilities provided by C++, which
in turn may use any of the facilities provided by C. However, where the facilities provided by this standard
are used, they shall be used in accordance with the rules and constraints set out in this standard.

This standard presumes that C++11 is the minimum revision supported and makes use of features of that revision such
as move semantics. Implementations may choose to support earlier revisions such as C++03 by hiding or
approximating such features, however they are not required to do so.

This standard defines the public interface to the SystemC Configuration class library and the constraints on how
those classes may be wused. The class library may be implemented in any manner whatsoever,
provided only that the obligations imposed by this standard are honored.

A C++ class library may be extended using the mechanisms provided by the C++ language. Implementers
and users are free to extend SystemC Configuration in this way, provided that they do not violate this

standard.

NOTE: It is possible to create C++ programs that are legal according to the C++ programming language
standard but violate this standard. An implementation is not obliged to detect every violation of this standard.

1.4 Relationship with SystemC

This standard is built on the IEEE Std 1666-2011 and extends it using the mechanisms provided by the C++ language,
to provide an additional layer of configuration constructs.

1.5 Guidance for readers
Readers who are not familiar with SystemC Configuration should start with Clause 4 which provides a brief informal
summary intended to aid in the understanding of the normative definitions. Such readers may also find it helpful to

scan the examples embedded in the normative definitions and to see the Annex B glossary.

Readers should pay close attention to the terminology defined in 3.1 which is necessary for a precise interpretation of
this standard.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 1

SystemC® CCI 1.0 Language Reference Manual June 2018

Clause 5 defines the public interface to the SystemC Configuration class library. The following information is listed
for each class:

a)
b)
¢)
d)
e)
f)

A brief class description.

A C++ source code listing of the class definition.

A statement of any constraints on the use of the class and its members.

A statement of the semantics of the class and its members.

For certain classes, a description of functions, typedefs, and macros associated with the class.
Informative examples illustrating typical uses of the class.

Annex A provides a practical introduction to the standard, heavily using example code to illustrate and demonstrate
key concepts.

Annex C provides recommended guidelines for effectively using this standard.

Annex D describes how to enable the use of user-defined value types with configuration parameters.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 2

SystemC® CCI 1.0 Language Reference Manual June 2018

2. Normative References

The following documents are indispensable for the application of this document. Dated references indicate the
minimum required version.

This standard shall be used in conjunction with the following publications:

e ISO/IEC 14882:2011, Programming Languages — C++
e IEEE Std 1666-2011: IEEE Standard SystemC Language Reference Manual
e ECMA-404:2017, The JSON Data Interchange Syntax

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 3

SystemC® CCI 1.0 Language Reference Manual June 2018

3. Terminology and conventions used in this standard

3.1 Terminology

3.1.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but it does not impose any obligation.
The word may is used to mean shall be permitted (in the sense of being legally allowed).

The word can is used to mean shall be able to (in the sense of being technically possible).

In some cases, word usage is qualified to indicate on whom the obligation falls, such as an application may or an
implementation shall.

3.1.2 Application, implementation

The word application is used to mean a C++ program, written by an end user, that uses the SystemC Configuration
class library; that is, uses classes, functions, or macros defined in this standard.

The word implementation is used to mean any specific implementation of the SystemC Configuration class library as
defined in this standard, only the public interface of which need be exposed to the application.

3.1.3 Call, called from, derived from

The term call is taken to mean call directly or indirectly. Call indirectly means call an intermediate function that in
turn calls the function in question, where the chain of function calls may be extended indefinitely.

Similarly, called from means called from directly or indirectly.

Except where explicitly qualified, the term derived from is taken to mean derived directly or indirectly from. Derived
indirectly from means derived from one or more intermediate base classes.

3.1.4 Specific technical terms

The specific technical terms as defined in IEEE Std 1666-2011 generally apply for the SystemC Configuration
standard. The term interface is an exception, used herein to indicate a generic software interface (or application
programming interface) which does not require inheritance from sc_interface.

In addition, the following technical terms are defined:

A parameter is a class derived from the class cci::cci_param if.
A broker is a class derived from the class cci: :cci_broker if.
3.2 Syntactical conventions

3.2.1 Implementation-defined

The italicized term implementation-defined is used where part of a C++ definition is omitted from this standard. In
such cases, an implementation shall provide an appropriate definition that honors the semantics defined in this
standard.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 4

SystemC® CCI 1.0 Language Reference Manual June 2018

322 Ellipsis (...

An ellipsis, which consists of three consecutive dots (...), is used to indicate that irrelevant or repetitive parts of a C++
code listing or example have been omitted for brevity.

3.2.3 Class names

Class names italicized and annotated with a superscript dagger (1) should not be used explicitly within an application.
Moreover, an application shall not create an object of such a class. It is strongly recommended that the given class
name be used in an implementation. However, an implementation may substitute an alternative class name in place of
every occurrence of a particular daggered class name.

Only the class name is considered here. Whether any part of the definition of the class is implementation-defined is a
separate issue.

The class names are the following:

. cci_value creff

e cci value reff

e cci value list creff

. cci_value list reff

e cci value map creff

. cci_value map reff

e cci value string creff

. cci_value string reff
Public typedefs are provided for these classes to avoid the need to refer to them directly.
3.2.4 Configuration, Control and Inspection (CCl) naming patterns

The CCI interoperability interfaces are denoted with the prefix cci_ for classes, functions, global definitions and
variables, and with the prefix ccz_ for macros and enumeration values.

An application shall not make use of these prefixes when defining classes, functions, global definitions, global
variables, macros, and enumerations.

Class names ending in _if, such as cci_broker if and cci_param if, declare abstract C++ classes providing key
interfaces which must be inherited and fully satisfied by every implementation of this standard.

3.3 Typographical conventions
The following typographical conventions are used in this standard:

1. The italic font is used for cross references to terms defined in 3.1, 3.2, and Annex B.
For example: “Each parameter is registered during construction with a single broker.”

2. The bold constant-width (Courier) font is used for all reserved keywords of the SystemC Configuration
standard as defined in namespaces, macros, constants, enum literals, classes, member functions, data members
and types.

For example: “Actual parameters are created as instances of cci_param_typed, which in concert with its base
class cci_param_untyped implements the cci_param_if interface.”

3. The constant-width font is used for all other code; primarily:
e SystemC Configuration class definitions including member functions, data members and data types
e SystemC Configuration examples when the exact usage is depicted

113

For example: “cci_param<int> p("param”, 17, "Demonstration parameter");

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 5

SystemC® CCI 1.0 Language Reference Manual June 2018

The conventions listed herein are for ease of reading only. Editorial inconsistencies in the use of typography are
unintentional and have no normative meaning in this standard.

3.4 Semantic conventions

3.4.1 Class definitions and the inheritance hierarchy

An implementation may differ from this standard in that an implementation may introduce additional base classes,
class members, and friends to the classes defined in this standard. An implementation may modify the inheritance
hierarchy by moving class members defined by this standard into base classes not defined by this standard. Such
additions and modifications may be made as necessary in order to implement the semantics defined by this standard
or in order to introduce additional functionality not defined by this standard.

3.4.2 Function definitions and side-effects

This standard explicitly defines the semantics of the C++ functions in the SystemC Configuration class library. Such
functions shall not have any side-effects that would contradict the behavior explicitly mandated by this standard. In
general, the reader should assume the common-sense rule that if it is explicitly stated that a function shall perform
action A, that function shall not perform any action other than A, either directly or by calling another function defined
in this standard. However, a function should perform any tasks necessary for resource management, performance
optimization, or to support any ancillary features of an implementation. As an example of resource management, it is
assumed that a destructor will perform any tasks necessary to release the resources allocated by the corresponding
constructor.

3.4.3 Exceptions

Other than destructors and swap (see 5.5.2.3), or as explicitly noted in documentation, API functions should be
presumed to have the potential to throw exceptions, either as the sc THrRow action from the
sc_report_handler::report diagnostic or an explicit throw. Callback functions are also permitted to throw.
Implementations shall ensure that class invariants are preserved in the case of exceptions from all sources. The utility
function cci_handle_exception decodes CCI library exceptions using cci_param_failure enum values as described
in5.8.

3.4.4 Functions whose return type is a reference or a pointer

An object returned from a function by pointer or by reference is said to be valid during any period in which the object
is not deleted and the value or behavior of the object remains accessible to the application. If an application refers to
the returned object after it ceases to be valid, the behavior of the implementation shall be undefined.

3.4.5 Functions that return *this or a pass-by-reference argument

In certain cases, the object returned is either an object (*this) returned by reference from its own member function
(for example, the assignment operators), or it is an object that was passed by reference as an argument to the function
being called. In either case, the function call itself places no additional obligations on the implementation concerning
the lifetime and validity of the object following return from the function call.

3.4.6 Functions that return const char*

Certain functions have the return type const char* indicating they return a pointer to a null-terminated character
string. Such strings shall remain valid until returning from sc_main.

3.4.7 Non-compliant applications and errors
In the case where an application fails to meet an obligation imposed by this standard, the behavior of the

implementation shall be undefined in general. When this results in the violation of a diagnosable rule of the C++
standard, the C++ implementation will issue a diagnostic message in conformance with the C++ standard.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 6

SystemC® CCI 1.0 Language Reference Manual June 2018

When this standard explicitly states that the failure of an application to meet a specific obligation is an error or a
warning, the implementation shall generate a diagnostic message by calling an appropriate function in
cci_report_handler; for common CCI error types the specific diagnostics such as set_param_failed, and for other
eITOrS Or warnings sc_report_handler::report. In the case of an error, the implementation shall call report with
a severity of sc_ERROR. In the case of a warning, the implementation shall call report with a severity of sc_WARNING.
See 5.8 for details of cci_report_handler.

Animplementation or an application may choose to suppress run-time error checking and diagnostic messages because
of considerations of efficiency or practicality. For example, an application may call member function set actions
of class sc_report handler to take no action for certain categories of report. An application that fails to meet the
obligations imposed by this standard remains in error.

There are cases where this standard states explicitly that a certain behavior or result is undefined. This standard places
no obligations on the implementation in such a circumstance. In particular, such a circumstance may or may not result
in an error or a warning.

3.5 Notes and examples
Notes appear at the end of certain subclauses, designated by the uppercase word NOTE. Notes often describe the
consequences of rules defined elsewhere in this standard. Certain subclauses include examples consisting of fragments

of C++ source code. Such notes and examples are informative to help the reader but are not an official part of this
standard.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 7

SystemC® CCI 1.0 Language Reference Manual June 2018

4. CCl architecture overview

The core of the SystemC Configuration standard is the pairing of parameters and brokers, where a parameter is a
named instance of a specific compile-time type and a broker aggregates parameters and provides access to them in
the form of handles. Brokers and parameters are both generally accessed via handles which, among other things,
identify the source (“originator”) of new parameter value assignments. Originator identification is commonly
contextual and managed implicitly.

Each parameter is registered during construction with a single broker. Parameters are typically constructed and owned
by a SystemC module, with other users subsequently obtaining a handle from the broker. The owner constructs a
parameter with a default value, however the broker can override this with a preset value, allowing tools to provide
runtime configurations.

Typically a global broker will exist, created early in the elaboration phase. Modules may supply their own local
brokers, for example to keep their parameters private. In such a case, a hierarchy of brokers mirrors the hierarchy of
sc_modules.

Figure 1 shows a typical sequence of a parameter being constructed and used:

1. A tool obtains a broker handle (cci_broker_handle, not explicitly shown) and specifies a preset value for
the named parameter (cci_param); this should be completed prior to construction of the owning module.

2. The module owning the parameter instantiates it with a default value.

3. The parameter registers with the broker (cci_broker_if) and acquires the preset value, supplanting the
default.

4. A user gets a handle for the parameter (cci_param_handle) and through it gets the current (i.e. preset) value.

o specify preset value (overrides default)

registration, initialization

request
parameter
handle

cci broker if

untyped access

cci param(untyped) handle *@W
parameter user
AL Bl (SystemC module, tool, etc.)

cci param typed handle

specify default value

parameter owner

cci param 7) (SystemC module)

Figure 1 - Key interactions for parameter construction and access

It is useful to consider several perspectives when overviewing the more complete set of SystemC Configuration
standard features:

e Tools
Tools access brokers and parameters via handles and facilitate parameter interaction. A variant type is
provided for exchanging parameter values in a highly portable manner referred to as “untyped access” as
depicted in Figure 1. Tools will also expose parameter attributes provided at construction (see Parameter

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 8

SystemC® CCI 1.0 Language Reference Manual June 2018

creation and direct access below) as well as the origin of the current value and any metadata. Tools may
utilize broker callbacks and parameter callbacks to report or respond to interesting events.

e Parameter creation and direct access

Modules containing parameters will specify their compile-time type, description, and default value. They
may provide additional metadata for the benefit of tools, users, and possibly other code. They can use
parameter callbacks for reacting to parameter accesses. Ownership affords interacting with parameters
directly, without handles.

e Parameter lookup and access via a handle

SystemC code outside of the owning module will request a broker handle and in turn perform a name based
lookup to obtain a parameter handle. With a few exceptions, such as inability to reset the parameter or
override the parameter’s description and metadata, the handle provides an interface equivalent to the
parameter itself. A testbench is one example of this perspective.

e (Sub-)System packaging and integration
Local brokers are introduced at the time of packaging and/or integration to impose policies such as parameter
hiding.

e Infrastructure

Developers of modeling infrastructure will be concerned with enabling user-defined parameter value types
and adapting legacy parameter implementations for conformance with the standard.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 9

SystemC® CCI 1.0 Language Reference Manual June 2018

5. Configuration interfaces

5.1 Namespaces

The SystemC Configuration classes, functions and enumeration values shall be declared in two top-level C++
namespaces, cci and cci_utils. An implementation may nest further namespaces within these two namespaces, but
such nested namespaces shall not be used in applications.

Namespace cci contains the classes, functions and enumeration values that comprise the interoperability interface for
configuration.

Namespace cci_utils contains utility classes that are not necessary for interoperability. Specifically, example broker
implementations are included to provide very basic broker services and to serve as a reference or starting point for
more comprehensive broker implementations.

Namespace details are not shown in code listings herein in the interest of brevity. For the same reason, namespace
qualification is omitted from code samples where using namespace cei is assumed.

5.2 Configuration header file

To use SystemC Configuration class library features, an application shall include the top-level C++ header file at
appropriate positions in the source code as required by the scope and linkage rules of C++.

#include <cci_configuration>

The header file cci_configuration shall add the name cci, as well as the names defined in IEEE Std 1666-2011 for
the header file named systemc, to the declarative region in which it is included. The header file cci_configuration
shall not introduce into the declarative region, in which it is included, any other names from this standard or any names
from the standard C or C++ libraries.

Example:

#include <cci_configuration>
using cci::cci_param;

8.3 Enumerations
5.3.1 cci_param_mutable_type

Enumeration for the cci_param_typed template (see 5.6.2) specifying mutability of a parameter:

e CCI_MUTABLE PARAM = 0
The parameter is mutable and can be modified, unless it is_locked (see 5.4.2.6).

® CCI_IMMUTABLE PARAM
The parameter is immutable, having either the default value with which it was constructed or a preset value
configured through the broker.

NOTE: an immutable parameter’s value will change after being initialized (see 5.4.3.4) only when the preset value has
been updated and reset called.

® CCI_OTHER MUTABILITY
Vendor specific mutability control.

Mutability forms part of the concrete parameter type as an argument of the cci_param_typed template.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 10

SystemC® CCI 1.0 Language Reference Manual June 2018

5.3.2 cci_param_data_category

Enumeration for the general category of a parameter’s value type; used when details of its specific type are not
required.

e CCI_BOOL_PARAM— boolean valued parameter

® CCI_INTEGRAL PARAM — integer valued parameter
e ccI_REAL PARAM — real number valued parameter
® CCI_STRING_PARAM — string valued parameter

e ccI_LIST_PARAM — list valued parameter

e CCI_OTHER_PARAM — parameter with values of any other type
5.3.3 cci_name_type

Enumeration representing whether the name used in constructing a parameter is relative to the current module
hierarchy:

® CCI_RELATIVE NAME
Appended to the name of the enclosing sc_module, e.g. parameter “p” as a member of sub-module “sub” of
top-level module “m” will have the full name “m.sub.p”.

® CCI_ABSOLUTE NAME
The name isn’t modified.

In either case the name is required to be unique and, if necessary, will be modified to make it so as described in 5.9.
5.4 Core interfaces
5.4.1 cci_originator

Originators are used primarily to track the source, or origin, of parameter values. When a value originates from within
the module hierarchy, the originator shall be represented by the corresponding sc_object. When outside the module
hierarchy, an originator shall be represented by a string name.

class cci_originator

{

public:
inline cci_originator();
cci_originator(const std::string& originator name) ;
explicit cci_originator (const char* originator name) ;

// Copy constructors

cci_originator(const cci_originators& originator);
cci_originator(cci_originator&& originator);
~cci_originator();

const sc_core::sc_object* get object() const;

// Returns the name of the current originator
const char* name () const;

// Operator overloads

cci_originator& operator=(const ceci_originatorés& originator);
cci_originator& operator=(cci_originator&s& originator);
bool operator==(const cci_originator& originator) const;

bool operator<(const cci_originators& originator) const;

// Swap originator object and string name with the provided originator.
void swap(cci_originatoré& that);

// Returns the validity of the current originator

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 11

SystemC® CCI 1.0 Language Reference Manual June 2018

bool is unknown () const;

bi

5.41.1 Construction

cci_originator();

The originator implicitly represents the current sc_object and will assume its name. This constructor form shall only
be called from within the module hierarchy.

cci_originator(const std::string& originator name);
explicit ceci_originator(const char* originator name);

Construct an originator with the explicit name; the sc_object will be a nul1ptr. This constructor form shall only be
called from outside the module hierarchy.

cci_originator(const cci_originatoré& originator);
cci_originator(cci_originator&& originator);

Copy and move constructors initialize the object and name from the source. After a move the source cci_originator
has a diagnostic "unknown" name and is_unknown returns true.

5.4.1.2 Copy and swap

cci_originator& operator=(const cci_originatorés& originator);
cci_originator& operator=(cci_originator&& originator);

Copy and move assignments, initializing the object and name from the source. After a move the source
cci_originator has a diagnostic "unknown" name and is_unknown returns true.

void swap(cci_originatoré& that);

Swaps the current cci_originator object and name with those of the provided cci_originator, with guaranteed
exception safety.

5.4.1.3 Identity

const sc_core::sc_object* get_object() const;

Returns the originator object pointer.

const char* name () const;

Returns the name of the originator. When an originator sc_object exists, its name is returned; otherwise, the explicit
name with which the originator was constructed. The returned pointer is non-owning and may be invalidated by the
originator's destruction.

bool is unknown () const;

Returns true if no object or name is defined. Such a state is only likely where the object was the source of a move
operation because cci_originator reports an error if neither an originator object nor any name is given.

Example:

cci_originator ol;

sc_assert(!ol.is unknown());
cci_originator o2 (std::move(ol));
sc_assert(ol.is unknown ());

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 12

SystemC® CCI 1.0 Language Reference Manual June 2018

5.4.1.4 Comparisons

bool operator==(const cci_originator& originator) const;

If either originator references an sc_object, then true is returned only if they both reference the same sc_object.
Otherwise, true is returned if their names are equal.

bool operator<(const cci_originator& originator) const;

Returns the result of comparing the names as strings.

Example:

SC_CTOR(test module) {

cci_originator ol ();

cci_originator o2 ();

sc_assert(ol == 02); // both reference test_module

}
5.4.2 cci_param_if

The basic parameter interface class, providing metadata and variant value access. Concrete descendant classes such
as cci_param_typed (see 5.6.2) provide implementations. In particular the cci_param_typed class provides both the
definition of the underlying data type and the instantiable object.

class cci_param if : public cci param callback if
{
public:
// Get and set cci value
cci_value get cci_value () const;
virtual cci_value get cci value(const cci_originators originator) const = 0;
void set_cci_value(const cci_values& val);
void set_cci_value(const cci_value& val, const ceci_originator& originator);
virtual void set_cci_ value (
const cei_value& val, const void* pwd, const cei_originatoré& originator) = 0;
virtual bool reset() = 0;
virtual cci_value get_default cci_value() const = 0;

// Value type
virtual cci_param data_category get data category() const = 0;
virtual const std::type info& get type info() const = 0;

// Value origin
virtual bool is_default value() const = 0;
virtual bool is_preset_value () const = 0;

virtual cci_originator get originator() const = 0;

virtual cci_originator get value origin() const = 0;

// Name and description

virtual const char* name () const = 0O;

virtual std::string get description() const = 0;

virtual void set description(const std::stringé& desc) = 0;

// Metadata

virtual void add metadata(const std::string& name, const ceci_value& value,
const std::string& desc = "") = 0;

virtual cci_value map get metadata() const = 0;

// Value protection

virtual cci_param mutable type get mutable type () const = 0;
virtual bool lock(const void* pwd = nullptr) = 0;

virtual bool unlock(const void* pwd = nullptr) =
virtual bool is_locked() const = 0;

0;

// Equality

virtual bool equals(const cci_param if& rhs) const = 0;
// Handle creation

virtual cci_param untyped handle
create param handle(const cci_originatoré& originator) const = 0;

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 13

SystemC® CCI 1.0 Language Reference Manual June 2018

protected:
virtual ~cci_param if();
void init(cci_broker handle broker);
void destroy(cci_broker handle broker);

// Disabled

cci param if(cci_param ifcs&) = delete;

cci param if(const cci_param if¢) = delete;

cci param if& operator=(cci_param if&&) = delete;

cci param if& operator=(const cci_param if&) = delete;
private:

virtual void preset cci_value(const cci_value& value, const cci_originator& originator);
virtual void invalidate_ all param handles () ;

// Get and set raw value
virtual void set_raw_value(const void* vp, const void* pwd,
const cei_originators& originator) = 0;
virtual const void* get raw_value(const cci_originatoré& originator) const = 0;
virtual const void* get raw_default value() const = 0;

virtual void add param handle(cci_param untyped handle* param handle) = 0;

virtual void remove param handle(cci_param untyped handle* param handle) 0;

}i
5.4.2.1 Value and data type

The parameter value is handled via the variant type cci_value. Statically-typed access is provided by the descendant
cci_param typed and matching cci_param typed handle classes.

cci_value get cci_value () const;
cci_value get cci_value(const cci_originator& originator) const;

Returns a copy of the current value. The originator value identifies the context for pre- and post-read callbacks. If
none provided, the parameter’s own originator (typically the owning module) is used.

void set_cci_value(const cci_value& val);
void set_cci value(const cci_value& val, const cci_originator& originator);
void set_cci_value(const cci_value& val, const void* pwd, const cci_originators& orig);

Sets the parameter to a copy of the given value, applying the given password. A nullptr password is used if none is
provided. If no originator is provided, the parameter’s own originator is used. If the variant value cannot be unpacked
to the parameter’s underlying data type then a CCI_VALUE_FAILURE error is reported.

bool reset();
Sets the value back to the initial value the parameter took, i.e. the preset value if one exists or the default value with
which it was constructed. Any pre-write callbacks are run before the value is reset, followed by any post-write

callbacks, and finally the value origin is set to the original originator of the restored value.

reset has no effect on a locked parameter and returns false; a locked parameter must be explicitly unlocked before
a successful reset can be performed.

cci_value get default cci_value() const;

Returns a copy of the default value the parameter was constructed with.

cci_param data category get data category() const;

Returns the parameter's underlying data category.

const std::type info& get type info() const;

Returns the C++ typeid of the parameter's underlying data type.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 14

SystemC® CCI 1.0 Language Reference Manual June 2018

5.4.2.2 Raw value access

These private methods are accessible only by parameter implementations. They facilitate the exchange of parameter
values between arbitrary parameter implementations from levels in the parameter inheritance hierarchy where the
specific value type is not known. They provide no type safety.

void set_raw value(const void* vp, const void* password, const ceci_originatoré& originator);

Overwrite the stored value with the given value vp, which shall point to a valid object of the parameter's underlying
data type. In detail:

e vp shall not be nullptr

e testing the write-lock state and the password validity if locked

e invoking pre-write callbacks with the given originator, aborting the write if callbacks reject it
e copying the value from vp

e invoking post-write callbacks with the given originator

e setting the value origin

const void* get_raw_value(const cci_originators& originator) const;

Return a type-punned pointer to the parameter’s current value after first invoking the pre-read and then post-read
callbacks, both with the given originator.

const void* get raw_default value() const;

Return a type-punned pointer to the parameter’s default value.
5.4.2.3 Value origin

Methods to determine the origin of the parameter’s current value:
bool is_default value() const;

Returns true if the current value matches the default value with which the parameter was constructed, using the
equality operator of the underlying data type.

NOTE: this is a statement about the current value rather than its provenance; it does not mean that the parameter value is untouched
since its construction, simply that the current value matches the default value.

bool is preset value() const;

Returns true if the current value matches the preset value set via the parameter's broker using
set_preset_cci_value S€€ (5.4.3.4). Returns false if there is no preset value.

The comparison is performed by the equality operator of the underlying data type against the unpacked preset
cci_value.

NOTE: this is a statement about the current value rather than its provenance; it does not mean that the parameter value is untouched
since its construction, simply that the current value matches the preset value.

cci_originator get originator() const;

Returns a copy of the originator supplied when the parameter was constructed.

cci_originator get value origin() const;

Returns a copy of the originator of the most recent write to the parameter value:

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 15

SystemC® CCI 1.0 Language Reference Manual June 2018

1. The originator supplied as a (possibly default) constructor argument when the parameter was constructed;
semantically this is the point where the default value was set.

The originator supplied if the preset value was set by cci_broker_if::set_preset_cci_value.
The originator supplied to explicit overloads of set_cci_value and set_raw_value.

For all indirect writes via methods of cci_param_if, the constructor originator (described in case 1).

w»oR N

For all writes via methods of cci_param untyped handle and cci_param typed handle, the originator
given when creating/getting the handle.

5.4.2.4 Name and description

const char* name () const;
std::string get description() const;
void set description(const std::string& desc);

name returns the guaranteed-unique form of the name given when constructing the (typed) parameter (see 5.9).

A parameter may carry a textual description, given as a std::string. An application is encouraged to use this to
ensure that parameters are adequately documented, e.g. when enumerated in log files. The description is initialized
during construction of the concrete cci_param_typed object but may be subsequently updated via the parameter object
(not a handle) using set_description and retrieved with get_description.

5.4.2.5 Metadata

void add metadata(const std::string& name, const cci_walue& value, const std::string& desc = ""
)
cci_value map get metadata() const;

A parameter may carry arbitrary metadata, presented as a cci_value map 0f cci_value list pairs (cci_value value,
std::string description). Metadata items are added piecewise using add metadata and shall not be modified or
removed since there is no direct access to the underlying map. The metadata is accessed through the return value of
get_metadata, which is a deep copy of the metadata (in contrast to the reference returned by cci_value: :get_map).
This may be a performance consideration if using metadata extensively.

Example:
p.add metadata("alpha", cci_value(2.0)); // description defaulted
p.add metadata("beta", cci_wvalue("faint"), "Beta description"”);

cci_value map meta = p.get metadata();

cci_value::const_list reference val = meta["beta"].get list();
sc_assert(val[0].get string() == "faint");

sc_assert(val[l].get string() == "Beta description");

5.4.2.6 Protecting parameters
Although parameters are commonly both visible and modifiable this may be undesirable:

e Discoverable parameters may become an inadvertent API. Adding the parameters to a local broker can
prevent discovery.

e Model structure is generally fixed after the elaboration phase, so being able to modify structural parameters
during the simulation can mislead. Restricting the parameter’s mutability to ccI_IMMUTABLE PARAM will
reject such misuse with a ccI_SET_PARAM FAILURE (see 5.8) error.

e Parameters may be modifiable during simulation but locked as read-only for an application, for example
used to publish status. The publisher may unlock the parameter prior to updating it, then lock it again, or
more concisely use a setter that accepts a password (but note the special-case behavior of nul1ptr passwords
below). Attempts to change a locked parameter’s value without a password are rejected with a
CCI_SET_PARAM FAILURE CITOT.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 16

SystemC® CCI 1.0 Language Reference Manual June 2018

NOTE: parameter locking is orthogonal to parameter mutability: a cci_immuTaBLE_paraM may be locked and unlocked again but
will remain always read-only.

cci_param mutable type get mutable type() const;

Returns the parameter's mutability type as described in 5.3.1.

bool lock(const void* password = nullptr);
lock makes the parameter’s value password protected:

o ifthe parameter is unlocked then it becomes locked with a "password" address (ideally some pointer specific
to the locking entity, such as its own this):

o the given password, if it is not nullptr

o otherwise, with an implementation-defined private password unique to the parameter; a parameter
locked in this way shall be explicitly unlocked for its value to be set; setters that delegate to
set_cci_value and set_raw_value with a nullptr password will not override the lock (as would
happen with an explicit non nullptr password)

o if the parameter is locked then:
o ifit already has the given password then it remains locked with it
o ifit has the default nul1ptr password then this is upgraded to the given password
o otherwise it remains locked by the previous password

lock returns true if the parameter is now locked with the given password; returning false means the parameter is
also locked but previously by some other password.

bool unlock(const void* password = nullptr);

To unlock a locked parameter, call unlock with the same password used for the latest successful call to 1ock. If locked
without a password, a parameter may also be unlocked (by anyone) without a password. It returns true if the
parameter became unlocked from this call, false otherwise (i.e. either the parameter remains locked or it was already
unlocked).

NOTE: locking does not nest; a parameter locked twice with the same password will be unlocked by a single unlock with that
password.

bool is_locked() const;
Returns true if the parameter is currently locked.

5.4.2.7 Equality test

bool equals(const cci_param if& rhs) const;

Returns true if both the type and value of the parameter argument match this parameter as determined by
get_type info and get_raw_value. The value comparison is delegated to the parameter’s underlying data type.

Example:

’

cci_param<short> iS("iS", 3)
cci_param<long> iL("iL", 3);
sc_assert(!iS.equals(iL)); // short and long are distinct types
sc_assert(iS.get_cci_value() == ilL.get_cci_value()); // but all integer types do fit "3"

5.4.2.8 Callbacks

Callback functions may be registered for access to the parameter value. The complete callback interface is extensive
since it is the product of functions supporting different phases of invocation, different parameter data types, both
global and member functions, and is distributed across both typed and untyped parameter classes and both object and

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 17

SystemC® CCI 1.0 Language Reference Manual June 2018

handle interfaces. Therefore the treatment here is not a monolithic exploration of the functions but decomposes it
structurally. Although parameter types are a property of the derived typed classes, they are discussed here so as to
have a single coherent description of callbacks.

Callbacks shall be registered against one of the stages of value access:

1. register _pre_read callback!:
o callback is invoked before the value is read
o signature: void callback(const cci_param read event<T>& ev)
2. register post read callback!:
e callback is invoked after the value is read (i.e. just before the value read is returned to the caller)
o signature: void callback(const cci_param read event<T>& ev)
3. register pre write_callback!:
e callback is invoked before the new value is written

e callback is explicitly a validator for the new value; by returning false it signals that the write should
not proceed, in which case a cCI_SET_PARAM FAILURE error report is immediately issued

e signature: bool callback (const cci_param write event<T>& ev)
4. register post write callback!:
o callback is invoked after the new value is written

o signature: void callback(const cci_param write event<T>& ev)

Multiple callbacks may be registered for each stage in which case they will be invoked in the order of their registration.
If a callback throws an exception (including as part of error reporting) then this immediately propagates through the
cci framework code without further callbacks being invoked and leaving all existing state modifications intact. For
example a throw from a post-write callback will leave the parameter with the new value, which may surprise a user
expecting assignment to have the commonly-supported copy-and-swap semantics. If callbacks are used to update
complex state then consideration should be given to at least providing a basic exception guarantee (that system
invariants are not violated).

The event object passed to the callback function carries the current parameter value, and also the new value for
pre/post-write callbacks. Event objects passed to callbacks registered through the fyped parameter interface
cci_param_typed<T>/cci_param_typed_handle<T> convey the values as references to the actual type T. Event objects
passed to callbacks registered through the wuntyped parameter interface cci_untyped param/
cci_param untyped handle convey the values as references to cci_value.

For each access stage a pair of overloads exists for registering callbacks: one which creates a functor from the given
global/class-static method and another which creates a functor for the given member function:

Example:

cci_callback untyped handle hl =

param.register pre read callback(&global callback);
cci_callback_untyped handle h2 =

param.register pre read callback(&myclass::member_ callback, &myclass_object);

Note that registration functions of this form are not present in the basic cci_param if, but are introduced in
cci_param untyped and cci_param untyped handle for callbacks with untyped event objects (see 5.6.2.6), and
cci_param_typed and cci_param_typed handle for callbacks with typed event objects (see 5.6.4.4).

Although the handle object returned from callback registration encapsulates the function to be called and its

arguments, from an application perspective it's an opaque token to be used if the callback is to be explicitly
unregistered:

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 18

SystemC® CCI 1.0 Language Reference Manual June 2018

Example:

bool success = param.unregister pre read callback(hl);

returning true if that callback handle was successfully removed from the callbacks for that phase. A specific callback
shall be unregistered by providing the callback handle returned when it was registered and unregistering against the

correct access stage. Specifically, the handle returned from register pre write callback shall be passed to
unregister pre write callback.

Unregistration is only necessary if the callback is to be suppressed during the lifetime of the parameter, since it is not
an error to destroy a parameter that has callbacks remaining registered. true is returned if the unregistration was
successful. The callback handle is only useful for later unregistration; if the callback is to remain for the lifetime of
the parameter then the handle need not be stored.

Lambda functions may also be conveniently used, either simply in place of an explicit function:

Example:

// Running count of times that parameter is set to zero
param.register post write callback([this] (auto ev){ this->num_zeroes += ev.new_value == 0; });

or to adapt a generic member function with instance-specific parameters:

Example:

void audit::updated(const cci::cci_param write event<int>& ev, string category);

// Updates to wheels register as mileage, those to axles register as maintenance, C++11
wheell.register post write([this] (auto ev){ this->updated(ev, "mileage");});

wheel2.register post write([this] (auto ev){ this->updated(ev, "mileage");});
shaft.register post write([this] (auto ev){ this->updated(ev, "maintenance");});

Achieving similar results in a C++03 environment (given a C++03-supporting implementation of CCI):

Example:

// Running count of times that parameter is set to zero
void count zero writes(const cci_param write event<int>& ev) {
num_zeroes += ev.new value == 0;

}

param.register post write callback(audit::count zero writes, this);

and to adapt a function, sc_bind can be used:

Example:

wheell.register post write(sc bind(&audit::updated, this, sc_unnamed::_ 1, "mileage"));
wheel2.register post write(sc bind(&audit::updated, this, sc_unnamed:: 1, "mileage"));
shaft.register post write(sc_bind(&audit::updated, this, sc_unnamed:: 1, "maintenance"));

Basic registration interface

The interface provided through cci_param if is intended for use by derived parameters and parameter handles. An
application will find it more convenient to use the registration overloads exposed by those classes. Only the pre-read
phase is detailed here; the behavior of the other three phases is essentially the same:

typedef cci_param pre read callback<>::type
cci param pre read callback untyped;
cci_callback untyped handle register pre read callback (
const ceci_callback_untyped handle& cb, const cci_originator& orig);

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 19

SystemC® CCI 1.0 Language Reference Manual June 2018

The callback handle is paired with the given originator and appended to the list of pre-read callbacks, and a copy of
the callback handle is returned. The originator is presented to the callback through

cci_param [read|write]_event::originator.
Unregistering all callbacks:

In addition to unregistering a specific callback handle, all callbacks for all four phases registered by a specific
originator may be removed:

bool unregister_ all callbacks(const cci_originatorés orig);

returning true if any callback was unregistered. The originator might be retrieved from get originator on the
parameter object or parameter handles; for handles a possible shortcut is cci_broker handle::get originator
since all parameter handles created from a broker handle share its originator.

Testing for callbacks

bool has callbacks() const;
Returns true if any callbacks are registered against the parameter, regardless of the originator or phase.

5.4.2.9 Parameter handle management

cci_param untyped handle create param handle(const cci_originator& originator) const;

Creates and returns a handle, as described in 5.6.3, for the parameter. The handle's originator is set to the given
originator. The returned handle is certain to be valid and remains so until the parameter is destroyed.

private:
void add param handle(cci_param untyped handle* param handle) = 0;

void remove param handle(cci_param untyped handle* param handle) 0;

The explicit decoupling of parameter object and handle lifetimes requires that a list of (parameter, handle) pairs is
maintained, such that destroying a parameter shall invalidate all handles to it. The CCI design places this
responsibility upon the parameter at the API level (the implementation may delegate it beyond this), which requires
these methods to add and remove handles. They are private and provided solely for the cci_param untyped handle
implementation's use.

5.4.2.10 Destructor

~cci_param if();
This destructor shall be overridden by subclass to address:

e discarding of all registered callbacks

e invalidation of any cci_param [un]typed handle pointing to this parameter, after which their is_valid
method returns false and most operations on the handle will fail with an error report

e unregistration of the parameter name, meaning that a subsequently created parameter with the same
hierarchical name shall be created without having a unique suffix appended

e removal from the broker, with the preset value (if any) being marked as unconsumed

5.4.3 cci_broker_if

The broker interface provides parameter un/registration, name-based parameter lookup and value retrieval, preset
value management, and parameter creation/destruction callbacks. A default implementation is provided by
cci_utils::consuming broker described in 5.7.3. Brokers are typically accessed through a cci_broker_handle
(see 5.7.1) obtained from cci_get_broker (see 5.7.2).

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 20

SystemC® CCI 1.0 Language Reference Manual June 2018

class cci_broker if

{

public:
// Broker properties
virtual const char* name () const = 0O;
virtual bool is_global broker () const = 0;

// Parameter access
virtual cci_param untyped handle get param handle (
const std::stringé& parname, const cci_ originatoré& originator) const = 0;
virtual cci_originator get value origin(
const std::string& parname) const = 0;
virtual cci_value get_cci_value(const std::string& parname,
const cei_originator& originator = ceci_originator()) const = 0;

// Bulk parameter access
virtual std::vector <cci_param untyped handle> get param handles (
const ceci_originator& originator = ceci_originator()) const = 0;
virtual cci_param range get param handles (
cci_param predicate& pred, const cci_originator& originator) const = 0;

// Parameter initialization
virtual bool has_preset value(const std::stringé& parname) const = 0;
virtual void set preset cci_value (
const std::stringé& parname, const cci_value& cci_value,
const ceci_originators& originator) = 0;
virtual cci_value get preset cci value(const std::string& parname) const = 0;
virtual cci_originator get preset wvalue origin(
const std::string& parname) const = 0;
virtual void lock preset value(const std::string& parname) = 0;
virtual std::vector<cci_ name value pair> get unconsumed preset values() const = 0;
virtual cci_preset value range get unconsumed preset values (
const cci_preset value predicates& pred) const = 0;
virtual void ignore unconsumed preset values (
const cci_preset value predicate& pred) = 0;

// Handle creation
virtual cci_broker handle create broker handle (
const ceci_originator& originator = ceci_originator()) = 0;

// Callbacks
virtual cci_param create_ callback handle register create_callback (

const cci_param create callbacké, const cci originators) = 0;
virtual bool unregister create_ callback (

const cci_param create callback handle&, const cci_originators) = 0;
virtual cci_param destroy callback handle register destroy callback (

const cci_param destroy callbacké&, const cci originators) = 0;
virtual bool unregister destroy callback (

const cci_param destroy callback handle&, const cci_originators) = 0;
virtual bool unregister all callbacks(const cci_originators) = 0;

virtual bool has_callbacks() const = 0;

// Parameter un/registration

virtual void add param(cci_ param if* par) = 0;
virtual void remove param(cci_param if* par) = 0;
protected:

virtual ~cci_broker if();

// Disabled

cci broker if(cci_broker ifss) = delete;

cci broker if(const cci_broker ifs) = delete;
cci_broker if& operator=(cci_broker ifcs) = delete;
cci_broker if& operator=(const cci_broker if&) = delete;

bi
5.4.3.1 Broker properties

A broker is constructed with a name, which is made unique if necessary by cci_gen_unique_name (see 5.9). Broker
names are provided for identification which is helpful for debug and logging.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 21

SystemC® CCI 1.0 Language Reference Manual June 2018

const std::string& name () ;

Returns the broker's name.

bool is_global broker () const;

Returns true for the global broker, talse otherwise.
5.4.3.2 Individual parameter access

A broker provides handles to access the parameters it manages.

cci_param untyped handle get param handle (
const std::stringé& parname, const cci_originator& originator) const = 0;

Given the full hierarchical name of a parameter registered on this broker and the originator to record as the source of
writes through the handle, it returns a newly-created handle for the parameter. If the name doesn’t match any
parameter then the handle is explicitly invalid.

Example:
cci_param<int> p("pl", 42); // CCI_RELATIVE NAME
cci_param handle ph = broker.get param handle("pl"); // get uses CCI_ABSOLUTE NAME

sc_assert(!ph.is wvalid());
ph = broker.get_param handle("testmod.pl");
sc_assert (ph.is_valid());

For convenience and potential efficiency a small subset of the parameter functionality is made directly available:

cci_originator get_value_origin(const std::stringé& parname) const = 0;
cci_value get cci_value(const std::stringé& parname,
const ceci_originators& originator) const = 0;

get_value_origin returns a copy of the originator that most recently set the parameter’s value, or if the parameter
is not currently registered then an originator for which is_unknown (see 5.4.1.3) is true.

5.4.3.3 Bulk parameter access

Retrieves a vector of handles, created for the given originator, to all parameters registered with the broker (and in the
case of local brokers, also those registered on the parent brokers), optionally interposing a filtering predicate such that
iterating through the vector skips past the handles that the predicate rejects:

std::vector <cci_param untyped handle> get param handles (

const ceci_originator& originator = cci_originator()) const;
cci_param range get param handles (

cci_param predicate& pred, const cci_originator& originator) const;

Note that generating a handle for every parameter (and subsequently removing them when the vector is destroyed)
may be expensive. Note also that the predicate form doesn’t avoid this expense — in the following example handles
for parameters “b” and “c” are still generated, merely hidden by the range iterator.

Example:

cci_param<int> pa("a", 1);
cci_param<std::string> pb("b", "foo");
cci_param<double> pc("c", 2.0);
cci_param<short> pd("d", 3);

// Simple predicate accepting only numeric params
cci_param predicate pred([] (const cci_param handle&p)
{
return p.get_data category() == CCI_NUMBER PARAM;
by

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 22

SystemC® CCI 1.0 Language Reference Manual June 2018

cci param range r = broker.get param handles(pred);
for(auto p : r)
cout << p.name() << endl; // lists “a” and “d”

5.4.3.4 Parameter initialization

A newly-created parameter has the default value, with which it was constructed. This may be supplanted by a preset
value, supplied by the broker to which the parameter is added. Parameters are re-initialized in this same way, with
the preset value having precedence over the default value, when reset.

virtual bool has_preset value(const std::string& parname) const = 0;

Indicates whether the broker has a preset value for the specified parameter.

void set_preset_cci_value (
const std::stringé& parname, const cci_wvalue& cci value,
const ceci_originators& originator);

Sets the preset value for the parameter with the given full hierarchical name. Whenever a parameter of that name is
added to the broker its value will be set to the given preset value and the value_origin to the given originator.
Updating the preset value after parameter construction is permitted and will have effect on subsequent calls to reset.

Note that the cci_value added shall support template<typename T> get for the cci_param<T> being added or a
CCI_VALUE FAILURE error will be reported. In the following example the value of quum will be displayed as "17.0"
(small int successfully coerced as double) but the construction of gstr will report ccI_varue FAILURE and depending
upon sc_report handler configuration, either throw the error report or proceed without applying the configuration.

Example:

cci_get broker () .set preset cci_value("m.q", cci_value(1l7));

{
cci_param<double> gNum("q", 2.0, "desc", CCI_RELATIVE NAME);
cout << "g val=" << gNum.get cci_value () << endl;

cci param<std::string> gStr("q", "fish", "desc", CCI_RELATIVE NAME) ;
cout << "g val=" << gStr.get cci_value () << endl;

The parameter name is used after it has been made unique, meaning that if two parameters with the same hierarchical
name are added only the first will receive the preset value as the second will have been suffixed with a sequence
number. The preset value may be changed by further calls to set_preset_cci_value but cannot be removed.

cci_value get preset cci_value(const std::string& parname) const;

Returns the preset value for the parameter with the given full hierarchical name, or a null cci_value if no preset value
is defined. Note that a null ecci_value could in fact be the configured preset value for a parameter.

cci_originator get preset value origin(const std::stringé& parname) const;

Returns a copy of the originator that most recently set the parameter’s preset value, or if no preset value exists then
an originator for which is_unknown (see 5.4.1.3) is true.

void lock preset value(const std::string& parname);

If the preset value for the parameter with the given full hierarchical name is locked then attempts to
set_preset_cci_value for it will be rejected with a set_param failed error. It may be locked before any
set_preset_cci_value call, meaning that no preset value can be defined and the default value will be in effect. A
locked preset value cannot be unlocked.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 23

SystemC® CCI 1.0 Language Reference Manual June 2018

Enumerating unconsumed preset values

A preset value that is configured but not "consumed" by being assigned to a created parameter may indicate a
configuration error such as incorrect hierarchical names or an expected module not being instantiated. A tool or log
file might provide such information to the user.

std::vector<cci_name_value_pair> get_unconsumed preset_ values () const;

Returns a list of all preset values not used for the current set of parameters, as pairs of (parameter name, preset
cci_value). A preset value is marked as used when a parameter of that name is constructed and is marked again as
unused when that parameter is destroyed. The most useful time to report unconsumed preset values is typically after
the end of elaboration.

The list of unconsumed preset values may be filtered by a predicate, for example to remove expected entries:

cci preset value range get unconsumed preset values (
const cci_preset_value predicates& pred) const;

Returns a range iterator for the list of unconsumed preset values, which filters the iteration functions by the given
predicate callback. The predicate is presented with std: :pair<parameter name, parameter preset cci value>
and returns false to skip (suppress) the preset. In the following example, presets for a test module are ignored by
checking for a hierarchy level named "testmod".

Example:

auto uncon = cci_get broker().get unconsumed preset values (
[1(const std::pair<string,cci_value>& iv)
{ return iv.first.find("testmod.") == string::npos; }

)

for(auto v : uncon)

{
SC_REPORT INFO("Unconsumed preset: ", v.first);

}

The provision of the filtering predicate and the retrieval of the list of unconsumed preset values may be performed as
separate operations:

void ignore_ unconsumed preset_ values (
const cci_preset value predicates& pred);

Applies the given filtering predicate to the current set of unconsumed preset values and accumulates the matches from
all such calls in a list of presets to be filtered (omitted) from the results of subsequent calls to
get_unconsumed_preset_values. Because the predicate is applied immediately it is advisable that the complete set
of preset values is configured before modules and parameters are initialized, i.e. a suitable workflow is:

Create a (possibly local) broker.
2. Initialize preset values through cci_broker_ [if|handle]::set preset cci_value.

3. Aspartof deﬁning parameters, modules use cci_broker handle::ignore_unconsumed preset values tO
add matching (currently unconsumed) presets to the suppression list.

4. Later (or at end of simulation) fetch the list of interesting preset values that remain unconsumed through
cci_broker handle::get unconsumed preset values.

5.4.3.5 Create handle

cci_broker handle create broker handle(const cci_originator& originator = cci_originator());

Return a newly-created and initialized handle for the broker. The given originator is used for operations that ultimately
result in attributable changes, for example setting a preset value or creating a parameter handle.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 24

SystemC® CCI 1.0 Language Reference Manual June 2018

5.4.3.6 Broker callbacks

Callback functions may be registered on a broker for the creation and destruction of parameters (strictly, this is the
addition and removal of the parameters from the broker, however this occurs solely in the context of creating and
destroying parameters). The distinction is only important because it means that there is no mechanism for being
notified of all parameter creations, so local brokers remain truly local.

Callbacks are invoked in order of registration. If a callback throws an exception (including as part of error reporting)
then this immediately propagates through the cci framework code without further callbacks being invoked and leaving
all existing state modifications intact. If callbacks are used to update complex state then consideration should be given
to at least providing a basic exception guarantee (that system invariants are not violated).

Creation callbacks

cci param create callback handle register create callback (
const cci_param create_callbacké, const cci_originators);

Registers a callback function of the signature: void callback (const cci_param_untyped_handles ph), paired with
the given originator. The returned cci_param_create_callback_handle is used to unregister the callback.

Creation callbacks are invoked from within the cci_param typed constructor as almost the final action. This means
that the parameter handle is functional, but that any further-derived class has not been constructed (this will only be
problematic if the cci_param_typed is sub-classed, then from the callback dynamic cast<sub-class> will fail). If
the callback throws an exception, either directly or through sc report handler::report, then the parameter
construction is unwound without running destruction callbacks.

bool unregister create_callback (
const cci_param create_callback_handle&, const cci_originators orig);

Given both the handle returned by registering a callback through register_create_callback and the same originator
with which the registration was made, it unregisters the callback and returns true.

Destruction callbacks

cci_param destroy callback handle register destroy callback (
const cci_param destroy callbacké&, const cci_originators orig) = 0;

Registers a callback function of the signature: void callback(const cci_param_untyped handles ph). The
returned cci_param destroy_ callback_handle is used to unregister the callback.

Destruction callbacks are invoked with the parameter still fully constructed and registered with the broker.

Since destruction callbacks are invoked in the context of parameter destruction, exceptions should be avoided but are
not prohibited. The behavior in such a case will be defined by the cci implementation and may result in
std::terminate.

bool unregister destroy callback (
const cci_param destroy callback_handle&, const cci_originators) = 0;

Given the handle returned by registering a callback through register_destroy_callback it unregisters the callback
and returns true.

Utilities

bool unregister all callbacks(const cci_originators orig) = 0;

Unregisters all creation and destruction callbacks registered with the given cci_originator. Returns true if any
callbacks were unregistered.

bool has_callbacks () const = 0;

Returns true if any creation or destruction callbacks are currently registered with this broker.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 25

SystemC® CCI 1.0 Language Reference Manual June 2018

5.4.3.7 Parameter registration

virtual void add param(cci_ param if* par) = 0;

virtual void remove param(cci_param if* par) 0;

These should only be called from parameter implementations and facilitate registering and unregistering with the
broker.

5.4.3.8 Destructor

~cci_broker if();

The destructor is protected to reserve destruction for the owner of the broker. This is necessary since there is no
provision for gracefully handling dependent objects such as cci_broker_handle (unlike the relationship between
cci_param if and cci_param [un]typed handle where the lifetimes are explicitly decoupled).

An implementation of the destructor shall invoke cci_abort if the broker still has registered parameters, in order to
prevent subsequent erroneous behavior. It follows that applications should not destroy a broker which has registered
parameters.

NOTE: In practice employing a common scoping mechanism for both local brokers and their parameters should avoid problems
with mismatched lifetimes; for example making both the broker and the parameters member data of a module.

5.5 Variant type parameter values
It shall be possible to examine and modify configuration parameter values of unknown and arbitrarily complex types.

5.5.1 cci_value_category

The enumeration cci_value_category shall define the basic data types that shall be used as building blocks to
compose variant type parameter values.

enum cci_value category {

CCI_NULL VALUE = O,
CCI_BOOL VALUE,
CCI_INTEGRAL VALUE,
CCI_REAL VALUE,
CCI_STRING VALUE,
CCI_LIST VALUE,
CCI_OTHER VALUE

e CCI_NULL VALUE — no data type, e.g. a variant object with no explicit initialization

e CCI_BOOL VALUE — C++ bool type

e CCI_INTEGRAL VALUE — integer of up to 64 bits, i.e. representable as int64 t or uinté4 t
e cci_REAL VALUE — floating point value, represented as C++ double

® CCI_STRING_VALUE — C++ null-terminated string

e CCI_LIST VALUE — a list of values, each of which may be of any cci_value category

e CCI_OTHER VALUE — a type not matching any other category, including value-maps

5.5.2 cci_value

The cci_value class shall provide a variant type for exchanging configuration parameter values. The following types
are supported:

e The familiar C++ data types referred to by cci_value_category are supported, as are restricted types that
can be coerced into them, such as int32 t, int16 t and int8 t.

e Common SystemC data types: sc_core::sc_time, from sc_dt:: sc logic, sc_int base, sc_uint_base,
sc_signed, sc_unsigned, sc_bv base, sc_lv base.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 26

SystemC® CCI 1.0 Language Reference Manual

June 2018

e User-specific data types, supported by implementing the helper template class cci_value converter<T>

(which is also the mechanism by which the C++ and SystemC data types are supported).

e (C++arrays and std: :vector<> of any supported data type, converting to a cci_value_list.

e Lists (vectors) of cci_value, represented as cci_value list.

e String-keyed maps of cci_value, represented as cci_value map.

Because lists and maps contain cci_value objects they are explicitly heterogeneous and can arbitrarily mix data types,
including nesting cci_value_list and cci_value map to arbitrary depths.

Objects of this class have strict value semantics, i.e. each value represents a distinct object. Due to hierarchical nature
of the data structure, values embedded somewhere in the list or map are referenced by dedicated reference objects
(cci _value creff, cci value reff, and their specialized variants for strings, lists and maps), with or without

constness.

The cci_value: :reference and cci_value: :const_reference classes are defined as modifier and accessor interface
classes, such that a cei_value instance shall be transparently used where those interface classes are expected. Having
them form base classes for cci_value is a suggested approach.

5.5.2.1 Class definition

class cci_value

{

public implementation-defined

typedef cci value this_ type;

public:

/// reference to a constant value

typedef implementation-defined const_reference;

/// reference to a mutable value

typedef implementation-defined reference;

/// reference to a constant string value

typedef implementation-defined const_string reference;
/// reference to a mutable string value

typedef implementation-defined string reference;

/// reference to a constant list value

typedef implementation-defined const_list reference;
/// reference to a mutable list value

typedef implementation-defined list reference;

/// reference to a constant map value

typedef implementation-defined const_map reference;
/// reference to a mutable map value

typedef implementation-defined map_reference;

// Constructors and destructor
cci_value () ;
template<typename T>

explicit ceci_value(T const& src,

cci_value (
cci_value (
cci_value (
cci_value (
cci_value (

this typeé&
this typeé&

this typeé&
this typeé&
this type&

this type consté& that);
const_reference that);
this type&é& that);

cci_value listds that)
cci_value map&& that);

operator=(
operator=(

operator=(
operator=(
operator=(

this type consté&);
const_reference) ;

this type&s);
cci value listss);
cci_value _map&s);

friend void swap(this type& a, this type& b);
void swap(reference that);
void swap(cci_value& that);

// Type queries - possibly inherited from "const reference"
cci_value category category () const;

bool is null() const;
bool is bool() const;

bool is false() const;

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

typename cci_value converter<T>::type* = 0);

27

SystemC® CCI 1.0 Language Reference Manual

}i

bool is true() const;
bool is number () const;
bool is int() const;
bool is uint() const;
bool is_int64 () const;
bool is uint64 () const;
bool is double () const;
bool is string() const;
bool is map() const;
bool is list() const;
bool is same(const reference that) const;

// Set basic value - possibly inherited from "reference"
reference set null();

reference set bool(bool v);

reference set int(int v);

reference set uint(unsigned v);

reference set int64(int64 v);

reference set uint64(uinté4 v);

reference set _double(double v);

string reference set string(const char* s);

string reference set string(const string reference s);
string reference set string(const std::stringé& s);
list reference set list();

map reference set _map();

// Set arbitrarily typed value - possibly inherited from "reference"
template< typename T >

bool try set(T consté& dst, CCI_VALUE ENABLE IF TRAITS (T));
template< typename T >

reference set(T const& v, CCI_VALUE ENABLE IF TRAITS (T));

// Get basic value - possibly inherited from "const reference"
bool get_bool() const;

int get_int() const;

unsigned get uint() const;

int64 get_int64 () const;

uint64 get uinté4 () const;

double get double () const;

double get number () const;

// Get arbitrarily typed value
template<typename T>

bool try get(T& dst) const;
template<typename T>

(T) get() const;

// Access as complex value - possibly inherited
const_string reference get string() const;
string reference get string();

const_list reference get_ list() const;

list reference get list();

const map reference get map() const;

map reference get _map () ;

// JSON (de)serialization - possibly inherited
static cci_value from json(std::string const& json);
std::string to_json() const;

// Friend functions
friend std::istream& operator>>(std::istream& is, cci_value& v);

5.5.2.2 Constructors and destructor

cci_value () ;

A default-constructed value has the cci_value category of CCI_NULL VALUE.

template<typename T>
explicit cci_value(T const& src);

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

June 2018

28

SystemC® CCI 1.0 Language Reference Manual June 2018

Construction from a source data type internalizes the value through cci_value_converter<T>::pack. For the
conventional data types these delegate to the appropriate explicit setter functions.

cci value(cci_value const& that);
cci_value(const reference that);

Copy-construction, overloaded both for a sibling instance and the const_reference accessor interface.

cci_value(cci_valueds that);
cci_value(cci_value list&& that);
cci_value(cci_value map&& that);

Move-construction, acquiring the value of that and leaving that freshly initialized. The list and map overloads
correctly acquire the container types to ensure that the source is left initialized empty and of the correct type.

An implementation may provide similar semantics when compiled for C++ versions prior to C++11, for example
through additional methods.

~cci_value () ;

Frees the associated value storage. Because reference objects obtained from a cci_value are constructed as copies
and subsequent assignment to them updates their own storage rather than aliasing the source's storage, they do not
pose a dangling-reference hazard. The following example shows that m2 going out of scope does not invalidate the
map_reference pl assigned from it, and that p1 continues to refer to the cci_value m1 that it was constructed from.

Example:

cci_value ml;
cci_value::map reference pl = ml.set map();

pl.push entry("1", "a"); // ml == { ["1", "a"] }
{

cci_value m2;

pl = m2.set map () ; // ml == { }, m2 = { }

pl.push _entry("2", "b"); // ml == { ["2", "b"] }, m2 == { }
}
pl.push entry("3", "c"); // ml == { ["2", "b"], ["3", "c"] }

5.5.2.3 Swap functions

void swap(cci_wvalue& that);
void swap(reference that);
cci value move();

The swap functions exchange the value and type of "this" object with that of the supplied cci_value argument in an
exception- and error-report-safe manner. The move function returns a cci_value which has taken ownership of this
object's value, with this object being reinitialized without an explicit value, i.e. equivalent to the state created by
set _null.

NOTE: These functions are intended to support efficient operations with C++ standard container classes and algorithms.

5.5.2.4 Type queries

cci_value category category () const;

Returns the basic data type.

bool is null() const;
bool is bool() const;
bool is number () const;
bool is int() const;
bool is uint() const;
bool is inté4 () const;
bool is_uint64 () const;
bool is double () const;
bool is string() const;

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 29

SystemC® CCI 1.0 Language Reference Manual June 2018

bool is map() const;
bool is 1list() const;

Return true if the current value can be retrieved as the specified type, or cannot be retrieved in the case of is_null.
This depends on the data type and in the case of integers also whether the current value can be contained by such an
integer type.

Example:

cci value v(7);

sc_assert(v.is_int() && v.is_uint() && v.is_int64 () && v.is_uint64());

v = cci_value(1UL << 34);

sc_assert(!v.is int() && !v.is uint() && v.is_int64 () && v.is uinté4 ());
v = cci_value(1UL << 63);

sc_assert(!v.is_int() && !v.is_uint() && !v.is_int64 () && v.is_uint64());

In contrast, coercion between string, integer, and double types is not supported, even where no loss of precision would
occur.

Example:

cci value v(1);

sc_assert(v.is_int() && !v.is double() && !v.is string());
v = cci_value(1.0);

sc_assert(!v.is int() && v.is_double() && !v.is string());
v = cci_value("1");

sc_assert(!v.is int() && !v.is_double() && v.is string());

Convenience functions combining is_bool and testing the result of get_bool:

bool is false() const;
bool is_ true() const;

5.5.2.5 Get value

Core types

Explicitly named functions get the core types by value:

bool get bool() const;

int get_int() const;

unsigned get uint() const;

int64 get int64 () const;

uint64 get uint64 () const;

double get_double () const;

double get number () const; // synonym for get double ()

In general an error is reported unless the type would be identified by an is_TyPE query, i.e. a safe idiom is:

if(cv.is TYPE())
value = cv.get TYPE();

However getting a small integer as a larger one is supported:

if (cv.is_int())
value = cv.get inté4();

An implementation may support getting an integer as a double but this may result in loss of precision.

Example:
cv.set uint64((1UL << 63) | 0);
sc_assert (cv.get_uint64 () == uint64_t(cv.get_double()));

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 30

SystemC® CCI 1.0 Language Reference Manual June 2018

cv.set uint64((1UL << 63) | 1);
sc_assert (cv.get_uint64 () != uint64_t(cv.get_double()));

Extended and user-defined types

Other value types are retrieved with the type-templated get function:

template<typename T>
typename cci_value_converter<Type>::type get() const;

This uses the cci_value_converter<T> to extract the stored value and convert it to an object of type T, which is
returned by value. If the value cannot be converted, for example because it is of a different type, then a
cci_value_failure (see 5.8) error is reported. The validation and conversion of each type T is defined by the
cci_value_converter<T> implementation. Converters are provided by the CCI library for the supported data types
listed in 5.5.2. If get is used with a user-defined type that lacks a cci_value converter<T> definition then linker
errors will occur.

template<typename T>
bool try get(T& dst) const; // omitting additional type argument for C++ selection logic

A conditional form of get, which upon success updates the #yped reference argument and returns true.

Example:

sc_core::sc_time end;
if (!endvVal.try get(end))
return ENotFinished;
// Calculate total running time; if end was defined then start must be defined
// so can use unconditional get.
sc_core::sc_time start = startVal.get<sc_core::sc_time>();

Reference types

The getters for the structured data types (string, list, and map) return by reference:

const_string reference get string() const;
string reference get string();

const_list reference get_list() const;
list_reference get_list();
const map reference get map() const;

map reference get map();

As would be expected of reference types, they share the common value.

Example:

cci_value val;

val.set list();

cci_value::list reference 1rl = val.get list();
lrl.push back(1);

sc_assert(lrl.size() ==)2

cci _value::list reference 1r2 = val.get list();
1r2.push back(2);

sc_assert(lrl.size() == 2);

A natural consequence of this is that changing the underlying data type invalidates the references.

Example:

cci_value val;

val.set list();

cci_value::list reference 1lrl = val.get list();

val.set null();

sc_assert(lrl.size() == 0); // throws a RAPIDJSON_ASSERT exception

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 31

SystemC® CCI 1.0 Language Reference Manual June 2018

5.5.2.6 Set value
Value setters:

1. Set the value type.
Initialize to the passed value, where supported.

3. Return a suitable reference; for simple types a cci_value::const_reference for the value object, for
structured types (string, list, map) the matching type reference class (string_reference, list_reference,
map_reference respectively).

reference set null();

reference set bool(bool v);

reference set int(int v);

reference set uint(unsigned v);

reference set_int64(int64 v);

reference set uint64(uinté64 v);

reference set double(double v);

string reference set string(const char* s);

string reference set string(const string reference s);
string reference set string(const std::stringé& s);
list reference set list();

map reference set _map();

template< typename T >

bool try set(T const& dst); // omitting additional type argument for C++ selection logic
template< typename T >
reference set(T const& v); // omitting additional type argument for C++ selection logic

5.5.2.7 Identity query

bool is same(const reference that) const;

Returns true if both this value and the given reference are for the same underlying value object, as opposed to merely
having values that evaluate according to operator==.

5.5.2.8 JSON (de) serialization

std::string to_json() const;

Returns a JSON description of the value. For custom types this will typically be a list or a map (as specified by the
cci_value_converter<T> implementation).

static ceci_value from json(std::string const& json);

Given a JSON description of the value, returns a new cci_value initialized with the value. Reports a value error if
the JSON description is invalid.

5.5.3 cci_value_list

A cci_value_list is conceptually a vector of ecci_value objects, where each element remains a variant type, i.e. the
value types placed in the vector may be heterogeneous.

Example:

cci _value list val;
val.push back(7).push back("fish");

The cci_value list type offers const and modifiable reference classes along with the instantiable class. The

reference classes provide container interfaces modeled on the C++ standard library such as iterators, while the
instantiable class provides the expected construction and assignment methods.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 32

SystemC® CCI 1.0 Language Reference Manual

class cci_value list : public implementation-defined
{
public:
typedef cci value list this type;
typedef implementation-defined const_reference;
typedef implementation-defined reference;
typedef implementation-defined proxy ptr;

typedef size t size type;
typedef cci_value iterator<reference> iterator;

typedef cci_value iterator<const reference> const iterator;
typedef std::reverse iterator<iterator> reverse iterator;

typedef std::reverse iterator<const_iterator> const reverse iterator;

// "const_reference" members
bool empty () const;
size type size() const;
size type capacity() const;

const_reference operator[] (size_ type index) const;
const_reference at(size_type index) const;

const_reference front() const;
const_reference back () const;

const iterator cbegin() const;
const _iterator cend() const;

const iterator begin() const;
const iterator end() const;

const reverse iterator rbegin() const;
const_reverse_ iterator rend() const;

const reverse iterator crbegin() const;
const reverse iterator crend() const;

proxy ptr operatoré& () const { return proxy ptr(*this); }

// "reference" (modifable) members
this type operator=(this type consté&);
this type operator=(base type consté&);

cci_value move () ;

void swap(this typeé&);
friend void swap(this type a, this type b);

cci_value list reft reserve(size_type);
cci value list reft clear();

reference operator[] (size type index);
reference at(size type index);

reference front ()
reference back ()

iterator begin() ;
iterator end();

reverse iterator rbegin()
reverse iterator rend()

cci_value list reft push back(const reference v);
cci_value list reft push back(cci_values&s v);
template<typename T>

cci_value list reft push back(const T& v

iterator insert(const_ iterator pos, const reference value);

iterator insert(const iterator pos, size type count, const_ reference value
template< class InputIt >

iterator insert(const iterator pos, InputIt first, InputIt last);

iterator erase(const iterator pos);
iterator erase(const iterator first, const iterator last);

void pop back() ;

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

June 2018

33

SystemC® CCI 1.0 Language Reference Manual

bi

proxy ptr operatoré&() const { return proxy ptr(*this); }

// Concrete class

cci_value list();

cci value list(this type const&);
cci_value list(const reference);
cci_value list(this_ type&s&);

this type& operator=(this type consté&);
this type& operator=(const reference);
this type& operator=(this type&s&);

friend void swap(this type& a, this type& b)

void swap(this typeé&);
~cci_value list();

const cci_value list* operatoré&() const {

cci_value list* operator&() { return this;

5.5.4 cci_value_map

{

a.swap(b); }
void swap(reference that) { reference::swap(that); }

return this; }

June 2018

A cci_value map is conceptually a map of string keys to cci_value objects, where each element remains a variant
type, i.e. the value types placed in the vector may be heterogeneous.

Example:

cci_value map vmap;

vmap ["foo"] = cci_value(7);

vmap ["bar"] = cci_value(sc_core::sc_time_ stamp ()

)i

The cci_value_map type offers const and modifiable reference classes along with the instantiable class. The reference
classes provide container interfaces modelled on the C++ standard library such as iterators, while the instantiable class
provides the expected construction and assignment methods.

class cci_value map

{

public:

typdedef cci_value map this type;

typedef implementation-defined const reference;

typedef implementation-defined reference;
typedef implementation-defined proxy ptr;

typedef size t size type;

typedef cci_value_iterator<cci_value map elem ref>
typedef cci_value_iterator<cci_value map elem cref>

typedef std::reverse iterator<iterator>

typedef std::reverse_iterator<const_iterator>

// "const reference" members

bool empty () const;

size type size() const;

bool has_entry(const char* key) const;
bool has_entry(std::string consts& key)
bool has_entry (

const_reference at(const char* key) const;
const_reference at(std::string const& key)

const iterator cbegin() const;
const iterator cend() const;

const iterator begin() const;
const iterator end() const;

const_reverse iterator rbegin() const;
const_reverse_ iterator rend() const;

cci value string creft key)

public implementation-defined

const;

const;

iterator;

const iterator;

reverse iterator;

const reverse iterator;

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

34

SystemC® CCI 1.0 Language Reference Manual

}i

const_reverse_ iterator crbegin() const;
const reverse iterator crend() const;

const_iterator find(const char* key) const;
const iterator find(const std::stringé& key) const;

proxy ptr operatoré& () const { return proxy ptr(*this); }
// "reference" members

this type operator=(base type consté&);

this type operator=(this type consté&);
cci_value move () ;

/// Exchange contents with another map

void swap(this typeé&);

friend void swap(this type a, this type b);
this type clear();

reference at(const char* key);

reference at(std::string consté& key);
reference operator[] (const char* key);

reference operator[] (std::string consté& key);

iterator begin();
iterator end() ;

reverse_iterator rbegin();
reverse_iterator rend();

iterator find(const char* key);
iterator find(const std::string& key);

this type push entry(const char* key, const reference value);

this type push entry(std::string consté& key, const reference value);

this_ type push entry(const char* key, cci_value&s value);
this type push entry(std::string consté& key, cci_valuess value);

/// Add an arbitrary cci value converter enabled value
template<typename T>

this type push _entry(const char* key, const T& value);
template<typename T>

size type erase(const char* key);
size type erase(const std::stringé& key);

iterator erase(const iterator pos);
iterator erase(const iterator first, const iterator last);

proxy ptr operatoré& () const { return proxy ptr(*this); }

// Concrete class

cci_value map();

cci_value map(this type consté&);
cci_value map(const reference);
cci_value map(this typeé&&);

this type& operator=(this type consté&);

this type& operator=(const reference);

this type& operator=(this type&&);

friend void swap(this type& a, this type& b);
void swap(reference that);

void swap(this typeé&);

~cci_value map();

const cci_value map* operatoré&() const { return this; }
cci_value map* operator&() { return this; }

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

June 2018

35

SystemC® CCI 1.0 Language Reference Manual June 2018

5.5.4.1 Element access

The const_map_reference interface provides the checked at function:

const_reference at(const char* key) const;
const_reference at(std::string consté& key) const;

This returns a reference to the cci_value object at the given index, or reports a value error if the index is invalid. The
map_reference interface retains the validity checking but returns a modifiable element reference:

reference at(const char* key);
reference at(std::string consté& key);

and adds array-styled access which inserts new index values:
reference operator[] (const char* key);

reference operator[] (std::string consté& key);

Example:

cci_value map vmap;
cci _value: :map reference mr(vmap);

mr["foo"] = cci_value(1);
mr.at("foo") = cci_value(2);
mr.at("bar") = cci_value(3); // reports CCI_VALUE error

5.6 Parameters

Actual parameters are created as instances of cci_param typed, which in concert with its base class
cci_param untyped implements the cci_param if (see 5.4.2) interface. As the names suggest the functionality is
divided between that common to all parameter types and that which depends upon the concrete value type.

5.6.1 cci_param_untyped

Implements much of the parent cci_param_if interface class and extends it with convenient registration of untyped
callbacks. The inherited methods are described in the cci_param_if interface class and not further detailed here.

class cci_param untyped : public cci_param if
{
public:
// The pre-read callback phase detailed here; equivalent methods exist for all three phases
cci_callback untyped handle register pre read callback (
const cci_param pre read callback_untypeds& cb,
cci_untyped tag = cci_untyped tag());
template<typename C>
cci_callback untyped handle register pre read callback (
cci_param pre read callback untyped::signature(C::*cb), C* obj,
cci_untyped tag = cci_untyped tag());
bool unregister pre read callback(const ceci_callback_untyped handles& cb);
bool unregister all callbacks();
}i

These additional callback registration and unregistration methods provide a convenient veneer; the actual callback
semantics remain as described in cci_param if.

cci_callback _untyped handle register pre read callback (
const cci_param pre read callback untypedé& cb,
cci_untyped tag = cci_untyped tag());

Register a global function as a pre-read callback, using the parameter's originator as the callback originator (as passed
to the callback through the cci_param read event object). The following example uses a static member function.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 36

SystemC® CCI 1.0 Language Reference Manual June 2018

Example:

auto cbh = paramUT.register pre read callback(&Logger::static_pre read callback);

Note that as above the packaging cci param pre read callback untyped object will typically be implicitly
constructed simply by passing the pointer to the static/global function.

template<typename C>

cci_callback untyped handle register pre read callback (
cci param pre read callback untyped::signature(C::*cb), C* obj,
cci_untyped_tag = cci_untyped tag());

Register a member function as a pre-read callback, using the parameter's originator as the callback originator (as
passed to the callback through the cci_param read event object).

Example:

auto cbh = paramUT.register pre read callback(&Logger::member pre read callback, &loggerObject
)i

Once again the packaging cci_param pre_read callback_untyped object will typically be implicitly constructed
simply by passing the pointer to the member function along with a pointer to the instance.

bool unregister pre read callback(const cci_callback untyped handle& cb);

Unregister a pre-read callback, given its registration handle. Returns true if successful. A false return may diagnose
that unregistration was already performed or that the registration was made from a cci_param untyped handle
(although all callback handles have the static type of cci_callback untyped handle it is required that unregistration
is made through the same object as the registration).

bool unregister_all callbacks();

Unregisters all callbacks for all four phases (i.e. pre-read, post-read, pre-write, and post-write) that were registered
directly through this parameter object. Returns true if any callback was unregistered.

5.6.2 cci_param_typed

The concrete instantiable type for all parameters, extending cci_param_untyped with direct access to the parameter
value. An instance is templated by:

o the data type. The data type shall have the following set of features (note that this set is more extensive than
is required for compatibility with cci_value, i.e. it is possible to construct a cci_value object with a value
type that would not permit construction of a cci_param_typed object). Given the value type "vr":

o default constructor: vT () (DefaultConstructible in C++ concept terminology)
O copy constructor: VT (const VT&) (CopyConstructible)

o value type assignment operator: operator=(const VT&) (CopyAssignable)

o value type equality operator: operator==(const VT&) (EqualityComparable)
O cci_value converter<value type> defined

¢ value mutability expressed as cci_param_mutable_type see (5.3.1)

A concise alias of cci_param is provided for the common case of mutable parameters, as seen in these two equivalent
definitions:

cci_param typed<int, CCI_MUTABLE PARAM> pl("pl", 0);

cci_param<int> p2("p2", 0);

The inherited methods are described in the cci_param if interface class and not further detailed here.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 37

SystemC® CCI 1.0 Language Reference Manual June 2018

template<typename T, cci_param mutable type TM = CCI_MUTABLE PARAM>
class cci_param typed : public cci_param untyped
{
public:
typedef T value type;

// Construction
cci_param typed(const std::string& name, const value type& default value,

const std::string& desc = "",

cci name type name type = CCI_RELATIVE NAME,

const cei_originator& originator = ceci_originator());
cci_param typed(const std::string& name, const cci_value& default value,

const std::string& desc = "",

cci name type name type = CCI_RELATIVE NAME,

const cei_originator& originator = ceci_originator());
cci_param typed(const std::string& name, const value type& default value,

cci_broker handle private broker,

const std::string& desc = "",

cci name type name type = CCI_RELATIVE NAME,

const ceci_originators& originator = cci_originator());
cci_param typed(const std::string& name, const cci_value& default value,

cci_broker handle private broker,

const std::string& desc = "",

cci name type name type = CCI_RELATIVE NAME,

const ceci_originators& originator = cci_originator());

// Typed value access

const value type& get value() const;

const value_ type& get value(const cci_originator& originator) const;
operator const value type& () const;

const value type& get default value() const;

void set_value(const value_ type& value);

void set_value(const value_ type& value, const void* pwd);
ccli param typed& operator=(const cci_param typed& rhs);
ccl param typed& operator=(const value typeé& rhs);

bool reset();

// For brevity, only the pre-read callbacks are detailed here
cci_callback untyped handle register pre read callback (
const cci_param pre read callback_untypeds& cb,
cci_untyped tag);

template<typename C>

cci_callback _untyped handle register pre read callback (
cci_param pre read callback untyped::signature(C::*cb), C* obj,
cci_untyped tag);

typedef typename cci_param pre read callback<value type>::type
cci_param pre read callback typed;

cci_callback untyped handle register pre read callback (
const cci_param pre read callback typed& cb,
cci_typed tag<value type> = cci_typed tag<value type>());

template<typename C>
cci_callback untyped handle register pre read callback (
typename cci_param pre read callback_typed::signature(C::*cb),
C* obj, cci_typed tag<value type> = cci_typed tag<value_ type>());

cci param untyped handle create param handle (
const cci_originators& originator) const;

private:
const void* get raw_value(const cci_originator& originator) const;
const void* get raw_default value() const;
void set_raw value(const void* vp, const void* pwd,
const ceci_originatoré& originator);
private:
void preset cci_value(const cci_value& value, const cci_originators& originator) override;

}i

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 38

SystemC® CCI 1.0 Language Reference Manual June 2018

5.6.2.1 value_type
The underlying data type that the cci_param typed instance was instantiated with is aliased as value type.
5.6.2.2 Construction

Four constructors are provided, combining the pairs of (automatic broker, explicit broker) and the default value
expressed as (literal value type, cci_value). The constructor parameters are:

e parameter name — Parameters are indexed by name, which is required to be unique (duplicates are suffixed
with a number to ensure this and a warning report issued).

e default_value — The default value shall be explicitly given rather than taken from value type's implicit
construction, either as the literal value type or a cci_value.

e description — A description of the parameter is encouraged, for example to annotate configuration logs; it
defaults to an empty string.

e name_type — The name type defaults to ccI_RELATIVE NaME, in which case the parameter name is made
absolute (or hierarchical) by prepending it with the name of the enclosing sc_module.

e originator — The origin of the default value and of subsequent assignments (unless those are made with an
explicit originator); by default, an originator representing the current sc_module.

e private_broker — A specific broker to hold the parameter; if unspecified, the result of cci_get_broker (see
5.7.2) is used.

// Default as literal value type, current broker

cci param typed(const std::string& name, const value type& default value,
const std::string& desc = "",
cci name type name type = CCI_RELATIVE NAME,
const ceci_originators& originator = cci_originator());

// Default as cci value, current broker

cci param typed(const std::string& name, const cci_value& default value,
const std::string& desc = "",
cci name type name type = CCI_RELATIVE NAME,
const ceci_originator& originator = ceci_originator());

// Default as literal value type, explicit broker
cci_param typed(const std::string& name, const value type& default value,
cci_broker handle private broker,
const std::string& desc = "",
cci name type name type = CCI_RELATIVE NAME,
const ceci_originators& originator = cci_originator());

// Default as cci value, explicit broker
cci_param typed(const std::string& name, const cci_value& default value,
cci_broker handle private broker,
const std::string& desc = "",
cci name type name type = CCI_RELATIVE NAME,
const ceci_originators& originator = cci_originator());

Parameters shall not be instantiated as C++ global variables. Global parameters are prohibited in order to guarantee
that the global broker can be instantiated prior to the instantiation of any parameters.

5.6.2.3 Typed value access

The parameter value may be read and written directly as the value type.

const value type& get value() const;
operator const value type& () const; // convenience form of get value ()

Provides a typed reference to the current value. Note that the pre-read and post-read callbacks are triggered by the

creation of the reference and not by actually reading the value, in contrast to get_cci_value which takes a copy of
the value.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 39

SystemC® CCI 1.0 Language Reference Manual June 2018

NOTE: To avoid confusion, especially with callbacks, it is preferable to dereference the reference immediately rather than storing
it for later use.

Example:

cci_param<int> p("p", 3);

p.register post_read callback(&log reads);

const int& rp = p; // log shows value 3 was read

p = 4;

int val p = rp; // current value of 4 is really "read"
const value_ type& get default value() const;

Provide a typed reference to the default value.

void set_value(const value_ type& value);
void set value(const value_type& value, const void* pwd);

Pre-write callbacks are run, then the parameter value is copied from the argument, then post-write callbacks are run.
If a lock password (pwd) is given then the parameter value shall both be locked and the lock be with that password or
a CCI_SET_PARAM FAILURE error report will be issued.

bool reset();
Fulfills the description in cci_param if (see 5.4.2.1).
5.6.2.4 Raw value access

Direct untyped access to the parameter value storage is provided for the cci_typed handle implementation;
consequently these methods shall be private and accessed through friend-ship with the handle classes.

const void* get raw_value(const cci_originator& originator) const override;

As with cci_value and value_type value queries, pre-read and post-read callbacks are executed before the pointer is
returned.

const void* get raw_default value() const override;
Direct untyped access to the default value.

void set raw value(const void* vp, const void* pwd, const cci_originator& originator) override;

Pre-write callbacks are run, then the parameter value is copied from the vp argument, then post-write callbacks are
run. The value origin is updated from the given originator. If the parameter is locked then the correct password shall
be supplied; if the parameter is not locked then the password shall be set to nullptr, Or a CCI_SET PARAM FAILURE
error report will be issued.

5.6.2.5 Assignment operator

cci_param typed& operator=(const value type& rhs);

An instance of the value type can be assigned, as a shorthand for calling set_value (const value type&).

cci_param typed& operator=(const cci_param typed& rhs);

This parameter value is set to a copy of the given parameter's value. Incompatible value types may cause a
compilation error or be reported as a CCI_VALUE FAILURE.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 40

SystemC® CCI 1.0 Language Reference Manual June 2018

5.6.2.6 Callbacks

The callback support of cci_param untyped is extended with #yped callbacks, which provide direct value type
access to the current and new parameter values. The semantics are further described in the cci_param if (see
5.4.2.8).

Untyped callbacks shall be registered through the cci_param_typed interface by explicitly tagging them as untyped:

void untyped pre read callback(const cci_param read event<void>& ev) {
const ceci_value& val = ev.value;

}

cci_param typed<int> p("p", 1);
p.register pre read callback(&untyped pre read callback, cci_untyped tag());

Typed callbacks are implicitly tagged:

void typed pre read callback(const cci param read event<int>& ev) {
const inté& val = ev.value;

}

cci param typed<int> p("p", 1);
p.register pre read callback(&typed pre read_callback);

The sixteen callback registration functions are then composed simply from: four access phases (pre-read, post-read,
pre-write, and post-write), two function types (global, member), and two kinds of value access (untyped via
cci_value, fyped as value type).

5.6.3 cci_param_untyped_handle

Parameter handles function as proxies for the parameter instances, providing most of the cci_param_untyped
functionality (functionality such as resetting the value, setting the description, and setting metadata is not present, as
these are reserved for the parameter owner). They provide a means of reducing coupling in the model to the parameter
name (and potentially value type).

The underlying parameter instance can be destroyed while handles remain, however this immediately invalidates the
handles with the following effects:

® is validreturns false.

e Calling any delegating method results in an error report.

Once a handle has become invalid it remains forever invalid, even if a parameter of that name is recreated;
conceptually the handle was created from a specific parameter instance, not for a parameter name (which may be
valid at some times and not at other times).

Example:

auto p = new cci_param<int>("p", 5);

auto hl = cci_get_broker () .get_param handle("testmod.p");

sc_assert(hl.is wvalid());

delete p;

sc_assert('hl.is wvalid());

p = new cci_param<int>("p", 10);

auto h2 = cci_get_broker () .get_param handle("testmod.p");

sc_assert(h2.is_valid()); // newly obtained handle functional

sc_assert(!hl.is wvalid()); // original handle for same name still invalid

5.6.3.1 Class overview
Handles are created with a specific originator, which is used in cases where the cci_param untyped interface allows
the originator to be specified. For example, setting the parameter’s value via a handle records the originator as the

value’s origin:

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 41

SystemC® CCI 1.0 Language Reference Manual

auto ph = param.create param handle(orig);
ph.set cci_value(vall);
ph.set cci_value(val2);

where through the parameter interface the originator would be specified upon each setting:

param.set_cci_value(vall, orig);
param.set cci_value(val2, orig);

Handles have no inherent collation properties and no comparisons are defined.

class cci_param untyped handle
{
public:

// Constructors

cci param untyped handle(cci_ param if& param, const cci_originators& originator);
explicit cci_param untyped handle(const cci_originators& originator
cci_param untyped handle(const cci_param untyped handle& param handle);
cci_param untyped handle(cci_param untyped handle&s& that);

~cci_param untyped handle () ;

// Assignment

cci_param untyped handle& operator=(const cci_param untyped handle& param handle);
cci param untyped handle& operator=(cci_param untyped handless& that);

// Handle validity
bool is walid() const;
void invalidate () ;

cci_originator get originator () const;

// Delegated functions

cci_param data category get data category() const;

const char* name () const;
cci param mutable type get mutable type() const;

std::string get description() const;
cci_value map get metadata() const;

cci_value get cci_value () const;
void set_cci_value(const cci_values& val);

void set_cci_value(const cci_value& val, void* pwd);

cci_value get default cci_value() const;
bool lock(const void* pwd = nullptr);
bool unlock(const void* pwd = nullptr);
bool is locked () const;

bool is default value () const;
bool is preset value() const;

cci_originator get value origin() const;

// For brevity only pre-read callbacks are shown

cci originator ()

cci_callback _untyped handle register pre read callback (

const cci_param pre read callback untypedé&, cci_untyped tag);
cci_callback untyped handle register pre read callback (

const ceci_callback untyped handle&, cci_typed tag<void>);
bool unregister pre read callback(const cci_callback untyped handles&) ;

bool unregister all callbacks();
bool has_callbacks () const;

protected:

// Raw value access provided for derived typed value accessors; no direct access

const void* get raw_value () const;
const void* get raw_default value() const;
void set_raw value(const void* vp);

void set_raw value(const void* vp, const void* pwd);

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

June 2018

)i

42

SystemC® CCI 1.0 Language Reference Manual June 2018

5.6.3.2 Construction

explicit cci_param untyped handle(const cci_originators& originator = cci_originator());

Create an explicitly uninitialized handle, i.e. where is_valid == false.

cci_param untyped handle(cci_param if& param, const cci_originator& originator);

Create a handle for the given parameter.

cci_param untyped handle(const cci_param untyped handle& param handle);

Copy constructor; duplicates the given source handle, after which both the original and new handles have the same

validity and originators but different identities (i.e. if valid then both are registered with the parameter and would be
separately invalidated if the parameter predeceases them).

cci_param untyped handle(cci_param untyped handle&& that);
Move constructor; duplicate the original handle, after which the original handle is invalidated.

5.6.3.3 Destruction

~cci_param untyped handle () ;

Invalidates the handle (if valid), thereby unregistering it from the parameter as detailed for ~cci_param if (see
5.4.2.10).

5.6.3.4 Assignment

cci_param untyped handle& operator=(const cci_param untyped handle& param handle) ;
cci_param untyped handle& operator=(cci_param untyped handles&s& that);

Assignment to a parameter handle consists of:

e Ifvalid, the existing destination handle is first invalidated meaning that it no longer refers to a parameter.

o The destination handle’s parameter association is set to match that of the source handle, which consequently
means they also have matching validity.

The handle’s originator is not affected by assignment.
5.6.3.5 Handle validity

A handle constructed against a parameter begins its life as a valid handle for that parameter and remains valid until
one of?

e destruction of the parameter
e explicit invalidation of the handle by invalidate

e move construction or assignment from the handle

Once invalidated a sandle remains invalid unless used as the destination for assignment from a valid handle.

bool is valid() const;

Returns true if the handle is valid.

void invalidate () ;

Invalidates the handle: is valid returns false and the object is no longer registered with the parameter.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 43

SystemC® CCI 1.0 Language Reference Manual June 2018

5.6.3.6 Delegated functions

With the exception of get originator, the remainder of the class delegates predictably to the equivalent
cci_param_untyped functionality with this pattern:

e Ifthe handle is invalid then:
o Report a bad handle error through cci_report_handler see (5.8).

o If the error report is not thrown as an exception (the SystemC default behavior but controllable
through sc_report handler::set actions) then calls cci_abort to halt the simulation.

e Calls the matching cci_param_untyped member function of the parameter instance the handle represents,
using the handle's originator where an explicit originator is catered for: get_cci_value, set_cci_value,
callback registration and unregistration.

The exception to this pattern is get_originator, which returns the originator for the handle rather than that of the
parameter.

Example:

sc_assert(! (origh == origI));

cci_param<int> gp("g", 1, "q description", CCI_RELATIVE NAME, origD);
cci_param untyped handle gh = gp.create param handle(origI);
sc_assert(gp.get originator() == origD);

sc_assert (gh.get_originator () == origl);

5.6.4 cci_param_typed_handle

Typed handles extend cci_param untyped handle with type-safe assignment and callbacks.

template<typename T>
class cci_param typed handle : public cci_param untyped handle
{
public:
/// The parameter's value type.
typedef T value type;

// Constructors

explicit cci_param typed handle(cci_param untyped handle untyped);
cci_param typed handle(const cci_param typed handles) = default;
cci_param typed handle(cci_param typed handle&s that);

// Assignment
cci param typed handles operator=(const cci_param typed handles&) = default;
cci_param typed handle& operator=(cci_param typed handle&& that)

// Typed value access
const value type& operator* () const;
const value type& get value() const;

void set_value(const value_ type& value);
void set wvalue(const value typeé& value, const void* pwd);

const value_ type& get default value() const;

// For brevity only pre-read callbacks are shown
cci_callback untyped handle register pre read callback (
const cci_param pre read callback_untypeds& cb,
cci_untyped tag);
template<typename C>
cci_callback untyped handle register pre read callback (
cci_param pre read callback untyped::signature(C::*cb), C* obj,
cci_untyped tag);

typedef typename cci_param pre read callback<value type>::type
cci_param pre read callback typed;

cci_callback untyped handle register pre read callback(

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 44

SystemC® CCI 1.0 Language Reference Manual June 2018

const cci_param pre read callback_ typeds& cb,
cci_typed tag<value type> = cci_typed tag<value type>());
template<typename C>
cci_callback _untyped handle register pre read callback (
typename cci_param pre read callback typed::signature(C::*cb),
C* obj, cci_typed tag<value type> = cci_typed tag<value type>())
bi

5.6.4.1 Construction

explicit cci_param typed handle(cci_param untyped handle untyped);

Constructs the typed handle from an untyped handle, immediately invalidating it if the typeid of the value_type of
the #yped handle doesn't match the typeid of the value type of the actual cci_param_typed.

Example:

cci_param typed handle<int> hTest(cci_get broker () .get param handle ("global.test"));
if (!hTest.is_valid()) { /* param missing or wrong type */ }

cci_param typed handle(const cci_param typed handles);

Copy constructor; duplicates the given source handle, after which both the original and new handles have the same
validity and originators but different identities (i.e. if valid then both are registered with the parameter and would be
separately invalidated if the parameter predeceases them).

cci_param typed handle(cci_param typed handle&s that);
Move constructor; duplicate the original handle, after which the original handle is invalidated.

5.6.4.2 Assignment

cci param typed handles& operator=(const cci_param typed handles&);
cci_param typed handle& operator=(cci_param typed handle&s& that);

Both copy and move assignment replace the referenced parameter, with the same semantics as
cci_param untyped handle (see 5.6.3.4).

5.6.4.3 Typed value access

The parameter value may be read and written directly as the value type. The semantics described for
cci_param_typed value access in 5.6.2 apply here too.

const value type& get value() const;
const value type& operator* () const; // convenience form of get value ()

void set walue(const value typeé& value);
void set wvalue(const value typeé& value, const void* pwd);

const value_ type& get default value() const;

5.6.4.4 Callbacks

Registration functions for callbacks providing value type access to the parameter.

cci_param_read_event objects provide the context for pre-read and post-read callback invocations, carrying a handle

to the parameter, its current value, and the originator that the callback function was registered with. The class is
templated by the parameter value type, with the specialization for void providing the value as cci_value:

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 45

SystemC® CCI 1.0 Language Reference Manual June 2018

template<>
struct cci_param read event<void>

{
typedef cci_param read event type;
typedef cci_value value type;

const value type& value;

const ceci_originators& originator;

const cci_param untyped handle& param handle;
bi

template<typename T>
struct cci_param read event

{
typedef cci_ param read event type;
typedef T value type;

const value type& value;

const ceci_originatoré& originator;

const cci_param untyped handle& param handle;
}i

The presence of the parameter's value type in the callback signature mirrors the parameter hierarchy, with callbacks
registered through the cci_param untyped class requiring the untyped cci_param read event<void> and those
registered through cci_param_typed<T> requiring cci_param read event<T>. When working with a concrete
parameter object it may prove advantageous to use untyped callbacks where the actual value is irrelevant or can be
masked through ceci_value access. For example a generic parameter access logger may have the signature:

void log_parameter read(cci_param read event<void>& ev);
and so be able to be registered against cci_param<int>, cci_param<std::string>, etc.
5.6.5 cci_param_write_event

Write event objects provide the context for pre-write and post-write callback invocations, carrying a handle to the
parameter, its current value, and the originator that the callback function was registered with.

The class is templated by the parameter value type, with the specialization for void providing the value as cci_value:

template<>
struct cci_param write_ event<void>
{
typedef cci_param read event type;
typedef cci_wvalue value type;

const value type& old value;

const value type& new value;

const ceci_originatoré& originator;

const cci_param untyped handle& param handle;
}i

template<typename T>
struct cci_param write event

{
typedef cci_param read event type;
typedef T value type;

const value type& old value;

const value type& new value;

const ceci_originatoré& originator;

const cci_param untyped handle& param handle;
}i

The presence of the parameter's value type in the callback signature mirrors the parameter hierarchy, with callbacks
registered through the cci_param untyped class requiring the untyped cci_param write event<void> and those
registered through cci_param typed<T> requiring cci_param write event<T>. When working with a concrete
parameter object it may prove advantageous to use untyped callbacks where the actual value is irrelevant or can be
masked through cci_value access. For example a generic pre-write validator for positive numbers might be written:

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 46

SystemC® CCI 1.0 Language Reference Manual June 2018

bool validate positive number (cci_param read event<void>& ev)
{
return ev.new value.is double() && ev.new value.get double() >= 0 ||
ev.new value.is_int64 () && ev.new value.get int64() >= 0 ||
ev.new value.is_uint64 () ;

and so be able to be registered as a pre_write callback against cci_param<int>, cci_param<short>, etc.
5.7 Brokers

e All brokers implement the cci_broker if interface. An application shall access brokers via a
cci_broker handle.

o A broker aggregates parameters defined in the same sc_object level and from child objects. For example if
a module registers a broker then the module's parameters and those belonging to submodules will by default
be added to that broker. Such brokers are referred to as "local brokers" since the parameters they hold are
kept local to that module, rather than being generally enumerable.

e Above the sc module hierarchy is the global broker, which aggregates all parameters for which no local
broker is located. The global broker shall be registered before any parameters or local brokers.

e The automatic broker is located by walking up the sc_object hierarchy until meeting either a local broker
registered for that object or the global broker. Only one broker shall be registered for each object; similarly
a single global broker exists. Attempting to register additional brokers reports an error.

e The parent of a broker is the next registered broker up the sc_object hierarchy. Only the global broker has
no parent.

e Two reference broker implementations are provided: cci_utils::broker which supports selectively
delegating parameters to a parent broker and cci_utils: :consuming_ broker which lacks this delegation
ability. A module may use such delegation to expose some public parameters beyond its local broker.

5.7.1 cci_broker_handle

A broker handle acts as a proxy to a broker implementation, delegating the functionality. Note that where the delegated
broker function takes an originator parameter, it is omitted in the handle interface since the handle was constructed
with the originator.

Unlike the relationship between parameters and parameter handles, the relationship between broker objects and
cci_broker_handles is not managed. When a broker object is destroyed all handles to it are left dangling, without
any way for the handle users to test their validity.

class cci_broker handle
{
public:
// Constructors
cci_broker handle(cci_broker if& broker, const ceci_originatoré& originator);
cci_broker handle(const cci_broker handles) = default;
cci_broker handle(cci_broker handless& that);

~cci_broker handle() = default;

// Assignment & comparison

cci_broker handle& operator=(const cci_broker handles);
cci_broker handle& operator=(cci_broker handle&s that);
bool operator==(const cci_ broker if* b) const;

bool operator!=(const cci broker if* b) const;

// Originator
cci_originator get originator () const;

// Delegated functions

cci_broker handle create_broker handle(const cci_originator& originator = cci_originator ()

const char* name () const;

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 47

SystemC® CCI 1.0 Language Reference Manual

void set_preset_cci_value(const std::string& parname, const cci_value& cci_value);

cci_value get preset cci_value(const std::stringé& parname) const;
virtual cci_originator get preset wvalue origin(
const std::string& parname) const = 0;

std::vector<cci_name value pair> get unconsumed preset values() const;
bool has preset value(const std::stringé& parname) const;
cci_preset_value range get unconsumed preset_ values (
const cci_preset value predicate& pred) const;
void ignore unconsumed preset values(const cci preset value predicate& pred);

cci_originator get_value_origin(const std::stringé& parname) const;

void lock_preset value(const std::stringé& parname);
cci_value get cci value(const std::stringé& parname) const;

void add param(cci_param if* par);
void remove param(cci_param if* par);

std::vector <cci_param untyped handle> get param handles() const;
cci_param range get param handles(cci_param predicate& pred) const;
cci_param untyped handle get param handle(const std::string& parname) const;

template<class T>
cci_param typed handle<T> get param handle(const std::stringé& parname) const;

cci param create callback handle register create callback (

const cci_param create callback& cb);
bool unregister create_callback(const cci_param create_callback handles cb);
cci_param destroy callback handle register destroy callback (

const cci_param destroy callback& cb);
bool unregister destroy callback(const cci_param destroy callback handle& cb);
bool unregister_ all callbacks();
bool has_callbacks () const;

bool is global broker () const;
}i

5.7.1.1 Construction
Construction requires either the pairing of the broker interface and the originator for the handle:
cci_broker handle(cci_broker if& broker, const cci_originator& originator);

or an existing handle to copy or move these attributes from:

cci_broker handle(const cci_broker handles&) = default;
cci_broker handle(cci_broker handles&s& that);

5.7.1.2 Assignment

cci_broker handle& operator=(const cci_broker handles);
cci_broker handle& operator=(cci_broker handle&& that);

June 2018

The destination handle’s broker association is set to match that of the source handle. The handle’s originator is not

affected by assignment.

5.7.1.3 Comparison

bool operator==(const cci_broker if* b) const;
bool operator!=(const cci_broker if* b) const;

Equality and inequality tests of whether this broker handle is for the given broker implementation. Handle originators

are insignificant for this comparison.

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

48

SystemC® CCI 1.0 Language Reference Manual June 2018

5.7.1.4 Originator

The handle consists of the pairing (cci_broker_if, cci_originator), where the originator identifies the handle to
delegated functions such as set_preset_cci_value. This originator is accessible through:

cci_originator get originator () const;
5.7.1.5 Delegated functions

The remainder of the class delegates predictably to the equivalent cci_broker_if functionality, supplying the handle's
originator where a cci_originator is required.

5.7.2 cci_broker_manager

The mapping between sc_objects and cci_broker_if implementations is maintained by the broker manager, which
provides an interface for registering new brokers and retrieving the responsible broker for the current object. The
broker manager is implemented as a private class, exposing the functionality through global (non-member) functions.

cci_broker handle cci_get broker();

Finds the broker responsible for the current sc_object and returns a handle for it, using the sc_object also as the
originator object. If there is no current sc_object, for example before the simulation starts and outside the
construction of modules, then an error is reported. Note that the broker located may in fact be the global broker.

cci_broker handle cci_get global broker(const cci_originators& originator);

Returns a handle for the global broker. An error is reported if no global broker has been registered, or if the function
is called with a current sc_object, for example during module construction or after sc_start.

cci_broker handle cci_register broker (cci_broker if& broker)
cci_broker handle cci_register broker(cci_broker if* broker)

Register the given broker as being responsible for the current sc_object, including all sub-objects lacking a specific
broker of their own. In the absence of a current sc_object the broker is registered as the global broker. If a broker
has already been registered for the sc_object then that existing registration is left unchanged and an error is reported.

Constructing parameters prior to registering a broker is permitted in which case they will be registered with the
parent’s broker.

5.7.3 Reference brokers

cci_utils: :broker provides the ability to selectively delegate parameters to a parent broker, by adding their name
to a set of parameter names to be "exposed".

class broker : public consuming broker
{
public:
std::set<std::string> expose;
//
bi

The following example shows a test module using a local cci_utils: :broker to keep one parameter private and
make another public, the success of which is demonstrated by testing for their existence through the global broker.

Example:

SC_MODULE (testMod)
{
private:
cci_utils: :broker locBroker;
cci_param<int>* p private;

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 49

SystemC® CCI 1.0 Language Reference Manual June 2018

cci_param<int>* p public;
public:
SC_CTOR(testMod)
locBroker ("locBroker")
{
cci_register broker(locBroker);
locBroker.expose.insert ("testMod.p public");

p_private = new cci_param<int>("p_private", 1);
p_public = new cci_param<int>("p_public", 2);
sc_assert (!locBroker.param exists("p glob")); // can't see into parental broker

sc_assert(locBroker.param exists("testMod.p_public"));
sc_assert (locBroker.param exists("testMod.p_private"));
}

bi

int sc_main(int argc, char* argv[])
{
cci::cci_register broker (new cci_utils::consuming broker ("Global Broker"));
cci param<int> p glob("p_glob", 3, "Global param", CCI_RELATIVE NAME,
cci_originator ("glob"));
testMod tm("testMod");
cci_broker handle gBrok(cci_get global broker (cci_originator ("glob")));
sc_assert (gBrok.param exists("p glob"));
sc_assert (gBrok.param exists("testMod.p public"));
sc_assert(!gBrok.param exists("testMod.p private")); // can only see explicity exposed param

}

Note that a cci_utils: :consuming_broker was used for the global broker since there is no possibility of delegating
the parameter handling beyond it (although in fact a cci_utils: :broker would function correctly in its place).

5.8 Error reporting

Where an application action is a definitive error, such as attempting to get a value as an incorrect type, an error
diagnostic is issued through an extension of the customary SystemC sc_report handler::report mechanism with
severity sc_ERrROR. The tacit expectation is that the default sc_tHrow handling for sc_ERROR is in effect. If the
environment has been configured to not throw error reports then an implementation should remain functional if
possible or call cci_abort otherwise. "Functional" means preserving class invariants and not deceiving the application
user (e.g. as would be the case when returning the integer zero from an attempted get_int upon a string value).

An application that wishes to handle thrown CCI error diagnostics should catch (sc_core::sc_reports) exceptions
(or simply all exceptions) and use cci_handle exception to decode the current sc report::get msg type as the
cci_param failure €num.

enum cci_param failure
{

CCI_NOT FAILURE = 0, // i.e. not a CCI-failure; some other diagnostic
CCI_SET PARAM FAILURE,
CCI_GET PARAM FAILURE,
CCI_ADD PARAM FAILURE,
CCI_REMOVE PARAM FAILURE,
CCI_VALUE FAILURE,
CCI_UNDEFINED FAILURE,

CCI_ANY FAILURE = CCI_UNDEFINED FAILURE
}i

The cci_report_handler class provides functions both for emitting CCI-specific sc_ErRror diagnostics and decoding
a sc_report as @ cci_param failure.

class cci_report handler : public sc core::sc _report handler
{
public:
static void report(sc core::sc severity severity
, const char* msg_type, const char* msg
, const char* file, int line);

//functions that throw a report for each cci param failure type

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 50

SystemC® CCI 1.0 Language Reference Manual June 2018

static void set param failed(const char* msg="", const char* file=nullptr, int line = 0);
static void get param failed(const char* msg="", const char* file=nullptr, int line = 0);
static void add param failed(const char* msg="", const char* file=nullptr, int line = 0);
static void remove param failed(const char* msg="", const char* file=nullptr, int line = 0);
static void cci_value failure(const char* msg="", const char* file=nullptr, int line = 0);

// Function to return cci param failure that matches thrown (or cached) report
static cci_param failure decode param failure(const sc_core::sc_reporté& rpt);

bi

cci_param failure cci_handle exception(cci_param failure expect = CCI_ANY FAILURE);

This function shall only be called with an exception in flight, i.e. from an exception handler. If the exception is both
a CCI error diagnostic and once decoded as a cci_param_failure matches the given expected failure type then it is
returned, otherwise the exception is re-thrown. Example handling where a pre-write callback may reject an update.

Example:
try {

param = updatedValue;
} catch(..) {

cci_handle exception(CCI_SET PARAM FAILURE) ;
gracefully handle update failure();

cci_abort();

If an application determines that for CCl-related reasons (such as unrecoverable misconfiguration) the simulation
shall be halted immediately it should call cci_abort, which may emit a suitable diagnostic before terminating via
std::terminate OI sc_core: :sc_sbort where available. It is usually appropriate to first issue an error report, both
to better explain the violation and to allow the problem to be handled at a higher structural level once the exception
has provoked suitable cleanup, e.g. abandoning the construction of an optional sub-module.

Example:

if (!param.get cci_value() .try get(limit depth)) {
cci_report handler::get param failed("Missing FooModule configuration");
// Simulation configured with SC_THROW disabled, so object remains alive but unviable
cci_abort();

}

Note in this example that cci_abort is used to ensure a graceful exit when the exception has been suppressed via
sc_report_handler and the simulation cannot advance successfully.

5.9 Name support functions

Both parameters and brokers are required to have unique names relative to each other; this extends to include all
named SystemC objects for SystemC version 2.3.2 and later by using sc_core::sc_register hierarchical name.
In the event of a duplicate, the given name is made unique by suffixing with a sequence number and a warning report
is issued (important, since the simulation may now malfunction if the name is relied upon to find or distinguish the
entity). Although this avoidance of duplicates is internal to the construction of parameters and brokers the underlying
tools are exposed for application use.

const char* cci_gen_unique_name (const char* name);
Ensures that the given name is unique by testing it against the existing name registry and if necessary suffixing it with

a sequence number, of format " »" where n is an integer ascending from zero and counting duplicates of that specific
name. The return value is a pointer to an internal string buffer from which the name sha/l be immediately copied.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 51

SystemC® CCI 1.0 Language Reference Manual June 2018

This has the explicit effect of registering the name. A name can be tested for its registration status, and if registered
may be unregistered.

const char* cci_get_name(const char* name);

Verify that a name has been registered. If the given name is registered then returns it unmodified, otherwise returns
nullptr.

bool cci_unregister name(const char* name);

If the given name is registered then removes it from the registry and returns true, otherwise simply returns false.
The caller should be the owner of a name; unregistering names belonging to other entities may result in undefined
behavior.

5.10 Version information

The header file cci_configuration shall include a set of macros, constants, and functions that provide
information concerning the version number of the CCI software distribution. Applications may use
these macros and constants.

// For example, 20180613

#define cCI_SHORT RELEASE DATE implementation-defined date

/] “Accellera”

#define cCI_VERSION_ORIGINATOR

implementation-defined_string

#define ccI_VERSION MAJOR implementation-defined_number // 1
#define ccI_VERSION_MINOR implementation-defined_number // 0
#define ccI_VERSION_PATCH implementation-defined_number // 0
#define ccI_IS_PRERELEASE implementation-defined _bool /10

#define cc1_VERSION implementation-defined string /1 “1.0.0-Accellera”

The macros will be defined using the following rules:

a) Each implementation-defined number shall consist of a sequence of decimal digits from the character set
[0-9] not enclosed in quotation marks.

b) The originator and pre-release strings shall each consist of a sequence of characters from the character set
[A-Z][a—z][0-9] enclosed in quotation marks.

¢) The version release date shall consist of an ISO 8601 basic format calendar date of the form YYYYMMDD,
where each of the eight characters is a decimal digit, enclosed in quotation marks.

d) The cci_1s PrRERELEASE flag shall be either O or 1, not enclosed in quotation marks.

e) The cci_vERSION string shall be set to the value "major.minor.patch_prerelease-originator" or
"major.minor.patch-originator", where major, minor, patch, prerelease, and originator are the values of the

corresponding strings (without enclosing quotation marks), and the presence or absence of the prerelease
string shall depend on the value of the cc1_1s_ PRERELEASE flag.

f) Each constant shall be initialized with the value defined by the macro of the corresponding name converted
to the appropriate data type.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 52

SystemC® CCI 1.0 Language Reference Manual June 2018

Annex A Introduction to SystemC Configuration

(Informative)

This clause is informative and is intended to aid the reader in the understanding of the structure and intent of the
SystemC Configuration standard. The SystemC Configuration API is entirely within namespace cci. Code fragments
illustrating this document have an implicit using namespace cci for brevity.

A.1 Sample code

A.1.1 Basic parameter use

Defining a parameter and treating it like a variable:

cci_param<int> p("param", 17, "Demonstration parameter");
p=p+ 1;
sc_assert(p == 18);

A.1.2 Parameter handles

Retrieving a parameter by name and safely using the handle:

cci_broker handle broker (cci_get broker());

auto p = new cci_param<int>("p", 17);

string name = p->name () ;

// Getting handle as wrong type fails
cci_param typed handle<double> hBad = broker.get param handle (name) ;
sc_assert(!'hBad.is_valid());

// Getting handle as right type succeeds
cci_param typed handle<int> hGood = broker.get param handle (name) ;
sc_assert(hGood.is_valid());

// Operations upon handle affect original parameter

hGood = 9;

sc_assert (*p == 9);

// Destroying parameter invalidates handle

delete p;

sc_assert(!hGood.is_vwvalid());

A.1.3 Enumerating parameters

Listing all parameter names and values registered with the automatic broker:

auto broker (cci_get broker());
for(auto p : broker.get param handles()) {
std::cout << p.name() << "=" << p.get cci_value() << std::endl;

}
A.1.4 Preset and default parameter values

Setting a preset value through the broker overrides the default value provided as a constructor argument:

auto broker (cci_get broker());

broker.set_preset_cci_value ("module.sip", cci::cci_value(7));
auto sip = cci_param<int>("sip", 42);

sc_assert(sip == 7);

sc_assert(sip.is_preset_value() && !sip.is_default_value());

A.1.5 Linking parameters with callbacks

Uses a callback function to set parameter “triple” to three times the value of some other modified parameter:

void set_triple_callback(const cci_param write_ event<int>& ev) {
auto broker (cci_get broker());

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 53

SystemC® CCI 1.0 Language Reference Manual June 2018

cci_param_ typed handle<double> h = broker.get param handle ("m.triple");
h = 3 * cci_param typed handle<int>(ev.param_handle) ;
}

void test () {
cci_param<int> p("p", 0);
cci_param<double> triple("triple", 0);
p.register post_write_callback (set_ triple_ callback) ;
p=7;
sc_assert (triple == 21);

A.2 Interface classes

The interface classes are described in detail in the main document body; what follows here is a description of the
relationships of some major classes, providing a conceptual model for locating functionality.

A.2.1 cci_value
Variant data types are provided by the cci_value hierarchy (depicted in Figure 2). The encapsulated type may be:

e one of the directly supported standard data types: bool, int, unsigned int, sc_dt::int64, sc_dt::uint64,
double, OI std::string

e a user-defined type such as a struct, where an application provides the definition for the converter
cci_value converter< type >

e alist of cci_value objects (cci_value list)

e astring-keyed map of cci_value objects (cci_value_map)

Accessors such as get_int64 retrieve the value, verifying that the type matches or trivially coerces to the accessor
type. For example:

cci_value vi(-7);

auto 132 = vi.get_int(); // succeeds
auto i64 = vi.get_inté4(); // succeeds
auto d = vi.get_double () ; // succeeds
auto u64 = vi.get_uint64(); // reports CCI_VALUE FAILURE error

Standard and user-defined types are set by initialization (initially through the constructor, subsequently through a
setter function). set_list and set map return adapter objects (cci_value::list reference and
cci_value: :map_reference respectively) providing appropriate container methods:

cci_value val;

cci_value::map reference vm(val.set map());
vm.push_entry("width", 7.3);

vm.push entry("label", “Stride”);
optionClass defaultOptions;

vm.push entry("options", defaultOptions);

Containers can be nested:

cci_value map options;
cci_value list enabledBits;

enabledBits.push back(0) .push back(3); // b01001
options.push entry(“widgetO flags”, enabledBits);
enabledBits.pop back(); // 00001
enabledBits.push back(4) ; // 10001

options.push entry(“widgetl flags”, enabledBits);

To make the interfaces more granular each of the cci_value sub-hierarchies has cref classes with accessor methods
and ref classes with modifier methods.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 54

SystemC® CCI 1.0 Language Reference Manual June 2018

cci_value_cref

is_type()
get_type() , _
get_map() get list() get_string()

cci_value_map_cref| cci_value_list_cref cci_value_string_cref

begin() const front() const c_str()

operator[]() const operatorf[]() const length()

set list() ‘ T
cci_value_ref @ cci_value_map_ref cci_valué_list_ref cci_value_string_ref
\
set_type() a% begin() insert() operator=()
operator=() < push_entry() erase() swap()
T T T set_string()
cci_value cci_value_map cci_value_list
from_json() operator=() operator=()
swap() swap() swap()

Figure 2 - cci_value hierarchy
A.2.2 cci_param

Parameter functionality is implemented by the small hierarchy shown in Figure 3. The final class, cci_param_typed,
is parameterized by both data type T and mutability T (with mutability defaulted to mutable) and is instantiated with
both a name and a default value to create the parameter and add it to a broker:

e The final parameter name may include the hosting object name and a suffix to make it unique.
e Ifno broker is specified then the broker associated with the current context is used.

e A description and originator may optionally be given.

cci_param_if

set_cci_value()
is_default_value()

|

cci_param_untyped

has_callbacks()
register_pre_write_callback()

cci_param_typed<T, TM>

operator=()
get_type_info()

Figure 3 - cci_param hierarchy

The base class cci_param untyped and the interface class cci_param if provide most of the functionality free of
concrete type and so are suitable for library interfaces.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 55

SystemC® CCI 1.0 Language Reference Manual June 2018

For brevity cci_param<T, TM> is an alias for cci_param_typed<T, TM>, as seen in the above code samples.
A.2.3 cci_param_handle

Parameter handles provide a safe reference to parameters: safety is ensured by asserting the validity of the handle
upon all operations and invalidating handles when their parameter is destroyed. Using an invalid sandle results in an
SC_ERROR report. As with parameters both untyped and typed handles exist: untyped handles are returned from
parameter lookups and callbacks and typed handles provide direct access to the typed parameter value and are safely
constructible from the untyped handle:

cci_param typed handle<int> val (broker.get param handle ("mode")) ;
if (val != DEFAULT MODE) { ... }

cci_param_untyped_handle

set_cci_value()
register_pre_write_callback()

cci_param_typed_handle<T>

get_value()
operator=()

Figure 4 - cci_param_handle hierarchy
For convenience cci _param handle is an aliased for cci _param untyped handle.
A.3 Error reporting
Errors are reported through the sc_report handler::report mechanism with severity sc_ERROR and the message

type prefixed with cc1 sc REPORT MsG TYPE PREFIX _ (currently "/Accellera/CCI/"). A convenience function
cci_report_handler::get_param failure decodes common CCI error messages as the cci_param_failure enum.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 56

SystemC® CCI 1.0 Language Reference Manual June 2018

Annex B Glossary
(Informative)

This glossary contains brief, informal descriptions for a number of terms and phrases used in this standard. Where
appropriate, the complete, formal definition of each term or phrase is given in the main body of the standard. Each
glossary entry contains either the clause number of the definition in the main body of the standard.

automatic broker: The broker that has responsibility for the current module hierarchy, obtained by calling
cci_get_broker. This will be the broker registered at, or most closely above, the current module hierarchy and will
be the global broker in the event that no local brokers have been registered. Parameters are registered with the
automatic broker at the time of their creation, unless explicitly overridden. The automatic broker is sometimes referred
to as the “responsible” broker. (See 5.6.2.2)

broker: An object that aggregates parameters, providing container behaviors such as finding and enumerating, as
well as managing preset values for parameters. A global broker is requisite; additional local brokers may be
instantiated, e.g. to confine parameters to a sub-assembly. (See 5.7)

broker handle: An object that acts as a proxy to a broker implementation while relaying an originator representing
the handle owner. (See 5.7.1)

broker manager: A private singleton class accessed via global functions to register brokers, using
cci_register_broker, and retrieve the currently responsible broker, using cci_get_broker. (See 5.7.2)

callback: A function registered to be invoked when a particular action happens. Both brokers and parameters support
callbacks to enable custom processing of actions of interest, such as the creation of a new parameter or accessing a
parameter value. (See 5.4.3.6 for broker callbacks and 5.4.2.8 for parameter callbacks)

callback handle: An object that is returned from successfully registering a callback function; it is used as an identifier
to subsequently unregister that callback function. (See 5.4.2.8)

global broker: This broker must be registered before any parameters are constructed and it has responsibility (1)
outside of the module hierarchy and (2) for all module hierarchies that have no registered local broker. A global
broker handle is obtained outside the module hierarchy by calling cci_get global_broker within the module
hierarchy, it is returned by cci_get broker when appropriate. (See 5.7)

local broker: A broker explicitly registered at a specific level in the module hierarchy, becoming the automatic broker
for that module and submodules below it that don’t register a local broker themselves. (See 5.7)

originator: An object used to identify the source of parameter value and preset value changes. Originators are
embedded within handles allowing source identification to be provided in a largely implicit manner. (See 5.4.1)

parameter: An object representing a named configuration value of a specific compile-time type. Parameters are
typically created within modules from which their name is derived, managed by brokers, and accessed externally via

parameter handles. (See 5.0)

(parameter) default value: The value provided as an argument to the parameter’s constructor. This value is
supplanted by the preset value, when present. (See 5.4.2.3)

parameter handle: An object that acts as a proxy to a parameter while relaying an originator representing the handle
owner. Parameter handles can be either untyped (See 5.6.3) or typed (See 5.6.4).

parameter value: The current value of the parameter, accessible in either an untyped or typed manner. (See 5.4.2.1)
(parameter) value origin: The originator that most recently set the parameter’s value. (See 5.4.2.3)

(parameter) preset value: A value used to initialize the parameter, overriding its default value. Preset values are
supplied to the appropriate broker prior to constructing or resetting the parameter. (See 5.4.3.4).

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 57

SystemC® CCI 1.0 Language Reference Manual June 2018

(parameter) underlying data type: The specific compile-time type supplied as a template instantiation argument in
the parameter’s declaration. Syntactically, this is referenced as the parameter’s value_type. (See 5.6.2.1)

typed (parameter access): Using interfaces based on the parameter’s underlying data type to access a parameter
value. (See 5.6.2)

untyped (parameter access): Using interfaces based on cci_value to access a parameter value. (See 5.6.1)

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 58

SystemC® CCI 1.0 Language Reference Manual June 2018

Annex C SystemC Configuration modeler guidelines

(Informative)

The following guidelines are provided to help ensure proper and most effective use of this standard.
C.1 Declare parameter instances as protected Or private members

Making parameters non-public ensures they are accessed via a handle provided by a broker, adhering to any broker
access policies and properly tracking originator information.

C.2 Initialize broker handles during module elaboration

Broker handles should be obtained, and stored for later use, during elaboration when the well-defined current module
can be used to accurately determine implicit originator information.

C.3 Prefer typed parameter value access over untyped, when possible, for speed

When a parameter’s underlying data type is known, access via the typed handle is preferred over the untyped handle
since it avoids the overhead associated with cci_value conversions.

C.4 Provide parameter descriptions

Providing a description of parameters, which can only be done during parameter construction, is recommended when
the parameter’s purpose and meaning are not entirely clear from the name. Tools can relay descriptions to users to
give insights about parameters.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 59

SystemC® CCI 1.0 Language Reference Manual June 2018

Annex D Enabling user-defined parameter value types
To be able to instantiate a cci_param_typed with some user-defined type "VT", that type must provide these features:

e default constructor: vt () (DefaultConstructible in C++ concept terminology)
e copy constructor: VT (const vTs) (CopyConstructible)

e value type assignment operator: operator=(const vTs&) (CopyAssignable)

o value type equality operator: operator==(const VT&) (EqualityComparable)

[cci_value converter<value type> defined

The following example takes a small class custom_type, the pairing of an integer and string, and enables use such as:

custom type ctl(3, "foo");
cci_param<custom type> pct("pl", ctl);
custom type ct2 = pct;

Emphasized in italics below is the added support code.

class custom type
{
private:
int val ;
string name_;
friend class cci_value converter< custom type >;
public:
custom type ()
val (0) {}
custom type(int val, const char* name)
val (val), name_(name) {}
bool operator==(const custom type& rhs) const

{
return val == rhs.val && name == rhs.name ;
}
bi
template<>
struct cci_value converter< custom type >

{
typedef custom type type;
static bool pack(cci value::reference dst, type consté& src)
{
dst.set map ()
.push entry("val", src.val)
.push entry("name", src.name);
return true;
}
static bool unpack(type& dst, cci value::const reference src)
{
// Highly defensive unpacker; probably could check less
assert(src.is map());
cci_value::const map reference m = src.get map();
return m.has entry("val")
&& m.has entry("name")
&& m.at("val").try get(dst.val)
&& m.at("name").try get(dst.name);
}
}r

There is no explicit stability requirement for the packing and unpacking operations; for example it is not required that:

T x;

cci_value vX(x
T y = vX.get<T>(
sc_assert(x ==

’

’

)
)
y)i

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 60

SystemC® CCI 1.0 Language Reference Manual June 2018

and for some data types such as floating point it may not be practicable, nor desirable to encourage thinking of equality
as a useful concept when comparing types. However in general such behavior may astonish users, so stability may be
a sensible default goal.

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 61

SystemC® CCI 1.0 Language Reference Manual

Index

add_metadata, 16
add_param, 26
add_param_failed, 51
add_param_handle, 20
application, 4

broker, 49

callbacks

broker, 25

parameter, 17
category, 29
CCI_ABSOLUTE_NAME, 11
CCI_ADD_PARAM FAILURE, 50
CCI_ANY_FAILURE, 50
CCI_BOOL_PARAM, 11
CCI_BOOL_VALUE, 26
cci_broker_handle, 47
cci_broker_if, 20
cci_broker_manager, 49
cci_configuration, 10
cci_gen unique_name, 51
cci_get_name, 52
CCI_GET_PARAM_FAILURE, 50
cci_handle exception, 51
CCI_IMMUTABLE PARAM, 10
CCI_INTEGRAL PARAM, 11
CCI_INTEGRAL_VALUE, 26
CCI_LIST_PARAM, 11
CCI_LIST_VALUE, 26
CCI_MUTABLE_PARAM, 10
cci_name_type, 11
CCI_NOT_FAILURE, 50
CCI_NULL_VALUE, 26
cci_originator, 11
CCI_OTHER_MUTABILITY, 10
CCI_OTHER_PARAM, 11
CCI_OTHER_VALUE, 26
cci_param, 37
cci_param_callback if, 13
cci_param_data_category, 11
cci_param_failure, 50
cci_param_if, 13
cci_param_mutable_type, 10
cci_param_typed, 37
cci_param_typed_handle, 44
cci_param_untyped, 36
cci_param_untyped_handle, 41
cci_param_write_event, 46
CCI_REAL PARAM, 11
CCI_REAL_VALUE, 26

CCI_RELATIVE NAME, 11

CCI_REMOVE_PARAM FAILURE, 50

cci_report_handler, 50

CCI_SET PARAM_ FAILURE, 50
CCI_STRING_PARAM, 11
CCI_STRING_VALUE, 26
CCI_UNDEFINED_FAILURE, 50
cci_unregister_name, 52
cci_value, 26

cci_value_category, 26

cci_value failure, 51
CCI_VALUE FAILURE, 50
cci_value_list, 32

cci_value_map, 34
consuming_broker, 49
create_broker handle, 24
create_param_handle, 20

D
decode param_failure, 51

E
empty

cci_value_list, 33

equals, 17

F
from_json, 32

G
get, 31
get_bool, 30

get cci_value, 14
cci_broker if, 22
get data_category, 14
get default cci_value, 14

get default value, 40

get description, 16

get _double, 30

get_int, 30

get_int64, 30

get list, 31

get _map, 31

get metadata, 16

get mutable type, 17

get_number, 30

get object, 12

get originator
cci_param_if, 15
cci_param_untyped_handle, 44

get param_failed, 51

get param_handle, 22

get param_handles, 22

Copyright © 2018 Accellera Systems Initiative. All rights reserved.

June 2018

62

SystemC® CCI 1.0 Language Reference Manual

get_preset_cci_value, 23
get preset value origin, 23
get raw_default value, 15
get raw_value, 15, 40
get_string, 31
get type info, 14
get uint, 30
get_uint64, 30
get_unconsumed preset values, 24
get value, 39
get value origin, 15
cci_broker if, 22
global broker, 47
global variables
parameters (prohibited), 39

H

has_callbacks
cci_broker if, 25
cci_param_if, 20

has_preset_value, 23

ignore_unconsumed preset values, 24

implementation, 4
invalidate, 43
is_bool, 29
is_default_value, 15
is_double, 29
is_global broker, 22
is_int, 29
is_int64, 29
is_list, 30
is_locked, 17
is_map, 30
is_null, 29
is_number, 29
is_preset_value, 15
is_same, 32
is_string, 29
is_uint, 29
is_uint64, 29
is_unknown, 12
is_valid
cci_param_untyped handle, 43

L
local brokers, 47
lock, 17
lock preset_value, 23

M
move, 29

N
name

cci_broker if, 22

June 2018

cci_orginator, 12
cci_param _if, 16

operator<
cci_originator, 13
operator=
cci_originator, 12
cci_param_typed, 40
cci_param_typed_handle, 45
cci_param_untyped handle, 43
operator==
cci_originator, 13

R

register_create_callback, 25
register_destroy_callback, 25
register_post_read_callback, 18
register post_write callback, 18
register pre read callback, 18, 41
register_pre write_callback, 18
remove param, 26

remove param_failed, 51

remove param_handle, 20

reset, 14

set, 32

set_bool, 32

set_cci_value, 14

set_description, 16

set_double, 32

set_int, 32

set_int64, 32

set_list, 32

set_map, 32

set_null, 32

set_param_failed, 51

set_preset _cci_value, 23

set raw_value, 15, 40

set_string, 32

set_uint, 32

set_uint64, 32

set_value, 40

swap, 29
cci_originator, 12

to_json, 32
try_get, 31
try_set, 32

unlock, 17

unregister all callbacks
cci_broker if, 25
cci_param_if, 20

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 63

SystemC® CCI 1.0 Language Reference Manual June 2018

unregister_create_callback, 25 unregister_pre read_callback, 19
unregister _destroy callback, 25 unregister pre write callback, 19

Copyright © 2018 Accellera Systems Initiative. All rights reserved. 64

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Relationship with C++ (ISO/IEC 14882:2011)
	1.4 Relationship with SystemC
	1.5 Guidance for readers

	2. Normative References
	3. Terminology and conventions used in this standard
	3.1 Terminology
	3.1.1 Shall, should, may, can
	3.1.2 Application, implementation
	3.1.3 Call, called from, derived from
	3.1.4 Specific technical terms

	3.2 Syntactical conventions
	3.2.1 Implementation-defined
	3.2.2 Ellipsis (...)
	3.2.3 Class names
	3.2.4 Configuration, Control and Inspection (CCI) naming patterns

	3.3 Typographical conventions
	3.4 Semantic conventions
	3.4.1 Class definitions and the inheritance hierarchy
	3.4.2 Function definitions and side-effects
	3.4.3 Exceptions
	3.4.4 Functions whose return type is a reference or a pointer
	3.4.5 Functions that return *this or a pass-by-reference argument
	3.4.6 Functions that return const char*
	3.4.7 Non-compliant applications and errors

	3.5 Notes and examples

	4. CCI architecture overview
	5. Configuration interfaces
	5.1 Namespaces
	5.2 Configuration header file
	5.3 Enumerations
	5.3.1 cci_param_mutable_type
	5.3.2 cci_param_data_category
	5.3.3 cci_name_type

	5.4 Core interfaces
	5.4.1 cci_originator
	5.4.1.1 Construction
	5.4.1.2 Copy and swap
	5.4.1.3 Identity
	5.4.1.4 Comparisons

	5.4.2 cci_param_if
	5.4.2.1 Value and data type
	5.4.2.2 Raw value access
	5.4.2.3 Value origin
	5.4.2.4 Name and description
	5.4.2.5 Metadata
	5.4.2.6 Protecting parameters
	5.4.2.7 Equality test
	5.4.2.8 Callbacks
	5.4.2.9 Parameter handle management
	5.4.2.10 Destructor

	5.4.3 cci_broker_if
	5.4.3.1 Broker properties
	5.4.3.2 Individual parameter access
	5.4.3.3 Bulk parameter access
	5.4.3.4 Parameter initialization
	5.4.3.5 Create handle
	5.4.3.6 Broker callbacks
	Creation callbacks
	Destruction callbacks
	Utilities

	5.4.3.7 Parameter registration
	5.4.3.8 Destructor

	5.5 Variant type parameter values
	5.5.1 cci_value_category
	5.5.2 cci_value
	5.5.2.1 Class definition
	5.5.2.2 Constructors and destructor
	5.5.2.3 Swap functions
	5.5.2.4 Type queries
	5.5.2.5 Get value
	Core types
	Extended and user-defined types
	Reference types

	5.5.2.6 Set value
	5.5.2.7 Identity query
	5.5.2.8 JSON (de) serialization

	5.5.3 cci_value_list
	5.5.4 cci_value_map
	5.5.4.1 Element access

	5.6 Parameters
	5.6.1 cci_param_untyped
	5.6.2 cci_param_typed
	5.6.2.1 value_type
	5.6.2.2 Construction
	5.6.2.3 Typed value access
	5.6.2.4 Raw value access
	5.6.2.5 Assignment operator
	5.6.2.6 Callbacks

	5.6.3 cci_param_untyped_handle
	5.6.3.1 Class overview
	5.6.3.2 Construction
	5.6.3.3 Destruction
	5.6.3.4 Assignment
	5.6.3.5 Handle validity
	5.6.3.6 Delegated functions

	5.6.4 cci_param_typed_handle
	5.6.4.1 Construction
	5.6.4.2 Assignment
	5.6.4.3 Typed value access
	5.6.4.4 Callbacks

	5.6.5 cci_param_write_event

	5.7 Brokers
	5.7.1 cci_broker_handle
	5.7.1.1 Construction
	5.7.1.2 Assignment
	5.7.1.3 Comparison
	5.7.1.4 Originator
	5.7.1.5 Delegated functions

	5.7.2 cci_broker_manager
	5.7.3 Reference brokers

	5.8 Error reporting
	5.9 Name support functions
	5.10 Version information

	Annex A Introduction to SystemC Configuration
	A.1 Sample code
	A.2 Interface classes
	A.3 Error reporting

	Annex B Glossary
	Annex C SystemC Configuration modeler guidelines
	C.1 Declare parameter instances as protected or private members
	C.2 Initialize broker handles during module elaboration
	C.3 Prefer typed parameter value access over untyped, when possible, for speed
	C.4 Provide parameter descriptions

	Annex D Enabling user-defined parameter value types
	Index

