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Preface

This user’s guide is meant as an introductory guide for electronic system-level engineers and architects who
would like to use the SystemC AMS extensions for their system-level design and verification tasks. The
main aim is to provide a self-learning guide on how to use the SystemC AMS extensions by explaining the
modeling fundamentals and giving examples on how to start with AMS system-level design at higher levels
of abstraction. It assumes that the user has some prior knowledge on SystemC modeling and simulation and
C++ in general and is familiar with analog/mixed-signal design and modeling.

After going through this guide, the reader should be in a position to start using the SystemC AMS extensions,
and should be able to:

• Get insight in the applicable use cases and requirements of the SystemC AMS extensions.

• Understand the introduced models of computation and associated execution semantics.

• Use the language constructs to create discrete-time and continuous-time models at different levels of
abstraction.

• Combine SystemC and the AMS extensions to design a mixed-signal system.

• Perform time- and frequency-domain analysis and tracing of AMS signals.

The AMS design methodology, modeling style, and examples given in this user’s guide are based on the
Open SystemC Initiative AMS language standard. Any simulator implementation compatible with this
standard can be used to build and execute these examples.

This document is an informative guide, intended to clarify the usage and intended behavior of the SystemC
AMS extensions. The precise and complete definition of the SystemC AMS extensions is standardized in
the AMS Language Reference Manual.



This page is intentionally left blank.



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. ix

Contents
Copyright Notice ................................................................................................................  iii

About this document .............................................................................................................  v

Preface .............................................................................................................................  vii

1. Introduction .....................................................................................................................  1

1.1. Motivation ............................................................................................................  1
1.2. SystemC AMS extensions ........................................................................................  1

1.2.1. Use cases and requirements ...........................................................................  2
1.2.2. Model abstractions .......................................................................................  3
1.2.3. Modeling formalisms ....................................................................................  3
1.2.4. Time-domain and frequency-domain analysis ....................................................  4
1.2.5. Language architecture ...................................................................................  4

2. Timed Data Flow modeling ................................................................................................  7

2.1. Modeling fundamentals ...........................................................................................  7
2.1.1. TDF module and port attributes ......................................................................  7
2.1.2. TDF model topologies ..................................................................................  8
2.1.3. Time step assignment and propagation ...........................................................  11
2.1.4. Multiple schedules or clusters ....................................................................... 13
2.1.5. Signal processing behavior of TDF models .....................................................  13

2.2. Language constructs ..............................................................................................  14
2.2.1. TDF modules ............................................................................................  14
2.2.2. TDF ports .................................................................................................  17
2.2.3. TDF signals ..............................................................................................  20

2.3. Modeling discrete-time and continuous-time behavior .................................................  20
2.3.1. Discrete-time modeling ...............................................................................  21
2.3.2. Continuous-time modeling ...........................................................................  21
2.3.3. Structural composition of TDF modules .........................................................  26
2.3.4. Multirate behavior ......................................................................................  28
2.3.5. Introducing delays ......................................................................................  29

2.4. Interaction between TDF and discrete-event domain .................................................... 30
2.4.1. Reading from the discrete-event domain .........................................................  30
2.4.2. Writing to the discrete-event domain .............................................................  31
2.4.3. Using discrete-event control signals ...............................................................  32

2.5. TDF execution semantics .......................................................................................  32
2.6. Application examples ............................................................................................  33

2.6.1. BASK modulator .......................................................................................  33
2.6.2. BASK demodulator ....................................................................................  35
2.6.3. TDF simulation of the BASK example ...........................................................  36
2.6.4. Interfacing the BASK example with SystemC .................................................. 37

3. Linear Signal Flow modeling ............................................................................................  41

3.1. Modeling fundamentals .........................................................................................  41
3.1.1. Setup of the LSF equation system .................................................................  41
3.1.2. Time step assignment and propagation ...........................................................  42

3.2. Language constructs ..............................................................................................  42
3.2.1. LSF modules .............................................................................................  42
3.2.2. LSF ports .................................................................................................  43
3.2.3. LSF signals ...............................................................................................  44

3.3. Modeling continuous-time behavior .........................................................................  44
3.3.1. Structural composition of LSF modules ..........................................................  44



March 8 2010 SystemC AMS extensions User’s Guide

x Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

3.3.2. Continuous-time modeling ...........................................................................  46
3.4. Interaction between LSF and discrete-event or TDF models ..........................................  47

3.4.1. Reading from and writing to discrete-event models ...........................................  47
3.4.2. Reading from and writing to TDF models .......................................................  47
3.4.3. Using discrete-event or TDF control signals ....................................................  48
3.4.4. LSF model encapsulation ............................................................................  49

3.5. LSF execution semantics .......................................................................................  50
3.6. Application examples ............................................................................................  50

3.6.1. PID controller ...........................................................................................  50
3.6.2. Continuous-time sigma-delta modulator .......................................................... 52

4. Electrical Linear Networks modeling ..................................................................................  55

4.1. Modeling fundamentals .........................................................................................  55
4.1.1. Setup of the equation system ........................................................................  55
4.1.2. Time step assignment and propagation ...........................................................  56

4.2. Language constructs ..............................................................................................  56
4.2.1. ELN modules ............................................................................................  56
4.2.2. ELN terminals ...........................................................................................  58
4.2.3. ELN nodes ...............................................................................................  58

4.3. Modeling continuous-time behavior .........................................................................  58
4.3.1. Structural composition of ELN modules .........................................................  59
4.3.2. Continuous-time modeling ...........................................................................  60

4.4. Interaction between ELN and discrete-event or TDF models .........................................  61
4.4.1. Reading from and writing to discrete-event models ...........................................  61
4.4.2. Reading from and writing to TDF models .......................................................  62
4.4.3. ELN model encapsulation ............................................................................  63

4.5. ELN execution semantics .......................................................................................  64
4.6. Application examples ............................................................................................  65

4.6.1. POTS front-end .........................................................................................  65

5. Small-signal frequency-domain analyses .............................................................................  69

5.1. Modeling fundamentals .........................................................................................  69
5.1.1. Setup of the equation system ........................................................................  69
5.1.2. Analysis methods .......................................................................................  69

5.2. Language constructs ..............................................................................................  70
5.2.1. Small-signal frequency-domain description in TDF modules ...............................  70
5.2.2. Port access ................................................................................................  70

5.3. Utility functions ...................................................................................................  71
5.3.1. Frequency-domain delay  ............................................................................  71
5.3.2. Laplace transfer functions  ...........................................................................  71
5.3.3. S-domain definitions  .................................................................................. 72
5.3.4. Z-domain definitions ................................................................................... 73
5.3.5. Detection of small-signal frequency-domain analyses ........................................  74

5.4. Small-signal frequency-domain analysis with combined TDF, LSF and ELN models ..........  75

6. Simulation and tracing .....................................................................................................  77

6.1. Simulation control ................................................................................................  77
6.1.1. Time-domain simulation ..............................................................................  77
6.1.2. Small-signal frequency-domain simulation ......................................................  78

6.2. Tracing ...............................................................................................................  78
6.2.1. Trace files and formats ...............................................................................  79
6.2.2. Tracing signals and comments ......................................................................  80

6.3. Testbenches .........................................................................................................  82

7. Modeling strategies .........................................................................................................  85



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. xi

7.1. Behavioral modeling using the available models of computation ....................................  85
7.1.1. Macromodeling with Electrical Linear Networks ..............................................  86
7.1.2. Behavioral modeling with Linear Signal Flow .................................................  87
7.1.3. Behavioral and baseband modeling with Timed Data Flow .................................  89

7.2. Modeling embedded analog/mixed-signal systems ......................................................  91
7.2.1. Partitioning behavior to different models of computation ...................................  91
7.2.2. Modeling of architecture-level properties ........................................................  92

7.3. Design refinement and mixed-level modeling ............................................................  93
7.3.1. Mixed-signal, mixed-level simulation ............................................................. 93
7.3.2. Design refinement and use cases ...................................................................  94

7.4. Modeling and coding style .....................................................................................  96
7.4.1. Namespaces ..............................................................................................  96
7.4.2. Dynamic memory allocation ........................................................................  97
7.4.3. Module parameters .....................................................................................  98
7.4.4. Separation of module definition and implementation .......................................  100
7.4.5. Class templates ........................................................................................  101
7.4.6. Public and private class members ................................................................  102

Appendix A. Language reference .........................................................................................  105

A.1. TDF modules ....................................................................................................  105
A.2. TDF ports .........................................................................................................  105
A.3. TDF signals ......................................................................................................  106
A.4. Embedded Laplace transfer functions .....................................................................  106

A.4.1. sca_tdf::sca_ltf_nd ...................................................................................  106
A.4.2. sca_tdf::sca_ltf_zp ...................................................................................  107
A.4.3. sca_tdf::sca_ss ......................................................................................... 107

A.5. LSF primitive modules ........................................................................................  108
A.5.1. sca_lsf::sca_add .......................................................................................  108
A.5.2. sca_lsf::sca_sub .......................................................................................  109
A.5.3. sca_lsf::sca_gain ......................................................................................  110
A.5.4. sca_lsf::sca_dot .......................................................................................  110
A.5.5. sca_lsf::sca_integ .....................................................................................  111
A.5.6. sca_lsf::sca_delay ....................................................................................  111
A.5.7. sca_lsf::sca_source ...................................................................................  112
A.5.8. sca_lsf::sca_ltf_nd ....................................................................................  113
A.5.9. sca_lsf::sca_ltf_zp ....................................................................................  114
A.5.10. sca_lsf::sca_ss .......................................................................................  115
A.5.11. sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain ...........................................  116
A.5.12. sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source .....................................  116
A.5.13. sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink ............................................ 117
A.5.14. sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux ...........................................  117
A.5.15. sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux .....................................  118
A.5.16. sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain ............................................  119
A.5.17. sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source ......................................  119
A.5.18. sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink .............................................  120
A.5.19. sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux ............................................  121
A.5.20. sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux ......................................  121

A.6. ELN primitive modules .......................................................................................  122
A.6.1. sca_eln::sca_r ..........................................................................................  122
A.6.2. sca_eln::sca_c .........................................................................................  123
A.6.3. sca_eln::sca_l ..........................................................................................  123
A.6.4. sca_eln::sca_vcvs .....................................................................................  124
A.6.5. sca_eln::sca_vccs .....................................................................................  125
A.6.6. sca_eln::sca_ccvs .....................................................................................  125
A.6.7. sca_eln::sca_cccs .....................................................................................  126
A.6.8. sca_eln::sca_nullor ...................................................................................  127
A.6.9. sca_eln::sca_gyrator .................................................................................  127



March 8 2010 SystemC AMS extensions User’s Guide

xii Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

A.6.10. sca_eln::sca_ideal_transformer ..................................................................  128
A.6.11. sca_eln::sca_transmission_line ..................................................................  129
A.6.12. sca_eln::sca_vsource ...............................................................................  130
A.6.13. sca_eln::sca_isource ................................................................................  131
A.6.14. sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r ...................................................  132
A.6.15. sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c ..................................................  132
A.6.16. sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l ...................................................  133
A.6.17. sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch ..................................  134
A.6.18. sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource .................................  134
A.6.19. sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource ..................................  135
A.6.20. sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink .......................................  136
A.6.21. sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink ........................................  136
A.6.22. sca_eln::sca_de::sca_r, sca_eln::sca_de_r ....................................................  137
A.6.23. sca_eln::sca_de::sca_c, sca_eln::sca_de_c ...................................................  138
A.6.24. sca_eln::sca_de::sca_l, sca_eln::sca_de_l ....................................................  138
A.6.25. sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch ...................................  139
A.6.26. sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource ..................................  140
A.6.27. sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource ...................................  140
A.6.28. sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink ........................................  141
A.6.29. sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink .........................................  142

Appendix B. Symbols and graphical representations ................................................................  143

Appendix C. Glossary ........................................................................................................ 145

Index ..............................................................................................................................  147



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 1

1. Introduction

1.1. Motivation

There is a growing trend for tighter interaction between embedded hardware/software (HW/SW) systems
and their analog physical environment. This leads to systems, in which digital HW/SW is functionally
interwoven with analog and mixed-signal blocks such as RF interfaces, power electronics, sensors, and
actuators, as shown for example by the communication system in Figure 1.1. Such systems are called
Embedded Analog/Mixed-Signal (E-AMS) systems. Examples of E-AMS systems are cognitive radios,
sensor networks or systems for image sensing. A challenge for the development of E-AMS systems is to
understand the interaction between HW/SW and the analog and mixed-signal subsystems at the architectural
level. This requires new means to model and simulate the interacting analog/mixed-signal subsystems and
HW/SW subsystems at functional and architectural level.

Figure 1.1. A Communication System, example of an embedded analog/mixed-signal architecture

SystemC supports the refinement of HW/SW systems down to cycle-accurate behavior by providing a
discrete-event simulation framework. A methodology for generalized modeling of communication and
synchronization built upon this framework is also available: Transaction Level Modeling (TLM). It allows
designers to perform abstract modeling, simulation, and design of HW/SW system architectures. However,
the SystemC simulation kernel has not been designed to handle the modeling and simulation of analog/
continuous-time systems and lacks the support of a refinement methodology to describe analog behavior
from a functional level down to the implementation level.

In response to the needs from telecommunication, automotive, and semiconductor industries, AMS
extensions are introduced based on SystemC, to provide a uniform and standardized methodology for
modeling E-AMS systems.

1.2. SystemC AMS extensions

The SystemC AMS extensions are built on top of the SystemC language standard IEEE 1666-2005 and
define additional language constructs, which introduce new execution semantics and system-level modeling
methodologies to design and verify mixed-signal systems.

The class definitions provided by the AMS language standard form the foundation for the creation of a
C++ class library implementation, which can be used in combination with an IEEE 1666-2005 compatible
SystemC implementation. Such an implementation can be used to create AMS system-level models to
build an executable specification, to validate and optimize the AMS system architecture, to explore various
algorithms, and to provide the software development team with an operational virtual prototype of an
entire AMS system, including also the analog functionality. To support these use cases, the SystemC AMS
extensions define the necessary modeling formalisms to model AMS system-level behavior at different
levels of abstraction.
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1.2.1. Use cases and requirements

As depicted in Figure 1.2, the SystemC AMS extensions can be used for a wide variety of use cases such as:

• Executable specification;

• Virtual prototyping;

• Architecture exploration, and

• Integration validation.

Figure 1.2. Use cases, model abstractions, and modeling formalisms

Executable specification

An executable specification is made to verify the correctness of the system requirement specification by
creating an executable description of the system by using simulation. For this use case, models at a high
level of abstraction are created, which do not necessarily need to relate to the physical architecture or
implementation of the system. The models are, therefore, called functional or algorithmic models.

SystemC and the AMS extensions define both the system-level modeling language and their execution
semantics for simulation purposes. They are entirely implemented in the form of C++ libraries, which are
linked to the compiled AMS models to create an executable description of the system. This entirely C++-
based modeling approach offers a unique flexibility as it allows, e.g., the easy integration of embedded
software, 3rd party libraries, and legacy code into the system models.

Virtual prototyping

The virtual prototyping use case aims at providing software developers with a high-level untimed or timed
model, that represents the hardware architecture, and provides high simulation speed. Especially for E-AMS
systems, where software or firmware is interacting directly with AMS hardware, interoperability using
SystemC Transaction-Level Modeling (TLM) extensions is important.

The usage of Timed Data Flow modeling for (over)sampled continuous-time and signal processing behavior
provides high simulation speed with appropriate accuracy. In this way, the AMS subsystem can become
part of the virtual prototype for further development of the HW/SW subsystem.

Architecture exploration

The architecture exploration use case will evaluate if and how the ideal functions and algorithms defined
during the executable specification phase can be mapped onto the envisioned system architecture. The key
properties of the system architecture are defined and should match with the actual functionality required.
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Architecture exploration is structured in two phases: In the first phase, the executable specification is refined
by adding the non-ideal properties of an implementation to get a better understanding of their impact on the
overall system behavior. In the second phase, the architecture’s structure and interfaces are refined to get a
more accurate model by introducing architectural elements and communication between these elements.

Integration validation

After the architecture definition and design of the analog and digital HW/SW components, these components
are integrated and their correctness is verified within the overall system. For the integration validation use
case, the interfaces of all subsystems must be modeled accurately. The interfaces and data types used in the
models should match the physical implementation. For analog circuits this relates to electrical nodes. For
digital circuits, this relates to pin accurate buses. For HW/SW systems, TLM interfaces might be appropriate.

1.2.2. Model abstractions

The SystemC AMS extensions add new abstraction methods for system-level modeling and simulation
of AMS systems to the existing SystemC framework. The model abstractions supported by the SystemC
AMS extensions are based on well-known methods for abstracting analog and mixed-signal behavior. As
shown in Figure 1.2, the abstraction levels distinguish discrete-time from continuous-time behavior and
non-conservative from conservative descriptions. Chapter 7 will present the available abstraction methods
in more detail.

Discrete-time vs. continuous-time descriptions

Discrete-time modeling abstracts signals (e.g., audio or video streams) or physical quantities (e.g.,
voltages, currents, and forces) as sequences of values only defined at discrete time points. Values may
be either real values or discrete values (e.g., integer or logic values). Values between time points are
formally not defined, although it is common to consider them as constant. Behaviors are then abstracted
as procedural assignments involving sampled signals. The description of static (algebraic) non-linear
behaviors (e.g., using polynomials) is supported. Discrete-time modeling is particularly suited for describing
signal-processing-dominated behaviors, for which signals are naturally (over)sampled. It can be also
used for describing continuous-time behaviors, provided that the discrete abstraction produces reasonable
approximations.

Continuous-time modeling gets closer to the physical world, as signals and physical quantities are abstracted
as real-valued functions of time. The time is now considered as a continuous value. Behaviors are then
described using mathematical equations that can include time-domain derivatives of any order (so-called
differential algebraic equations (DAEs) or ordinary differential equations (ODEs)). Equations must be
solved by using a dedicated linear or non-linear solver, which usually requires complex numerical or
symbolic algorithms. Continuous-time modeling is particularly suited for describing physical behaviors, as
it can naturally account for dynamic effects.

Non-conservative vs. conservative descriptions

Continuous-time models can be divided into two classes: non-conservative and conservative models. Non-
conservative models express behaviors as directed flows of continuous-time signals or quantities, on which
processing functions such as filtering or integration are applied. Non-linear dynamic effects can be properly
described, but mutual effects and interactions between AMS blocks, such as impedances or loads, are not
naturally supported.

Conservative models are the most detailed continuous-time models at system level and circuit level, as
energy conservation laws (Kirchhoff’s laws) must be satisfied. As a result, the set of equations to be solved
is larger and possibly more complex than the ones inferred by non-conservative models.

1.2.3. Modeling formalisms

The SystemC AMS extensions define the essential modeling formalisms required to support AMS
behavioral modeling at different levels of abstraction. These modeling formalisms are implemented by using
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different models of computation: Timed Data Flow (TDF), Linear Signal Flow (LSF), and Electrical Linear
Networks (ELN).

Timed Data Flow (TDF)

The execution semantics based on TDF introduce discrete-time modeling and simulation without the
overhead of the dynamic scheduling imposed by the discrete-event kernel of SystemC. Simulation is
accelerated by defining a static schedule, which is computed before simulation starts, and which executes
the processing functions of the scheduled TDF modules according to the stream direction of the dataflow.
The sampled, discrete-time signals, which propagate through the TDF modules may represent any C++
type. If, e.g, a real-valued type such as double is used, the TDF signal can represent a voltage or current at a
given point in time. Complex values can be used to represent an equivalent baseband signal. TDF modeling
is presented in Chapter 2.

Linear Signal Flow (LSF)

The Linear Signal Flow formalism supports the modeling of continuous-time behavior by offering a
consistent set of primitive modules such as addition, multiplication, integration, or delay. An LSF model is
made up from a connection of such primitives through real-valued time-domain signals, representing any
kind of continuous-time quantity. An LSF model defines a system of linear equations that is solved by a
linear DAE solver. LSF modeling is presented in Chapter 3.

Electrical Linear Networks (ELN)

Modeling of electrical networks is supported by instantiating predefined linear network primitives such as
resistors or capacitors, which are used as macro models for describing the continuous-time relations between
voltages and currents. A restricted set of linear primitives and switches is available to model the electrical
energy conserving behavior. ELN modeling is presented in Chapter 4.

1.2.4. Time-domain and frequency-domain analysis

The SystemC AMS extensions support both time-domain (transient) and frequency-domain analysis, by
introducing new execution semantics and additional functions for simulation control.

Time-domain simulation can be applied to descriptions made using the TDF, LSF or ELN models of
computation. The analysis computes the time-domain behavior of the overall system, possibly composed by
different models of computation and could even include descriptions defined in the discrete-event domain.
The execution semantics for time-domain simulation of TDF, LSF and ELN models are described in Chapter
2, 3, and 4, respectively.

Frequency-domain simulation can be applied to the same descriptions, combining different models of
computation, where the analyses computes the small-signal frequency-domain behavior of the overall
system. Besides small-signal frequency-domain analyses, also small-signal frequency-domain noise
analysis is available. Chapter 5 will describe both analysis methods in more detail.

The simulation control and signal tracing techniques for time-domain and frequency-domain simulation are
presented in Chapter 6. Also the creation and basic structure of testbenches is explained in this chapter.

1.2.5. Language architecture

The SystemC AMS extensions are fully compatible with the SystemC language standard as shown in
Figure 1.3. The AMS language standard defines the execution semantics of the TDF, LSF, and ELN models
of computation and gives an insight on the underlying enabling technology such as the linear solver,
scheduler, and synchronization layer. Currently, the interfaces to and class definitions of this enabling
technology is implementation-defined. The AMS designer (end-user) can take advantage of dedicated
classes and interfaces to create TDF, LSF or ELN models, by using the predefined modules, ports, terminals,
signals and nodes.
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Figure 1.3. Architecture of the AMS language standard



This page is intentionally left blank.



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 7

2. Timed Data Flow modeling

2.1. Modeling fundamentals

The Timed Data Flow (TDF) model of computation is based on the well-known Synchronous Data
Flow (SDF) modeling formalism. Unlike the untimed SDF model of computation, TDF is a discrete-time
modeling style, which considers data as signals sampled in time. These signals are tagged at discrete points
in time and carry discrete or continuous values like amplitudes.

Figure 2.1 shows the basic principle of the Timed Data Flow modeling. In this figure, there are three
communicating TDF modules called A, B, and C. A TDF model is composed of a set of connected
TDF modules, which form a directed graph called TDF cluster. TDF modules are the vertices of the graph,
and TDF signals correspond to its edges. A TDF module may have several input and output TDF ports. A
TDF module containing only output ports is also called a producer (source), while a TDF module with only
input ports is a consumer (sink). TDF signals are used to connect ports of different modules together.

Each TDF module contains a C++ method that computes a mathematical function f (i.e., fA, fB, and fC),
which depends on its direct inputs and possible internal states. The overall behavior of the cluster is therefore
defined as the mathematical composition of the functions of the involved TDF modules in the appropriate
order, fC (fB (fA (...))), indicated with {A→B→C} in Figure 2.1.

Figure 2.1. A basic TDF model with 3 TDF modules and 2 TDF signals

A given function is processed (or “fired” according to the SDF formalism) if and only if there are enough
samples available at the input ports. In this case, the input samples are read by the TDF module, where the
function uses these values to compute one or more resultants, which are written to the appropriate output
ports. In TDF, the number of samples read from or written to the module ports is fixed during simulation,
but the numbers of read and written samples by a TDF module are not necessarily equal. A time stamp
is associated to each sample using the local TDF module time. The fixed interval between two samples is
called time step.

2.1.1. TDF module and port attributes

The flexibility and expressiveness of TDF modeling comes from the ability to define the attributes of each
TDF module and of each of its ports. In TDF, it is possible:

• To assign a particular time step to a TDF module (module time step assignment). Figure 2.2 a shows a
TDF module A with a module time step (Tm) of 20 µs.

• To assign a particular time step to a given port of a module belonging to the cluster (port time step
assignment). Figure 2.2b shows a TDF module B with a TDF input port time step (Tp) of 10 µs.

• To assign a particular rate to a given port of a module belonging to the cluster (port rate assignment).
Figure 2.2b shows a TDF module B, where at each module activation 2 samples are read (input port rate
R set to 2, indicated with R:2).

• To assign a particular delay to a given port of a module belonging to the cluster (port delay assignment).
Figure 2.2c shows a TDF module C, where at each module activation, the sample corresponding to the
previous time step is written (output port delay D set to 1 sample, indicated with D:1).
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• To assign a particular time offset to a given port of a module belonging to the cluster (port time offset
assignment). Figure 2.2d shows a TDF module D, with a module time offset (Tpf) of 1 µs. A time offset
can only be assigned to specialized ports to connect to the discrete-event domain, so called TDF converter
ports.

Figure 2.2. TDF module and port attributes

Provided that the attribute assignment on the ports and modules of a TDF model are compatible, the order
of activation of the TDF modules in a cluster and the number of samples they read (consume) and write
(produce) can be statically determined before simulation starts. Thus, and more formally, a TDF cluster can
be defined as the set of connected TDF modules, which belong to the same static schedule. If the assignments
are not compatible, the static schedule cannot be established and the TDF cluster is said to be not schedulable
(see also Section 2.1.3). Therefore, after the required TDF cluster consistency check, the schedule defines
a sequence, in which the algorithmic or procedural description of each TDF module is executed.

The main advantage of this approach is that the execution of TDF models does not rely on the evaluate/
update mechanism of SystemC’s discrete-event kernel, and, therefore, can be simulated more efficiently.
TDF models are processed independently, using a local time annotation mechanism. Interactions between
TDF models and pure SystemC models are supported through specific converter ports, as discussed in
Section 2.4.

2.1.2. TDF model topologies

Figure 2.3 shows an example of a TDF model with multirate characteristics. A port rate assignment with
rate value 2 (R:2) has been performed on the output port of TDF module A. Ports with no rate attribute
are considered to have a rate of 1 (not graphically represented). When module A is activated, 2 samples
are written. Since both modules B and C read one sample at each activation, a possible schedule for this
TDF cluster is {A→B→C→B→C}.

Figure 2.3. Multirate TDF model using port rate assignment

In order to handle TDF models containing loops, it is compulsory to introduce a delay on a module port
belonging to one of the modules of the loop. This port delay has to be defined during elaboration of the
simulation, to make the static scheduling feasible. A simple example is given in Figure 2.4, without loop,
that shows a module A with a delay of one sample associated to the output port (D:1). A possible schedule is
{A→B} but also {B→A}, since at module B first activation, the input port of module B will read the sample
already available thanks to the assigned delay defined in the elaboration phase.
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Figure 2.4. TDF model with port delay

The initial value of the sample of a port with a delay is determined by the constructor of the corresponding
data types. For basic data types (double, int, etc.), the constructor does not necessarily assign an initial
value, resulting in an undefined value. The user is advised to set the values of the initial samples in case
port delays are used.

Figure 2.5 shows an example of a TDF model containing a loop, a quite common situation when dealing
with signal processing with feedback. A mandatory port delay assignment with delay value 1 (D:1) has been
performed on the output port of TDF module C. Assigning a delay to the output port of module C, allows
module B to be “fired” when the first sample of module A becomes available on input in0 of module B. A
possible schedule for this TDF model is {A→B→C}.

Figure 2.5. TDF model with loop, and port delay assignment

Figure 2.6 shows a more complex example mixing multirate and delay. A possible cluster schedule is
{A→B→B→C→D}. Module B is executed twice because of the port rate (R:2) assignments performed on
the two connected ports (output port of module A and input port of module C). The port delay assignment
on the output port of module D (D:1) is required for the schedule to be computed properly.

Figure 2.6. Multirate TDF model with loop

Another prerequisite for a proper schedule is that the sum of samples produced at the output ports within
a loop must be equal to the sum of samples consumed by the input ports within the loop. Otherwise, any
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finite schedule would accumulate surplus samples somewhere in the cluster when executing it repeatedly.
For example, in the case the rate of the input port of module C in Figure 2.6 were changed from 2 to 1,
the schedule {A→B→C→D→B→C→D} would result in one extra sample at the output of module D after
executing the schedule once (see Figure 2.7)

Figure 2.7. Multirate TDF model containing a loop with incompatible rates, resulting
in accumulation of samples in the cluster yielding to an infinite (broken) schedule

Figure 2.8 shows how it is possible to connect a TDF model with the discrete-event domain, by means
of TDF converter ports (indicated with ). For example, a discrete-event signal is available at the
TDF converter port of TDF module A. Module D has a TDF converter input port, reading a discrete-event
control signal. Special care should be taken with the interaction between the TDF and discrete-event domain.
This is described in Section 2.4.

Figure 2.8. TDF model interfacing with discrete-event domain

Another special case is when a TDF model becomes part of a closed loop, which includes a path through
the discrete-event domain, as shown in Figure 2.9. The TDF cluster itself contains no loop, so there is no
port delay assignment necessary to calculate a valid schedule. Module A reads a sample from the discrete-
event domain at the first delta cycle of the time point associated to the sample using a TDF converter input
port. Module C writes a sample to the discrete-event domain in the same delta cycle, using a TDF converter
output port. Note that TDF samples read from module C and passed through the discrete-event module D
to the input of module A will be be delayed by one TDF time step due to the evaluate/update mechanism
of the SystemC kernel.

More details on the interaction between the TDF and discrete-event domain is described in Section 2.1.4
and 2.4.
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Figure 2.9. TDF model with loop via the discrete-event domain

2.1.3. Time step assignment and propagation

The definition of port rates and delays is very useful to handle different frequency domains within the
same TDF model, as well as to create complex TDF module structures involving nested loops. The main
point here is that the consistency of a cluster exclusively relies on the compatibility of port rate and delay
values and is thus intrinsically independent of the chosen time step (sampling period) to run it. Once this
consistency check has been validated for a particular cluster, it may operate at any frequency by means of
a port time step assignment or a module time step assignment.

Figure 2.10 illustrates the simplest case, in which all rates are set to 1 (not graphically represented). Starting
with a port time step of 10 µs assigned to the input port of module C (denoted as Tp:10µs), this figure
shows how this time step value is used to transitively calculate the time steps of the other ports and modules
(denoted as italic values Tp and Tm). When there is no specific rate (R) nor delay (D) assigned to a port, a
rate of 1 and a delay of zero samples are assumed by default.

Figure 2.10. Propagation of the time step Tp:10µs set on the input port of module C

The time step propagation is performed upstream and downstream of the target element of the performed
time step assignment (port or module) in the TDF model. This process is illustrated by dotted arrows in
Figure 2.10. For instance, the port time step assignment on the input of module C propagates downstream
by setting the module C time step to 10 µs (Tm:10µs, dotted arrow ). Similarly, the time step assigned
on the input port of module C (Tp:10µs) is propagated upstream to the output port of module B (dotted
arrow ). Then, the module B time step is assigned with the same time step (Tm:10µs, dotted arrow ),
which is in turn forwarded to the input port of module B (Tp:10µs, dotted arrow ), to the output port of
module A (Tp:10µs, dotted arrow ), and finally to the module A time step (Tm:10µs, dotted arrow ).

Consistency of time step assignment and propagation

The example of Figure 2.10 illustrates a propagation example with only one port time step assignment (input
port of TDF module C). If the TDF model does not contain any loop, the presented propagation scheme
always generates a valid time step assignment, whether the single time step has been assigned to a port
or to a module. Once two or more port and/or module time steps have been assigned in a TDF cluster, a
consistency check has to be made to ensure their compatibility with the propagated time steps, depending
on the port rates.
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Figure 2.11 below shows a module, where the input port time step is set to 10 µs (Tp:10µs) with a rate of 2
(R:2), and the module time step is set to 20 µs (Tm:20µs). As the output port rate is not set, it will use the
default rate of 1, resulting in an output port time step of 20 µs.

Figure 2.11. Port time step, port rate, and module time step should be consistent

The module time step should be consistent with the rate and time step of any port within a module. The
relation between these time steps and rates becomes:

module time step = input port time step · input port rate = output port time step · output port rate

In the example of Figure 2.11, the following relation is checked: 20 µs = 10 µs · 2 = 20 µs · 1.

In the example of Figure 2.12, multiple modules form a cluster, where two time steps are set by the user:
the time step of module A is set to 20 µs (Tm:20µs ) and the input port time step of module C is set to
10 µs (Tp:10µs ). Furthermore, the user has set the rate of the output port of module A to 2 (R:2). Therefore
module A is activated two times less frequently than modules B and C, as module A writes 2 samples per
activation, see Figure 2.3.

The specified port time step at the input of module C (Tp:10µs ) propagates downstream to module C thus
setting its time step to 10 µs (Tm:10µs, dotted arrow ). Similarly, the time step assigned to the input port
of module C (Tp:10µs ) is propagated upstream to the output port of module B (dotted arrow ). Then,
the module B time step is assigned with the same time step (Tm:10µs, dotted arrow ), which in turn is
forwarded to input port of module B (Tp:10µs, dotted arrow ), and propagated upstream to the output port
of module A (Tp:10µs, dotted arrow ). Since the output port rate of module A is 2, the propagated module
time step should become 20 µs (Tm:20µs, dotted arrow ), which matches with the user specified time step
of module A (Tm:20µs ).

Figure 2.12. Time step propagation for a multirate TDF model with consistent time step assignments done by the user

Figure 2.13 shows the same TDF model with an incompatible time step propagation, which leads to a non
schedulable cluster. The expected module A time step, resulting from propagation is 20 µs (Tm:20µs, dotted
arrow ), which is different from the assigned module time step of module A (Tm:10µs ). Therefore, no
consistent schedule can be derived.

Figure 2.13. Time step propagation for a multirate TDF model
with inconsistent time step assignments done by the user
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In the case the TDF model contains loops, the defined port rates, delays, and time steps must be consistent
with the time steps propagated through the loop upstream and downstream, to make the TDF model
schedulable.

2.1.4. Multiple schedules or clusters

It is possible to have more than one TDF cluster within the same application. In this case, each TDF cluster
has its own data flow characteristics (sampling rate, sampling period, etc), scheduling and execution order.

The main element to indirectly change the cluster structure, is to use the TDF converter ports. As explained
in Figure 2.8, these ports facilitate an interface to the discrete-event domain and thus define where a static
schedule will start or stop. Figure 2.14 shows an example, in which TDF converter ports are used to
deliberately split a cluster. Note that the dashed signal indicates the use of a discrete-event signal in between
module B and module C.

Figure 2.14. Use of TDF converter ports to deliberately split a cluster in two independent ones

Due to the introduction of a discrete-event signal in the chain of modules, the execution of the schedule
for each cluster becomes independent. The converter port of module B will write its sample value in the
evaluation phase of the SystemC kernel, at the first delta cycle of the associated time point of the sample. The
converter port of module C will read a sample, for the corresponding time point, during the same evaluation
phase in the same delta cycle. This implies that module C will read the previous value from module B,
as the value written by module B will only be changed in the update phase of the SystemC kernel, which
follows after the completion of the delta cycle’s evaluation phase for a certain point in time. This results in
an effective delay of one TDF time step for the samples read by module C.

More details on the interaction between the TDF and discrete-event domain is described in Section 2.4.

2.1.5. Signal processing behavior of TDF models

Figure 2.15 illustrates how a cluster of TDF modules processes signals by repetitively activating the
processing functions of the contained modules in the order of the derived schedule. It generates samples for
each module as a function of time. Because the rates are all set to 1, the processing is obvious: Module A
writes a sample at time 0 µs, which is read by module B at time 0 µs, and module B writes a sample at time
0 µs, which is read by module C at time 0 µs. From the perspective of the generated samples, it is important
to notice that it is the write operation of the sample produced by module A that actually enables module B
to be fired. Respectively, the generation of a sample by module B triggers module C.

The output of module A produces a continuous-value signal (Vin), which values are only available at discrete
time points. The time step between these samples is equidistant, and defined by the time step of the output
port of module A (Tp:10µs). Signal Vin is fed into module B, in this example assumed to be a simple
amplifier, with a constant gain. The samples of the amplified output signal (Vout) become available at the
output of module B at the same time steps as module A.
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Figure 2.15. TDF module activation (processing) with read and written samples

Besides using TDF modules to describe discrete-time behavior, a TDF module can be used to encapsulate
continuous-time behavior. Section 2.3 will explain the usage of TDF to model discrete-time and continuous-
time behavior.

2.2. Language constructs

2.2.1. TDF modules

A TDF module is a user-defined primitive module to define discrete-time or to embed continuous-time
behavior. The example below shows the typical structure of a TDF module.

SCA_TDF_MODULE(my_tdf_module) 
{ 
  // port declarations 

  sca_tdf::sca_in<double>  in; 
  sca_tdf::sca_out<double> out;

  SCA_CTOR(my_tdf_module) {} 
  

  void set_attributes() 
  { 
    // module and port attributes
  } 

  void initialize() 
  {
    // initial values of ports with a delay
  }

  void processing() 
  { 
    // time-domain signal processing behavior or algorithm
  } 

  void ac_processing() 
  { 
    // small-signal frequency-domain behavior
  } 
};

class my_second_module : public sca_tdf::sca_module 
{
 public:
  // port declarations
  // ...
  

  my_second_module( sc_core::sc_module_name ) {} 

  // definition of the TDF member functions as done above
  // ...



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 15

};

Primitive module declaration using the macro SCA_TDF_MODULE to define a new class derived
from class sca_tdf::sca_module.
A TDF module can have multiple input and output ports. Only TDF ports should be instantiated, see
Section 2.2.2.
Mandatory constructor using the predefined macro SCA_CTOR, which needs to have the module
name as an argument.
Optional member function set_attributes, in which TDF module and port attributes can be defined.
The user is not allowed to call this member function directly. It is called by the simulation kernel
during elaboration.
Optional member function initialize, to initialize data members representing the module state and
especially the initial samples of ports with assigned delays The user is not allowed to call this member
function directly. It is called by the simulation kernel, at the end of elaboration, just before transient
simulation starts.
Mandatory member function processing, which encapsulates the actual signal processing function.
The user is not allowed to call this member function directly. It is called by the simulation kernel as
part of time-domain (transient) simulation, where each module activation advances the local module
time by the assigned or derived module time step.
Optional member function ac_processing, which encapsulates the small-signal frequency-domain
(AC) and small-signal frequency-domain noise behavior. The user is not allowed to call this member
function directly. It is called by the simulation kernel while executing small-signal frequency-domain
analyses (see Chapter 5).
TDF module declaration by creating a new class publicly derived from class sca_tdf::sca_module.
Constructor, which always needs to have a parameter of class sc_core::sc_module_name to assign
a name to the module.

A TDF module contains elements such as ports, signals, parameters, and member functions for time-
domain (transient) and small-signal frequency-domain (AC) analyses. Together, these elements implement
the behavior of the module.

Module attributes

Module and port attributes such as sampling rate, delay, and time step, can be defined in the member function
set_attributes. The member function may use any legal C++ statement in addition to the definition of
module or port attributes. This member function is called at elaboration time. The example below shows
the assignment of a module time step of 10 ms and a delay of one TDF sample to the port out.

  void set_attributes() 
  {
    set_timestep(10.0, sc_core::SC_MS); // module time step assignment of a of 10 ms
    
    out.set_delay(1); // set delay of port out to 2 samples
  }

How to define port attributes inside this member function is explained in Section 2.2.2.

Module initialization

The member function initialize can be used to set local variables used as state variables, to read port or
module attributes such as time steps or port rates, or to initialize ports with a delay. This member function
is executed only once, just before the actual module activation starts (see next section). The example below
shows the initialization of an internal state variable s and the use of the port member function get_timestep
and initialize. The available port member functions are explained in Section 2.2.2.

  void initialize() 
  {

    s = 4.56; 

    std::cout << out.name() << ": Time step = " << out.get_timestep() << std::endl; 

    out.initialize(1.23); 
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  }

Set local state variable ‘s’ (private data member of type double)
Get time step of output port out.
Initialize the first sample of output port out with value 1.23.

How to use port initialization inside this member function is explained in Section 2.2.2.

Module activation (processing)

The member function processing is the only mandatory function that needs to be overloaded in any
TDF module, since it actually defines the discrete-time or continuous-time behavior of the TDF module.
This member function is executed at each module activation (see Section 2.3). The example below shows
a very simple case, in which the value of an internal data member val is written to an output port.

  void processing() 
  {
    out.write(val); // writes value to output port out
  }

Module local time

The member function get_time can be used within the processing function to obtain the actual, local
module time. It returns the time of the first input sample of the current module activation, as a type of class
sca_core::sca_time. At elaboration and initialization, the actual module time returned by this function is
zero (sc_core::SC_ZERO_TIME), as the module has not been activated yet. The example below shows
how the local module time can be obtained.

  void processing() 
  {
    sca_core::sca_time local_time; 
    local_time = get_time(); // get actual, local module time
  }

For multirate TDF models, the local time of the individual TDF modules can differ. Furthermore, there may
be time offsets between the local TDF module time and the SystemC kernel time. Therefore, the function
get_time should be used inside a TDF module, as a replacement for sc_core::sc_time_stamp.

Module constructor

The macro SCA_CTOR helps to define the standard constructor of a module of class sca_tdf::sca_module.
It has only one mandatory argument, which is the module name. In cases where parameters need to be passed
via the constructor, the user may define a regular constructor with an arbitrary number of parameters.

Member data should be initialized in the initialization list of the constructor, so that all members are properly
initialized before the constructor of my_tdf_module is called.

  my_tdf_module( sc_core::sc_module_name nm, double param_ )
  : param(param_) {}

Constraints on usage

A TDF module is a primitive of the TDF model of computation. Therefore it cannot instantiate submodules.
The structural composition of TDF modules is possible by defining classes derived from the regular
SystemC class sc_core::sc_module, or using the equivalent macro SC_MODULE. This is discussed in
Section 2.3.3.

The member functions set_attributes, initialize, processing, and ac_processing should not be called
directly by the user. These member functions are called as part of the execution semantics for time-domain
simulation (Section 2.5) or small-signal frequency-domain analyses (Section 5.1.2).

SystemC functions to describe discrete-event behavior such as creating methods and threads, specifying
sensitivity, waiting for events, and so on are not allowed to be called in a TDF module. Otherwise,
the execution semantics for SystemC discrete-event processing could interfere with the execution of the
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TDF modules. This means member functions and macros like SC_HAS_PROCESS, SC_METHOD,
SC_THREAD, wait, next_trigger, sensitive should not be used in a TDF module.

As the local time of a TDF module is calculated independently from the time in the discrete-event domain
(SystemC kernel time), the function sc_core::sc_time_stamp should not be used inside a TDF module.
Instead, the member function get_time should be used.

In case SystemC signals are needed for processing in a TDF module, specialized converter ports have to
be used, as described in the next section.

2.2.2. TDF ports

A TDF port is an object that provides a TDF module with a means to communicate with other connected
modules. Due to the nature of the TDF modeling formalism, a TDF port can be either an input port or an
output port, but not inout (which is available in SystemC). TDF ports can be declared for any data type
defined by C++, SystemC, the SystemC AMS extensions, a third-party library, or the user.

There are currently four classes of TDF ports:

• TDF ports of class sca_tdf::sca_in<T> (input port) or sca_tdf::sca_out<T> (output port).

• TDF converter ports of class sca_tdf::sca_de::sca_in<T> (input converter port) or
sca_tdf::sca_de::sca_out<T> (output converter port).

TDF ports are used to connect TDF modules using signals of class sca_tdf::sca_signal<T>. TDF converter
ports allow TDF modules to interact with discrete-event signals of class sc_core::sc_signal<T> or
sc_core::sc_buffer. This is explained in Section 2.4.

The port template classes allow the use of different data types, e.g., double, int or bool. The data type
double is often used to represent the amplitude of a continuous-value signal. The example below shows the
instantiation of the four available TDF port classes.

SCA_TDF_MODULE(my_tdf_module)
{

  sca_tdf::sca_in<double> in;               

  sca_tdf::sca_out<double> out; 

  sca_tdf::sca_de::sca_in<bool> inp;    

  sca_tdf::sca_de::sca_out< sc_dt::sc_logic > outp; 
  
  // rest of module not shown
};

TDF input port that carries a continuous-value (real) signal.
TDF output port that carries a continuous-value (real) signal.
TDF input converter port from the discrete-event domain, using a boolean signal.
TDF output converter port to the discrete-event domain, using a SystemC logic signal.

Port attributes

A number of attributes can be assigned to TDF ports. They are used to control the evaluation and execution
of the TDF cluster, to which the TDF module belongs. TDF port attributes have to be set in the member
function set_attributes of the TDF module, in which the port is declared (see 2.2.1). The following member
functions are available for TDF ports to set or get the attributes:

• The member functions set_timestep and get_timestep will set and return, respectively, the time step
(sampling period) between two consecutive samples.

• The member functions set_rate and get_rate will set and return, respectively, the number of samples
that have to be read or written to the port per module execution. The default rate is 1 (single-rate port).

• The member functions set_delay and get_delay will set and return, respectively, the number of samples,
which are inserted before reading or writing the first time to the port. The default value depends on the
default constructor of the data type. In case of C++’s base type like bool, int, long, float, and double, the
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initial value could be undefined. Therefore, it is recommended to initialize the port with an initial value,
if a delay has been specified for a port (see the section called “Port initialization”).

• Member function set_timeoffset and get_timeoffset will set or return the actual time of the first sample
of the port. This function is only available for converter ports.

The example below shows the use of these member functions:

  void set_attributes()
  {            
    out.set_timestep(0.01, sc_core::SC_US);   // set time step of port out 
    out.set_rate(1);                          // set rate of port out to 1
    out.set_delay(2);                         // set delay of port out to 2 samples
    outp.set_timeoffset(0.2, sc_core::SC_US); // set absolute time of first sample of converter port
  }
  
  void initialize()
  {
    out.get_rate();        // return the rate of port out
    out.get_delay();       // return the delay of port out
    out.get_timestep();    // return actual timestep of port out
    outp.get_timestep();   // return actual timestep of converter port outp
    outp.get_timeoffset(); // return absolute time of first sample of converter port outp
  }

Port initialization

The initial values of TDF ports with a specified delay have to be specified in the member function initialize
of the corresponding TDF module. The example below shows the initialization of port out, which delay
has been set to 2 samples.

  void initialize() // use initialize method of TDM module to initialize ports
  {
    // initialize port out (which has a delay attribute of 2)
    out.initialize(1.23);    // initialize first  sample with value 1.23 or
    out.initialize(1.23,0);  // initialize first  sample with value 1.23
    out.initialize(4.56,1);  // initialize second sample with value 4.56
  } 

Port read and write access

Samples can be read from a TDF input port by calling its member function read from within the member
function processing of the corresponding TDF module. In case of a multirate port, the sample index can
be passed as an argument to read.

In the case of a single rate TDF input port, reading from this port is done as follows:

SCA_TDF_MODULE(my_tdf_sink)
{
  sca_tdf::sca_in<double> in;

  SCA_CTOR(my_tdf_sink) : in("in") {}

  void processing()
  {
    // local variable
    double val; // variable to store value read from port in

    val = in.read(); // reading first sample from the input port
  }
};

Consecutive read accesses during the same module activation returns the same value, i.e., the input sample
is not consumed by the read access.

In the case of a multirate TDF input port, reading from this port is done as follows:

SCA_TDF_MODULE(my_multi_rate_sink)
{
  sca_tdf::sca_in<double> in; 

  SCA_CTOR(my_multi_rate_sink) : in("in") {}
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  void set_attributes()
  {
    in.set_rate(2); // 2 samples read per module activation
  }

  void processing()
  {
    // local variable
    double val; // variable to store values read from port in

    val = in.read();  // read first sample
    val = in.read(0); // same method with index for first sample
    val = in.read(1); // same method with index for second sample
  }
};

The rate attribute of the input port defines the number of samples available per module activation. In the
example above, the port rate of 2 gives access to 2 samples with respective index 0 and 1. As for single rate
ports, consecutive read accesses during the same module activation return the same value.

Samples can be written to a TDF output port by passing the sample value as argument to the member
function write from within the member function processing of the corresponding TDF module. In case of
a multirate port, the sample index can be passed along with the sample value as an argument to write.

In the case of a single rate TDF output port, writing to this port is done as follows:

SCA_TDF_MODULE(my_const_source)
{
  sca_tdf::sca_out<double> out;

  my_const_source( sc_core::sc_module_name, double val_ = 1.0 )
  : out("out"), val( val_ ) {}

  void processing()
  {
    out.write( val ); // writes val as a new sample to the port out
  }

 private:
  double val; // value to be written to the port out
};

Consecutive write accesses during the same module evaluation overwrite the sample value, i.e., only the
last written output sample is emitted.

In the case of a multirate TDF output port, writing to this port is done as follows:

SCA_TDF_MODULE(my_multi_rate_const_source)
{
  sca_tdf::sca_out<double> out;

  my_multi_rate_const_source(sc_core::sc_module_name, double val_ = 1.0 ) 
  : out("out"), val( val_ ) {}

  void set_attributes()
  {
    out.set_rate(2);  // 2 samples written per module activation
  }
  
  void processing()
  {
    out.write(val);   // writes val as the first sample to the port out
    out.write(val,0); // writes val as the first sample to the port out by specifying the index 0
    out.write(val,1); // writes val as the second sample to the port out by specifying the index 1
  }

 private:
  double val; // value to be written to the port out
};

The rate attribute of the output port defines the number of samples, which can be written to the port per
module activation. In the example above, the port rate of 2 gives write access to 2 samples with respective
index 0 and 1. As for single rate ports, consecutive write accesses during the same module activation
overwrite the previous sample value.
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Read and write access to SystemC discrete-event signals is done using so called converter ports of
class sca_tdf::sca_de::sca_in<T> or sca_tdf::sca_de::sca_out<T>. The usage of these converter ports is
discussed in Section 2.4.

Port and sample time

The member function get_time can only be used after elaboration is finished, i.e., in the TDF module’s
member functions initialize and processing, to obtain the actual time of the requested sample at an input
or output port. In case no argument is used, it returns the time of the first sample, which has been read
from or written to a port. An argument can be passed to this function to specify the sample index, where
0 indicates the first sample.

  void processing()
  {
    sca_core::sca_time t;
    
    t = out.get_time();  // return time of the first sample of port out
    t = out.get_time(0); // same method, the first sample has index 0 

    t = in.get_time(1);  // return time of second sample of port in, with index 1
  }

Constraints on usage

The TDF port member functions set_timestep, set_delay, set_rate, and set_timeoffset for TDF converter
ports can only be called in the TDF module member function set_attributes, as this information is required
for the elaboration phase.

The TDF port member functions get_timestep, get_delay, get_rate, get_time and get_timeoffset for
TDF converter ports can only be called after elaboration is finished, i.e., in the TDF module member function
initialize or processing.

2.2.3. TDF signals

TDF signals are used to connect TDF ports of different primitive TDF modules together. TDF signals carry
the samples of a signal, while TDF ports determine the direction of the signals from one TDF module
to another. TDF signals are declared using the template class sca_tdf::sca_signal<T>. The data type of
the signal is passed as a template argument to this class. For example, a continuous-value signal can be
represented by using the data type double:

  // signal declarations
  sca_tdf::sca_signal<double> sig; // continuous-value signal

Unlike SystemC signals, the TDF signals of the AMS extensions do not provide member functions to
directly read to or write from the channel. Instead, the member functions read and write are defined for
TDF input and TDF output ports, respectively, as already described in Section 2.2.2.

As in SystemC, the constructor initialization of the parent module can be used to assign a user-defined
name to a signal:

  // assign the name "sig" to a TDF signal instance called sig in the constructor initialization list
  SC_CTOR(my_module) : sig("sig") {}

Section 2.3.3 will describe the structural composition of TDF modules in more detail and will show
examples of assigning user-defined names to ports and signals.

2.3. Modeling discrete-time and continuous-time behavior

A TDF module is the basic structural building block for describing discrete-time and continuous-time
behavior. It is a class that implements a TDF behavioral description, and may not instantiate other modules.
TDF modules act as primitive modules.
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2.3.1. Discrete-time modeling

Discrete-time behavior can be defined in the member function processing. In this member function, a pure
algorithmic or procedural description in C++ can be given, which is executed at each module activation. The
module activation is defined by the module time step, which can be either user-specified with the member
function set_timestep or derived by time step propagation (see Section 2.1.3).

In Figure 2.16, an example is given for a 1 kHz sinusoidal source. By defining a module time step of
0.125ms, the actual output signal will be oversampled with a factor of 8.

Figure 2.16. TDF primitive module implementing a sinusoidal source

The corresponding C++ source code is given below. The constructor has parameters with default values,
which define the amplitude, frequency and sampling period (in this case equal to the module time step) of
the sine wave to be generated by the source. The module time step is usually set in the member function
set_attributes. The sinus function sin, which is part of the C++ math library, is used in the member function
processing. To write the samples to the output port, the port member function write is used.

SCA_TDF_MODULE(sin_src)
{
  sca_tdf::sca_out<double> out; // output port
  
  sin_src( sc_core::sc_module_name nm, double ampl_= 1.0, double freq_ = 1.0e3, 
           sca_core::sca_time Tm_ = sca_core::sca_time(0.125, sc_core::SC_MS) )
  : out("out"), ampl(ampl_), freq(freq_), Tm(Tm_)
  {}

  void set_attributes()
  {
    set_timestep(Tm);
  }

  void processing()
  {
    double t = get_time().to_seconds(); // actual time
    out.write( ampl * std::sin( 2.0 * M_PI * freq * t ) );
  }

 private:
  double ampl; // amplitude
  double freq; // frequency
  sca_core::sca_time Tm; // module time step
};

2.3.2. Continuous-time modeling

A TDF module can be used to embed linear dynamic equations in the form of linear transfer functions in the
Laplace domain or state-space equations. Although the TDF model of computation processes the samples
at discrete time steps, the equations of these embedded functions will be solved by considering the input
samples as continuous-time signals. The result of the embedded linear dynamic equations system, which is
also continuous in time and value, is sampled into a signal using a time step which corresponds to the time
step of the port, in which the samples are written.

The example below shows the corresponding signal flow when embedding a Laplace transfer function
(LTF) in a TDF module. The input signal represents a sampled step function. This discrete-time signal is
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interpreted by the LTF function as a continuous-time signal. The filtered, continuous-time signal is written
to the output port. During this write operation, the continuous-time signal is being sampled into a discrete-
time signal using the output port attributes.

Figure 2.17. TDF primitive module embedding a continuous-time Laplace transfer function (LTF)

Laplace transfer functions

A Laplace transfer function (LTF) can be used in the numerator-denominator or zero-pole form.

The class sca_tdf::sca_ltf_nd implements a scaled continuous-time linear transfer function of the Laplace-
domain variable s in the numerator-denominator form:

where k is the constant gain of the transfer function, M and N are the number of numerator and denominator
coefficients, respectively, and numi and deni are real-valued coefficients of the numerator and denominator,
respectively. The coefficients must be declared as objects of class sca_util::sca_vector with data type
double. The parameter delay is the time continuous delay applied to the values available at the input.

The example below shows a first-order low-pass filter using the following Laplace transfer function:

where H0 is the DC gain and fc is the filter cut-off frequency in Hz.

The following code implements such a behavior in a TDF module using the class sca_tdf::sca_ltf_nd,
which instantiates the corresponding equation system. The numerator and denominator coefficients are
calculated from the user-specified gain and cut-off frequency.

SCA_TDF_MODULE(ltf_nd_filter)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  ltf_nd_filter( sc_core::sc_module_name nm, double fc_, double h0_ = 1.0 )
  : in("in"), out("out"), fc(fc_), h0(h0_) {}

  void initialize()
  {
    num(0) = 1.0;
    den(0) = 1.0;
    den(1) = 1.0 /( 2.0 * M_PI * fc );
  }

  void processing()
  {
    out.write( ltf_nd( num, den, in.read(), h0 ) );
  }

 private:
  sca_tdf::sca_ltf_nd ltf_nd;            // Laplace transfer function
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  sca_util::sca_vector<double> num, den; // numerator and denominator coefficients
  double fc; // 3dB cut-off frequency in Hz
  double h0; // DC gain
};

The next example shows the same filter, but now implemented as zero-pole description, using the class
sca_tdf::sca_ltf_zp.

The class sca_tdf::sca_ltf_zp implements a scaled continuous-time linear transfer function of the Laplace-
domain variable s in the zero-pole form:

where k is the constant gain of the transfer function, M and N are the number of zeros and poles, respectively,
and zerosi and polesi are complex-valued zeros and poles, respectively. If M or N is zero, the corresponding
numerator or denominator term shall be a constant 1. The parameter delay is the time continuous delay
applied to the values available at the input.

The zeros and poles must be declared as objects of class sca_util::sca_vector with a complex data type of
class sca_util::sca_complex.

For a first-order low-pass filter, the zero-pole respresentation becomes:

This filter does not require any zeros to be defined. The poles and k-value of the filter are calculated from
the user-defined DC gain H0 and cut-off frequency fc.

SCA_TDF_MODULE(ltf_zp_filter)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  ltf_zp_filter( sc_core::sc_module_name nm, double fc_, double h0_ = 1.0 )
  : in("in"), out("out"), fc(fc_), h0(h0_) {}
  
  void initialize()
  {
    // filter requires no zeros to be defined
    poles(0) = sca_util::sca_complex( -2.0 * M_PI * fc, 0.0 );
    k = h0 * 2.0 * M_PI * fc;
  }

  void processing()
  {
    out.write( ltf_zp( zeros, poles, in.read(), k ) );
  }

 private:
  double k; // filter gain
  sca_tdf::sca_ltf_zp ltf_zp; // Laplace transfer function
  sca_util::sca_vector<sca_util::sca_complex > poles, zeros; // poles and zeros as complex values
  double fc; // 3dB cut-off frequency in Hz
  double h0; // DC gain
};

The numerator and denominator coefficients or zero-pole values do not need to be static. Their values may
change during simulation.

State-space equations

The class sca_tdf::sca_ss implements a continuous-time system, which behavior is defined by the following
state-space equations:
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where s(t) is the state vector, x(t) is the input vector, and y(t) is the output vector. The parameter delay is
the time continuous delay applied to the values available at the input. A, B, C, and D are matrices having
the following characteristics:

• A is a n-by-n matrix, where n is the number of states.

• B is a n-by-m matrix, where m is the number of inputs.

• C is a r-by-n matrix, where r is the number of outputs.

• D is a r-by-m matrix.

The matrices A, B, C, and D must be declared as objects of class sca_util::sca_matrix with data type double.

The next example shows the same low-pass filter, but now implemented as state-space equation, using the
class sca_tdf::sca_ss.

SCA_TDF_MODULE(statespace_eqn)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  statespace_eqn( sc_core::sc_module_name nm, double fc_, double h0_ = 1.0 )
  : in("in"), out("out"), fc(fc_), h0(h0_) {}

  void initialize()
  {
    double r_val = 1e3;
    double c_val = 1.0 / ( 2.0 * M_PI * fc * r_val);

    a(0,0) = -1.0 / ( c_val * r_val );
    b(0,0) = 1.0 / r_val;
    c(0,0) = h0 / c_val; 
    d(0,0) = 0.0;
  }

  void processing()
  {
    sca_util::sca_vector<double> x;
    x(0) = in.read();
    
    sca_util::sca_vector<double> y = state_space1( a, b, c, d, s, x );
    out.write(y(0));
  }

 private:
  sca_tdf::sca_ss state_space1;            // state-space equation
  sca_util::sca_matrix<double> a, b, c, d; // state-space matrices
  sca_util::sca_vector<double> s;          // state vector
  double fc; // 3dB cut-off frequency in Hz
  double h0; // DC gain
};

Using the state vector

If a coefficient (thus parameter) in a Laplace transfer function or state-space equation has
changed, the corresponding equation system will be reinitialized. A user-defined vector of class
sca_util::sca_vector<double> can be used to store the state of the equation system. If not specified, an
internal state vector is used, which is not accessible to the user. The user-defined state vector is not changed
during reinitialization, but only the default internal state is reset to zero. This allows the creation of filters
with different parameters, e.g., to realize a switch with different cut-off frequencies, by defining multiple
LTF instances using the same state vector. The example below shows how to model such a switch.

SCA_TDF_MODULE(ltf_switch)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;
  sca_tdf::sca_de::sca_in<bool> fc_high; // control signal from the discrete-event domain
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  ltf_switch( sc_core::sc_module_name nm, double fc0_, double fc1_, double h0_ = 1.0 )
  : in("in"), out("out"), fc_high("fc_high"), fc0(fc0_), fc1(fc1_), h0(h0_) {}

  void initialize()
  {
    num(0) = 1.0;
    den0(0) = den1(0) = 1.0;
    den0(1) = 1.0 /( 2.0 * M_PI * fc0 );
    den1(1) = 1.0 /( 2.0 * M_PI * fc1 );
  }

  void processing() 
  {
    if ( fc_high.read() ) 
      out.write( ltf1( num, den1, state, in.read(), h0 ) );
    else
      out.write( ltf0( num, den0, state, in.read(), h0 ) );
  }

 private:
  sca_tdf::sca_ltf_nd ltf0, ltf1;    
  sca_util::sca_vector<double> num, den0, den1; 

  sca_util::sca_vector<double> state; 
  double fc0, fc1;
  double h0;
};

The user-defined state vector is kept constant during reinitalization of the LTF function.
Declaration of user-defined state vector to store the state of the system during reinitalization of the
LTF function.

Using Laplace transfer functions or state-space equations in multirate applications

The Laplace transfer functions or state-space equation examples shown so far use the read method of an
input port to retrieve a single value, and use the write method to write a single value to an output port.

Laplace transfer function or state-space equations can also be embedded in multirate applications, where, for
example, the input signal has a higher rate than the output signal, as shown in Figure 2.18. In this example,
the TDF module needs to read two input values at each module activation, which then need to be passed
to the embedded function.

Figure 2.18. Laplace transfer function used for combined filtering and decimation

In order to pass all available samples at the input port directly to the LTF function, not the values, but the
reference to the port itself is passed as argument to the LTF function, as shown in the example below.

SCA_TDF_MODULE(ltf_multirate_filter)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  tf_multirate_filter( sc_core::sc_module_name nm, double fc_, double h0_ = 1.0 )
  : in("in"), out("out"), fc(fc_), h0(h0_) {}

  set_attributes()
  {
    in.set_rate(2);
  }

  void initialize()
  {
    num(0) = 1.0;
    den(0) = 1.0;
    den(1) = 1.0 /( 2.0 * M_PI * fc );
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  }

  void processing()
  {

    out.write( filter( num, den, in, h0 ) );  
  }

 private:
  sca_tdf::sca_ltf_nd filter;
  sca_util::sca_vector<double> num, den;
  double fc;
  double h0;
};

The argument in directly passes the reference to the input port to the LTF function. Note that in the
previous cases, the input port member read is used, which returns a value of type double, which is
passed to the LTF function.

In a similar way, TDF modules with embedded Laplace transfer functions or state-space equations can be
designed using output ports with a rate higher than 1. Writing multiple samples to an output port is facilitated
by the port write method, which can access the continuous-time values from a Laplace transfer or state-
space function, and write the complete set of output samples to an output port. There is no different language
construct needed to make use of this feature.

Special care has to be taken in case the number of output samples is higher than the number of input samples.
For example, in a TDF module with an output port rate of 3 and an input port rate of 2, there is 1 sample
missing at the first module activation to write the required samples (3) to the output. To resolve this, a time
continuous delay to the input signal should be specified as additional parameter delay, which is one of the
function parameters.

2.3.3. Structural composition of TDF modules

The way how TDF modules are instantiated and interconnected to form a TDF cluster does not
differ from regular SystemC modules. They can be instantiated as child modules inside a regular
SystemC parent module created with the help of the macro SC_MODULE or by deriving publicly from
sc_core::sc_module. This parent module also instantiates all necessary ports to communicate with the
outside world and internal signals for the interconnection of the child modules. The parameterization of
the instantiated modules as well as the interconnection of the modules should be done in the constructor
(e.g., created with the help of the macro SC_CTOR) of the parent SystemC module. The instantiation and
interconnection of TDF modules on the top-level inside sc_main is done in the same way.

Port binding

In order to connect TDF modules in a proper way to other TDF modules and signals, or even with regular
SystemC modules and signals, the following specific bindings are possible, as illustrated in Figure 2.19 and
Figure 2.20. The port binding rules are compatible and complementary to the SystemC rules.

Figure 2.19. Port binding rules for TDF input and output ports
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Figure 2.20. Port binding for TDF input and output converter ports

Binding a TDF input port to a TDF signal.

Binding a TDF input port to a TDF input port of the parent module (port-to-port binding).

Binding a TDF input port to a TDF output port of the parent module (port-to-port binding).

Binding a TDF output port to a TDF signal.

Binding a TDF output port to a TDF output port of the parent module (port-to-port binding).

Binding a TDF input converter port to a discrete-event input signal.

Binding a TDF input converter port to a discrete-event input port of the parent module (port-to-port
binding).

Binding a TDF input converter port to a discrete-event output port of the parent module (port-to-port
binding).

Binding a TDF output converter port to a discrete-event output signal.

Binding a TDF output converter port to a discrete-event output port of the parent module (port-to-
port binding).

Furthermore, a TDF input port or TDF output port should be bound to exactly one TDF signal throughout the
whole hierarchy. A TDF signal should be bound to exactly one TDF output port of a primitive TDF module,
and may be bound to TDF input ports of primitive modules throughout the whole hierarchy.

The example below shows the implementation of the structural composition of Figure 2.19.

SC_MODULE(my_structural_module) 
{

  sca_tdf::sca_in<double>  in; 
  sca_tdf::sca_out<double> out; 

  mod_a a; 
  mod_b b; 

  SC_CTOR(my_structural_module)

  : in("in"), out("out"), a("a"), b("b"), sig("sig") 
  {

    a.in1(in); 
    a.in2(out);
    a.out(sig);
    
    b.in(sig);
    b.out(out);
  }

 private:

  sca_tdf::sca_signal<double> sig; 
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};

The TDF input and output ports declared inside this module of class sc_core::sc_module become part
of the structural composition.
The child TDF modules are declared within the parent module. The declaration of these child modules
should be known prior to the declaration in this context, e.g., by including them via their header files.
The initialization-list in the parent module’s constructor propagates the necessary configuration
parameters to the TDF ports, TDF signals, and child modules.
Port binding is done inside the constructor.
Internal TDF signals are used to connect the TDF ports and child modules. These signal are declared
to be private, as they should not be accessible from outside the module.

The example below shows the implementation of the structural composition of Figure 2.20.

SC_MODULE(my_mixed_module) 
{
  sc_core::sc_in<double>  in; 
  sc_core::sc_out<double> out; 

  mod_c c; // TDF primitive module
  mod_d d; // TDF primitive module
  mod_e e; // SystemC module
  
  SC_CTOR(my_mixed_module)
  : in("in"), out("out"), c("c"), d("d"), e("e"),
    sig("sig"), sc_sig1("sc_sig1"), sc_sig2("sc_sig2")
  {
    c.in1(in); 
    c.in2(out);
    c.out1(sc_sig1);
    c.out2(sig);
   
    d.in1(sig);
    d.in2(sc_sig2);
    d.out(out);
    
    e.in(sc_sig1);
    e.out(sc_sig2);
  }

 private:
  sca_tdf::sca_signal<double> sig; 
  sc_core::sc_signal<bool>    sc_sig1; 
  sc_core::sc_signal<bool>    sc_sig2; 
};

2.3.4. Multirate behavior

To implement multirate behavior in a TDF module, the TDF port member function set_rate can be used.
Figure 2.21 below shows an example, where the rate of the output port is set to 2. For each module activation,
one sample is read from the input port, and two samples are written to the output port. This results in an
oversampled signal at the output, with a rate equal to the rate of the output port.

Figure 2.21. Multirate example: 2 times oversampling by inserting zeros

As already discussed in Section 2.1.3, the time step of the TDF input port, output port and module should
be consistent. As the module time step is set to 20 µs (Tm:20µs), with an input port rate of 1, the samples
at the input port are read each 20 µs. The samples at the output port are written with a time step of 10 µs.
This example inserts zeros for the additional samples, but other methods like linear interpolation or sample-
and-hold could be implemented as well.

SCA_TDF_MODULE(my_tdf_interp) {   
        



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 29

  sca_tdf::sca_in<double> in;      
  sca_tdf::sca_out<double> out;

  SCA_CTOR(my_tdf_interp) : in("in"), out("out") {} 
                
  void set_attributes()
  {
    out.set_rate(2);
  }
        
  void processing()
  { 
    out.write( in.read() ); // input sample directly fed to the output
    out.write( 0.0, 1 );    // insert zero as 2nd sample 
  }
};

Figure 2.22 shows an example, which performs decimation of the input signal, as the rate of the input port
is higher than the rate of the output port.

Figure 2.22. Multirate example: Downsampling by a factor of 2

SCA_TDF_MODULE(my_tdf_decim)   
{        
  sca_tdf::sca_in<double> in;      
  sca_tdf::sca_out<double> out;

  SCA_CTOR(my_tdf_decim) : in("in"), out("out") {} 
                
  void set_attributes()
  {
    in.set_rate(2);
  }
        
  void processing()
  { 
    out.write( in.read() ); // only write the first sample and neglect the second one
  }
};

2.3.5. Introducing delays

Section 2.1.2 explained the cases when delays are essential in a TDF model. The introduction of delays
in a TDF cluster will result in inserted samples at the beginning of the sampled TDF signals. The inserted
samples are of the same value type as used by the TDF port and signal. As the initial value for a regular
C++ data type is undefined, and thus the value of the inserted sample is undefined, it is recommended to
initialize these delay samples.

Figure 2.23 shows a basic TDF module, in which a delay of one sample is introduced at the output port.

Figure 2.23. TDF module introducing a delay of one sample

The implementation of this delay is given in the next example. It can be seen in the code, that the delay
value is also initialized with a default value of 1.1.

SCA_TDF_MODULE(my_tdf_delay) {   
        



March 8 2010 SystemC AMS extensions User’s Guide

30 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

  sca_tdf::sca_in<double>   in;      
  sca_tdf::sca_out<double> out;

  SCA_CTOR(my_tdf_delay) : in("in"), out("out") {} 
                
  void set_attributes()
  {
    out.set_delay(1);
  }

  void initialize()
  {
    out.initialize(1.1);
  }
        
  void processing()
  { 
    out.write( in.read() ); // directly write the input sample to the output (incl the delay) 
  }
};

2.4. Interaction between TDF and discrete-event domain

As explained in Section 2.1, the TDF model of computation has its own mechanisms for time annotation,
which could result in time differences between the local time of each TDF module and the time in the
discrete-event domain (SystemC kernel time). Therefore, special care should be taken in synchronizing
TDF signals with the discrete-event domain of SystemC in both directions (i.e., reading from and writing
to discrete event signals).

To maintain a high simulation efficiency despite the presence of TDF and discrete-event domain
interactions, a loosely-coupled synchronization mechanism is used, which is called data synchronization.
For TDF modeling this means that discrete events will not influence the activation and execution of
TDF modules.

2.4.1. Reading from the discrete-event domain

To read from a channel coming from the discrete-event domain, a TDF input converter port of
class sca_tdf::sca_de::sca_in<T> has to be used, see Figure 2.24. For convenience, the shorter name
sca_tdf::sc_in<T> can be used, which class name sc_in indicates the interface to the SystemC discrete-
event domain. Unlike the regular TDF input ports of class sca_tdf::sca_in<T>, the availability of a discrete-
event signal at the TDF input converter ports will not activate (“fire”) module execution. Instead, the
TDF module activation order (schedule) is determined independently at its individual port time step in
accordance with the converter port rate and the TDF module time step.

Precondition for correct data synchronization is that the value read from the converter port should be
available at the first delta cycle of the corresponding time point in the discrete-event domain. As the TDF
cluster runs independently from the discrete-event domain, it could happen that the previous discrete-event
value is read, indicating that a discrete-event process did not write the value to the channel before the
first delta cycle. This would result in a delay in the signal. To overcome this, a small time offset could be
introduced using the port member function set_timeoffset (see the section called “Port attributes”).

The example below shows the use of a TDF module, which reads the values from the discrete-event for
further TDF signal processing and writes them to a TDF output port each millisecond.

Figure 2.24. TDF module with converter port as input
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SCA_TDF_MODULE(my_de2tdf)
{
  sca_tdf::sca_de::sca_in<double> inp; // TDF input converter port
  sca_tdf::sca_out<double> out;        // TDF output port

  SCA_CTOR(my_de2tdf) : inp("inp"), out("out") {}

  void set_attributes()
  {
    set_timestep(1.0, sc_core::SC_MS);
  }

  void processing()
  {
    out.write( inp.read() );
  }
};

2.4.2. Writing to the discrete-event domain

To write to a channel in the discrete-event domain, a TDF output converter port of class
sca_tdf::sca_de::sca_out<T> should be used, see Figure 2.25. For convenience, the shorter name
sca_tdf::sc_out<T> can be used, which class name sc_out directly indicates the interface to the SystemC
discrete-event domain. The time offset and time step assigned to the output converter port define, at which
time point and time interval a value is written to the discrete-event domain.

Precondition for correct data synchronization is that the sample written to the converter port can be written
to the associated channel at the first delta cycle of the corresponding discrete-event time point. In case a
channel of class sc_core::sc_signal<T> is connected to the converter port, there is only a discrete-event
generated in case of a signal change, as indicated with the events e1, e2, and e3. In case a channel of class
sc_core::sc_buffer<T> is connected to the converter port, all samples written to the port will generate an
event, which is indicated with the additional samples e11, e12, e13, etc.

Figure 2.25. TDF module with a converter port as output

The example below shows the implementation of a TDF module, which writes samples to the discrete-
event domain.

SCA_TDF_MODULE(my_tdf2de)
{
  sca_tdf::sca_in<double> in;            // TDF input port
  sca_tdf::sca_de::sca_out<double> outp; // TDF output converter port

  SCA_CTOR(my_tdf2de) : in("in"), outp("outp") {}

  void set_attributes()
  {
    set_timestep(1.0, sc_core::SC_MS);
  }

  void processing()
  {
    outp.write( in.read() );
  }



March 8 2010 SystemC AMS extensions User’s Guide

32 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

};

2.4.3. Using discrete-event control signals

The example below shows a simple digitally controlled gain amplifier, in which the gain is defined by an
external control signal from the discrete-event domain. The execution frequency of the member function
processing is defined by the module time step, which is set to 1 ms. Each time the processing function is
called, data from the discrete-event domain is read.

Figure 2.26. TDF module with a converter port used as control input

SCA_TDF_MODULE(my_dga)
{    
  sca_tdf::sca_in<double>   in; // input port
  sca_tdf::sca_out<double> out; // output port

  // control signal from the discrete-event domain
  sca_tdf::sca_de::sca_in<bool> high_gain_state; // input converter port

  SCA_CTOR(my_dga) 
  : in("in"), out("out"), high_gain_state("high_gain_state"), 
    high_gain(100.0), low_gain(1.0) {}

  void set_attributes()
  {
    set_timestep(1.0, sc_core::SC_MS);
  }

  void processing()
  {
    double gain = high_gain_state.read() ? high_gain : low_gain; 
    out.write( gain * in.read() );
  } 

 private:
  double high_gain, low_gain;      
};

2.5. TDF execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard IEEE
1666-2005, specific functionality is implemented for the elaboration and execution of TDF models. The
essential TDF module member functions for time-domain simulation are set_attributes, initialize and
processing. A user should overload these member functions to implement initialization the initialization
and signal processing behavior of his user defined TDF module. It is not allowed to call these member
functions directly.

As depicted in Figure 2.27, the elaboration phase includes the following steps:

• TDF module attribute settings: Execute the member function set_attributes of all TDF modules.

• TDF time step calculation and propagation: Propagate and calculate unassigned port and module time
steps based on the assigned time steps and port rates. (see Section 2.1.3).
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• TDF cluster computability check: Define and check the cluster schedule.

The steps for the simulation phase are:

• TDF module initialization: Execute the (optional) member function initialize of all TDF modules.

• TDF module activation and processing: Continuously execute member function processing of each
TDF module, till all samples have been processed.

• TDF module post-processing: Execute the (optional) member function end_of_simulation of all
TDF modules. Note that this member function is not AMS specific, but is inherited from the SystemC
module base class.

Figure 2.27. TDF elaboration and simulation phases

The elaboration and simulation phases are executed by starting a time-domain simulation using the function
sc_core::sc_start. This is explained in Section 6.1.1.

2.6. Application examples

This section shows concrete application examples of the Timed Data Flow model of computation and its
multirate capabilities. Especially, the interaction of time steps and data rates will play an important role
here. The reader is encouraged to reproduce the computations regarding data rates and time steps of the
examples in this section in order to grasp the concepts of Timed Data Flow modeling.

2.6.1. BASK modulator

This example considers Binary Amplitude Shift Keying (BASK) modulation, where a sinusoidal carrier is
modulated by a binary signal. A BASK modulator consists of the carrier signal source (sin_src) and a mixer
(mixer), which basically multiplies a binary baseband signal (bit_src) with segments of the carrier signal.
Figure 2.28 shows a structural composition of the BASK modulator. The signals in this figure illustrate the
concept of Binary Amplitude Shift Keying.
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Figure 2.28. BASK modulator

The module sin_src is already described in Section 2.3.1. The mixer reads 40 carrier samples per baseband
sample. It can be implemented as follows:

SCA_TDF_MODULE(mixer) 
{
  sca_tdf::sca_in<bool>    in_bin;   // input port baseband signal
  sca_tdf::sca_in<double>  in_wav;   // input port carrier signal
  sca_tdf::sca_out<double> out;      // output port modulated signal

  SCA_CTOR(mixer)
  : in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(40) {}  // use a carrier data rate of 40
 
  void set_attributes()
  {
    in_wav.set_rate(rate);
    out.set_rate(rate);
  }
 
  void processing()
  {
    for(unsigned long i = 0; i < rate; i++)
    {
      if ( in_bin.read() ) 
        out.write( in_wav.read(i), i );
      else
        out.write( 0.0, i );
    }
  }

 private:
  unsigned long rate;
};

This is obviously more sensible than up-sampling the binary signal first to a data rate of 40 such that both
the carrier signal and the base band signal fit to a mixer with both input ports set to a data rate of 1. The
next code snippet shows how the two modules can be combined to form a BASK modulator module. Note
that a regular SC_MODULE is used in this case, in which the two TDF primitive modules are instantiated.

SC_MODULE(bask_mod)
{
  sca_tdf::sca_in<bool>    in;
  sca_tdf::sca_out<double> out;

  sin_src sine;
  mixer   mix;

  SC_CTOR(bask_mod) 
  : in("in"), out("out"), 
    sine("sine", 1.0, 1.0e7, sca_core::sca_time( 5.0, sc_core::SC_NS ) ), 
    mix("mix")
  {
    sine.out(carrier);
    mix.in_wav(carrier);
    mix.in_bin(in);
    mix.out(out);
  }

 private:
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  sca_tdf::sca_signal<double> carrier;
};

Note that the carrier frequency of 10 MHz is set by passing a parameter to the module sin_src, while the
baseband frequency is determined indirectly by the data rate of the module mixer, and the time step set at
the output of module sin_src. The port in_wav of the module mixer has the same time step as the output
of module sin_src (namely 5 ns), but a data rate of 40. Therefore, the port in_bin of the module mixer,
which has a data rate of 1, gets a time step of 200 ns. This results in a baseband frequency of 5 MHz, which
is exactly the situation depicted in Figure 2.28.

For the sake of completeness, the code of the binary baseband source, which produces a random binary
signal is given below.

SCA_TDF_MODULE(bit_src)
{
  sca_tdf::sca_out<bool> out; // output port
 
  SCA_CTOR(bit_src) : out("out") {}

  void processing()
  {
    out.write( (bool)(std::rand()%2) );
  }
};

2.6.2. BASK demodulator

The demodulation of a BASK modulated signal is done by first using a rectifier (which takes the absolute
value of the signal), followed by a low-pass filter, which can be implemented as described in Section 2.3.2
with the module ltf_nd_filter. The rectifier can be implemented as follows:

SCA_TDF_MODULE(rectifier) 
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;
 
  SCA_CTOR(rectifier) : in("in"), out("out") {}
 
  void processing()
  {
    out.write( std::abs(in.read()) );
  }
};

The output signal of the low-pass filter is a signal of type double, which contains 40 samples per 200 ns,
and needs to get sampled down to 1 sample per 200 ns (see Figure 2.29).

Figure 2.29. BASK demodulator

The next listing shows an implementation of the sampler. It has an input data rate of 40. Therefore, it reads
exactly the number of samples, which are associated to one specific bit in the baseband signal. It only
uses one sample at a fixed sampling position within the second half of the sample stream read per module
execution. The idea behind this is that the output of the low-pass filter can be expected to be settled by that
time. This sample is compared with a threshold value: If it is larger, the output of the sampler is true, and
false otherwise. This effectively models a 1-bit A/D converter, which samples its input every 200 ns.
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SCA_TDF_MODULE(sampler)
{
  sca_tdf::sca_in<double> in;  // input port
  sca_tdf::sca_out<bool>  out; // output port

  SCA_CTOR(sampler) : in("in"), out("out"), rate(40), threshold(0.2) {}

  void set_attributes()
  {
    in.set_rate(rate);
    sample_pos = (unsigned long)std::ceil( 2.0 * (double)rate/3.0 );
  }

  void processing()
  {
    if( in.read(sample_pos) > threshold ) 
      out.write(true);
    else 
      out.write(false);
  }
 
 private:
  unsigned long rate;
  double threshold;
  unsigned long sample_pos;
};

Note that the above code bears a certain causal looseness, which can occur if the rate of the input port is
larger than 1: The value of the output sample is computed based on an input sample, which has a time stamp
larger than the output token. Therefore, regarding the simulation time of the TDF model of computation,
effect precedes cause. This irregularity can easily be resolved by introducing a delay, for example with a
set_delay(1) at the output port. However, this is not really necessary since serious problems (i.e. paradoxes)
could occur only if a produced output value would be fed into a feedback loop. But in this case, a delay has
to be introduced anyway (see Section 2.1.2), which resolves the problem automatically.

The next listing shows how the three modules are combined for the overall BASK demodulator module.
Note that no time step is explicitly set here, since we expect it to be set in the part of the model which
provides the modulated signal.

SC_MODULE(bask_demod)
{
  sca_tdf::sca_in<double> in;
  sca_tdf::sca_out<bool>  out;

  rectifier     rc;
  ltf_nd_filter lp;
  sampler       sp;

  SC_CTOR(bask_demod) 
  : in("in"), out("out"), rc("rc"), lp("lp", 3.3e6), sp("sp"), rc_out("rc_out"), lp_out("lp_out")
  {
    rc.in(in);
    rc.out(rc_out);

    lp.in(rc_out);
    lp.out(lp_out);

    sp.in(lp_out);
    sp.out(out);
  }

 private:
  sca_tdf::sca_signal<double> rc_out, lp_out;
};

2.6.3. TDF simulation of the BASK example

The implementation of the complete BASK application is done in the sc_main program. Within the program
body, the bit source module bit_src, BASK modulator module bask_mod and BASK demodulator module
bask_demod are instantiated. These TDF modules are interconnected using TDF signals.

int sc_main(int argc, char* argv[])
{
  sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);
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  sca_tdf::sca_signal<bool>  in_bits, out_bits;
  sca_tdf::sca_signal<double> wave;
   
  bit_src bs("bs");          // random bit source
    bs.out(in_bits);
  
  bask_mod mod("mod");       // modulator
    mod.in(in_bits);
    mod.out(wave);
   
  bask_demod demod("demod"); // demodulator
    demod.in(wave);
    demod.out(out_bits);
  
  sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file( "tr.vcd" );

  sca_util::sca_trace( atf, in_bits, "in_bits" );
  sca_util::sca_trace( atf, wave, "wave" );
  sca_util::sca_trace( atf, out_bits, "out_bits" );
 
  sc_core::sc_start(1, sc_core::SC_US);

  sca_util::sca_close_vcd_trace_file( atf );
  
  return 0;
}

More information on the simulation control and tracing capabilities can be found in Chapter 6.

2.6.4. Interfacing the BASK example with SystemC

As shown by Figure 2.28, the components instantiated in the BASK example are all TDF modules that
belong to the same TDF cluster. In particular, the random binary signal at the data input of the mixer is
generated by the pure TDF module bit_src.

In practice, this binary signal is more likely to be produced by a digital component that follows the
discrete-event domain rules, resulting in a true heterogeneous system composed of two digital parts (the
random data generator and the data drain) and one AMS TDF part (the BASK modulator and demodulator).
Figure 2.30 shows the major modification induced by this design: the data input of the BASK modulator
(resp. the data output of the BASK demodulator) should now be a SystemC sc_core::sc_in<T> port (resp.
sc_core::sc_out<T> port) carrying bool values. From the TDF perspective, a converter port is thus required
to read from the channel (resp. to write to the channel) corresponding to the discrete-event domain port.
Such ports are indicated by the symbol  in this Figure.

Figure 2.30. BASK modulator, mixing discrete-event and TDF domain

The following code is pure SystemC. Thanks to the infinite loop in a SystemC SC_THREAD construct,
this new version of the bit source, now called bit_src_de, generates a new random bool value on its output
port out every 200 ns.

SC_MODULE(bit_src_de)
{
  sc_core::sc_out<bool> out;

  SC_CTOR(bit_src_de): out("out")
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  {
    SC_THREAD(bit_gen_thread);
  }

  void bit_gen_thread()
  {
    while(true)
    {
      bool var = (bool)(std::rand()%2);
      out.write(var);
      sc_core::wait( 200, sc_core::SC_NS );
    }
  }
};

The TDF mixer module has now a digital input in_bin connected to the output of the bit_src_de SystemC
module. The mixer source code does not differ too much from the previous one, the major modification
being the introduction of the discrete-event converter port:

SCA_TDF_MODULE(mixer_de)
{
  sca_tdf::sca_de::sca_in<bool> in_bin; // TDF converter input port from discrete-event domain
  sca_tdf::sca_in<double>       in_wav;
  sca_tdf::sca_out<double>      out;

  SCA_CTOR(mixer_de)
  : in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(40) {}

  void set_attributes()
  {
    in_wav.set_rate(rate);
    out.set_rate(rate);
  }

  void processing()
  {
    for(unsigned long i = 0; i < rate; i++)
    {
      if(in_bin.read()) 
        out.write( in_wav.read(i), i );
      else 
        out.write( 0.0, i );
    }
  }

 private:
  unsigned long rate;
};

Accordingly, the source code for the BASK modulator, shown below, details the slight change needed: the
data input is now a discrete-event input port:

SC_MODULE(bask_mod_de)
{
  sc_core::sc_in<bool>    in; // data input is now digital
  sca_tdf::sca_out<double> out;

  sin_src  sine;
  mixer_de mix;  // use mixer with discrete-event input

  SC_CTOR(bask_mod_de) 
  : in("in"), out("out"), 
    sine("sine", 1.0, 1.0e7, sca_core::sca_time( 5.0, sc_core::SC_NS ) ), 
    mix("mix"), carrier("carrier")
  {
    sine.out(carrier);
    mix.in_wav(carrier);
    mix.in_bin(in);
    mix.out(out);
  }

 private:
  sca_tdf::sca_signal<double> carrier;
};

For completeness, the source code for the BASK sampler in the demodulator is given below. The data
output out is now a converter output port. The corresponding port in the demodulator which instantiates
the sampler is declared as a traditional SystemC output port.
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SCA_TDF_MODULE(sampler_de)
{
  sca_tdf::sca_in<double> in;  // input port
  sca_tdf::sca_de::sca_out<bool>  out; // TDF converter output port to discrete-event domain

  SCA_CTOR(sampler_de) : in("in"), out("out"), rate(40), threshold(0.2) {}

  void set_attributes()
  {
    in.set_rate(rate);
    sample_pos = (unsigned long)std::ceil( 2.0 * (double)rate/3.0 );
  }

  void processing()
  {
    if( in.read(sample_pos) > threshold ) 
      out.write(true);
    else 
      out.write(false);
  }
 
 private:
  unsigned long rate;
  double threshold;
  unsigned long sample_pos;
};
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3. Linear Signal Flow modeling

3.1. Modeling fundamentals

The Linear Signal Flow model of computation allows the modeling of AMS behavior defined as relations
between variables of a set of linear algebraic equations. LSF is a continuous-time modeling style using
directed real-valued signals, resulting in a non-conservative system description. There is no dependency
between flow and potential quantities; instead only one real-value quantity is used to represent each signal.

Signal flow models can be described in a block diagram notation. The elementary parts or functions are
represented by blocks. Signals are used to interconnect these blocks. The resulting relations between the
blocks define equivalent mathematical equations. Figure 3.1 shows an example of such a signal flow block
diagram, composed of four LSF modules, which are interconnected using LSF signals. Note that the addition
“operator”, although having a different graphical representation, is also an LSF module. An LSF model is
composed of a set of connected LSF modules, which will form together an LSF equation system or LSF
cluster. The resulting LSF model has input and output LSF ports to connect it with other modules.

Figure 3.1. Example of a basic LSF model composed of 4 LSF modules

3.1.1. Setup of the LSF equation system

The SystemC AMS extensions offer a finite set of predefined LSF primitive modules implementing
functions such as addition, multiplication, integration, etc. Unlike the TDF modeling style, LSF models can
only be composed from these primitives. The AMS extensions do not offer the possibility to implement user-
defined LSF primitives. Instead, the mathematical equations describing the intended functionality should be
created by composing the predefined set of LSF primitive modules. Figure 3.2 shows some basic examples
of LSF primitives and their corresponding mathematical equations.

Figure 3.2. Examples of some basic LSF primitives and their corresponding mathematical equations

When creating an LSF model (block diagram), the mathematical equations for each block and their
interconnection will be used to compose the overall equation system. For example, the LSF model presented
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in Figure 3.1 will result in the following equation system based on the contributed equations of each
primitive as shown in Figure 3.2:

Note that the scale coefficients of the addition and the first-order time derivative block are set to 1. Instead,
additional multiplication blocks k1 and k2 are used for this example.

3.1.2. Time step assignment and propagation

Similar as for a TDF module, a time step can be assigned to an LSF module directly or can be assigned
automatically using the propagation mechanism of the time step within an LSF cluster. In case an LSF
model is connected to a TDF model, the time step from the connected TDF port(s) is propagated to the LSF
model. Consistency between locally defined LSF module time step and propagated time step is essential.
Otherwise, the time points for the solution of the LSF equation system or communication with the connected
TDF model cannot be defined properly (see also Section 2.1.3). The time step should be defined at least
at one location in the entire system.

During simulation, the LSF equation system is solved numerically with appropriate time steps, which could
be smaller than the assigned time step. The solver will at least provide results at the time points calculated
from the assigned time steps.

3.2. Language constructs

3.2.1. LSF modules

A Linear Signal Flow module is a predefined primitive module to represent a particular function or
mathematical relation, which will become part of an overall equation system. The available predefined LSF
primitive modules are listed in Table 3.1 below. Appendix A gives the details for each LSF module.

LSF module name Description

sca_lsf::sca_add Weighted addition of two LSF signals.

sca_lsf::sca_sub Weighted subtraction of two LSF signals.

sca_lsf::sca_gain Multiplication of an LSF signal by a constant gain.

sca_lsf::sca_dot Scaled first-order time derivative of an LSF signal.

sca_lsf::sca_integ Scaled time-domain integration of an LSF signal.

sca_lsf::sca_delay Scaled time-delayed version of an LSF signal.

sca_lsf::sca_source LSF source.

sca_lsf::sca_ltf_nd Scaled Laplace transfer function in the time-domain in the
numerator-denominator form.

sca_lsf::sca_ltf_zp Scaled Laplace transfer function in the time-domain in the zero-pole
form.

sca_lsf::sca_ss Single-input single-output state-space equation.

sca_lsf::sca_tdf::sca_gain,
sca_lsf::sca_tdf_gain

Scaled multiplication of a TDF input signal with an LSF input signal.

sca_lsf::sca_tdf::sca_source,
sca_lsf::sca_tdf_source

Scaled conversion of a TDF input signal to an LSF output signal.

sca_lsf::sca_tdf::sca_sink,
sca_lsf::sca_tdf_sink

Scaled conversion from an LSF input signal to a TDF output signal.

sca_lsf::sca_tdf::sca_mux,
sca_lsf::sca_tdf_mux

Selection of one of two LSF input signals by a TDF control signal
(multiplexer).
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LSF module name Description

sca_lsf::sca_tdf::sca_demux,
sca_lsf::sca_tdf_demux

Routing of an LSF input signal to either one of two LSF output
signals controlled by a TDF signal (demultiplexer).

sca_lsf::sca_de::sca_gain,
sca_lsf::sca_de_gain

Scaled multiplication of a discrete-event input signal by an LSF input
signal.

sca_lsf::sca_de::sca_source,
sca_lsf::sca_de_source

Scaled conversion of a discrete-event input signal to an LSF output
signal.

sca_lsf::sca_de::sca_sink,
sca_lsf::sca_de_sink

Scaled conversion from an LSF input signal to a discrete-event
output signal.

sca_lsf::sca_de::sca_mux,
sca_lsf::sca_de_mux

Selection of one of two LSF input signals by a discrete-event control
signal (multiplexer).

sca_lsf::sca_de::sca_demux,
sca_lsf::sca_de_demux

Routing of an LSF input signal to either one of two LSF output
signals controlled by a discrete-event signal (demultiplexer).

Table 3.1. LSF primitive modules

Module time step

In order to solve the LSF equation system, a time step has to be associated to the set of connected
LSF modules as part of the elaboration phase. This can be done with the LSF module member function
set_timestep. Alternatively, the LSF model can rely on the time step propagation mechanism, which passes
the time step from module to module via its ports across the TDF, LSF, and ELN models of computation.
So in cases where an LSF model is connected to a TDF model, the time step from the connected port, if
available, is propagated to the LSF model. In case propagated time steps and user-defined time steps are
used, consistency between these time steps is compulsory, similar as described in Section 2.1.3.

The module time step can be assigned by calling the member function set_timestep of the instantiated
object within the constructor of the parent module, and passing a double value and the time unit or an object
of type sca_core::sca_time, as shown in the following example:

SC_MODULE(my_lsf_source)
{
  // port declaration
  sca_lsf::sca_out y;
  
  // child module declaration
  sca_lsf::sca_source src;
  
  SC_CTOR(my_lsf_source)
  : y("y"), 
    src("src", 0.0, 0.0, 1.0e-3, 1.0e3)    // 1 kHz sinusoidal source with an amplitude of 1e-3
  {
    src.set_timestep(0.5, sc_core::SC_MS); // set module timestep of source to 0.5 ms
    src.y(y);
  }
};

3.2.2. LSF ports

An LSF port is an object that can be used to connect several LSF models together using LSF signals which
are bind to this port. Due to the nature of the LSF modeling formalism, an LSF port can be either an input
port or an output port, but not inout. LSF ports are used to connect LSF modules using signals of class
sca_lsf::sca_signal. As LSF ports are always hierarchical ports inside a parent module, they can be used
to connect to the LSF child modules directly, following the port-to-port binding rule (see Section 3.3.1).
LSF ports have a predefined data type, also called signal flow nature, which prevents the usage of user-
defined data types.

There are currently two classes of LSF ports:

• LSF input ports of class sca_lsf::sca_in.

• LSF output ports of class sca_lsf::sca_out.
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The example below shows how LSF ports are used within an LSF structural model.

SC_MODULE(my_lsf_model)
{
  // port declarations

  sca_lsf::sca_in  x;             

  sca_lsf::sca_out y; 
  

  SC_CTOR(my_lsf_model) : x("x"), y("y")   
  {
    // model implementation here  
  }
};

LSF input port that carries a continuous-time and continuous-value signal x(t).
LSF output port that carries a continuous-time and continuous-value signal y(t).
Using the constructor initialization-list to assign the names “x” and “y” to the input and output ports,
respectively.

There are no converter ports available for LSF. Instead, specialized converter modules are provided to
connect to the TDF or discrete-event domain. This is explained in Section 3.4. Unlike TDF ports, the LSF
ports do not provide member functions to directly read to or write from the channel.

3.2.3. LSF signals

LSF signals are used to connect LSF primitive modules together. LSF signals carry the continuous-time and
continuous-value of a signal, while LSF ports determine the direction of the signals from one LSF module
to another. Similar as for LSF ports, LSF signals use an internal data structure to hold the continuous-time /
continuous-value signal. Therefore, the LSF signals are not defined as a template class and should be used
according to the example below:

  // signal declaration
  sca_lsf::sca_signal sig; // LSF signal

As in SystemC, the constructor initialization-list of the parent module can be used to assign a user-defined
name to a signal:

  // assign the names of LSF signal instance in the constructor initialization-list
  SC_CTOR(my_module) : sig("sig") {}

Section 3.3 will describe the creation of structural LSF models and will show examples of assigning user-
defined names to ports and signals.

3.3. Modeling continuous-time behavior

LSF models can be used to implement linear dynamic, continuous-time behavior. LSF models can only be
composed using LSF primitive modules. Therefore an LSF model is always a structural model.

3.3.1. Structural composition of LSF modules

LSF modules should be instantiated as child modules inside a regular SystemC parent module created
with the help of the macro SC_MODULE or by deriving publicly from sc_core::sc_module. This parent
module also instantiates all necessary ports to communicate with the outside world and internal signals for
the interconnection of the child modules. The parameterization of the instantiated modules as well as the
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module.

Port binding

In order to connect LSF modules in a proper way to other LSF modules and signals, the following specific
bindings are possible, illustrated in Figure 3.3. The port binding rules are compatible and complementary
to the SystemC and TDF rules (see also Section 2.3.3).
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Figure 3.3. Port binding rules for LSF input and output ports

Binding an LSF input port to an LSF signal.

Binding an LSF input port to an LSF input port of the parent module (port-to-port binding).

Binding an LSF input port to an LSF output port of the parent module (port-to-port binding).

Binding an LSF output port to an LSF signal.

Binding an LSF output port to an LSF output port of the parent module (port-to-port binding).

Furthermore, each LSF signal should be bound to exactly one LSF output port of an LSF primitive module,
and may be bound to any number of LSF input ports of LSF primitive modules throughout the whole
hierarchy.

For LSF primitive modules, which have ports connected to TDF or discrete-event signals or ports, should
follow the port binding rules of the corresponding models of computation.

The example below shows the implementation of the structural composition of Figure 3.3.

SC_MODULE(my_structural_lsf_model)
{ 

  sca_lsf::sca_in  x; 
  sca_lsf::sca_out y;
  

  sca_lsf::sca_gain gain1, gain2; 
  sca_lsf::sca_dot dot1;
  sca_lsf::sca_add add1;
  
  my_structural_lsf_model( sc_core::sc_module_name, double k1, double k2 )

  : x("x"), y("y"), gain1("gain1", k1), gain2("gain2", k2), dot1("dot1"), add1("add1"), 
    sig1("sig1"), sig2("sig2"), sig3("sig3")
  {

    gain1.x(x);   
    gain1.y(sig1);

    gain1.set_timestep(1,sc_core::SC_MS); 
    
    add1.x1(sig1);                                  
    add1.x2(sig3);
    add1.y(sig2);

    dot1.x(sig2);
    dot1.y(y);

    gain2.x(y); 
    gain2.y(sig3);
  }
 
 private:

  sca_lsf::sca_signal sig1, sig2, sig3;  
};

The LSF input and output ports declared inside this module of class sc_core::sc_module become part
of the structural composition.
The LSF primitive modules are declared within the parent module as child modules.
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The initialization-list in the parent module’s constructor propagates the necessary configuration
parameters to the LSF ports, LSF signals, and child modules.
Port binding is done inside the constructor of the parent module.
The time step for LSF primitive modules is done inside the constructor of the parent module. An LSF
module could also get its time step via propagation of the time step of its connected modules.
Internal LSF signals are used to connect the LSF ports and child modules. These signals are declared
to be private, as they should not be accessible from outside the module.

3.3.2. Continuous-time modeling

The example below shows a first-order low-pass filter, based on the same Laplace transfer function as
described in Section 2.3.2:

where H0 is the DC gain and fc is the filter cut-off frequency in Hz. The Laplace transfer function can be
rewritten for an LSF implementation into:

The corresponding block diagram notation and code implementation is given below, where the scaling
coefficients of the LSF primitive modules are used to implement the DC gain H0 and the filter cut-off
frequency fc :

Figure 3.4. Example of an LSF model implementing a first-order low-pass filter

SC_MODULE(my_lsf_filter)
{ 
  sca_lsf::sca_in  x;
  sca_lsf::sca_out y;
  
  sca_lsf::sca_sub sub1;
  sca_lsf::sca_dot dot1;
  
  my_lsf_filter( sc_core::sc_module_name, double h0 = 1.0, double fc = 1.0e3 )
  : x("x"), y("y"), sub1("sub1", h0), dot1("dot1", 1.0/(2.0*M_PI*fc) ), sig("sig")
  {
    sub1.x1(x);                                
    sub1.x2(sig);
    sub1.y(y);

    dot1.x(y);
    dot1.y(sig);
  }
 
 private:
  sca_lsf::sca_signal sig;
};

The gain coefficient h0 for the input signal is passed via the constructor to the instance sub1 and the
frequency fc is passed via the constructor to the instance dot1.
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3.4. Interaction between LSF and discrete-event or TDF models

The LSF model of computation will setup and solve an equation system to simulate the modeled continuous-
time behavior, based on the basic set of LSF primitive modules described in Section 3.2.1. Any “external”
input value, e.g., from a discrete-event signal or TDF sample, needs to be contributed to the equation system
via one of these LSF primitive modules. Therefore, specialized LSF primitive modules with ports to the
discrete-event domain and TDF models of computation are available, which are called converter modules.
Main purpose of these modules is to establish an interface to convert and transfer data from one model of
computation to the other.

3.4.1. Reading from and writing to discrete-event models

In order to connect LSF models with discrete-event models, the LSF converter modules with an internal
port of class sc_core::sc_in or sc_core::sc_out should be used.

Figure 3.5 shows the LSF primitive module sca_lsf::sca_de::sca_source reading from a discrete-event
signal and writing to an LSF signal. In this example a module time step of 1 ms is assigned to the LSF
converter module. The LSF model continuously reads values from the input at the time points, which are
calculated from the assigned time steps. The input value is assumed constant until the next value is read.
The input values are interpreted to form a continuous-time signal, which is made available at the output of
the converter module (read input samples shown as a dotted signal).

Figure 3.5. LSF converter module reading from a discrete-event input signal and writing to an LSF output signal

Figure 3.6 shows the LSF primitive module sca_lsf::sca_de::sca_sink, which reads an LSF signal and
writes the equivalent value to the discrete-event signal. The values at the output port are written at the time
points, which are calculated from the assigned module time step of 1 ms.

Figure 3.6. LSF converter module reading from an LSF input signal and writing to a discrete-event output signal

3.4.2. Reading from and writing to TDF models

In a similar way, LSF models can be connected to TDF models using converter modules with an internal
port of class sca_tdf::sca_in or sca_tdf::sca_out.

Figure 3.7 shows the LSF primitive module sca_lsf::sca_tdf::sca_source reading from a TDF signal and
writing to an LSF signal. In this example a module time step of 1 ms is assigned to the LSF converter module.
The LSF model continuously reads the samples from the TDF input. The input samples are interpreted to
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form a continuous-time signal, available at the output of the converter module (input samples shown as a
dotted signal).

Figure 3.7. LSF converter module reading from a TDF input signal and writing to an LSF output signal

Figure 3.8 shows the LSF primitive module sca_lsf::sca_tdf::sca_sink reading an LSF signal and writing
the equivalent values to a TDF signal. The samples at the output port are written at the time points, which
are calculated from the assigned module time step of 1 ms.

Figure 3.8. LSF converter module reading from an LSF input signal and writing to a TDF output signal

3.4.3. Using discrete-event or TDF control signals

Although not fundamentally different from the LSF converter modules described in the previous
two sections, additional LSF primitives are available to control or scale variables or signals
within an LSF equation system. The LSF primitives used for control can be identified by
having an input port of class sc_core::sc_in or sca_tdf::sca_in of data type bool. Examples
are the multiplexers (sca_lsf::sca_de::sca_mux and sca_lsf::sca_tdf::sca_mux) and demultiplexers
(sca_lsf::sca_de::sca_demux and sca_lsf::sca_tdf::sca_demux). The primitives, which can scale
variables or signals make use of the same ports, but using data type double. Examples are the multiplication
primitives (sca_lsf::sca_de::sca_gain, and sca_lsf::sca_tdf::sca_gain). Note that if a parameter of an LSF
module has changed, the corresponding LSF equation system will be reinitialized.

Figure 3.9 shows an example how LSF primitives can be used in a structural model to control or scale
signals.

Figure 3.9. LSF model using discrete-event and TDF control signals
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Similar as for the LSF converter modules described in Section 3.4, the discrete-event or TDF control signals
are read with a fixed time step, which corresponds to the module time step. Only then the LSF equation
system will be updated.

3.4.4. LSF model encapsulation

The converter modules described in the previous sections can be used to encapsulate an LSF model within
a different model of computation. Figure 3.10 shows an example on how to use converter modules to and
from the TDF model of computation to encapsulate LSF behavior. In this case, access to and from the
LSF equation system use discrete-time signals following the TDF semantics, whereas the internal LSF
signals and computations are continuous-time. This approach gives another possibility to embed continuous-
time behavior in the TDF model of computation, besides the embedded linear dynamic equations for TDF
modules described in Section 2.3.2.

Figure 3.10. LSF equation system encapsulated for inclusion into
a structural TDF model description by using converter modules

The example below shows the implementation of Figure 3.10.

SC_MODULE(lsf_in_tdf)
{ 
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;
  
  sca_lsf::sca_add  add1;
  sca_lsf::sca_dot  dot1;
  sca_lsf::sca_gain gain1;
  sca_lsf::sca_tdf::sca_source tdf2lsf;
  sca_lsf::sca_tdf::sca_sink   lsf2tdf;
  
  lsf_in_tdf( sc_core::sc_module_name, double k, double k2 )
  : in("in"), out("out"), add1("add1"), dot1("dot1", k), gain1("gain1", k2), tdf2lsf("tdf2lsf"), 
    lsf2tdf("lsf2tdf"), sig1("sig1"), sig2("sig2"), sig3("sig3"), sig4("sig4")
  {
    tdf2lsf.inp(in);
    tdf2lsf.y(sig1);

    add1.x1(sig1);
    add1.x2(sig3);
    add1.y(sig2);
    
    dot1.x(sig2);
    dot1.y(sig4);

    gain1.x(sig4);
    gain1.y(sig3);

    lsf2tdf.x(sig4);
    lsf2tdf.outp(out); 
  }
 
 private:
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  sca_lsf::sca_signal sig1, sig2, sig3, sig4;
};

A similar approach can be used to encapsulate an LSF model for inclusion into a structural discrete-event
model description, using the converter modules to and from the discrete-event domain as explained in
Section 3.4.1.

3.5. LSF execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard IEEE
1666-2005, specific functionality is implemented for the elaboration and execution of LSF models.

As depicted in Figure 3.11, the elaboration phase includes the following steps:

• LSF time step calculation and propagation: Define the time step and check consistency inside each LSF
model (see also Section 3.1.2).

• LSF equation setup and solvability check: Compose the LSF equation system from the contributing
equations provided by the predefined LSF primitive modules and their relationship defined by the
composition. Check whether the resulting equation system can be solved.

The steps for the simulation phase are:

• LSF initialization: First set all LSF signals to zero and then set the initial conditions of the system based
on the potentially defined initial conditions of the LSF primitives.

• LSF time-domain simulation: The LSF equation system is solved numerically using appropriate time
steps, which could be smaller than the assigned time step. The solver will at least provide results at the
time points, calculated from the assigned time step.

Figure 3.11. LSF elaboration and simulation phases

The elaboration and simulation phase are executed by starting a time-domain simulation using the function
sc_core::sc_start. This is explained in Section 6.1.1.

3.6. Application examples

This section shows some basic application examples using Linear Signal Flow modeling.

3.6.1. PID controller

The LSF modeling formalism is very suitable to model control systems. An example of such a control
system is shown in Figure 3.12. This example shows the use of a Proportional–Integral–Derivative (PID)
controller, which is part of a control loop. The input of the PID controller is an error signal e(t), which is
the difference between a measured output value y(t) of a certain device and the desired reference input y0.
The control output u(t) generated by the PID controller, which regulates the behavior of the device under
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control, will be such that the error signal will be minimized. The responsiveness and behavior of the PID
controller to an error, either caused by a (sudden) change of the reference input or output value, depends on
the PID controller characteristics defined by the parameters Kp, Ki, and Kd.

Figure 3.12. Block diagram of a PID controller within a control loop

The parameters Kp, Ki, and Kd are used within the PID controller to set the proportional, integral, and
derivative terms, which are then summed to calculate the control output. The equation system of the PID
controller, in which e(t) is the error input signal and u(t) is the controller output, then becomes:

The PID controller can be implemented by using LSF primitive modules in a parent module as shown below:

SC_MODULE(pid_controller)
{ 
  sca_lsf::sca_in  e;
  sca_lsf::sca_out u;
  
  sca_lsf::sca_gain  gain1;
  sca_lsf::sca_integ integ1;
  sca_lsf::sca_dot   dot1;

  sca_lsf::sca_add   add1, add2;  
  

  pid_controller( sc_core::sc_module_name, double kp, double ki, double kd )  
  : e("e"), u("u"), gain1("gain1", kp), integ1("integ1", ki), dot1("dot1", kd), add1("add1"), 
    add2("add2"), sig_p("sig_p"), sig_i("sig_i"), sig_d("sig_d"), sig_pi("sig_pi") 
  {
    gain1.x(e);                                
    gain1.y(sig_p);

    integ1.x(e);                                
    integ1.y(sig_i);

    dot1.x(e);
    dot1.y(sig_d);

    add1.x1(sig_p);
    add1.x2(sig_i);
    add1.y(sig_pi);

    add2.x1(sig_pi);
    add2.x2(sig_d);
    add2.y(u);
  }
 
 private:
  sca_lsf::sca_signal sig_p, sig_i, sig_d, sig_pi;
};

In order to sum the proportional, integral, and derivative terms, two adders are used, as each primitive
adder module has only two inputs.
The parameters for the PID controller can be assigned via the constructor, which allows their setting
from the parent module (or sc_main function) in which the PID controller is instantiated.
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3.6.2. Continuous-time sigma-delta modulator

Figure 3.13 shows the application of a continuous-time sigma-delta (CTSD) modulator architecture,
containing a loop filter H(s), a quantizer and a digital to analog converter (DAC) in the feedback path. The
loop filter is implemented using LSF primitives. The quantizer and DAC are implemented as TDF modules.
LSF converter modules to and from the TDF model of computation are used, to be able to sample the
continuous-time filter output signal U(s) to a discrete-time domain signal V(z), and to convert the discrete-
time DAC output signal W(z) to a continuous-time feedback signal T(s).

Figure 3.13. Block diagram of a continuous-time sigma-delta (CTSD) modulator

A 3rd-order loop filter is implemented using three integrators, which are cascaded and summed with
weightings factors k1, k2, and k3. The corresponding transfer function H(s) for this loop filter then becomes:

The loop filter can be implemented by using LSF primitive modules in a parent module as shown below:

SC_MODULE(ctsd_loop_filter)
{ 
  sca_lsf::sca_in x;
  sca_tdf::sca_out<double> v;
  sca_tdf::sca_in<double>  w;
  
  sca_lsf::sca_tdf::sca_source tdf2lsf;
  sca_lsf::sca_sub   sub1;
  sca_lsf::sca_integ integ1, integ2, integ3;
  sca_lsf::sca_gain  gain2, gain3;
  sca_lsf::sca_add   add1, add2;
  sca_lsf::sca_tdf::sca_sink lsf2tdf;
  
  ctsd_loop_filter( sc_core::sc_module_name, double k1, double k2, double k3 ) 
  : x("x"), v("v"), w("w"), tdf2lsf("tdf2lsf"), sub1("sub1"), integ1("integ1", k1), integ2("integ2"), 
    integ3("integ3"), gain2("gain2", k2), gain3("gain3", k3), add1("add1"), add2("add2"), 
    lsf2tdf("lsf2tdf"), sig_t("sig_t"), sig_i("sig_1"), sig_i1("sig_i1"), sig_i2("sig_i2"), 
    sig_i3("sig_i3"), sig_a1("sig_a1"), sig_a2("sig_a2"), sig_a3("sig_a3"), sig_u("sig_u")
  {
    tdf2lsf.inp(w);
    tdf2lsf.y(sig_t);

    sub1.x1(x);
    sub1.x2(sig_t);
    sub1.y(sig_i);

    integ3.x(sig_i);
    integ3.y(sig_i3);

    integ2.x(sig_i3);
    integ2.y(sig_i2);

    integ1.x(sig_i2);
    integ1.y(sig_i1);
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    gain3.x(sig_i3);
    gain3.y(sig_a1);

    gain2.x(sig_i2);
    gain2.y(sig_a2);

    add1.x1(sig_a1);
    add1.x2(sig_a2);
    add1.y(sig_a3);

    add2.x1(sig_a3);
    add2.x2(sig_i1);
    add2.y(sig_u);

    lsf2tdf.x(sig_u);
    lsf2tdf.outp(v); 
  }
 
 private:
  sca_lsf::sca_signal sig_t, sig_i, sig_i1, sig_i2, sig_i3;
  sca_lsf::sca_signal sig_a1, sig_a2, sig_a3, sig_u;
};
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4. Electrical Linear Networks modeling

4.1. Modeling fundamentals

The Electrical Linear Networks model of computation introduces the use of electrical primitives and their
interconnections to model conservative, continuous-time behavior. The ELN modeling style allows the
instantiation of electrical primitives, which can be connected together using electrical nodes, to form
an electrical network. The mathematical relations between the electrical primitives are defined at each
node in the network, where both the potential (voltage) and flow (current) quantities are used according
to Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). As such, the electrical network
is represented by a set of differential algebraic equations, which will be resolved during simulation to
determine the actual circuit behavior.
Figure 4.1 shows an example of an electrical network, with two resistors, a capacitor, and a current source.
Such a network is called an ELN model and is composed of a set of connected ELN primitive modules, which
will form together an ELN equation system or cluster. Each ELN primitive module can have one or more
ELN terminals. The ELN primitive modules are interconnected via their terminals using ELN nodes. The
reference or ground node, which always has a voltage of zero, is called ELN reference node. ELN terminals
are also used as an interface to connect the ELN model with other ELN models.

Figure 4.1. Example of a basic ELN model representing an electrical network

4.1.1. Setup of the equation system

The SystemC AMS extensions offer a finite set of ELN primitive modules such as sources (voltage or
current), linear lumped elements (resistors, capacitors, inductors), linear distributed elements (transmission
lines), ideal amplifier (nullor), ideal transformer, linear gyrator, and ideal switches. Similar to the LSF
modeling style, ELN models can only be composed from these primitives, as there is no possibility to
implement user-defined electrical primitives. Figure 4.2 shows some ELN lumped elements and their
corresponding mathematical equations.

ip,n(t) = C ·
d(vp,n(t) +

q0
C )

dt vp,n(t) = L ·
d(ip,n(t) +

phi0
L )

dtvp,n(t) = ip,n(t) · R

Figure 4.2. Examples of the basic ELN lumped elements: resistor (R), capacitor
(C), and inductor (L) with their corresponding mathematical equations

When creating an ELN model (electrical network), the mathematical equations for each primitive and their
relationship defined at each node will be used to compose the overall equation system. For example, the
ELN model presented in Figure 4.1 will result in an ELN equation system for node A and B by following
Kirchhoff’s current and voltage laws, and using the contributed equations of each primitive as shown in
Figure 4.2.
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Note that the current through ELN primitives with two terminals is defined as the current flowing from
terminal p to terminal n. This also holds for the current sources.

4.1.2. Time step assignment and propagation

Similar as for a TDF module, a time step can be assigned to an ELN module directly or can be assigned
automatically using the propagation mechanism of the time step within an ELN equation system. In case
an ELN model is connected to a TDF model, the time step from the connected TDF port(s) is propagated to
the ELN model. Consistency between locally defined ELN module time steps and propagated time steps is
essential. Otherwise, the time points for the solution of the ELN equation system or communication with the
connected TDF model cannot be defined properly (see also Section 2.1.3). The time step should be defined
at least at one location in the entire system.

During simulation, this ELN equation system is solved numerically at appropriate time steps, which could
be smaller than the assigned time step. The solver will at least provide results at the time points, calculated
from the assigned time steps.

4.2. Language constructs

4.2.1. ELN modules

An ELN module is a predefined electrical primitive, which can be used to build an electrical network. The
available predefined ELN primitive modules are listed in Table 4.1 below. Appendix A gives the details
for each ELN module.

ELN module name Description

sca_eln::sca_r Resistor

sca_eln::sca_c Capacitor

sca_eln::sca_l Inductor

sca_eln::sca_vcvs Voltage controlled voltage source

sca_eln::sca_vccs Voltage controlled current source

sca_eln::sca_ccvs Current controlled voltage source

>sca_eln::sca_cccs Current controlled current source

sca_eln::sca_nullor Nullor (nullator - norator pair), ideal op-amp

sca_eln::sca_gyrator Gyrator

sca_eln::sca_ideal_transformer Ideal transformer

sca_eln::sca_transmission_line Transmission line

sca_eln::sca_vsource Independent voltage source

sca_eln::sca_isource Independent current source

sca_eln::sca_tdf::sca_r,
sca_eln::sca_tdf_r

Variable resistor controlled by a TDF input signal

sca_eln::sca_tdf::sca_c,
sca_eln::sca_tdf_c

Variable capacitor controlled by a TDF input signal

sca_eln::sca_tdf::sca_l,
sca_eln::sca_tdf_l

Variable inductor controlled by a TDF input signal

sca_eln::sca_tdf::sca_rswitch,
sca_eln::sca_tdf_rswitch

Switch controlled by a TDF input signal
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ELN module name Description

sca_eln::sca_tdf::sca_vsource,
sca_eln::sca_tdf_vsource

Voltage source driven by a TDF input signal

sca_eln::sca_tdf::sca_isource,
sca_eln::sca_tdf_isource

Current source driven by a TDF input signal

sca_eln::sca_tdf::sca_vsink,
sca_eln::sca_tdf_vsink

Converts voltage to a TDF output signal

sca_eln::sca_tdf::sca_isink,
sca_eln::sca_tdf_isink

Converts current to a TDF output signal

sca_eln::sca_de::sca_r,
sca_eln::sca_de_r

Variable resistor controlled by a discrete-event input signal

sca_eln::sca_de::sca_c,
sca_eln::sca_de_c

Variable capacitor controlled by a discrete-event input signal

sca_eln::sca_de::sca_l,
sca_eln::sca_de_l

Variable inductor controlled by a discrete-event input signal

sca_eln::sca_de::sca_rswitch,
sca_eln::sca_de_rswitch

Switch controlled by a discrete-event input signal

sca_eln::sca_de::sca_vsource,
sca_eln::sca_de_vsource

Voltage source driven by a discrete-event input signal

sca_eln::sca_de::sca_isource,
sca_eln::sca_de_isource

Current source driven by a discrete-event input signal

sca_eln::sca_de::sca_vsink,
sca_eln::sca_de_vsink

Converts voltage to a discrete-event output signal

sca_eln::sca_de::sca_isink,
sca_eln::sca_de_isink

Converts current to a discrete-event output signal

Table 4.1. ELN primitive modules

Module time step

In order to solve the ELN equation system, a time step should be associated to the set of connected
ELN modules as part of the elaboration phase. This can be done with the ELN module member function
set_timestep. Alternatively, the ELN model can rely on the time step propagation mechanism, which passes
the time step from module to module via its ports across the TDF, LSF, and ELN models of computation.
So in cases where an ELN model is connected to a TDF model, the time step from the connected port, if
available, is propagated to the ELN model. In case propagated time steps and user-defined time steps are
used, consistency between these time steps is compulsory, similar as described in Section 2.1.3.

The module time step can be assigned by calling the member function set_timestep of the instantiated
object within the constructor of the parent module, and passing a double value and the time unit or an object
of type sca_core::sca_time, as shown in the following example:

SC_MODULE(my_eln_source)
{
  // terminal declaration
  sca_eln::sca_terminal p;
  
  // child module declaration
  sca_eln::sca_vsource v_src;
 
  SC_CTOR(my_eln_source)
  : p("p"), 
    v_src("v_src", 0.0, 0.0, 1.0e-3, 1.0e3),  // 1 kHz sinusoidal source with an amplitude of 1 mV
    gnd("gnd")    
  {
    v_src.set_timestep(0.25, sc_core::SC_MS); // set module timestep to 0.25 ms
    v_src.p(p);
    v_src.n(gnd);
  }
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 private:
  sca_eln::sca_node_ref gnd;
};

4.2.2. ELN terminals

An ELN terminal is an object that can be used to connect several ELN models together, using ELN nodes
which are bound to this terminal. Due to the conservative nature of the ELN modeling formalism, an
ELN terminal is not defined as an input or output port; instead, these terminal are used to allow making
connections with nodes of class sca_eln::sca_node or sca_eln::sca_node_ref (see Section 4.2.3). As ELN
terminals are always used in a structural (parent) module, they can also be used to connect to the ELN child
modules directly, following the port-to-port binding rule (see Section 4.3.1). ELN terminals make use of
an internal data type, also called electrical nature, which prevents the usage of user-defined data types.

The example below shows how ELN terminals are used within an ELN structural model.

SC_MODULE(my_eln_model)
{
  // terminal declarations

  sca_eln::sca_terminal p;             
  sca_eln::sca_terminal n;  
     

  SC_CTOR(my_eln_model) : p("p"), n("n")  
  {
    // model implementation here  
  }
};

ELN positive (p) and negative (n) terminal that carries a continuous-time and -value signal.
Using the constructor initialization-list to assign the names “p” and “n” to the p and n terminals,
respectively.

Specialized converter modules are available to connect ELN modules to the TDF or discrete-event domain.
This is explained in Section 4.4. ELN terminals do not provide read or write access methods.

4.2.3. ELN nodes

ELN nodes are used to connect ELN primitive modules together. In this case, multiple ELN primitives share
the same node (also called net). There are two classes of ELN nodes:

• ELN node of class sca_eln::sca_node.

• ELN reference node (ground) of class sca_eln::sca_node_ref.

The ELN nodes and reference nodes are used to set up the overall equation system. The example below
shows how to use ELN nodes and ELN reference nodes.

  // node declarations
  sca_eln::sca_node     net1; // ELN node (called "net1")
  sca_eln::sca_node_ref gnd;  // ELN reference node (called ground, "gnd") 

As in SystemC, the constructor initialization-list of the parent module can be used to assign a user-defined
name to a node:

  // using the constructor initialization-list to assign the names to the declared ELN nodes
  SC_CTOR(my_eln_module) : net1("net1"), gnd("gnd") {}

Section 4.3 will describe the creation of structural ELN models and will show examples of assigning user-
defined names to terminals and nodes.

4.3. Modeling continuous-time behavior

ELN models can be used to implement linear dynamic, continuous-time, conservative behavior. ELN
models can only be composed using ELN primitive modules. Therefore an ELN model is always a structural
model.
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4.3.1. Structural composition of ELN modules

ELN modules should be instantiated as child modules inside a regular SystemC parent module created
with the help of the macro SC_MODULE or by deriving publicly from sc_core::sc_module. This parent
module also instantiates all necessary terminals to communicate with the outside world and internal nodes
for the interconnection of the child modules. The parameterization of the instantiated modules as well as the
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module.

Port (terminal) binding

In order to connect ELN modules in a proper way to other ELN modules and nodes, the following specific
bindings are possible, as shown in Figure 3.3. The port binding rules are compatible and complementary
to the SystemC rules.

Figure 4.3. Port binding rules for ELN terminals

Binding an ELN terminal to an ELN node.

Binding an ELN terminal to an ELN reference node.

Binding an ELN terminal to an ELN terminal of the parent module (port-to-port binding).

Furthermore, an ELN terminal should be bound to exactly one ELN node or reference node throughout the
whole hierarchy. An ELN node or ELN reference node should be bound to one or more ELN terminals
throughout the whole hierarchy.

ELN primitive modules, which have ports to connect to TDF or discrete-event signals or ports, should
follow the port binding rules of the corresponding models of computation.

The example below shows the implementation of the structural composition of Figure 4.3.

SC_MODULE(my_structural_eln_model)
{ 

  sca_eln::sca_terminal a; 
  sca_eln::sca_terminal b;
  

  sca_eln::sca_r r1, r2; 
  sca_eln::sca_c c1;
  
  SC_CTOR(my_structural_eln_model)

  : a("a"), b("b"), r1("r1", 10e3), r2("r2", 100.0), c1("c1", 100e-6), net1("net1"), gnd("gnd") 
  {

    r1.p(a);   
    r1.n(b);

    r2.p(a);
    r2.n(net1);

    c1.p(net1);
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    c1.n(gnd);
  }
 
 private:

  sca_eln::sca_node net1; 
  sca_eln::sca_node_ref gnd;
};

The ELN terminals declared inside this module of class sc_core::sc_module become part of the
structural composition.
The ELN primitive modules are declared within the parent module as child modules.
The initialization-list in the parent module’s constructor propagates the necessary configuration
parameters to the ELN terminals, ELN nodes, and child modules.
Port (terminal) binding is done inside the constructor of the parent module.
Internal ELN nodes are used to connect the ELN terminals and child modules. These nodes are declared
in the private space, as they should not be accessible from outside the module.

4.3.2. Continuous-time modeling

The example below shows a first-order low-pass filter, based on the same Laplace transfer function as
described in Section 2.3.2. The cut-off frequency of the filter is defined by the time constant τ of the filter,
which is the product of the resistance and capacitance value:

The circuit implementation of this filter is rather simple, as shown in Figure 4.4.

Figure 4.4. ELN circuit implementation of a first-order low-pass filter

The code implementation for the first-order low-pass filter, implemented as RC network is given below:

SC_MODULE(my_eln_filter)
{ 
  sca_eln::sca_terminal a;
  sca_eln::sca_terminal b;
  
  sca_eln::sca_r r1;
  sca_eln::sca_c c1;
  
  my_eln_filter( sc_core::sc_module_name, double r1_value, double c1_value )
  : a("a"), b("b"),  r1("r1", r1_value), c1("c1", c1_value), gnd("gnd"),
  {
    r1.n(a);                                
    r1.p(b);

    c1.n(b);
    c1.p(gnd);
  }
 
 private:
  sca_eln::sca_node_ref gnd;
};

Note that the time step for this network has not been defined in this ELN module. This means that this
model relies on the time step propagation mechanism.
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4.4. Interaction between ELN and discrete-event or TDF models

The ELN model of computation will setup and solve an equation system to simulate the modeled continuous-
time behavior, based on the basic set of ELN primitive modules described in Section 4.2.1. Any “external”
input value, e.g., from a discrete-event signal or TDF sample, need to be contributed to the equation system
via one of these ELN primitive modules. Therefore, specialized ELN primitive modules with ports to the
discrete-event domain and TDF models of computation are available, which are called converter modules.
Main purpose of these modules is to establish an interface to convert and transfer data from one model of
computation to the other.

4.4.1. Reading from and writing to discrete-event models

In order to connect ELN models with discrete-event models, the ELN converter modules with an internal
port of class sc_core::sc_in or sc_core::sc_out should be used.

Figure 4.5 shows the ELN primitive modules sca_eln::sca_de::sca_vsource and
sca_eln::sca_de::sca_isource, which read a discrete-event signal representing a real value and converting
this value to an electrical voltage or current respectively. In this example a module time step of 1 ms is
assigned to the ELN converter module. The ELN model continuously reads values from the input at the
time points, which are calculated from the assigned time steps. The input value is assumed constant until
the next value is read. The input values are interpreted to form a continuous-time signal, which is made
available at the output of the converter module (read input samples shown as a dotted signal).

Figure 4.5. ELN converter modules reading double values from a discrete-event
input signal and converting them to a continuous-time electrical voltage or current

Figure 4.6 shows the ELN primitive modules sca_eln::sca_de::sca_vsink and sca_eln::sca_de::sca_isink,
which convert an electrical voltage or current to a real value, discrete-event signal. The values at the output
port are written at the time points, calculated from to the assigned module time step of 1 ms.
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Figure 4.6. ELN converter modules to convert an electrical
voltage or current to a real value, discrete-event output signal

4.4.2. Reading from and writing to TDF models

In a similar way, ELN models can be connected to TDF models using converter modules with an internal
port of class sca_tdf::sca_in or sca_tdf::sca_out.

Figure 4.7 shows the ELN primitive modules sca_eln::sca_tdf::sca_vsource and
sca_eln::sca_tdf::sca_isource, which read a value from a TDF signal and convert this value to an electrical
voltage or current, respectively. In this example a module time step of 1 ms is assigned to the ELN converter
module. The ELN model continuously reads the samples from the TDF input. The input samples are
interpreted to form a continuous-time signal, which is made available at the output of the converter module
(input samples shown as a dotted signal).

Figure 4.7. ELN converter modules reading double values from a TDF input
signal and converting them to a continuous-time electrical voltage or current

Figure 4.8 shows the ELN primitive modules sca_eln::sca_tdf::sca_vsink and
sca_eln::sca_tdf::sca_isink, which will convert an electrical voltage or current to a TDF signal. The
samples at the output port are written at the calculated time points, which correspond to the assigned module
time step of 1 ms.
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Figure 4.8. ELN converter modules convert an electrical voltage or current to a TDF output signal

4.4.3. ELN model encapsulation

The converter modules described in the previous sections can be used to encapsulate an ELN model within
a different model of computation. Figure 4.9 shows an example on how to use converter modules to and
from the TDF model of computation to encapsulate ELN behavior. In this case, access to and from the ELN
equation system use discrete-time signals following the TDF semantics, whereas the internal ELN signals
and computations are continuous-time.

Figure 4.9. ELN equation system encapsulated for inclusion into
a structural TDF model description by using converter modules

The example below shows the implementation of Figure 4.9.

SC_MODULE(eln_in_tdf)
{ 
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;
  
  sca_eln::sca_tdf::sca_vsource vin;
  sca_eln::sca_tdf::sca_vsink   vout;
  sca_eln::sca_r r;
  sca_eln::sca_c c;
  
  eln_in_tdf( sc_core::sc_module_name, double r_val, double c_val )
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  : in("in"), out("out"), vin("vin"), vout("vout"), r("r", r_val), c("c", c_val),
    n1("n1"), n2("n2"), gnd("gnd")
  {
    vin.inp(in);
    vin.p(n1);
    vin.n(gnd);
    
    r.p(n1);
    r.n(n2);
        
    c.p(n2);
    c.n(gnd);
    
    vout.p(n2);
    vout.n(gnd);
    vout.outp(out);
  }
 
 private:
  sca_eln::sca_node n1, n2;
  sca_eln::sca_node_ref gnd;
};

A similar approach can be used to encapsulate an ELN model for inclusion into a structural discrete-event
model description, using the converter modules to and from the discrete-event domain as explained in
Section 4.4.1.

4.5. ELN execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard IEEE
1666-2005, specific functionality is implemented for the elaboration and execution of ELN models. These
additions are similar to the ones in LSF.

As depicted in Figure 4.10, the elaboration phase includes the following steps:

• ELN time step calculation and propagation: Define the time step and check consistency inside each ELN
model (see also Section 4.1.2).

• ELN equation setup and solvability check: Compose the ELN equation system from the contributing
equations provided by the predefined ELN primitive modules and their relationship defined by the
composition. Check whether the resulting equation system can be solved.

The steps for the simulation phase are:

• ELN initialization: First set all ELN signals to zero and then set the initial conditions of the system based
on the potentially defined initial conditions of the ELN primitives.

• ELN time-domain simulation: The ELN equation system is solved numerically using appropriate time
steps, which could be smaller than the assigned time step. The solver will at least provide results at the
time points, calculated from the assigned time step.

Figure 4.10. ELN elaboration and simulation phases

The elaboration and simulation phase are executed by starting a time-domain simulation using the function
sc_core::sc_start. This is explained in Section 6.1.1.
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4.6. Application examples

This section shows some basic application examples using ELN modeling.

4.6.1. POTS front-end

The Plain Old Telephone System (POTS) front-end is depicted in Figure 4.11. It consists of a phone,
transmission line, a protection circuit and a subscriber line interface circuit (SLIC), which can be modeled
naturally using ELN primitives. The interface from and to the POTS front-end are based on TDF or discrete-
event signals.

Figure 4.11. The Plain Old Telephone System (POTS) front-end

The implementation of the phone, protection circuit and SLIC are given below.

SC_MODULE(phone)
{
  // terminals and ports
  sca_eln::sca_terminal     tip;
  sca_eln::sca_terminal     ring;
  sca_tdf::sca_in<double>   voice;
  sc_core::sc_in<bool>      hook;

  // electrical primitives
  sca_eln::sca_de::sca_rswitch sw1;
  sca_eln::sca_de::sca_rswitch sw2;
  sca_eln::sca_c cr, cp;
  sca_eln::sca_r rr, rs, rp;
  sca_eln::sca_tdf::sca_vsource mic;

  phone( sc_core::sc_module_name nm, double cr_val = 1.0e-6, double rr_val = 1.0e3, 
                                     double rs_val = 220.0, double cp_val = 115.0e-9, 
                                     double rp_val = 820.0 )
  : tip("tip"), ring("ring"), voice("voice"), hook("hook"),
    sw1("sw1"), sw2("sw2"), cr("cr", cr_val), cp("cp", cp_val),
    rr("rr", rr_val), rs("rs", rs_val), rp("rp", rp_val), mic("mic"),
    w_offhook("w_offhook"), w_onhook("w_onhook"), w1("w1"), w2("w2"), wring("wring")
  {
    // architecture
    sw1.p(tip);
    sw1.n(w_onhook);
    sw1.ctrl(hook);
    sw1.off_state = true;

    sw2.p(tip);
    sw2.n(w_offhook);
    sw2.ctrl(hook);

    cr.p(wring);
    cr.n(w_onhook);

    rr.p(wring);
    rr.n(ring);

    rs.p(w1);
    rs.n(w2);

    cp.p(w1);
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    cp.n(w_offhook);

    rp.p(w_offhook);
    rp.n(w1);

    mic.p(w2);
    mic.n(ring);
    mic.inp(voice);
  }
 
 private:
  // nodes
  sca_eln::sca_node w_offhook, w_onhook, w1, w2, wring;
};

SC_MODULE(protection_circuit)
{
  // terminals
  sca_eln::sca_terminal tip_slic;
  sca_eln::sca_terminal ring_slic;
  sca_eln::sca_terminal tip;
  sca_eln::sca_terminal ring;

  // electrical primitives  
  sca_eln::sca_r rprot1, rprot2, rprot3, rprot4;
  sca_eln::sca_c cprot1, cprot2;

  protection_circuit( sc_core::sc_module_name, double rprot1_val = 20.0, double rprot2_val = 20.0,
                                               double rprot3_val = 20.0, double rprot4_val = 20.0, 
                                               double cprot1_val = 18.0e-9, 
                                               double cprot2_val = 18.0e-9 )
  : tip_slic("tip_slic"), ring_slic("ring_slic"), tip("tip"), ring("ring"),
    rprot1("rprot1", rprot1_val), rprot2("rprot2", rprot2_val),
    rprot3("rprot3", rprot3_val), rprot4("rprot4", rprot4_val),
    cprot1("cprot1", cprot1_val), cprot2("cprot2", cprot2_val),
    n_tip("n_tip"), n_ring("n_ring"), gnd("gnd")
  {
    // architecture
    rprot1.p(tip);
    rprot1.n(n_tip);
    
    rprot2.p(tip_slic);
    rprot2.n(n_tip);

    cprot1.p(n_tip);
    cprot1.n(gnd);

    rprot3.p(ring);
    rprot3.n(n_ring);
    
    rprot4.p(ring_slic);
    rprot4.n(n_ring);

    cprot2.p(n_ring);
    cprot2.n(gnd);
  }

 private:
  // nodes
  sca_eln::sca_node n_tip, n_ring;
  sca_eln::sca_node_ref gnd;
};

SC_MODULE(slic)
{
  // terminals and ports
  sca_eln::sca_terminal tip;
  sca_eln::sca_terminal ring;
  sca_tdf::sca_in<double> v2w;
  sca_tdf::sca_out<double> i_trans;

  // electrical primitives
  sca_eln::sca_tdf::sca_vsource driver1, driver2;
  sca_eln::sca_tdf::sca_vsink itr_meas;
  sca_eln::sca_cccs mirror1, mirror2;
  sca_eln::sca_r rtr;
  
  slic( sc_core::sc_module_name, double scale_v_tr = 1.0, double scale_i_tr = 1.0 )
  : tip("tip"), ring("ring"), v2w("v2w"), i_trans("i_trans"),
    driver1("driver1", scale_v_tr/2.0), driver2("driver2", scale_v_tr/2.0), 
    itr_meas("itr_meas", scale_i_tr), 
    mirror1("mirror1", 0.5), mirror2("mirror2", -0.5), rtr("rtr", 1.0),
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    n_tr_i("n_tr_i"), n_tip_gnd("n_tip_gnd"), n_ring_gnd("n_ring_gnd"),
    gnd("gnd")   
  {
    // architecture
    driver1.inp(v2w);
    driver1.p(tip);
    driver1.n(n_tip_gnd);

    driver2.inp(v2w);
    driver2.p(ring);
    driver2.n(n_ring_gnd);

    mirror1.ncp(n_tip_gnd);
    mirror1.ncn(gnd);
    mirror1.np(n_tr_i);
    mirror1.nn(gnd);

    mirror2.ncp(n_ring_gnd);
    mirror2.ncn(gnd);
    mirror2.np(n_tr_i);
    mirror2.nn(gnd);
    
    rtr.p(n_tr_i);
    rtr.n(gnd);

    itr_meas.p(n_tr_i);
    itr_meas.n(gnd);
    itr_meas.outp(i_trans);
  }
  
 private:
  // nodes
  sca_eln::sca_node n_tr_i, n_tip_gnd, n_ring_gnd;
  sca_eln::sca_node_ref gnd;
};

The implementation of the POTS front-end is done in the function sc_main, which is the main program.
Only the instantiation and structural composition is shown here.

int sc_main(int argc,char* argv[])
{
  sca_eln::sca_node n_slic_tip, n_slic_ring;
  sca_eln::sca_node n_tip_a1, n_tip_a2, n_ring_b1, n_ring_b2;
   transmission_line;
  
  sca_tdf::sca_signal<double> s_v_in;
  sca_tdf::sca_signal<double> s_i_trans;

  sca_tdf::sca_signal<double> s_voice;
  sc_core::sc_signal<bool>    s_hook;

  // testbench modules
  ...
  
  slic i_slic("i_slic");
    i_slic.tip(n_slic_tip);
    i_slic.ring(n_slic_ring);
    i_slic.v2w(s_v_in);
    i_slic.i_trans(s_i_trans);

  protection_circuit i_protection_circuit("i_protection_circuit");
    i_protection_circuit.tip_slic(n_slic_tip);
    i_protection_circuit.ring_slic(n_slic_ring);
    i_protection_circuit.tip(n_tip_a2);
    i_protection_circuit.ring(n_ring_b2);

  sca_eln::sca_transmission_line i_transmission_line("i_transmission_line", 
                                                     50.0, sc_core::SC_ZERO_TIME, 0.0);
    i_transmission_line.a1(n_tip_a1);
    i_transmission_line.b1(n_ring_b1);
    i_transmission_line.a2(n_tip_a2);
    i_transmission_line.b2(n_ring_b2);
    
  phone i_phone("i_phone");
    i_phone.tip(n_tip_a1);
    i_phone.ring(n_ring_b1);
    i_phone.voice(s_voice);
    i_phone.hook(s_hook);

  ...
};
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5. Small-signal frequency-domain analyses

5.1. Modeling fundamentals

To analyze the frequency-domain behavior of an analog/mixed-signal system, varying small signals, called
alternating-current (AC) signals, at different frequencies are used to stimulate and analyze the steady-state
response of the circuit. Either small-signal sinusoidal sources or noise sources are used, and applied to the
circuit, which is being linearized around a given direct-current (DC) operating-point. This means that large-
signal behavior, such as non-linearities causing distortion, are not captured during small-signal frequency-
domain analyses.

These AC-domain analysis methods can compute the small-signal frequency-domain behavior of the
entire analog/mixed-signal system, which can be composed of modules from the available models of
computation. TDF modules can embed a user-defined small-signal frequency-domain description. For LSF
and ELN primitive modules, the small-signal frequency-domain behavior is implicitly part of the primitive’s
description. Figure 5.1 shows an example of a mixed-signal system containing TDF, LSF and ELN models.
The modules labeled with “AC” have, besides their time-domain description, a small-signal frequency-
domain representation associated with it. Based on the structural composition, a linear complex equation
is extracted.

Figure 5.1. Small-signal frequency-domain description using TDF, LSF and ELN modules

5.1.1. Setup of the equation system

The linear complex equation system will make use of the TDF cluster as well as the LSF and ELN equation
systems, which are initially defined for time-domain simulation. Transformation of LSF and ELN equation
systems from the time-domain representation into the small-signal frequency-domain representation is done
using the Laplace transform rules. Generally, for a given function f(t), the following substitutions will be
applied to the time-domain-oriented ELN and LSF equation systems:

• A derivation d/dt is substituted by jω.

• An integration is substituted by 1/jω.

• A delay f(t-delay) is substituted by e–jω · delay

Substitution will result in the frequency-domain function F(jω) for the LSF and ELN contributions.

TDF modules allow the definition of user-defined small-signal frequency-domain behavior as part of the
primitive definition. There is no mechanism available to derive an “AC representation”. It is entirely the
responsibility of the user to ensure the consistency of the defined frequency-domain and time-domain
representations. How to implement small-signal frequency-domain behavior in TDF modules is discussed
in Section 5.2.1.

5.1.2. Analysis methods

Two types of analyses are supported:

1. Small-signal frequency-domain analysis: Solves for each frequency point the linear complex equation
system, including all small-signal frequency-domain source contributions.
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2. Small-signal frequency-domain noise analysis: Solves the linear complex equation system for each
frequency point and each small-signal frequency-domain noise source contribution, whereby all
contributions of small-signal frequency-domain sources and small-signal frequency-domain noise
sources, except the currently activated noise source, are set to zero.

The result of a small-signal frequency-domain or noise analysis is the steady-state response or transfer
function of the circuit, described from the input port to the output port of the overall system. During analysis,
the resulting linear complex equation system is solved for the given frequency points.

5.2. Language constructs

5.2.1. Small-signal frequency-domain description in TDF modules

The small-signal frequency-domain behavior of a TDF module can be defined in the member function
ac_processing. The description should be written in the form of a linear complex transfer function, capturing
the behavior from the TDF input port to the TDF output port. Different functions are available to define the
linear complex transfer function, as presented in the next sections. For these calculations, a data container
of type sca_util::sca_complex should be used.

The example below shows the implementation of a transfer function H(s) = 1. The intermediate result is
stored in a variable res of type sca_util::sca_complex, which is assigned to the TDF output port. More
details on the port access methods are given in the next section.

SCA_TDF_MODULE(flat_response)
{ 
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  SCA_CTOR(flat_response) {}

  void processing()
  { 
    out.write( in.read() );
  } 

  void ac_processing()
  { 
    double h = 1.0; // flat frequency response H(s) = 1
    sca_util::sca_complex res;
    
    res = h * sca_ac_analysis::sca_ac(in);
    sca_ac_analysis::sca_ac(out) = res;
  } 
};

In case a small-signal frequency-domain analysis is performed, but no member function ac_processing is
defined, or if no complex value is assigned to one or more TDF output ports, all related port values are set
to zero, independently from the available value(s) at the input ports.

Note that there is no automatic consistency check between the time- and frequency-domain descriptions,
as these definitions are used-defined.

5.2.2. Port access

For small-signal frequency-domain analysis, the complex value of all TDF ports, excluding the converter
ports, can be accessed by using the function sca_ac_analysis::sca_ac with as argument the port instances,
as shown in the previous example. This access method is independent from the port type required in time-
domain simulation.

For input ports, the function sca_ac_analysis::sca_ac returns a constant reference to a value of type
sca_util::sca_complex, which means that no value can be assigned to a TDF input port. For output ports,
the function returns a reference to a value of type sca_util::sca_complex, allowing the assignment of a
contribution for small-signal frequency-domain analysis.
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For small-signal frequency-domain noise analysis, a noise source independent from the input port values,
can be assigned to a TDF output port using the function sca_ac_analysis::sca_ac_noise. In this case, a
value assigned using the function sca_ac_analysis::sca_ac will be ignored.

Note that the values returned from the functions sca_ac_analysis::sca_ac and
sca_ac_analysis::sca_ac_noise are implementation-defined and have no physical interpretation. These
values can only be used to describe the complex linear relation between the input and output ports, accessed
using these port access functions.

5.3. Utility functions

The SystemC AMS extensions offer a set of utility functions, which can be used within the the member
function ac_processing to define the small-signal frequency-domain behavior. Note that these functions
cannot be used in the time-domain processing method processing.

5.3.1. Frequency-domain delay

The function sca_ac_analysis::sca_ac_delay can be used to implement a continuous-time delay, defined as
e–jω · delay. The next example is an extension of the TDF delay example presented in Section 2.3.5. The delay
is now a module parameter, and used to initialize the delay samples to 0.0 for the time-domain simulation.
Note that the delay parameter is an integer value, reflecting the number of samples which will be inserted
for time-domain simulation, using a discrete time step. The member function ac_processing implements
the frequency-domain behavior of this delay. First, the delay is translated in a continuous-time variant,
using the member function get_timestep multiplied with the number of delayed samples. This value of type
sca_core::sca_time is passed as argument to the function sca_ac_analysis::sca_ac_delay, which defines
the delay in the frequency domain.

SCA_TDF_MODULE(my_tdf_ac_delay)
{
  sca_tdf::sca_in<double> in;
  sca_tdf::sca_out<double> out;

  my_tdf_ac_delay( sc_core::sc_module_name, unsigned long delay_ ) 
  : in("in"), out("out"), delay(delay_) {} 
  
  void set_attributes()
  {
    out.set_delay(delay);
  }

  void initialize()    // time-domain initialization
  {
    for( unsigned long i = 0; i < delay; i++ )
      out.initialize( 0.0, i );
  }

  void processing()    // time-domain implementation
  {
    out.write( in.read() );
  }
  
  void ac_processing() // frequency-domain implementation
  {
    sca_core::sca_time ct_delay = out.get_timestep() * delay; // calculate continuous-time delay
    
    sca_ac_analysis::sca_ac(out) = sca_ac_analysis::sca_ac(in) * 
                                   sca_ac_analysis::sca_ac_delay( ct_delay );
  }

 private:
   unsigned long delay;
};

5.3.2. Laplace transfer functions

The frequency-domain descriptions of the Laplace transfer functions in the numerator-denominator
and zero-pole form are available, using the utility functions sca_ac_analysis::sca_ac_ltf_nd or
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sca_ac_analysis::sca_ac_ltf_zp, respectively. They can be used in combination with the time-domain
representation, as shown in the example below.

SCA_TDF_MODULE(ltf_filter_ac)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  ltf_filter_ac( sc_core::sc_module_name nm, double fc_, double h0_ = 1.0 )
  : in("in"), out("out"), fc(fc_), h0(h0_) {}

  void initialize()
  {
    num(0) = 1.0;
    den(0) = 1.0;
    den(1) = 1.0 / ( 2.0 * M_PI * fc );
  }

  void processing()    // time-domain implementation
  {
    out.write( ltf_nd( num, den, in.read(), h0 ) );
  }

  void ac_processing() // frequency-domain implementation
  {
    sca_ac_analysis::sca_ac(out) = sca_ac_analysis::sca_ac_ltf_nd( 
                                     num, den, sca_ac_analysis::sca_ac(in), h0 );
  }

 private:
  sca_tdf::sca_ltf_nd ltf_nd;            // Laplace transfer function
  sca_util::sca_vector<double> num, den; // numerator and denominator coefficients
  double fc; // 3dB cutoff frequency in Hz
  double h0; // DC gain
};

5.3.3. S-domain definitions

The function sca_ac_analysis::sca_ac_s supports frequency-domain representations defined in the
s-domain, by using the Laplace operator sn = (jω)n.

Figure 5.2 shows the definition and frequency response H(s) and implementation of a second order low-
pass filter, implemented in the time- and frequency-domain.

Figure 5.2. Frequency response of second order low-pass filter implemented in the s-domain

SCA_TDF_MODULE(lp_filter_ac_s)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;

  SCA_CTOR(lp_filter_ac_s) : in("in"), out("out") {}
 
  void initialize()
  {
    num(0) = 1.0;
    den(0) = 1.0;
    den(1) = 1.0;
    den(2) = 1.0;
  }

  void processing()    // time-domain implementation
  {
    out.write( ltf_nd( num, den, in.read(), 1.0 ) );
  }

  void ac_processing() // frequency-domain implementation
  {



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 73

    sca_util::sca_complex h = 1.0 / ( sca_ac_analysis::sca_ac_s(2) + 
                                      sca_ac_analysis::sca_ac_s(1) + 1.0 );

    sca_ac_analysis::sca_ac(out) = h * sca_ac_analysis::sca_ac(in); 
  }

 private:
  sca_tdf::sca_ltf_nd ltf_nd;
  sca_util::sca_vector<double> num, den;
};

Alternatively, the frequency-domain behavior can be implemented using the relation s = jω. The member
function ac_processing from the previous example can be replaced with an implementation which uses the
function sca_ac_analysis::sca_ac_w, which returns the current angular frequency in radians/seconds:

  void ac_processing() // frequency-domain implementation using s = j*w
  {
    sca_util::sca_complex s = sca_util::SCA_COMPLEX_J * sca_ac_analysis::sca_ac_w();
    sca_util::sca_complex h = 1.0 / ( s * s + s + 1.0 );

    sca_ac_analysis::sca_ac(out) = h * sca_ac_analysis::sca_ac(in);
  }

According to the relation ω = 2πf, the frequency term can be used as well. The implementation using the
function sca_ac_analysis::sca_ac_f, which returns the current frequency in Hertz, becomes:

  void ac_processing() // frequency-domain implementation using s = j*2*PI*f
  {
    sca_util::sca_complex s = sca_util::SCA_COMPLEX_J * 2.0 * M_PI * sca_ac_analysis::sca_ac_f();
    sca_util::sca_complex h = 1.0 / ( s * s + s + 1.0 );

    sca_ac_analysis::sca_ac(out) = h * sca_ac_analysis::sca_ac(in);
  }              

5.3.4. Z-domain definitions

The function sca_ac_analysis::sca_ac_z supports frequency-domain representations defined in the
z-domain, by using the the operator zn ( = ejω · n · tstep). Where n is an integer defining the delay, and tstep
is the timestep between the delays. In case this argument is not used, tstep will be defined as the timestep
returned by the member function get_timestep.

Figure 5.3 shows the definition and frequency response H(z) of a comb-filter.

Figure 5.3. Frequency response of a comb-filter implemented in the z-domain

For the frequency-domain implementation, the function sca_ac_analysis::sca_ac_z is used, as shown in
the example below.

SCA_TDF_MODULE(comb_filter)
{
  sca_tdf::sca_in<bool> in;
  sca_tdf::sca_out<sc_dt::sc_int<28> > out;

  comb_filter( sc_core::sc_module_name, int k_ = 64, int n_ = 3 ) 
  : in("in"), out("out"), k(k_), n(n_) {} 

  void set_attributes()
  {
    in.set_rate(k);
    out.set_rate(1);
  }
  
  void ac_processing() // frequency-domain implementation
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  {
    // complex transfer function
    sca_util::sca_complex h = pow( ( 1.0 - sca_ac_analysis::sca_ac_z(-k) ) /
                                   ( 1.0 - sca_ac_analysis::sca_ac_z(-1) ), n );

    sca_ac_analysis::sca_ac(out) = h * sca_ac_analysis::sca_ac(in) ;
  }

  void processing()    // time-domain implementation
  {
    int x, y, i;
    for( i = 0; i < k; i++) {
      x = in.read(i);
      ...
    }  
    out.write(y);
    
  }
 
 private:
  int k; // decimation factor
  int n; // order of filter 
};

5.3.5. Detection of small-signal frequency-domain analyses

The utility functions sca_ac_analysis::sca_ac_is_running and
sca_ac_analysis::sca_ac_noise_is_running can be used within the member function processing or
ac_processing of a TDF module, to implement specific behavior, which depends on the type of analysis
running.

The function sca_ac_analysis::sca_ac_is_running returns true when a small-signal frequency-domain or
noise analysis is running. The function sca_ac_analysis::sca_ac_noise_is_running only returns true if a
small-signal frequency-domain noise analysis is running.

The example below shows the implementation of a sinusoidal source, which can be used in time-domain
and frequency-domain simulations.

SCA_TDF_MODULE(sin_src)
{
  sca_tdf::sca_out<double> out;
  
  sin_src( sc_core::sc_module_name nm, double offset_= 0.0, double ampl_= 1.0, 
           double noise_ampl_= 0.1, double freq_ = 1.0e3, 
           sca_core::sca_time Tm_ = sca_core::sca_time(0.125, sc_core::SC_MS) )
  : out("out"), offset(offset_), ampl(ampl_), noise_ampl(noise_ampl_), freq(freq_), Tm(Tm_)
  {}

  void set_attributes()
  {
    set_timestep(Tm);
  }

  void processing()
  {
    double t = get_time().to_seconds(); // actual time
    
    out.write( offset + ampl * std::sin( 2.0*M_PI*freq*t ) );
  }
  
  void ac_processing()
  {

    if( sca_ac_analysis::sca_ac_noise_is_running() ) 
      sca_ac_analysis::sca_ac_noise(out) = noise_ampl;
    else
      sca_ac_analysis::sca_ac(out) = ampl;
  }
 private:
  double offset, ampl, noise_ampl, freq; 
  sca_core::sca_time Tm;
};

Ony for small-signal frequency-domain noise analysis, the function
sca_ac_analysis::sca_ac_noise_is_running returns true. In this case, the noise amplitude of the
source is set.



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 75

5.4. Small-signal frequency-domain analysis with combined TDF, LSF and ELN
models

As already stated in the introduction of this chapter, the small-signal frequency-domain analysis is able
to extract the frequency behavior of the entire analog/mixed-signal system. The frequency response of the
entire system can be analyzed by using TDF modules, which have their frequency-domain behavior defined
in their member function ac_processing, plus the frequency-domain description of LSF and ELN primitive
modules, which is extracted from the LSF and ELN equation system during elaboration.

The implementation shown below is based on the module composition as presented in Figure 5.1. The
example shows time-, frequency-domain and noise simulation. The results are written to different trace files.

int sc_main(int argc, char* argv[])
{
  sca_eln::sca_node net1;
  sca_tdf::sca_signal<double> sig1, sig2, sig3;
  
  ...             // source and sink

  eln_model a("a");
    a.p(net1);    
    a.outp(sig1);
 
  lsf_model b("b");
    b.in(sig1);
    b.out(sig2);

  tdf_model c("c");
    c.in(sig2);   
    c.out(sig3);

  // tracing
  sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat");
  
  sca_util::sca_trace(tf, net1, "net1");
  sca_util::sca_trace(tf, sig1, "sig1");
  sca_util::sca_trace(tf, sig2, "sig2");
  sca_util::sca_trace(tf, sig3, "sig3");
  
  // start time-domain simulation
  sc_core::sc_start(10, sc_core::SC_MS);

  tf->reopen("ac_trace.dat");
  tf->set_mode(sca_util::sca_ac_format(sca_util::SCA_AC_MAG_RAD));

  // start frequency-domain simulation
  sca_ac_analysis::sca_ac_start(1.0e3, 100.0e4, 4, sca_ac_analysis::SCA_LOG);

  tf->reopen("ac_noise_trace.dat");
  tf->set_mode(sca_util::sca_noise_format(sca_util::SCA_NOISE_ALL));

  // start frequency-domain noise simulation
  sca_ac_analysis::sca_ac_noise_start(1.0e3, 100.0e4, 4, sca_ac_analysis::SCA_LOG);

  sca_util::sca_close_tabular_trace_file(tf);

  return 0;
}

More information on the simulation control and tracing capabilities can be found in Chapter 6.
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6. Simulation and tracing

The AMS extensions use the SystemC functions to start and stop time-domain simulations. New functions
are available for frequency-domain simulation. Advanced tracing mechanism are available to enable or
disable time-domain or frequency-domain tracing while running simulations.

6.1. Simulation control

6.1.1. Time-domain simulation

Time-domain (transient) simulation is started by calling sc_core::sc_start from within the function
sc_main, as shown in the example below.

#include <systemc-ams>

#include "my_source.h"
#include "my_control.h"
#include "my_dut.h"
#include "my_sink.h"

int sc_main(int argc, char* argv[])
{
  sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);
  
  sca_tdf::sca_signal<double> sig1, sig2;
  sc_core::sc_signal<bool> sc_sig;
   
  my_source i_my_source("i_my_source");
    i_my_source.out(sig1);

  my_control i_my_ctrl("i_my_ctrl");
    i_my_ctrl.out(sc_sig);

  my_dut i_my_dut("i_my_dut");
    i_my_dut.in(sig1);      
    i_my_dut.ctrl(sc_sig);
    i_my_dut.out(sig2);      

  my_sink i_my_sink("i_my_sink");
    i_my_sink.in(sig2);      

  sc_core::sc_start(10.0, sc_core::SC_MS);
   
  return 0;
}

Program arguments

The function sc_main acts as main program, and has the same signature of arguments and return value as
C++’s usual program entry function int main(int argc, char* argv[]). The argument argc specifies the
number of arguments passed to the main routine. The argument argv[] is a field of pointers to the different
string arguments.

Note that implementations or simulators, which support SystemC and the AMS extensions may use different
mechanisms to define the main program body or even use an alternative approach to sc_main.

Time resolution

For AMS simulations, it is recommended to use the smallest time resolution possible covering the required
simulation time using the function sc_core::sc_set_time_resolution. It is recommended to add this function
as first statement in the sc_main function. For time-domain simulation, a time resolution of 1 femtosecond
(fs) is recommended, which is the smallest time resolution possible allowing a maximum simulation time
of 264 fs, which is approximately 5 hours. In case longer simulation times are needed, the time resolution
should be increased resulting in a coarser time grid and in possible rounding errors.

Simulation arguments

The function sc_core::sc_start without arguments will result in a simulation that runs until the last event
has been processed, which might be forever. To simulate for a limited amount of time, the to-be-simulated-
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time can be specified as a double value together with the time unit, or as an object of class sc_core::sc_time.
The function sc_core::sc_start can be called multiple times, as shown in the example below:

int sc_main(int argc, char* argv[])
{
  // instantiate design and testbench, setup tracing, ...
  ...
          

  sc_core::sc_start(10.0, sc_core::SC_MS); 
  ...
  sc_core::sc_time sim_time(10.0, sc_core::SC_MS); 

  sc_core::sc_start(sim_time); 
  ...

  sc_core::sc_start(); 
  
  return 0;
}

Start transient analysis, where the simulation time is specified with two arguments. The first argument
is the time of type double. The second argument is the time unit, which is an object of class
sc_core::sc_time_unit.
Start transient analysis, where the simulation time is specified with a single argument, which is an
object of class sc_core::sc_time.
In this case, no simulation time is specified. Transient analysis will run till the event queue is empty.

6.1.2. Small-signal frequency-domain simulation

Frequency domain simulations are also started from within the function
sc_main, using sca_ac_analysis::sca_ac_start for a small-signal (AC) simulation and
sca_ac_analysis::sca_ac_noise_start for a small-signal frequency-domain noise simulation. In the case
that the model description has not been elaborated, because sc_core::sc_start has not yet been called, this
will be automatically done before the first frequency-domain simulation starts.

It is possible to succeedingly call the frequency-domain and time-domain analyses start functions in any
order inside the function sc_main, to analyze the system description under different operating points or
digital states.

The example below shows the usage of the functions, which take as arguments the start frequency, stop
frequency, number of frequency points, and whether a linear (sca_ac_analysis::SCA_LIN) or logarithmic
(sca_ac_analysis::SCA_LOG) frequency scale should be used.

  // frequency-domain simulations from 1kHz to 10kHz with 100 points on a linear scale:
  sca_ac_analysis::sca_ac_start(1.0e3, 10.0e3, 100, sca_ac_analysis::SCA_LIN);  
  sca_ac_analysis::sca_ac_noise_start(1.0e3, 10.0e3, 100, sca_ac_analysis::SCA_LIN);  
  
  // frequency-domain simulations from 1Hz to 1MHz with 1001 points on a logarithmic scale:
  sca_ac_analysis::sca_ac_start(1.0, 1.0e6, 1001, sca_ac_analysis::SCA_LOG);  
  sca_ac_analysis::sca_ac_noise_start(1.0, 1.0e6, 1001, sca_ac_analysis::SCA_LOG);  

6.2. Tracing

The SystemC AMS extensions provide utility functions to record the simulation results (waveforms) into
trace files, using the Value Change Dump (VCD) format or tabular format. The VCD format has limited
capabilities to trace AMS signals, nodes, ports, terminals, or variables. Besides the tracing of regular
SystemC variables and signals, it only supports tracing for time-domain simulations. The tabular format
can be used to record both time-domain and frequency-domain traces.

The trace file is usually created at the top-level (e.g., inside sc_main) after all modules and
signals have been instantiated, and just before starting the actual simulation using sc_core::sc_start,
sca_ac_analysis::sca_ac_start, or sca_ac_analysis::sca_ac_noise_start.
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6.2.1. Trace files and formats

Tracing to a VCD file

For tracing waveforms using the VCD format, the trace file is created by calling the function
sca_util::sca_create_vcd_trace_file with the name of the file as an argument. This function returns a
pointer to a data structure that is used for tracing. Closing the trace file is done using the function
sca_util::sca_close_vcd_trace_file with as argument the pointer to the same data structure.

  // open trace file in VCD format
  sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file( "my_trace.vcd" );  

  ...

  // close the trace file
  sca_util::sca_close_vcd_trace_file( atf );

Note: the regular SystemC VCD tracing can be used to trace AMS signals, using functions
sc_core::sc_create_vcd_trace_file, sc_core::sc_trace and sc_core::sc_close_vcd_trace_file, but in this
case the AMS signals are translated and traced as discrete-event signals, using TDF converter output ports.
As such, the synchronization aspects between the TDF and the discrete-event models of computation could
play a role in the timing accuracy of the individual samples of these signals (see Section 2.4).

Tracing to a tabular file

For tracing waveforms using the tabular format, the trace file is created by calling the function
sca_util::sca_create_tabular_trace_file with the name of the file as an argument. The function returns
a pointer to a data structure that is used for tracing. Closing the trace file is done using the function
sca_util::sca_close_tabular_trace_file with as argument the pointer to the same data structure, as shown
in the example below.

  // open trace file in tabular format
  sca_util::sca_trace_file* atf = sca_util::sca_create_tabular_trace_file( "my_trace.dat" );  

  ...
  
  // close the trace file
  sca_util::sca_close_tabular_trace_file( atf );

Tracing to a tabular stream

As tracing of analog signals could result in very big trace files, the AMS tracing functionality has been
extended to trace to an output stream, so there is no file generated. This allows direct processing of the
AMS signals available in the output stream derived from std::ostream, for example to immediately display
the results or to compact the results into an archive file.

For tracing waveforms to an output stream, the trace file is created by calling the function
sca_util::sca_create_tabular_trace_file with the output stream object as an argument. The function
returns a pointer to an object of class sca_util::sca_trace_file, which references the stream and
is used to manage the signal tracing to it. Closing the trace file is done using the function
sca_util::sca_close_tabular_trace_file with as argument the pointer to the same output stream, as shown
in the example below.

  // trace in tabular format to the shell
  sca_util::sca_trace_file* atfs = sca_util::sca_create_tabular_trace_file(std::cout);

  ...

  // close the trace file handle, the stream is automatically closed once the scope of os is left.
  sca_util::sca_close_tabular_trace_file(atfs);

Trace file control

As tracing of AMS signals could result in very large and unmanageable waveform files, additional
functionality is available to control the recording of trace files. The following trace file control methods are
available for class sca_util::sca_trace_file:



March 8 2010 SystemC AMS extensions User’s Guide

80 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

• The member function enable will start tracing at the simulation time where this method is called.

• The member function disable will stop tracing at the simulation time where this method is called.

• The member function reopen will close the existing trace file (if it was open), and will continue tracing
in a new trace file at the simulation time where this method is called.

• The member function set_mode will change the mode of the trace file at the simulation time where this
method is called. The following modi are available:

• The time step (sampling) between samples can be set by using the function sca_util::sca_sampling,
where the first argument is the time step and the second argument is the time offset. Both arguments
should be an object of class sca_core::sca_time.

• The function sca_util::sca_decimation, with argument n, will only write the n-th sample to the trace
file.

• The function sca_util::sca_multirate defines which signal value should be written to the trace
file if no actual value is available. This can occur while tracing signals with different rates
and time steps. Available arguments are to interpolate (sca_util::SCA_INTERPOLATE), to
use the last available value (sca_util::SCA_HOLD_SAMPLE), or to not write a value at all
(sca_util::SCA_DONT_INTERPOLATE). In the latter case, the symbol ‘*’ is written to the trace
file.

• For small-signal frequency domain tracing, the function sca_util::sca_ac_format defines
the format, in which the signals are written. Available function arguments are: real/
imaginary (sca_util::SCA_AC_REAL_IMAG) and amplitude/phase in magnitude/radians
(sca_util::SCA_AC_MAG_RAD) or dB/degrees (sca_util::SCA_AC_DB_DEG).

• For small-signal frequency domain tracing, the function sca_noise_format defines how the noise
contribution is written to the trace file. If sca_util::SCA_NOISE_ALL is passed, each individual
noise contribution is written to the trace file. If sca_util::SCA_NOISE_SUM is passed, the sum of
all noise contributions is written to the trace file..

The following sections give some examples on how to use trace file control in combination with simulation
control.

6.2.2. Tracing signals and comments

Supported AMS signals

The function sca_util::sca_trace is used to trace the actual AMS signals. The following elements can be
traced:

• For TDF models, tracing is possible for TDF signals, TDF ports, and variables derived from class
sca_tdf::sca_trace_variable.

• For LSF models, tracing is possible for LSF signals and LSF ports.

• For ELN models, voltage tracing is supported for nodes and terminals. Current tracing through ELN
primitive modules having two terminals is supported. Some simulators also support current tracing
through ELN primitive modules with more than two terminals.

• SystemC (discrete-event) signals and ports.

The example below shows how to use the function sca_util::sca_trace for the tracing of AMS signals of
TDF, LSF or ELN models.

  sca_util::sca_trace( atf, sig1, "sig1" );                     // trace TDF signal sig1
  sca_util::sca_trace( atf, sig_de, "sig_de" );                 // trace SystemC signal sig_de
  sca_util::sca_trace( atf, my_source.out, "out1" );            // trace output of module my_source
  sca_util::sca_trace( atf, my_source.i_sin_src->out, "out2" ); // trace output of nested module
  sca_util::sca_trace( atf, my_sink.trv, "trv" );               // trace variable in module my_sink

Writing comments to a trace file

In order to write some user-specific comments or remarks in a tabular trace file, the function
sca_util::sca_write_comment can be used, where the first argument is the pointer to the data structure of
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the trace file and the second argument is the string containing the comment. The comment, including the
preceding character ‘%’, is added to the trace file at the simulation time where this function is called.

  // open trace file in tabular format
  sca_util::sca_trace_file* atf = sca_util::sca_create_tabular_trace_file( "my_trace.dat" );  

  ...

  // add comment to trace file
  sca_util::sca_write_comment( atf, "user-defined comments" );

  ...  

  // close the trace file
  sca_util::sca_close_tabular_trace_file( atf );

Note that adding user-specific comments could result in incompatibilities when using a specific waveform
viewer, depending on file formats supported. It is recommended to check whether a particular waveform
viewer supports a format which allows inclusion of user-specific comments.

Trace file example

This section shows some results of tracing time- and frequency signals, based on the following tracing
definition in a sc_main program:

  ...

  sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat"); 
  

  sca_util::sca_trace(tf, sig1, "sig1"); 
  sca_util::sca_trace(tf, sig2, "sig2");
    

  sc_core::sc_start(2.0, sc_core::SC_MS); 

  tf->reopen("ac_trace.dat"); 
   

  tf->set_mode(sca_util::sca_ac_format(sca_util::SCA_AC_MAG_RAD)); 
  

  sca_ac_analysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_analysis::SCA_LOG); 

  sca_util::sca_close_tabular_trace_file(tf); 
  ...

Trace AMS signals to a file in tabular format using the tracing functionality of the AMS extensions.
Define which signals to trace.
Start time-domain simulation. Signals “sig1” and “sig2” will be traced.
Close the current trace file and start tracing to a new file for frequency-domain analysis.
Defintion to trace the amplitude and phase of the signals in magnitude and radians.
Start frequency-domain simulation from 1kHz to 1MHz with 4 points on a logarithmic scale.
Close the trace file.

The file trace.dat is shown below. The %time in the first line indicates that this file was created during
time-domain simulation, and shows the signal names, which are traced. Each line shows the time in seconds
and signal values at that point in time. The values are separated by one or more spaces.

%time sig1 sig2
0 0 0
0.0005 1 1e-6
0.001 2 1.5e-6
0.0015 3 2e-6
0.002 4 2.5e-5

The next example shows the result of the small-signal frequency-domain tracing in ac_trace.dat. The file
starts with %frequency in the header. The format of the AC signals is set to amplitude (the magnitude) and
phase (in radians) indicated with .mag and .rad suffixes to the signal names, respectively.

%frequency sig1.mag sig1.rad sig2.mag sig2.rad
1000  1 0  2.53302962314e-08 -3.14143349864
10000  1 0  2.53302959138e-10 -3.1415767381
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100000  1 0  2.53302959106e-12 -3.14159106204
1000000  1 0  2.53302959106e-14 -3.14159249443

6.3. Testbenches

Testbenches are used to provide stimulus to a device under test (DUT) and check the results or response
of the DUT. Very often the DUT is put into a certain state, using an external control. A typical testbench
structure is given in Figure 6.1.

Figure 6.1. Testbench containing stimulus, control, checker, and device under test

A testbench can be implemented in various ways:

• The stimulus and controller can be embedded in the main program and the results is checked in another
module. In this way, the main program acts as the testbench.

• The stimulus, controller, and checker are part of a dedicated module, which is instantiated in the main
program. Such a module is often called a verification component, which basically acts as the testbench.

• The stimulus and controller are separate modules, both instantiated in the main program. The checker is
embedded in the main program, which acts as the testbench.

Besides the examples listed above, there are other possibilities to create a testbench. Obviously, there is no
single “right” way to create a testbench; it depends on the application.

The example below shows the main program in which the stimuli my_source, the control my_control and
the sink my_sink are instantiated as objects. Together with the tracing implemented as inline code, they
form the testbench. The device under test my_dut is instantiated as a module and is connected to the modules
of the testbench.

#include <systemc-ams>

#include "my_source.h"
#include "my_control.h"
#include "my_dut.h"
#include "my_sink.h"

int sc_main(int argc, char* argv[])
{
  sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

  sca_tdf::sca_signal<double> sig1, sig2;
  sc_core::sc_signal<bool> sc_sig;
   
  my_source i_my_source("i_my_source");
    i_my_source.out(sig1);

  my_control i_my_ctrl("i_my_ctrl");
    i_my_ctrl.out(sc_sig);

  my_dut i_my_dut("i_my_dut");
    i_my_dut.in(sig1);
    i_my_dut.ctrl(sc_sig);
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    i_my_dut.out(sig2);      

  my_sink i_my_sink("i_my_sink");
    i_my_sink.in(sig2);      

  sc_core::sc_trace_file* tf = sc_core::sc_create_vcd_trace_file("my_sc_trace"); 
  sc_core::sc_trace(tf, sc_sig ,"sc_sig"); 

  sca_util::sca_trace_file* atf1 = sca_util::sca_create_vcd_trace_file("ams_vcd_trace.vcd"); 
  sca_util::sca_trace(atf1, sig1 ,"sig1"); 

  sca_util::sca_trace_file* atf2 = sca_util::sca_create_tabular_trace_file("ams_trace.dat"); 
  sca_util::sca_trace(atf2, sig2 ,"sig2");

  sc_core::sc_start(2.0, sc_core::SC_MS);  
  

  atf2->reopen("ams_trace.dat");  
  sc_core::sc_start(2.0, sc_core::SC_MS);

  atf2->disable(); 
  sc_core::sc_start(2.0, sc_core::SC_MS);

  atf2->enable();           
  atf2->set_mode( sca_util::sca_decimation(2) );
  sc_core::sc_start(2.0, sc_core::SC_MS);

  atf2->reopen("ams_trace3.dat");   
 

  sca_core::sca_time tstep(1.0, sc_core::SC_MS); 
  atf2->set_mode( sca_util::sca_sampling( tstep, sc_core::SC_ZERO_TIME ) );   
  sc_core::sc_start(10.0, sc_core::SC_MS);

  sc_core::sc_close_vcd_trace_file(tf);   
  sca_util::sca_close_vcd_trace_file(atf1);
  sca_util::sca_close_tabular_trace_file(atf2);

  return 0;
}

Trace signals using SystemC’s standard tracing facility. Be aware that in the case AMS (e.g., TDF)
signals are traced, they are automatically converted to discrete event signals using TDF converter
ports, which impacts the timing precision of the recorded samples.
Trace AMS signals to a file in VCD format using the tracing functionality of the AMS extensions.
Trace AMS signals to a file in tabular format using the tracing functionality of the AMS extensions.
Start time-domain simulation. Signals “sig1” and “sig2” will be traced.
Close the current trace file and start tracing to a new file (with same name).
Disable tracing to atf2 to not record the next 2 ms.
Re-enable tracing to atf2, but with a different sample period defined by a decimation factor of 2 (skip
one sample).
Close the current trace file of atf2 and start tracing to a new file using a different time step.
Define how samples are written to the trace file. Sample every 1 ms starting from 0 ms.
Close all trace files.
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7. Modeling strategies

The SystemC AMS extensions provide designers with powerful tools for modeling analog/mixed-signal
systems. The extensions cover the use cases described in Chapter 1, by providing the models of computation
Timed Data Flow, Linear Signal Flow, and Electrical Linear Networks, in addition to the discrete-event
and Transaction Level Modeling approaches of SystemC. This chapter gives additional advice on how
to use and combine these models of computation in an efficient way. The presented strategies are not
mandatory, and sometimes there might be other or better approaches. They are provided in order to guide
an inexperienced user and help him to create his first models, to achieve high simulation performance, and
to increase productivity when designing mixed analog/digital systems.

7.1. Behavioral modeling using the available models of computation

The models of computation provided by the SystemC AMS extensions are primarily intended to facilitate
the behavioral modeling of analog circuits, as well as of signal processing functions (no matter whether
they will be implemented in the analog or digital domain). Depending on the abstraction required, a suitable
model of computation for behavioral modeling has to be selected. Figure 7.1 gives an overview of the
available models of computation and the abstractions imposed by them, considering the aspects behavior,
structure, communication, and time/frequency.

Figure 7.1. Abstractions imposed by the AMS models of computation

The most important abstractions imposed by the models of computation are:

• Linearization of non-linear behavior due to the focus on linear behavior in the models of computation
that require the solving of equation systems (LSF, ELN).

• Abstraction to functional blocks (non-conservative systems) with directed signals in the models of
computation LSF and TDF. This abstraction replaces the physical quantities (i(t), u(t)) with abstract
quantities x(t).

• Sampling of continuous-time signals to discrete-time signals for the TDF model of computation.

Figure 7.2 shows the impact of abstraction and sampling to non-conservative behavior of a signal in an
electrical network.

Figure 7.2. Abstraction of communication and time using the AMS models of computation
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In the following subsections, a brief and general description of the capabilities of each model of computation
is given. When using multiple models of computation, it is important to combine them appropriately. The
required partitioning of functionality onto different models of computation is discussed in Section 7.2.1.

7.1.1. Macromodeling with Electrical Linear Networks

The ELN model of computation permits macromodeling: Accurate physical devices such as transistors are
modeled by simple electrical primitives such as (ideal) switches, voltage sources, and other electrical linear
primitives. The objective is to specify an abstract model with simplified behavior. Considering signals and
interfaces, no abstraction is required. The ELN model of computation should be used in the following cases:

1. Description of systems where it is not easy or natural to give equations, e.g., transmission-line models,
or nearly linear loads that are switched within a duty cycle.

2. Analog interfaces and components, which are relevant for the dimensioning of the system or its overall
behavior. Therefore, they must show up at the system level.

In order to setup an ELN macromodel, the electrical circuit behavior must be linearized. The availability
of switches in addition to linear components enables to handle the switching between different operating
modes or the on/off switching of loads. The following strategy might be useful to get an ELN model from
a given circuit:

1. Identify partitions of the circuit with nearly linear behavior, and model them using ELN components.
Components that are not required for the overall functionality (e.g. clamping diodes) can be omitted.

2. Identify switching components and replace them with ideal switches.

3. Depending on the intended environment of the model:

• If applied as part of ELN, model input and output impedances.

• If applied as part of TDF or discrete-event, use appropriate converter elements.

Note that the ELN model of computation does not support modeling of non-linear limitation or saturation
effects. It is recommended to partition a model such that non-linear effects are modeled using the TDF model
of computation.

Figure 7.3 shows an example of a power driver using Pulse Width Modulation (PWM). The original circuit
is shown in Figure 7.3a. In order to apply ELN macromodeling, the clamping diodes are omitted assuming
that the circuit itself has been validated using a circuit simulator. The CMOS transistors that are switching
the load, a coil with 10 Ohm resistance, are replaced with ideal switches. The resulting ELN macromodel
is shown in Figure 7.3b.

Figure 7.3. Abstraction of PWM power driver into an ELN macromodel

The PWM driver together with its load has the behavior of a low pass filter for the load current IL(t). As
such, it could also be modeled as a functional block. However, the load itself is usually an external part,
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and thus might be changed by the user. Therefore, it makes sense to provide an electrical terminal, and a
(linear) macromodel of the load. The next code example shows the ELN model of the PWM driver.

SC_MODULE(pwm_driver)
{
  sc_core::sc_in<bool> in;
  sca_eln::sca_terminal  out;
 
  sca_eln::sca_vsource vcc;  // voltage source
  sca_eln::sca_de::sca_rswitch highside, lowside;  // two switches
  
  pwm_driver( sc_core::sc_module_name nm, double vcc_ = 5.0)
  : in("in"), out("out"),
    vcc("vcc"), highside("highside"), lowside("lowside"), node("node"), gnd("gnd")
  {
    vcc.offset = vcc_;  // usage as constant voltage source
    vcc.p(node);
    vcc.n(gnd);

    highside.ctrl(in);  // 1st switch
    highside.p(node);
    highside.n(out);

    lowside.ctrl(in);   // 2nd switch...
    lowside.p(out);
    lowside.n(gnd);
    lowside.off_state = true; // ...is inverted
  }

 private:
  sca_eln::sca_node node;
  sca_eln::sca_node_ref gnd;
};

The load can as well be described easily using linear primitives, in the most simple case, a coil with some
resistance might be sufficient:

SC_MODULE(load)
{
  sca_eln::sca_terminal p, n;
   
  sca_eln::sca_r r;
  sca_eln::sca_l l;
 
  load( sc_core::sc_module_name nm, 
        double res_ = 500.0, double ind_ = 0.000001 )
  : p("p"), n("n"), r("r", res_ ), l("l", ind_ ), node("node")
  {
    r.p(p);
    r.n(node);

    l.p(node);
    l.n(n);
  }

 private: 
  sca_eln::sca_node node;
};

7.1.2. Behavioral modeling with Linear Signal Flow

The LSF model of computation permits the description of block diagrams for the computation of linear
differential equations. Compared to transfer functions, LSF allows to specify the order of computations and
to access intermediate results or coefficients. In particular, LSF is useful to:

1. Model filters with a given structure that has, e.g., impact on noise.

2. Model continuous-time control systems, in particular those that require access to coefficients from other
models of computation.

For LSF, an abstraction of physical signals is required as described in Chapter 3. Most notably, this also
requires the abstraction of communication towards directed signals. Considering the structure and behavior,
functional blocks have to be identified, and their behavior has to be described by instantiating the pre-
defined functional primitives. Considering time, no abstraction is required.
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Note that LSF does not provide means to specify non-linear limitation or saturation. It is recommended
to partition a model in a way that non-linear effects, if needed, are specified using the TDF model of
computation. A typical application example where LSF is useful is shown by Figure 7.4. It is a PID controller
that can be part of a closed loop control system model. Its coefficients can be adjusted from a TDF model.
In order to model a closed-loop control system without delay, the device itself must also be modeled using
the LSF model of computation. Using any other model of computation (ELN, TDF) will introduce a delay
in the control loop.

Figure 7.4. LSF model of a PID controller with adjustable coefficients

SC_MODULE(lsf_pid_external_control)
{
  sca_lsf::sca_in  in;
  sca_lsf::sca_out out;

  sca_tdf::sca_in<double> p, i, d; // adjustable coefficients

  sca_lsf::sca_tdf::sca_gain  gain_p, gain_i, gain_d; // coefficients used to scale the gain
  sca_lsf::sca_integ integ;
  sca_lsf::sca_dot   dot;
  sca_lsf::sca_add   add1, add2;

  lsf_pid_external_control( sc_core::sc_module_name name )
  : in("in"), out("out"), p("p"), i("i"), d("d"),
    gain_p("gain_p"), gain_i("gain_i"), gain_d("gain_d"),
    integ("integ"), dot("dot"), add1("add1"), add2("add2"),
    sig_gain("sig_gain"), sig_integ1("sig_integ1"), sig_integ2("sig_integ2"), 
    sig_dot1("sig_dot1"), sig_dot2("sig_dot2"),    
    sig_add("sig_add")
  {
    gain_p.x(in);
    gain_p.y(sig_gain);
    gain_p.inp(p);

    gain_i.x(in);
    gain_i.y(sig_integ1);
    gain_i.inp(i);

    gain_d.x(in);
    gain_d.y(sig_dot1);
    gain_d.inp(d);

    integ.x(sig_integ1);
    integ.y(sig_integ2);
    
    dot.x(sig_dot1);
    dot.y(sig_dot2);

    add1.x1(sig_gain);
    add1.x2(sig_integ2);
    add1.y(sig_add);

    add2.x1(sig_add);
    add2.x2(sig_dot2);
    add2.y(out);
  }
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 private:
  sca_lsf::sca_signal sig_gain, sig_integ1, sig_integ2, sig_dot1, sig_dot2, sig_add;
};

7.1.3. Behavioral and baseband modeling with Timed Data Flow

The TDF model of computation permits the modeling of analog systems at a high level of abstraction, as
well as the modeling of signal processing functions.

For modeling analog behavior, the TDF model of computation requires a discrete-time approximation of
the continuous-time analog signals. However, TDF permits, in contrast to LSF and ELN, the modeling of
non-linear behavior. The discrete-time approximation reduces the continuous-time signal to a sequence of
discrete samples. This abstraction avoids the need for solving (non-linear) equations and thus improves
simulation performance. Besides the discretization, the TDF model of computation also requires the
breaking of cyclic dependencies (also known as algebraic loops) by inserting delays (see Section 2.1.2).

In exchange for these abstractions, TDF models permit to describe the processing of streams of samples in
an arbitrary, algorithmic way with the help of the member function processing. In particular, also non-linear
transfer functions (i.e., for modeling limitation) or look-up tables can be implemented easily. Furthermore,
the specification of signal processing methods in terms of transfer functions H(s), H(z), or state space
representations is supported in TDF (see Section 2.3.2).

The following abstractions are introduced by TDF:

1. Like in LSF, a block diagram structure has to be defined. Unlike in LSF, there is virtually no restriction
to the behavior of single blocks.

2. The sampling frequency must be defined.

3. The TDF model requires acyclic structures to ensure schedulability. The acyclic structure can be
achieved by introducing a delay into the cycle (Section 2.1.2). Note that most control loops use nowadays
digital controllers that anyhow introduce delays. The location of the digital controller might be a good
location for introducing such a delay.

Definition and propagation of time steps and rates

The time steps and rates in TDF must be selected carefully to match the modeling problem. It is also
recommended to carefully select the places where time steps and rates are defined.

For modeling analog behavior, is is recommended to ensure a sufficiently high sample frequency. The
sampling frequency must be significantly higher than twice the frequency defined by the lowest time
constant in the system. In doubt, a factor 10 is recommended. Selecting a higher rate or smaller time steps
results in a higher accuracy at high frequencies at the cost of simulation performance. An appropriate place
to define the time step might be the test bench.

Systems with time constants that differ by orders of magnitudes (stiff systems) are a particular problem.
We recommend to partition such systems into parts with low time constants, and parts with higher time
constants. Then, different rates of the TDF model of computation can be used to define different sample
frequencies in each partition.

For modeling digital signal processing (DSP) methods (e.g. using H(z), or state space representations of
digital filters) leads to a dependency between functionality and the selected time step. For DSP methods
that are intended for use at a particular sample frequency, it is recommended to define a time step in the
module itself (or at its ports respectively). Note that a test bench still can define time steps. However, an
error will be reported if the consistency check after propagation of time steps fails (see Section 2.5).

Behavioral modeling with TDF

Section 2.6 gives two application examples introducing behavioral modeling using the TDF model
of computation. Note that the SystemC AMS extensions permit to write arbitrary C++ code into the
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TDF module member function processing. This allows combining ideal signal processing functions (usually
found in block libraries) such as amplification, multiplication, or transfer functions in a very easy and
effective way with non-ideal behavior. An amplifier, for example, can be modeled by combining the
following features:

1. Its behavior in the frequency domain can be modeled using a Laplace transfer function, as discussed in
Section 2.3.2. Poles and zeros can be identified easily using circuit simulation, or using the bode plot.

2. Large-signal behavior (e.g., limitation, non-linearity) can be modeled by using C++ code.

SCA_TDF_MODULE(amplifier)
{
  sca_tdf::sca_in<double>  in;
  sca_tdf::sca_out<double> out;
  
  amplifier( sc_core::sc_module_name, double gain_     = 100.0, 
                                      double dom_pole_ = 5.0e8, 
                             double limit_    = 5.0 )
  : in("in"), out("out"), gain(gain_), dom_pole(dom_pole_), limit(limit_) {}
  
  void initialize()
  {
    // filter requires no zeros to be defined
    poles(0) = sca_util::sca_complex( -2.0 * M_PI * dom_pole, 0.0 );
    k = gain * 2.0 * M_PI * dom_pole;
  }
  
  void processing()
  {
    // time-domain implementation of amplifier behavior as function of frequency
    double internal = ltf_zp( zeros, poles, state, in.read(), k );

    // limiting the signal
    if (internal > limit) internal = limit;
    else if (internal < -limit) internal = -limit;

    out.write(internal);
  }
  
 private:
  double gain;     // DC gain
  double dom_pole; // 3dB cutoff frequency in Hz
  double limit;    // limiter value
  double k;                   // filter gain
  sca_tdf::sca_ltf_zp ltf_zp; // Laplace transfer function
  sca_util::sca_vector<sca_util::sca_complex > poles, zeros; // poles and zeros as complex values
  sca_util::sca_vector<double> state; // state vector
};

Baseband modeling with TDF

When modeling radio frequency (RF) systems with high carrier frequencies, a significant speed-up of
simulation can be achieved by applying baseband modeling. This modeling strategy is based on the fact that
digital modulation techniques use the amplitude r and the phase φ to transmit information. The information
itself is then independent from the (usually high) carrier frequency. The idea of baseband modeling is to
map the RF carrier frequency to zero, as shown in Figure 7.5. The required sampling rate then only depends
on the bandwidth of the modulated signal.

Figure 7.5. Passband (a) and baseband (b) representation of signals in the frequency domain

Formally, the modulated carrier signal x(t) can be described as:



SystemC AMS extensions User’s Guide March 8 2010

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 91

where r(t) is the modulating signal, φ(t) the modulating phase and fc the carrier frequency. The term, which
includes the carrier frequency fc, can be separated from the signal part, which contains the transmitted
information. The signal v(t), which contains the information, is independent from the carrier frequency fc:

This signal is called the complex low-pass equivalent or the complex envelope. For the baseband signal, the
carrier frequency fc is set to zero. With si = r cos(φ) and sq = r sin(φ), the resulting baseband signal becomes:

where si represents the in-phase term of the baseband signal, and sq represents the quadrature term. The
amplitude and phase of the carrier signal can be computed from these signals at each point in time.

In order to make use of these baseband signals, a specialized data type is needed, which supports the
definition of complex values. The SystemC AMS extensions offer the class sca_util::sca_complex, which
can be used for this purpose. These signals can be used in TDF modules, in which the value type of the
TDF ports are changed from scalar values (of type double) to complex values, as shown in the example
below. The function std::pow(c,y) from the C++ standard library complex is used, which computes c
raised to the power of y, where c is a complex value.

#include <complex>

SCA_TDF_MODULE(baseband_amplifier)
{        
  sca_tdf::sca_in< sca_util::sca_complex >  in;      
  sca_tdf::sca_out< sca_util::sca_complex > out;

  baseband_amplifier( sc_core::sc_module_name, double gain = 1.0, double iip3 = 1e-3 )
  : in("in"), out("out"), a1( gain ), a3( -4/3 * ( gain / std::pow(iip3,2)) ) {}

  void processing()
  { 
    out.write( a1 * in.read() + a3 * std::pow( in.read(),3 ) ); 
  }
  
 private:
  double a1, a3; 
};

The limitation of using sca_util::sca_complex as the data type is that it only describes the complex envelope
of the modulated signal, and that the carrier frequency information is lost. Due to this, effects like harmonics
of the carrier or intermodulation products are not represented, as they fall outside the signal bandwidth.
The solution to this is to create a user-defined data type similar to sca_util::sca_complex, which supports
multi-carrier baseband computations.

7.2. Modeling embedded analog/mixed-signal systems

Behavioral modeling using a single model of computation imposes a number of restrictions as shown
in Figure 7.1. They can be overcome by combining (the strengths of) different models of computation.
The following subsections describe how to partition the functional behavior onto the different models of
computation. Then, a number of simple modeling guidelines is given, how to model architecture-level
properties of analog circuits.

7.2.1. Partitioning behavior to different models of computation

A simple, but general strategy that allows beginners to distribute a block diagram like specification to the
different models of computation provided by the SystemC AMS extensions is shown by Figure 7.6. It can
be applied for each block successively.
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Figure 7.6. Partitioning of behavior to different models of computation

In a first step (labels 1, 2 and 3), it should be investigated whether the discrete-event model of computation
is appropriate, or whether the AMS extensions are the better choice. The SystemC AMS extensions are
the best choice for modeling signal processing functions. Note that signal processing functions that are
implemented in digital or software can also be modeled efficiently using the SystemC AMS extensions at
functional level. If a concrete mapping to hardware at architecture level or below shall be modeled, SystemC
is more appropriate. Another good reason to use the AMS extensions would be the need for having analog
terminals and/or physical quantities such as current available, e.g., for modeling external loads or analog
behavior of communication lines.

In a second step (labels 4 and 5), the Timed Data Flow model of computation should be considered to
model the AMS subsystem. It requires discrete-time modeling of analog signals, and (in case of cyclic
dependencies) the insertion of additional delays. It offers most options for specification of analog and signal
processing behavior.

If a discrete approximation is not appropriate (labels 6, 7, and 8), one has to consider the models of
computation LSF and ELN. Both rely on a linear solver. Therefore, behavior has to be partitioned into linear
and non-linear functionality, where the latter can be implemented using TDF. If the accurate modeling of
non-linear conservative behavior or electrical networks is required, one should consider using an appropriate
non-linear solver or circuit simulator, maybe coupled with SystemC.

7.2.2. Modeling of architecture-level properties

In order to evaluate feasibility and performance of different architectures, the functional model can be
used and refined by adding specific properties. These properties include: noise, attenuation, distortions,
limitation, jitter, delays, quantization, sampling frequencies, and many other. In the following, some simple
guidelines for handling these effects during architecture exploration are given.

Modeling distortions, limitation, and quantization

In order to study the impact of distortions and limitations on the overall system functionality, analog modules
should be split into linear dynamic behavior and nonlinear static behavior. Linear dynamic behavior can be
specified, e.g., using transfer functions in TDF (see Section 2.3.2). Non-linear behavior such as distortions
and limitation can be modeled easily using C++ functions in the TDF module’s member function processing
(see Section 7.1.3).
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Modeling noise in time domain

Noise in the TDF model of computation can be modeled by adding gaussian distributed random numbers
to a TDF signal. The following example demonstrates a simple model for (white) noise and attenuation
in a wireless communication link. For this purpose, a function gauss_rand is used that generates gaussian
distributed random numbers.

// the gauss_rand() function returns a gaussian distributed
// random number with variance "variance", centered around 0, using the Marsaglia polar method

#include <cstdlib> // for std::rand
#include <cmath>   // for std::sqrt and std::log

double gauss_rand(double variance)
{   
  double rnd1, rnd2, Q, Q1, Q2; 
     
  do
  { 
    rnd1 = ((double)std::rand()) / ((double)RAND_MAX) ;
    rnd2 = ((double)std::rand()) / ((double)RAND_MAX) ;
   
    Q1 = 2.0 * rnd1 - 1.0 ;          
    Q2 = 2.0 * rnd2 - 1.0 ;
    Q = Q1 * Q1 + Q2 * Q2 ;
     
  } while (Q > 1.0) ;
  
  return ( std::sqrt(variance) *( std::sqrt( - 2.0 * std::log(Q) / Q) * Q1) );
}  
            
SCA_TDF_MODULE(air_channel_with_noise)  
{ 
  sca_tdf::sca_in<double>  in; 
  sca_tdf::sca_out<double> out; 

  void processing()  
  {  
    out.write( in.read() * attenuation + gauss_rand(variance) ); 
  }
  
  air_channel_with_noise( sc_core::sc_module_name nm, 
                          double attenuation_,
                          double variance_ )
  : in("in"), out("out"), attenuation(attenuation_), variance(variance_) {}
  
 private:
  double attenuation;
  double variance;
};

In order to get colored noise, the output of the function gauss_rand can be filtered using appropriate transfer
functions.

7.3. Design refinement and mixed-level modeling

7.3.1. Mixed-signal, mixed-level simulation

The design of embedded analog/digital systems requires the combination of different models of computation
and of different levels of abstraction. This requires the conversion of communication/synchronization at
the border between different models of computation. The SystemC AMS extensions provide a basic set
of language primitives that enable conversion between SystemC (discrete-event), TDF, ELN, and LSF. In
ELN and LSF, converter modules are provided; in TDF, converter ports are available. Note that ELN and
LSF can communicate with discrete-event and TDF, but not with each other in a direct way.

It is recommended to model the general signal flow of a system using the TDF model of computation, if
possible. This has the following advantages:

1. The TDF model of computation provides conversion to all other models of computation.

2. The TDF model of computation is needed to provide time steps to connected ELN and LSF components.
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Figure 7.7 shows a part of a signal processing chain as an example: The LSF controller (shown left) feeds
its output via a controlled voltage source into an ELN low-pass filter. In order to connect ELN and LSF, an
LSF signal is converted to a TDF signal, for which a time step must be given. The TDF signal controls a
(TDF) controlled voltage source that is part of the ELN model.

Figure 7.7. Coupling of LSF and ELN via an LSF/TDF converter module

Be aware, that the conversion from LSF (or ELN) to TDF and then to ELN (or LSF) introduces a delay
of one time step.

7.3.2. Design refinement and use cases

For the design of digital systems, top-down design is state-of-the-art. The integration of analog/mixed-
signal subsystems, which are mostly designed bottom-up, into a digitally dominated top-down flow is still a
challenge. In Section 1.2.1, the intended use cases of the AMS extensions have been introduced. This section
describes how to apply the SystemC AMS extensions in order to yield higher efficiency and productivity in
the design process of embedded analog/digital systems. This complements the refinement approach known
from SystemC. Figure 7.8 gives an overview of the application of the SystemC AMS extensions.

Figure 7.8. Use cases for the SystemC AMS extensions within top-down refinement

In the ideal case, top-down refinement begins with an executable specification of the intended behavior
at system level. Usually, the TDF model of computation is suitable to develop a functional model for this
purpose. Refinement of the executable specification is part of the architecture exploration use case. The
refinement process consists of a stepwise approach of replacing the blocks in the system with more accurate
(less abstract) models.

Architecture exploration distinguishes three separate aspects, each one being the opposite of one of the
abstractions in Figure 7.1:

• Refinement of behavior

• Refinement of structure

• Refinement of communication/interfaces
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Behavioral refinement augments the functional model used for the executable specification with specific
properties of an architecture (implementation). This permits the evaluation of the feasibility and
performance of different architectures (implementations). Properties that can easily be included in a
functional model include: Noise, attenuation, distortions, limitation, jitter, delays, quantization, sampling
frequencies, and many other.

As an example, Figure 7.9 shows an ideal (linear) and non-linear amplifier, where the linear gain (a1) and
non-linear term (a3) are added with a polynomial representation.

Figure 7.9. Refinement of behavior of an amplifier

The code example below shows how the non-linear behavior can be implemented. The function
std::pow(x,y) from the C++ standard library cmath is used, which computes x raised to the power of y.

#include <cmath>

SCA_TDF_MODULE(non_linear_amplifier)
{
  sca_tdf::sca_in<double>  in;      
  sca_tdf::sca_out<double> out;

  non_linear_amplifier( sc_core::sc_module_name, double gain = 1.0, double iip3 = 1e-3 )
  : in("in"), out("out"), a1( gain ), a3( -4/3 * ( gain / std::pow(iip3,2)) ) {}

  void processing()
  { 
    out.write( a1 * in.read() + a3 * std::pow(in.read(),3) ); 
  }
  
 private:
   double a1, a3;
};

Refinement of structure repartitions the (usually block-diagram-like) system, used for executable
specification, with a structure of functional blocks that each represent a circuit or processor to be designed.
Note that also the model of computation changes depending on the intended domain of implementation.

Figure 7.10. Structural refinement of a filter

In order to make the refinement of a model easier, the namespace concept allows to re-use a large part of
existing modeling infrastructure such as module and port declarations. However, behavior and (refined)
structure have to be written from scratch.

Refinement of communication/interfaces replaces the abstract communication used within the TDF model of
computation with concrete signals, e.g., electrical voltages and currents or digital (discrete-event) SystemC
signals. This requires to also add converter ports or modules to the models. Conversion between the models
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of computation is discussed in Section 7.3.1. In order to support the refinement of communication/interfaces,
it is recommended to create adapter/converter classes as known from SystemC TLM extensions.

7.4. Modeling and coding style

7.4.1. Namespaces

The SystemC AMS extensions make extensive use of C++ namespaces to be able to clearly identify the
available models of computation and use the available primitive modules within the right context. The
namespaces sca_tdf, sca_lsf and sca_eln are reserved names for the language constructs used for the TDF,
LSF and ELN model of computation, respectively. Other reserved namespaces are sca_util for utility classes
and functions, and sca_ac_analysis for small-signal frequency-domain analyses. The user should not add
new definitions in these namespaces. Instead, it is recommended to declare user-defined modules belonging
to the same model of computation to a unique user-defined namespace, as shown in the example below.

namespace my_tdf {

  SCA_TDF_MODULE(my_source)
  {
    ...
  }

}; // namespace my_tdf

Instantiation of this object will look like this:

SC_MODULE(analog_top)
{ 
  ...
  my_tdf::my_source i_my_source("i_my_source");
  ...
}

Header files and naming conventions

The header file <systemc-ams> does not import the reserved namespaces sca_tdf, sca_lsf, sca_eln,
sca_util, and sca_ac_analysis into the scope of the program. This means the user has to explicitly add the
namespace identifier to each element, when instantiating or declaring such an object. Although the names
are a bit longer to write, it will result in a clear naming convention, where the user can recognize immediately
whether the object belongs to a particular class library of the SystemC AMS extensions, or whether the
object is part of a user-defined library. The example below, and the previous examples given in this user’s
guide follow this naming convention.

#include <systemc-ams>

#include "my_source.h"

int sc_main(int argc, char* argv[])
{
  sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

  sca_tdf::sca_signal<double> sig1;

  // instantiate user-defined module from user-defined 'my_tdf' namespace
  my_tdf::my_source i_my_source("i_my_source");
    i_my_source.out(sig1);

  // instantiate other modules
  ...

  // tracing AMS signals
  sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat");
  sca_util::sca_trace(tf, sig1 ,"sig1");
  
  sc_core::sc_start(10.0, sc_core::SC_MS);

  tf->set_mode(sca_util::sca_ac_format(sca_util::SCA_AC_MAG_RAD));
  
  sca_ac_analysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_analysis::SCA_LOG);
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  sca_util::sca_close_tabular_trace_file(tf);
  
  return 0;
}        

When using the header file <systemc-ams.h>, all elements, which belong to the namespace sca_core,
sca_util and sca_ac_analysis, are imported into the scope of the program. This means the user can omit to
prefix the elements in these namespaces. Note that the namespace for the different models of computation
are not declared, so even in this case, the user has to explicitly use the namespace to create TDF, LSF, and
ELN models. The program below shows the same example as given above, but now using the header file
<systemc-ams.h>.

#include <systemc-ams.h>

#include "my_source.h"

int sc_main(int argc, char* argv[])
{
  sc_set_time_resolution(1.0, sc_core::SC_FS);

  sca_tdf::sca_signal<double> sig1;

  // instantiate user-defined module from user-defined 'my_tdf' namespace
  my_tdf::my_source i_my_source("i_my_source");
    i_my_source.out(sig1);

  // instantiate other modules
  ...

  // tracing AMS signals
  sca_trace_file* tf = sca_create_tabular_trace_file("trace.dat");
  sca_trace(tf, sig1 ,"sig1");
  
  sc_start(10.0, SC_MS);

  tf->reopen("ac_trace.dat");
   
  tf->set_mode( sca_ac_format(SCA_AC_MAG_RAD) );
  
  sca_ac_start(1.0e3, 1.0e6, 4, SCA_LOG);
  
  sca_close_tabular_trace_file(tf);
  
  return 0;
}

It is recommended to use the header file <systemc-ams>, resulting in a naming convention reflecting the
full names of classes and functions.

Using directive

The using directive of C++ allows the elements in a namespace to be used without explicitly adding the
namespace identifier to each element. It should only be used in a module implementation, not in the module
declaration (e.g. definition in a header file). It is recommended to apply the using directive only within the
local scope, e.g., as part of the implementation of a class member function. The example below shows how
this concept can be applied for a frequency-domain description as described in Section 5.3.3.

  void ac_processing()
  {
    using namespace sca_util;
    using namespace sca_ac_analysis;
    
    sca_complex s = SCA_COMPLEX_J * sca_ac_w();
    sca_complex h = 1.0 / ( s * s + s + 1.0 );

    sca_ac(out) = h * sca_ac(in);
  }

7.4.2. Dynamic memory allocation

Most of the examples shown in this user’s guide use objects (e.g., primitive modules), which are directly
instantiated in a function body, and thus are allocated automatically on the stack. In case of big designs
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using many modules in a complex hierarchy, this approach is not the most efficient way as it can lead to
an overflow of the stack for automatic variables. Dynamic memory allocation has the advantage to give the
user more direct control, in which order the modules are constructed. The instantiated objects are referenced
by pointers so that they do not need to reside anymore in a consecutive memory area, which can lead to
resource allocation problems. Furthermore, it allows the instantiation of an arbitrary number of modules
determined at runtime, which are referenced from a dynamically created array of module pointers, and
which constructors can be called individually to vary the parameterization of each object.

The C++ operator new is used to dynamically allocate memory on the heap to store the objects. As allocation
returns the address to the newly allocated memory, access to the object’s member functions is done using
a pointer. Any memory dynamically allocated with the operator new must be released (deallocated) using
the operator delete. This operator is usually called for each dynamically created member object in the
destructor of the class.

The example below shows the use of dynamic memory allocation and deallocation for the BASK
demodulator similar as described in Section 2.6.2.

SC_MODULE(bask_demod)
{
  sca_tdf::sca_in<double> in;
  sca_tdf::sca_out<bool>  out;

  rectifier*     rc; 
  ltf_nd_filter* lp;
  sampler*       sp;

  SC_CTOR(bask_demod) : in("in"), out("out"), rc_out("rc_out"), lp_out("lp_out")
  {
    rc = new rectifier("rc");
    rc->in(in);
    rc->out(rc_out);

    lp = new ltf_nd_filter("lp", 3.3e6);
    lp->in(rc_out);
    lp->out(lp_out);

    sp = new sampler("sp");
    sp->in(lp_out);
    sp->out(out);
  }

  ~bask_demod()
  {
    delete(rc);
    delete(lp);
    delete(sp);
  }

 private:
  sca_tdf::sca_signal<double> rc_out, lp_out;
};

7.4.3. Module parameters

Modules need to be flexible to be reusable, i.e., their behavior and internal structure must be parameterized
to a reasonable degree to allow their adoption to varying specifications. This is especially interesting for
the early design stages of architecture exploration and successive refinement of the system structure.

In Section 2.6.1, a BASK modulator model was presented with hard coded design parameters, like the carrier
frequency of 70 MHz. With respect to this carrier frequency, the time step values and the data rates where
hard coded, such that the resulting signal was sufficiently sampled. Such “magic numbers”, hard coded port
rates, delays, and time steps, are typical signs of an inflexible implementation. If, for example, the carrier
frequency would be increased without changing the time step, the model might not work properly because
of undersampling.

A more flexible approach is to derive time step and data rate values from the functional module parameters.
In this section it is shown how to make a parameterized version of the BASK-modulator from Section 2.6.1,
with adjustable carrier-frequency and baseband frequency, and how to derive data rates and time steps
automatically from that. Firstly, a mixer with parameterized data rate is needed:
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SCA_TDF_MODULE(mixer) 
{
  sca_tdf::sca_in<bool>     in_bin;  // input port baseband signal
  sca_tdf::sca_in<double>   in_wav;  // input port carrier signal
  sca_tdf::sca_out<double>  out;     // output port modulated signal
 
  mixer( sc_core::sc_module_name nm, unsigned long rate_ )
  : in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(rate_) 
  {
    using namespace sc_core; // essential for sc_assert to work, when using OSCI systemc-2.2.0
    sc_assert(rate_ > 0);
  }
 
  void set_attributes()
  {
    in_wav.set_rate(rate);
    out.set_rate(rate);
  }

  void processing()
  {
    for(unsigned long i = 0; i < rate; i++)
    {
      if( in_bin.read() ) 
        out.write( in_wav.read(i), i );
      else out.write( 0.0 , i );
    }
  }

 private:
  unsigned long rate;
};

If parameters are used which are computed elsewhere, it is always a good idea to make plausibility checks.
Therefore, the mixers’ constructor contains the line sc_assert(rate_ > 0) to check if the rate parameter is at
least 1. Note that the implementation of sc_assert in the OSCI SystemC reference implementation release
2.2 (systemc-2.2.0) is not compliant to the IEEE 1666-2005 standard, and therefore a using namespace
sc_core; has to be added, before calling sc_assert.

Using this mixer, and the parameterized sinusoidal source already used in Section 2.6.1, a parameterized
BASK modulator can be implemented as follows:

SC_MODULE(bask_mod)
{
  sca_tdf::sca_in<bool>    in;
  sca_tdf::sca_out<double> out;
 
  sin_src sine;
  mixer   mix;

  bask_mod( sc_core::sc_module_name nm, 
            double baseband_freq,
            double carrier_freq,
            double carrier_ampl = 1.0,
            unsigned long samples_per_period = 20 )
  : in("in"), out("out"), 
    sine("sine", 
       carrier_ampl, 
       carrier_freq, 
       sca_core::sca_time( (1.0 / (samples_per_period * carrier_freq) ), sc_core::SC_SEC) ),
    mix("mix", (int)ceil( static_cast<double>(samples_per_period) * carrier_freq / baseband_freq ) ),
    carrier("carrier")
  {
    using namespace sc_core; // essential for sc_assert to work, when using OSCI systemc-2.2.0

    // Plausibility checks
    sc_assert(carrier_freq > baseband_freq); // wouldn't make sense otherwise!
    sc_assert(samples_per_period > 2);       // Nyquist criterion satisfied?
    sc_assert(carrier_ampl > 0.0);           // Otherwise the output is 0 all the way!
  
    sine.out(carrier);
    mix.in_wav(carrier);
    mix.in_bin(in);
    mix.out(out);
  }

 private:
  sca_tdf::sca_signal<double> carrier;
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};

The BASK modulator above can be configured with the following parameters:

• baseband_freq is the frequency of the binary signal.

• carrier_freq is the frequency of the carrier signal.

• carrier_ampl is the amplitude of the carrier signal, which defaults to 1.

• samples_per_period is the number of samples used for one period of the sinusoidal carrier signal. The
default of 20 ensures sufficient sampling.

From these parameters, the appropriate parameters for the constructors of sin_src and mixer are computed.
Again, the constructor contains some plausibility checks using sc_assert. The timestep of sin_src is the
reverse of the product of the carrier frequency and the samples per sinus period used. For example, if the
carrier frequency is 10 MHz, and 20 samples per period are used, the overall sampling frequency becomes
200 MHz, which results in a time step of 5 ns. The rate of the port in_wav of the mixer has to be the ratio
of the product of samples per period and carrier frequency to the baseband frequency. Assuming the latter
to be 2 MHz, and again a 10 MHz carrier frequency with 20 samples per period, this would result in a data
rate of 100. Note that the ceiling operation in the modulator code might result in a slightly higher samples
per period rate than intended.

7.4.4. Separation of module definition and implementation

The condensed examples shown so far have implemented the behavior or structural composition
directly inside the class definition. It is recommended to separate the module definition from the actual
implementation, into a header file (with .h or .hpp extension) and an implementation file (with .cpp
extension), as it is common C++ coding practice. Thus, only the information necessary to use the module is
exposed to other files including the header and not its implementation details. Duplicated code generation is
avoided reducing overall compilation time. Only for template classes declaration and implementation need
to be both kept in the header files, as the C++ compiler needs to be able to specialize the implementation
to the passed template parameters.

The example below shows the BASK demodulator example from Section 2.6.2, where the structural
composition is implemented in a separate implementation file, as part of the module constructor. The class
definition is put in a header file, which allows inclusion in other files. Note that this separation cannot be
applied in case a module is created using a class template.

// bask_demod.h

#ifndef BASK_DEMOD_H_
#define BASK_DEMOD_H_

#include <systemc-ams>

#include "rectifier.h"
#include "ltf_nd_filter.h"
#include "sampler.h"

SC_MODULE(bask_demod)
{
  sca_tdf::sca_in<double> in;
  sca_tdf::sca_out<bool> out;

  rectifier*     rc; 
  ltf_nd_filter* lp;
  sampler*       sp;
  
  bask_demod( sc_core::sc_module_name nm );

 private:
  sca_tdf::sca_signal<double> rc_out, lp_out;
};

#endif // BASK_DEMOD_H_

The class implementation containing the actual structural composition is stored in a separate file:

// bask_demod.cpp
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#include "bask_demod.h"

bask_demod::bask_demod(sc_core::sc_module_name nm)
: in("in"), out("out"), rc_out("rc_out"), lp_out("lp_out")
{
  rc = new rectifier("rc");
  rc->in(in);
  rc->out(rc_out);

  lp = new ltf_nd_filter("lp", 3.3e6);
  lp->in(rc_out);
  lp->out(lp_out);

  sp = new sampler("sp");
  sp->in(lp_out);
  sp->out(out);
}

7.4.5. Class templates

C++ class templates can be used in case multiple instances using different data types or sizes are needed in
a design. For example, if a parallel data stream of width N has to be serialized, this can be modeled very
naturally with a TDF module having an input data rate of 1 and an output data rate of N. Figure 7.11 shows
the definition of a serializer, implemented as template class with parameter N. For serialization of a 3 bit
vector, the template parameter N is set to 3.

Figure 7.11. Serialization of a 3-bit vector

template <int N>
SCA_TDF_MODULE(serializer)
{        
  sca_tdf::sca_in<sc_dt::sc_bv<N> > in; // input port        
  sca_tdf::sca_out<bool> out; // output port

  SCA_CTOR(serializer) : in("in"), out("out") {} 
                
  void set_attributes()
  {
    out.set_rate(N);
  }
        
  void processing()
  { 
    for(int i = 0; i < N; i++)
    {
      out.write( in.read().get_bit(i), i );
    }
  }
};

The example below shows how such a template class can be used within a structural module.

SC_MODULE(modulator)
{
  sca_tdf::sca_in<sc_dt::sc_bv<3> > in;
  sca_tdf::sca_out<double> out;

  serializer<3> ser;
  bask_mod      mod;

  SC_CTOR(modulator) : in("in"), out("out"), ser("ser"), mod("mod"), bits("bits")
  {
    ser.in(in);
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    ser.out(bits);

    mod.in(bits);
    mod.out(out);
  }

 private:
  sca_tdf::sca_signal<bool> bits;
};

Class templates also facilitate refinement of communication, as discussed in Section 7.3. The example below
shows the amplifier module of Section 7.2 implemented as a class template. Depending on the template
parameter type, the module can be used either as a passband model, when using type double, or as a baseband
model using data type sca_util::sca_complex.

#include <cmath>
#include <complex>

template <class T>
SCA_TDF_MODULE(amplifier)
{        
  sca_tdf::sca_in<T>  in;      
  sca_tdf::sca_out<T> out;

  amplifier( sc_core::sc_module_name, double gain = 1.0, double iip3 = 1e-3 )
  : in("in"), out("out"), a1( gain ), a3( -4/3 * (gain / std::pow(iip3,2)) ) {}

  void processing()
  { 
    out.write( a1 * in.read() + a3 * std::pow(in.read(),3) ); 
  }
  
 private:
  double a1, a3; 
};

7.4.6. Public and private class members

When creating a module using the macro SC_MODULE or SCA_TDF_MODULE, a class is defined by
using the C++ keyword struct. In this case, all class members, such as functions and data variables, are
public by default. These members can be accessed from outside the class, for example from a function, e.g.,
the main program sc_main, or from another class, e.g., a parent module. Modules which are defined with
the keyword class have private members by default.

In order to be able to instantiate a module, and connect it with other modules, the constructor and ports
have to be declared as public. It is recommended to declare internal signals, nodes, variables, functions and
primitive modules as private, unless there is a good reason to access them from outside the scope of the
class. For example, signals and nodes could be made public to facilitate debugging.

To facilitate tracing of signals or nodes which are declared private, a helper function trace_internals can be
defined as public member, which will write the signals to a trace file defined by the argument. The example
below extends the BASK demodulator from Section 2.6.2 with tracing of private members. In this case,
there is no need to declare the signals itself as public.

SC_MODULE(bask_demod)
{
  sca_tdf::sca_in<double> in;
  sca_tdf::sca_out<bool>  out;

  rectifier     rc;
  ltf_nd_filter lp;
  sampler       sp;

  SC_CTOR(bask_demod) 
  : in("in"), out("out"), rc("rc"), lp("lp", 3.3e6), sp("sp"), rc_out("rc_out"), lp_out("lp_out")
  {
    rc.in(in);
    rc.out(rc_out);

    lp.in(rc_out);
    lp.out(lp_out);

    sp.in(lp_out);
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    sp.out(out);
  }
  
  void trace_internals( sca_util::sca_trace_file* tf )
  {
    sca_util::sca_trace(tf, rc_out, rc_out.name() );
    sca_util::sca_trace(tf, lp_out, lp_out.name() );
  }

 private:
  sca_tdf::sca_signal<double> rc_out, lp_out;
};
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Appendix A. Language reference

Note: This appendix gives only a list of the basic language definitions for TDF, LSF or ELN primitive
modules. The complete list of definitions can be found in the Language Reference Manual of the SystemC
AMS extensions.

If the default value for a parameter is not given in the tables below, then the value has to be provided by
the user and cannot be omitted during construction.

A.1. TDF modules

// Name     Type                    Description
// --------------------------------------------------------------------------------------------
//           T                      Arbitrary data type (e.g double, sca_util::sca_vector, ... 
// tstep    sca_core::sca_time      Time step as object
// abstime  sca_core::sca_time      Time step as object
// tstepd   double                  Time step in seconds   
// tunit    sc_core::sc_time_unit   Time unit (e.g., sc_core::SC_US, sc_core::SC_MS, ...)
// name     const char*             Module name as string
// modname  sc_core::sc_module_name Module name as object
// --------------------------------------------------------------------------------------------  

SCA_TDF_MODULE( name )
{
  // port declarations
  sca_tdf::sca_in<T>  in;  // input port
  sca_tdf::sca_out<T> out; // output port 
  
  // Converter ports
  sca_tdf::sca_de::sca_in<T>  inp;  // converter port from discrete-event domain
  sca_tdf::sca_de::sca_out<T> outp; // converter port to discrete-event domain

  // TDF methods, called automatically by the scheduler
  void set_attributes()
  {
    // module and port attributes (optional)
  }
  
  void initialize()
  {
    // initial values of ports with a delay (optional)
  }
  
  void processing()
  {
    // time-domain signal processing behavior or algorithm (mandatory)
  }
  
  void ac_processing()
  {
    // small-signal frequency-domain behavior (optional)
  }

  // module constructor
  SCA_CTOR( name ) {} // macro, or
  name( modname  ) {} // full constructor, can also be used to pass parameters

};

A.2. TDF ports

// Name        Type                    Description
// -------------------------------------------------------------------------------------------------
// value        T                      Value with arbitrary type (double, sca_util::sca_vector, ...) 
// sample_id   unsigned long           Sample ID: 0 for single-rate, 0...(rate-1) for multirate
// nsamples    unsigned long           Number of samples
// rate        unsigned long           Rate of the port
// tstep       sca_core::sca_time      Time step as object
// tstepd      double                  Time step in seconds   
// tunit       sc_core::sc_time_unit   Time unit (e.g., sc_core::SC_US, sc_core::SC_MS, ...)
// toffset     sca_core::sca_time      Time offset as object   
// toffsetd    double                  Time offset in seconds   
// -------------------------------------------------------------------------------------------------
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  sca_tdf::sca_in<T> in;
  sca_tdf::sca_out<T> out;

  sca_tdf::sca_de::sca_in<T>  inp;
  sca_tdf::sca_de::sca_out<T> outp; 
    
  out.set_delay( nsamples );
  out.set_rate( rate );
  out.set_timestep( tstep );
  out.set_timestep( tstepd, tunit );

  outp.set_timeoffset( toffset );
  outp.set_timeoffset( toffsetd, tunit );

  nsamples = out.get_delay();
  rate     = out.get_rate();

  abstime = out.get_time();
  abstime = out.get_time( sample_id );
  tstep   = out.get_timestep();
  tstepd  = out.get_timestep().to_seconds();
  
  toffset = outp.get_timeoffset();
  
  out.initialize( value, sample_id );

  value = in.read();
  value = in.read( sample_id );

  out.write( value );
  out.write( value, sample_id );

A.3. TDF signals

  // type T
  sca_tdf::sca_signal<T>  // TDF signal

A.4. Embedded Laplace transfer functions

A.4.1. sca_tdf::sca_ltf_nd

Description

Scaled Laplace transfer function in the time-domain in the numerator-denominator form.

Definition

sca_tdf::sca_ltf_nd( num, den, delay, state, input, k, tstep );             

Equation

Parameters

Name Type Default Description

num sca_util::sca_vector<double>  Numerator coefficients

den sca_util::sca_vector<double>  Denumerator coefficients

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay
(optional)

state sca_util::sca_vector<double>  State vector (optional)

input  Input value, or signal from
port
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Name Type Default Description

double, sca_tdf::sca_in<double>,
sca_tdf::sca_de::sca_in<double>,
sca_util::sca_vector<double>

k double 1.0 Gain coefficient (optional)

tstep sca_core::sca_time sc_core::SC_ZERO_TIME Time step

Constraint of usage

The delay shall be greater or equal to zero.

A.4.2. sca_tdf::sca_ltf_zp

Description

Scaled Laplace transfer function in the time-domain in the zero-pole form.

Definition

sca_tdf::sca_ltf_zp( zeros, poles, delay, state, input, k, tstep );             

Equation

Parameters

Name Type Default Description

zeros sca_util::sca_vector<
sca_util::sca_complex >

 Numerator coefficients

poles sca_util::sca_vector<
sca_util::sca_complex >

 Denumerator coefficients

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay
(optional)

state sca_util::sca_vector<double>  State vector (optional)

input double, sca_tdf::sca_in<double>,
sca_tdf::sca_de::sca_in<double>,
sca_util::sca_vector<double>

 Input value, or signal from
port

k double 1.0 Gain coefficient (optional)

tstep sca_core::sca_time sc_core::SC_ZERO_TIME Time step

Constraint of usage

The delay shall be greater or equal to zero.

A.4.3. sca_tdf::sca_ss

Description

Single-input single-output state-space equation.
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Definition

sca_tdf::ss_eqn( a, b, c, d, delay, s, x, tstep );

Equation

Parameters

Name Type Default Description

a sca_util::sca_matrix<double>  Matrix A of size n-by-n (n
= number of states)

b sca_util::sca_matrix<double>  Matrix B of size n-by-m
(m = number of inputs)

c sca_util::sca_matrix<double>  Matrix C of size r-by-n (r
= number of outputs)

d sca_util::sca_matrix<double>  Matrix D of size r-by-m

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay
(optional)

state sca_util::sca_vector<double>  State vector (optional)

x sca_util::sca_vector<double>,
sca_util::sca_matrix<double>,
sca_tdf::sca_in<double>,
sca_tdf::sca_in<
sca_util::sca_vector<double>,
sca_tdf::sca_de::sca_in<
sca_util::sca_vector<double>

 Input vector, matrix or
signal from port

tstep sca_core::sca_time sc_core::SC_ZERO_TIME Time step

Constraint of usage

The delay shall be greater or equal to zero.

A.5. LSF primitive modules

A.5.1. sca_lsf::sca_add

Description

Weighted addition of two LSF signals.

Definition

sca_lsf::sca_add( nm, k1, k2 );

Symbol
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Equation

y(t) = k1 · x1(t) + k2 · x2(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

k1 double 1.0 Weighting coefficient for LSF signal at port x1

k2 double 1.0 Weighting coefficient for LSF signal at port x2

Ports

Name Interface Type/Nature Description

x1 sca_lsf::sca_in Signal flow LSF input 1

x2 sca_lsf::sca_in Signal flow LSF input 2

y sca_lsf::sca_out Signal flow LSF output

A.5.2. sca_lsf::sca_sub

Description

Weighted subtraction of two LSF signals.

Definition

sca_lsf::sca_sub( nm, k1, k2 );

Symbol

Equation

y(t) = k1 · x1(t) – k2 · x2(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

k1 double 1.0 Weighting coefficient for LSF signal at port x1

k2 double 1.0 Weighting coefficient for LSF signal at port x2

Ports

Name Interface Type/Nature Description

x1 sca_lsf::sca_in Signal flow LSF input 1

x2 sca_lsf::sca_in Signal flow LSF input 2

y sca_lsf::sca_out Signal flow LSF output
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A.5.3. sca_lsf::sca_gain

Description

Multiplication of an LSF signal by a constant gain.

Definition

sca_lsf::sca_gain( nm, k );

Symbol

Equation

y(t) = k · x(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

k double 1.0 Gain coefficient

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

A.5.4. sca_lsf::sca_dot

Description

Scaled first-order time derivative of an LSF signal.

Definition

sca_lsf::sca_dot( nm, k );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

k double 1.0 Scale coefficient
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Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

A.5.5. sca_lsf::sca_integ

Description

Scaled time-domain integration of an LSF signal.

Definition

sca_lsf::sca_integ( nm, k, y0 );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

k double 1.0 Scale coefficient

y0 double 0.0 Initial condition at t=0

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

A.5.6. sca_lsf::sca_delay

Description

Scaled time-delayed version of an LSF signal.

Definition

sca_lsf::sca_delay( nm, delay, k, y0 );

Symbol
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Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay

k double 1.0 Scale coefficient

y0 double 0.0 Output value before delay is
in effect

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater or equal to zero.

A.5.7. sca_lsf::sca_source

Description

LSF source.

Definition

sca_lsf::sca_source( nm, init_value, offset, amplitude, frequency, phase, delay,
                     ac_amplitude, ac_phase, ac_noise_amplitude ); 

Symbol

Equation

For time-domain simulation:

For small-signal frequency-domain simulation:

For small-signal frequency-domain noise simulation:
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Parameters

Name Type Default Description

nm sc_core::
sc_module_name

 Module name

init_value double 0.0 Initial value

offset double 0.0 Offset value

amplitude double 0.0 Source amplitude

frequency double 0.0 Source frequency in Hertz

phase double 0.0 Source phase in radian

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay

ac_amplitude double 0.0 Small-signal amplitude *)

ac_phase double 0.0 Small-signal phase in radian
*)

ac_noise_
amplitude

double 0.0 Small-signal noise amplitude
**)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports

Name Interface Type/Nature Description

y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater or equal to zero.

A.5.8. sca_lsf::sca_ltf_nd

Description

Scaled Laplace transfer function in the time-domain in the numerator-denominator form.

Definition

sca_lsf::sca_ltf_nd( nm, num, den, delay, k );

Symbol

Equation
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Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

num sca_util::sca_vector<double>  Numerator coefficients

den sca_util::sca_vector<double>  Denumerator coefficients

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay

k double 1.0 Gain coefficient

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF output

y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater or equal to zero.

A.5.9. sca_lsf::sca_ltf_zp

Description

Scaled Laplace transfer function in the time-domain in the zero-pole form.

Definition

sca_lsf::sca_ltf_zp( nm, zeros, poles, delay, k );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

zeros sca_util::sca_vector<
sca_util::sca_complex>

 Zeros

poles sca_util::sca_vector<
sca_util::sca_complex>

 Poles

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay
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Name Type Default Description

k double 1.0 Gain coefficient

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF output

y sca_lsf::sca_out Signal flow LSF output

Constraints on usage

The expansion of the numerator and the denominator shall result in a real value, respectively. The delay
shall be greater or equal to zero.

A.5.10. sca_lsf::sca_ss

Description

Single-input single-output state-space equation.

Definition

sca_lsf::sca_ss( nm, a, b, c, d, delay );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

a sca_util::sca_matrix<double>  Matrix A of size n-by-n

b sca_util::sca_matrix<double>  Matrix B with one column
of size n

c sca_util::sca_matrix<double>  Matrix C with one row of
size n

d sca_util::sca_matrix<double>  Matrix D of size 1

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF output

y sca_lsf::sca_out Signal flow LSF output
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Constraint of usage

The delay shall be greater or equal to zero.

A.5.11. sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain

Description

Scaled multiplication of a TDF input signal by an LSF input signal.

Definition

sca_lsf::sca_tdf::sca_gain( nm, scale );
          
sca_lsf::sca_tdf_gain( nm, scale );

Symbol

Equation

y(t) = scale · inp · x(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

inp sca_tdf::sca_in<T> double TDF input

x sca_lsf::sca_in Signal flow LSF output

y sca_lsf::sca_out Signal flow LSF output

A.5.12. sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source

Description

Scaled conversion of a TDF input signal to an LSF output signal.

Definition

sca_lsf::sca_tdf::sca_source( nm, scale );
          
sca_lsf::sca_tdf_source( nm, scale );

Symbol
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Equation

y(t) = scale · inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

inp sca_tdf::sca_in<T> double TDF input

y sca_lsf::sca_out Signal flow LSF output

A.5.13. sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink

Description

Scaled conversion from an LSF input signal to a TDF output signal.

Definition

sca_lsf::sca_tdf::sca_sink( nm, scale );
          
sca_lsf::sca_tdf_sink( nm, scale );

Symbol

Equation

There is no equation contributed to the overall equation system for this module.

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

outp sca_tdf::sca_out<T> double TDF output

A.5.14. sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux

Description

Selection of one of two LSF input signals by a TDF control signal (multiplexer).
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Definition

sca_lsf::sca_tdf::sca_mux( nm );
          
sca_lsf::sca_tdf_mux( nm );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

Ports

Name Interface Type/Nature Description

x1 sca_lsf::sca_in Signal flow LSF input 1

x2 sca_lsf::sca_in Signal flow LSF input 2

ctrl sca_tdf::sca_in<T> bool TDF control input

y sca_lsf::sca_out Signal flow LSF output

A.5.15. sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux

Description

Routing of an LSF input signal to either one of two LSF output signals controlled by a TDF signal
(demultiplexer).

Definition

sca_lsf::sca_tdf::sca_demux( nm );
          
sca_lsf::sca_tdf_demux( nm );

Symbol

Equation
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Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

ctrl sca_tdf::sca_in<T> bool TDF control input

y1 sca_lsf::sca_out Signal flow LSF output 1

y2 sca_lsf::sca_out Signal flow LSF output 2

A.5.16. sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain

Description

Scaled multiplication of a discrete-event input signal by an LSF input signal.

Definition

sca_lsf::sca_de::sca_gain( nm, scale );
          
sca_lsf::sca_de_gain( nm, scale );

Symbol

Equation

y(t) = scale · inp · x(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

inp sc_core::sc_in<T> double Discrete-event input

x sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

A.5.17. sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source

Description

Scaled conversion of a discrete-event input signal to an LSF output signal.
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Definition

sca_lsf::sca_de::sca_source( nm, scale );
          
sca_lsf::sca_de_source( nm, scale );

Symbol

Equation

y(t) = scale · inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

inp sc_core::sc_in<T> double Discrete-event input

y sca_lsf::sca_out Signal flow LSF output

A.5.18. sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink

Description

Scaled conversion from an LSF input signal to a discrete-event output signal.

Definition

sca_lsf::sca_de::sca_sink( nm, scale );
          
sca_lsf::sca_de_sink( nm, scale );

Symbol

Equation

There is no equation contributed to the overall equation system for this module.

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name
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Name Type Default Description

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

outp sc_core::sc_out<T> double Discrete-event output

A.5.19. sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux

Description

Selection of one of two LSF input signals by a discrete-event control signal (multiplexer).

Definition

sca_lsf::sca_de::sca_mux( nm );
          
sca_lsf::sca_de_mux( nm );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

Ports

Name Interface Type/Nature Description

x1 sca_lsf::sca_in Signal flow LSF input 1

x2 sca_lsf::sca_in Signal flow LSF input 2

ctrl sc_core::sc_in<T> bool Discrete-event control input

y sca_lsf::sca_out Signal flow LSF output

A.5.20. sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux

Description

Routing of an LSF input signal to either one of two LSF output signals controlled by a discrete-event control
signal (demultiplexer).

Definition

sca_lsf::sca_de::sca_demux( nm );
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sca_lsf::sca_de_demux( nm );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

Ports

Name Interface Type/Nature Description

x sca_lsf::sca_in Signal flow LSF input

ctrl sc_core::sc_in<T> bool Discrete-event control input

y1 sca_lsf::sca_out Signal flow LSF output 1

y2 sca_lsf::sca_out Signal flow LSF output 2

A.6. ELN primitive modules

A.6.1. sca_eln::sca_r

Description

Resistor.

Definition

sca_eln::sca_r( nm, value  );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Resistance in Ohm
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Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

A.6.2. sca_eln::sca_c

Description

Capacitor.

Definition

sca_eln::sca_c( nm, value, q0 );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Capacitance in Farad

q0 double 0.0 Initial charge in Coulomb

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

Constraint of usage

The parameter value shall not be numerically zero.

A.6.3. sca_eln::sca_l

Description

Inductor.

Definition

sca_eln::sca_l( nm, value, phi0 );

Symbol
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Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Inductance in Henry

phi0 double 0.0 Initial magnetic flux in Weber

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

Constraint of usage

The parameter value shall not be numerically zero.

A.6.4. sca_eln::sca_vcvs

Description

Voltage controlled voltage source.

Definition

sca_eln::sca_vcvs( nm, value );

Symbol

Equation

vnp,nn(t) = value · vncp,ncn(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Scale coefficient of the control voltage

Ports

Name Interface Type/Nature Description

ncp sca_eln::sca_terminal Electrical Positive control terminal

ncn sca_eln::sca_terminal Electrical Negative control terminal
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Name Interface Type/Nature Description

np sca_eln::sca_terminal Electrical Positive terminal of source

nn sca_eln::sca_terminal Electrical Negative terminal of source

A.6.5. sca_eln::sca_vccs

Description

Voltage controlled current source.

Definition

sca_eln::sca_vccs( nm, value );

Symbol

Equation

inp,nn(t) = value · vncp,ncn(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Scale coefficient in Siemens of the control voltage

Ports

Name Interface Type/Nature Description

ncp sca_eln::sca_terminal Electrical Positive control terminal

ncn sca_eln::sca_terminal Electrical Negative control terminal

np sca_eln::sca_terminal Electrical Positive terminal of source

nn sca_eln::sca_terminal Electrical Negative terminal of source

A.6.6. sca_eln::sca_ccvs

Description

Current controlled voltage source.

Definition

sca_eln::sca_ccvs( nm, value );

Symbol
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Equation

vnp,nn(t) = value · incp,ncn(t)

vncp,ncn(t) = 0

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Scale coefficient in Ohm of the control current

Ports

Name Interface Type/Nature Description

ncp sca_eln::sca_terminal Electrical Positive control terminal

ncn sca_eln::sca_terminal Electrical Negative control terminal

np sca_eln::sca_terminal Electrical Positive terminal of source

nn sca_eln::sca_terminal Electrical Negative terminal of source

A.6.7. sca_eln::sca_cccs

Description

Current controlled current source.

Definition

sca_eln::sca_cccs( nm, value );

Symbol

Equation

inp,nn(t) = value · incp,ncn(t)

vncp,ncn(t) = 0

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

value double 1.0 Scale coefficient of the control current

Ports

Name Interface Type/Nature Description

ncp sca_eln::sca_terminal Electrical Positive control terminal

ncn sca_eln::sca_terminal Electrical Negative control terminal
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Name Interface Type/Nature Description

np sca_eln::sca_terminal Electrical Positive terminal of source

nn sca_eln::sca_terminal Electrical Negative terminal of source

A.6.8. sca_eln::sca_nullor

Description

Nullor (nullator - norator pair), ideal Opamp.

Definition

sca_eln::sca_nullor( nm );

Symbol

Equation

vnip,nin(t) = 0

inip,nin(t) = 0

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

Ports

Name Interface Type/Nature Description

nip sca_eln::sca_terminal Electrical Positive terminal of nullator

nin sca_eln::sca_terminal Electrical Negative terminal of nullator

nop sca_eln::sca_terminal Electrical Positive terminal of norator

non sca_eln::sca_terminal Electrical Negative terminal of norator

A.6.9. sca_eln::sca_gyrator

Description

Gyrator.

Definition

sca_eln::sca_gyrator( nm, g1, g2 );

Symbol
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Equation

ip1,n1(t) = g2 · vp2,n2(t)

ip2,n2(t) = –g1 · vp1,n1(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

g1 double 1.0 Gyration conductance in Siemens

g2 double 1.0 Gyration conductance in Siemens

Ports

Name Interface Type/Nature Description

p1 sca_eln::sca_terminal Electrical Positive terminal of primary port

n1 sca_eln::sca_terminal Electrical Negative terminal of primary port

p2 sca_eln::sca_terminal Electrical Positive terminal of secondary port

n2 sca_eln::sca_terminal Electrical Negative terminal of secondary port

A.6.10. sca_eln::sca_ideal_transformer

Description

Ideal transformer.

Definition

sca_eln::sca_ideal_transformer( nm, ratio );

Symbol

Equation

vp1,n1(t) = ratio · vp2,n2(t)

ip2,n2(t) = ratio · ip1,n1(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

ratio double 1.0 Transformation ratio

Ports

Name Interface Type/Nature Description

p1 sca_eln::sca_terminal Electrical Positive terminal of primary port
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Name Interface Type/Nature Description

n1 sca_eln::sca_terminal Electrical Negative terminal of primary port

p2 sca_eln::sca_terminal Electrical Positive terminal of secondary port

n2 sca_eln::sca_terminal Electrical Negative terminal of secondary port

A.6.11. sca_eln::sca_transmission_line

Description

Transmission line.

Symbol

Definition

sca_eln::sca_transmission_line( nm, z0, delay, delta0 );

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

z0 double 100.0 Characteristic impedance of
the transmission line in Ohm

delay sca_core::sca_time sc_core::SC_ZERO_TIME Transmission delay

delta0 double 0.0 Dissipation factor in 1/
seconds.

Ports

Name Interface Type/Nature Description

a1 sca_eln::sca_terminal Electrical Wire A at primary side

b1 sca_eln::sca_terminal Electrical Wire B at primary side

a2 sca_eln::sca_terminal Electrical Wire A at secondary side

b2 sca_eln::sca_terminal Electrical Wire B at secondary side

Constraint of usage

The delay shall be greater or equal to zero.
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A.6.12. sca_eln::sca_vsource

Description

Independent voltage source.

Definition

sca_eln::sca_vsource( nm, init_value, offset, amplitude, frequency, phase, delay,
                      ac_amplitude, ac_phase, ac_noise_amplitude );

Symbol

Equation

For time-domain simulation:

For small-signal frequency-domain simulation:

For small-signal frequency-domain noise simulation:

Parameters

Name Type Default Description

nm sc_core::
sc_module_name

 Module name

init_value double 0.0 Initial value

offset double 0.0 Offset value

amplitude double 0.0 Source amplitude

frequency double 0.0 Source frequency in Hertz

phase double 0.0 Source phase in radian

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay

ac_amplitude double 0.0 Small-signal amplitude *)

ac_phase double 0.0 Small-signal phase in radian
*)

ac_noise_
amplitude

double 0.0 Small-signal noise amplitude
**)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal
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Name Interface Type/Nature Description

n sca_eln::sca_terminal Electrical Negative terminal

Constraint of usage

The delay shall be greater or equal to zero.

A.6.13. sca_eln::sca_isource

Description

Independent current source.

Definition

sca_eln::sca_isource( nm, init_value, offset, amplitude, frequency, phase, delay,
                      ac_amplitude, ac_phase, ac_noise_amplitude );

Symbol

Equation

For time-domain simulation:

For small-signal frequency-domain simulation:

For small-signal frequency-domain noise simulation:

Parameters

Name Type Default Description

nm sc_core::
sc_module_name

 Module name

init_value double 0.0 Initial value

offset double 0.0 Offset value

amplitude double 0.0 Source amplitude

frequency double 0.0 Source frequency in Hertz

phase double 0.0 Source phase in radian

delay sca_core::sca_time sc_core::SC_ZERO_TIME Time continuous delay

ac_amplitude double 0.0 Small-signal amplitude *)

ac_phase double 0.0 Small-signal phase in radian
*)

ac_noise_
amplitude

double 0.0 Small-signal noise amplitude
**)
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*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

Constraint of usage

The delay shall be greater or equal to zero.

A.6.14. sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r

Description

Variable resistor controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_r( nm, scale );
          
sca_eln::sca_tdf_r( nm, scale );

Symbol

Equation

vp,n(t) = scale · inp · ip,n(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF control input

A.6.15. sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c

Description

Variable capacitor controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_c( nm, scale, q0 ); 
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sca_eln::sca_tdf_c( nm, scale, q0 ); 

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

q0 double 0.0 Initial charge in Coulomb

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF control input

A.6.16. sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l

Description

Variable inductor controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_l( nm, scale, phi0 ); 

sca_eln::sca_tdf_l( nm, scale, phi0 ); 

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient
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Name Type Default Description

phi0 double 0.0 Initial magnetic flux in Weber

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF control input

A.6.17. sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch

Description

Switch controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_rswitch( nm, ron, roff, off_state ); 

sca_eln::sca_tdf_rswitch( nm, ron, roff, off_state );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

ron double 0.0 On resistance in Ohm

roff double sca_util::SCA_INFINITY Off resistance in Ohm

off_state bool false Define which position is the
off-position

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

ctrl sca_tdf::sca_in<T> bool TDF control input

A.6.18. sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource

Description

Voltage source driven by a TDF input signal.
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Definition

sca_eln::sca_tdf::sca_vsource( nm, scale );

sca_eln::sca_tdf_vsource( nm, scale );

Symbol

Equation

vp,n(t) = scale · inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF input

A.6.19. sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource

Description

Current source driven by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_isource( nm, scale );

sca_eln::sca_tdf_isource( nm, scale );

Symbol

Equation

ip,n(t) = scale · inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name
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Name Type Default Description

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF input

A.6.20. sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink

Description

Converts voltage to a TDF output signal.

Definition

sca_eln::sca_tdf::sca_vsink( nm, scale );

sca_eln::sca_tdf_vsink( nm, scale );

Symbol

Equation

No equation added to the equation system.

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

outp sca_tdf::sca_out<T> double TDF output

A.6.21. sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink

Description

Converts current to a TDF output signal.

Definition

sca_eln::sca_tdf::sca_isink( nm, scale );
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sca_eln::sca_tdf_isink( nm, scale );

Symbol

Equation

vp,n(t) = 0

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

outp sca_tdf::sca_out<T> double TDF output

A.6.22. sca_eln::sca_de::sca_r, sca_eln::sca_de_r

Description

Variable resistor controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_r( nm, scale );
          
sca_eln::sca_de_r( nm, scale );

Symbol

Equation

vp,n(t) = scale · inp · ip,n(t)

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient
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Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sc_core::sc_in<T> double Discrete-event control input

A.6.23. sca_eln::sca_de::sca_c, sca_eln::sca_de_c

Description

Variable capacitor controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_c( nm, scale, q0 ); 

sca_eln::sca_de_c( nm, scale, q0); 

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

q0 double 0.0 Initial charge in Coulomb

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sc_core::sc_in<T> double Discrete-event control input

A.6.24. sca_eln::sca_de::sca_l, sca_eln::sca_de_l

Description

Variable inductor controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_l( nm, scale, phi0 ); 
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sca_eln::sca_de_l( nm, scale, phi0 ); 

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

phi0 double 0.0 Initial magnetic flux in Weber

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sc_core::sc_in<T> double Discrete-event control input

A.6.25. sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch

Description

Switch controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_rswitch( nm, ron, roff, off_state );

sca_eln::sca_de_rswitch( nm, ron, roff, off_state );

Symbol

Equation

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name
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Name Type Default Description

ron double 0.0 On resistance in Ohm

roff double sca_util::SCA_INFINITY Off resistance in Ohm

off_state bool false Define which position is the
off-position

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

ctrl sc_core::sc_in<T> bool Discrete-event control input

A.6.26. sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource

Description

Voltage source driven by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_vsource( nm, scale );

sca_eln::sca_de_vsource( nm, scale );

Symbol

Equation

vp,n(t) = scale · inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sc_core::sc_in<T> double Discrete-event input

A.6.27. sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource

Description

Current source driven by a discrete-event input signal.
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Definition

sca_eln::sca_de::sca_isource( nm, scale );

sca_eln::sca_de_isource( nm, scale );

Symbol

Equation

ip,n(t) = scale · inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sc_core::sc_in<T> double Discrete-event input

A.6.28. sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink

Description

Converts voltage to a discrete-event output signal.

Definition

sca_eln::sca_de::sca_vsink( nm, scale );

sca_eln::sca_de_vsink( nm, scale );

Symbol

Equation

No equation added to the equation system.

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient
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Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

outp sc_core::sc_out<T> double Discrete-event output

A.6.29. sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink

Description

Converts current to a discrete-event output signal.

Definition

sca_eln::sca_de::sca_isink( nm, scale );

sca_eln::sca_de_isink( nm, scale );

Symbol

Equation

vp,n(t) = 0

Parameters

Name Type Default Description

nm sc_core::sc_module_name  Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

outp sc_core::sc_out<T> double Discrete-event output
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Appendix B. Symbols and graphical representations

This appendix gives an overview of the symbols and graphical representations used in this user’s guide.
In case derivative block diagrams or electrical networks are extracted from this user’s guide, it is strongly
recommended to use these symbols and graphical representations in a consistent manner.

The symbols for the individual LSF and ELN primitives are given in Appendix A.

Figure B.1. Symbols and graphical representations of TDF, LSF, ELN and discrete-event elements.
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Appendix C. Glossary

This glossary contains brief descriptions for a number of terms used in this user’s guide.

C.1. application

A C++ program, written by an end user, that makes use of the classes, functions, macros, and so forth
provided by SystemC and the AMS extensions. An application may use as few or as many features of C++
as is seen fit and as few or as many features of SystemC and the AMS extensions as is seen fit.

C.2. cluster

A cluster is a set of connected modules sharing the same model of computation.

C.3. continuous-time signal

A continuous-time signal is a piecewise contiguous and differentiable signal, which may be represented in
approximation by a set of samples at discrete time points. Values between the samples can be estimated
by different interpolation techniques.

C.4. discrete-time signal

A discrete-time signal is a signal that has been sampled from a continuous-time signal resulting in a sequence
of values at discrete time points. Each value in the sequence is called a sample.

C.5. electrical linear networks, ELN

A model of computation that uses the electrical linear networks formalism for calculations. (See Chapter 4.)

C.6. frequency-domain processing

Frequency-domain processing can be embedded in timed data flow descriptions for analysis of small-
signal frequency-domain behavior. The frequency-domain behavior of a module instance derived
from sca_tdf::sca_module has to be implemented either by overloading its member function
sca_tdf::sca_module::ac_processing or by registering an application-defined member function using
sca_tdf::sca_module::register_ac_processing.

C.7. hierarchical port

A port of a parent module.

C.8. implementation

A specific concrete implementation of the full SystemC AMS extensions, of which only the public shell
needs to be exposed to the application (i.e., parts may be pre-compiled and distributed as object code by
a tool vendor).

C.9. linear signal flow, LSF

A model of computation that uses the linear signal flow formalism for calculations and signal processing.
(See Chapter 3.)

C.10. model of computation, MoC

A model of computation implements a modeling formalism, which is a set of rules defining the behavior
(computation) and interaction (communication) between AMS primitive modules instantiated within a
module. (See Section 1.2.3.)

C.11. numerically singular

Numerically singular describes a situation, in which the solution of an equation system cannot be calculated.
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C.12. primitive module

A class that is derived from class sca_core::sca_module and complies to a particular model of computation.
A primitive module cannot be hierarchically decomposed and contains no child modules or channels.

C.13. primitive port

A port of a primitive module.

C.14. proxy class

A class, which only purpose is to extend the readability of certain statements that otherwise would be
restricted by the semantics of C++. An example is to use the proxy class to represent a continuous-time
signal and to map it to discrete-time signal. Proxy classes are only intended to be used for the temporary
value returned by a function. A proxy class constructor shall not be called explicitly by an application to
create a named object.

C.15. rate

The rate defines the number of samples that have to be read or written at a port of type sca_tdf::sca_in,
sca_tdf::sca_out, sca_tdf::sca_de::sca_in, and sca_tdf::sca_de::sca_out during each execution of
the time-domain and frequency domain processing function of its parent module derived from
sca_tdf::sca_module. The rate of such a port shall have a positive, nonzero value.

C.16. sample

A sample refers to a value at a certain point in time or refers to a set of values with a certain start and end time.
sample_id denotes the index of the (data) sample, nsample denotes the number of samples in a set of values.

C.17. solver

A solver computes the solution of an equation system (e.g., a set of differential and algebraic equations).

C.18. terminal

A terminal is a class derived from the class sca_core::sca_port and is associated with the electrical linear
networks model of computation. For electrical primitives with 2 terminals, the terminal names p and n are
defined. Multi-port primitives may use different terminal names.

C.19. timed data flow, TDF

A model of computation that uses the timed data flow formalism for scheduling and signal processing. (See
Chapter 2.)

C.20. time-domain processing

Time-domain processing is done through the repetitive activation of the time-domain processing
member functions as part of the timed data flow model of computation. The time-domain
processing member function can be either the member function sca_tdf::sca_module::processing
or an application-defined member function, which shall be registered using the member function
sca_tdf::sca_module::register_processing.

C.21. untimed model of computation

In an untimed model of computation, the behavioral description (computation) and interaction with other
modules and processes (communication) does not have a notion of time. Only the order of computations or
events, and cause and effect of computations or events are relevant.
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Index

A
abstraction, 85
ac_processing, member function

class sca_tdf::sca_module, 105
application

glossary, 145
attribute settings

set_attributes, member function, 15
timed data flow, 15

B
baseband modeling

timed data flow, 89
behavioral modeling

linear signal flow, 87
timed data flow, 89

C
classes

public and private members, 102
sca_eln::sca_c, 56, 123
sca_eln::sca_cccs, 56, 126
sca_eln::sca_ccvs, 56, 125
sca_eln::sca_de::sca_c, 138
sca_eln::sca_de::sca_c, class, 56
sca_eln::sca_de::sca_isink, 56, 142
sca_eln::sca_de::sca_isource, 56, 140
sca_eln::sca_de::sca_l, 56, 138
sca_eln::sca_de::sca_r, 56, 137
sca_eln::sca_de::sca_rswitch, 56, 139
sca_eln::sca_de::sca_vsink, 56, 141
sca_eln::sca_de::sca_vsource, 56, 140
sca_eln::sca_gyrator, 56, 127
sca_eln::sca_ideal_transformer, 56, 128
sca_eln::sca_isource, 56, 131
sca_eln::sca_l, 56, 123
sca_eln::sca_node, 58
sca_eln::sca_node_ref, 58
sca_eln::sca_nullor, 56, 127
sca_eln::sca_r, 56, 122
sca_eln::sca_tdf::sca_c, 56, 132
sca_eln::sca_tdf::sca_isink, 56, 136
sca_eln::sca_tdf::sca_isource, 56, 135
sca_eln::sca_tdf::sca_l, 56, 133
sca_eln::sca_tdf::sca_r, 56, 132
sca_eln::sca_tdf::sca_rswitch, 56, 134
sca_eln::sca_tdf::sca_vsink, 56, 136
sca_eln::sca_tdf::sca_vsource, 56, 134
sca_eln::sca_terminal, 58
sca_eln::sca_transmission_line, 56, 129
sca_eln::sca_vccs, 56, 125
sca_eln::sca_vcvs, 56, 124
sca_eln::sca_vsource, 56, 130
sca_lsf::sca_add, 42, 108
sca_lsf::sca_de::sca_demux, 42, 121
sca_lsf::sca_de::sca_gain, 42, 119

sca_lsf::sca_de::sca_mux, 42, 121
sca_lsf::sca_de::sca_sink, 42, 120
sca_lsf::sca_de::sca_source, 42, 119
sca_lsf::sca_delay, 42, 111
sca_lsf::sca_dot, 42, 110
sca_lsf::sca_gain, 42, 110
sca_lsf::sca_in, 43
sca_lsf::sca_integ, 42, 111
sca_lsf::sca_ltf_nd, 42, 113
sca_lsf::sca_ltf_zp, 42, 114
sca_lsf::sca_out, 43
sca_lsf::sca_signal, 44
sca_lsf::sca_source, 42, 112
sca_lsf::sca_ss, 42, 115
sca_lsf::sca_sub, 42, 109
sca_lsf::sca_tdf::sca_demux, 42, 118
sca_lsf::sca_tdf::sca_gain, 42, 116
sca_lsf::sca_tdf::sca_mux, 42, 117
sca_lsf::sca_tdf::sca_sink, 42, 117
sca_lsf::sca_tdf::sca_source, 42, 116
sca_tdf::sca_de::sca_in, 17, 105
sca_tdf::sca_de::sca_out, 17, 105
sca_tdf::sca_in, 17, 105
sca_tdf::sca_ltf_nd, 22, 106
sca_tdf::sca_ltf_zp, 22, 107
sca_tdf::sca_module, 105
sca_tdf::sca_out, 17, 105
sca_tdf::sca_signal, 20, 106
sca_tdf::sca_ss, 23, 107
sca_tdf::sca_trace_variable, 80
sca_util::sca_trace_file, 79

cluster, glossary, 145
coding style, 96
complex

envelope, 91
low-pass equivalent, 91
value, sca_util::SCA_COMPLEX_J, 73

constants
sca_util::SCA_COMPLEX_J, 73

constructor
SCA_CTOR, macro, 16

continuous-time modeling
electrical linear networks, 60
linear signal flow, 46
timed data flow, 21

continuous-time signal, glossary, 145
converter modules

electrical linear networks, 61
linear signal flow, 47

converter ports
timed data flow, 17, 30

D
delay

frequency-domain delay, 71
delays

set_delay, member function, 17, 29
timed data flow, 29
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design refinement, 94
disable, member function

class sca_util::sca_trace_file, 79
discrete-time modeling

timed data flow, 21
discrete-time signal, glossary, 145
dynamic memory allocation, 97

E
electrical linear networks

continuous-time modeling, 60
glossary, 145
language constructs, 56
macromodeling, 86
modeling fundamentals, 55
module time step, 57
port binding, 59
set_timestep, member function, 57
setup equation system , 55
structural composition of modules, 59
time step assignment, 56
time step propagation, 56

ELN (see electrical linear networks)
embedded equations

laplace transfer functions, 22
state-space equations, 23

enable, member function
class sca_util::sca_trace_file, 79

execution semantics
electrical linear networks, 64
linear signal flow, 50
timed data flow, 32

F
frequency-domain processing, glossary, 145
frequency-domain simulation, 78
functions

sc_core::sc_ac_noise_start, 78
sc_core::sc_ac_start, 78
sc_core::sc_start, 77
sca_ac_analysis::sca_ac, 70
sca_ac_analysis::sca_ac_delay, 71
sca_ac_analysis::sca_ac_f, 73
sca_ac_analysis::sca_ac_is_running, 74
sca_ac_analysis::sca_ac_ltf_nd, 71
sca_ac_analysis::sca_ac_ltf_zp, 71
sca_ac_analysis::sca_ac_noise, 70
sca_ac_analysis::sca_ac_noise_is_running, 74
sca_ac_analysis::sca_ac_s, 72
sca_ac_analysis::sca_ac_w, 73
sca_ac_analysis::sca_ac_z, 73
sca_util::sca_close_tabular_trace_file, 79
sca_util::sca_close_vcd_trace_file, 79
sca_util::sca_create_tabular_trace_file, 79
sca_util::sca_create_vcd_trace_file, 79
sca_util::sca_decimation, 79
sca_util::sca_sampling, 79
sca_util::sca_trace, 80

sca_util::sca_write_comment, 80
small-signal frequency-domain, 71

G
get_delay, member function

class sca_tdf::sca_de::sca_in, 17, 105
class sca_tdf::sca_de::sca_out, 17, 105
class sca_tdf::sca_in, 17, 105
class sca_tdf::sca_out, 17, 105

get_rate, member function
class sca_tdf::sca_de::sca_in, 17, 105
class sca_tdf::sca_de::sca_out, 17, 105
class sca_tdf::sca_in, 17, 105
class sca_tdf::sca_out, 17, 105

get_time, member function
class sca_tdf::sca_module, 105

get_timeoffset, member function
class sca_tdf::sca_de::sca_in, 17, 105
class sca_tdf::sca_de::sca_out, 17, 105

get_timestep, member function
class sca_tdf::sca_de::sca_in, 17, 105
class sca_tdf::sca_de::sca_out, 17, 105
class sca_tdf::sca_in, 17, 105
class sca_tdf::sca_module, 105
class sca_tdf::sca_out, 17, 105

H
header files, 96
hierarchical port, glossary, 145

I
implementation

glossary, 145
initialization

initialize, member function, 15
timed data flow, 15

initialize, member function
class sca_tdf::sca_de::sca_in, 18, 105
class sca_tdf::sca_de::sca_out, 18, 105
class sca_tdf::sca_in, 18, 105
class sca_tdf::sca_module, 105
class sca_tdf::sca_out, 18, 105

interaction between models of computation
electrical linear networks, 61
linear signal flow, 47
timed data flow, 30

introduction
motivation, 1

L
language architecture, 4
language constructs

electrical linear networks, 56
linear signal flow, 42
small-signal frequency-domain, 70
time data flow, 14

laplace transfer functions
class sca_lsf::sca_ltf_nd, 113
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class sca_lsf::sca_ltf_zp, 114
class sca_tdf::sca_ltf_nd, 22, 106
class sca_tdf::sca_ltf_zp, 22, 107
function sca_ac_analysis::sca_ac_ltf_nd, 71
function sca_ac_analysis::sca_ac_ltf_zp, 71

linear signal flow
continuous-time modeling, 46
glossary, 145
language constructs, 42
modeling fundamentals, 41
module time step, 43
port binding, 44
set_timestep, member function, 43
setup equation system , 41
structural composition of modules, 44
time step assignment, 42
time step propagation, 42

LSF (see linear signal flow)
LTF (see laplace transfer functions)

M
macromodeling, 86
model abstractions

conservative descriptions, 3
continuous-time descriptions, 3
discrete-time descriptions, 3
non-conservative descriptions, 3

modeling formalisms
electrical linear networks, 4
linear signal flow, 4
timed data flow, 4

modeling style, 96
model of computation

electrical linear networks, 55, 
glossary, 145
linear signal flow, 41, 
partitioning behavior, 91
timed data flow, 7, 
untimed, glossary, 146

module activation
processing, member function, 16, 105

module local time
get_time, member function, 16

modules
class sca_eln::sca_module, 56
class sca_lsf::sca_module, 42
class sca_tdf::sca_module, 14, 105
definition and implementation, 100
electrical linear networks, 56
linear signal flow, 42
parameters, 98
time data flow, 14

module time step
get_timestep, member function, 105
set_timestep, member function, 15, 43, 57, 105

multirate behavior
get_rate, member function, 17, 105
set_rate, member function, 17, 28, 105

timed data flow, 28

N
namespaces, 96
naming conventions, 96
nodes

class sca_eln::sca_node, 58
class sca_eln::sca_node_ref, 58
electrical linear networks, 58

noise
modeling in time-domain, 93

numerically singular, glossary, 145

P
PID controller

with adjustable coefficients, 88
port attributes

get_delay, member function, 17, 105
get_rate, member function, 17, 105
get_timeoffset, member function, 17, 105
get_timestep, member function, 17, 105
set_delay, member function, 17, 105
set_rate, member function, 17, 105
set_timeoffset, member function, 17, 105
set_timestep, member function, 17, 105
timed data flow, 17, 105

port binding
electrical linear networks, 59
linear signal flow, 44
timed data flow, 26

port initialization
initialize, member function, 18, 105

port read and write access
read, member function, 18, 105
write, member function, 18, 105

ports
class sca_eln::sca_terminal, 58
class sca_lsf::sca_in, 43
class sca_lsf::sca_out, 43
class sca_tdf::sca_de::sca_in, 17, 105
class sca_tdf::sca_de::sca_out, 17, 105
class sca_tdf::sca_in, 17, 105
class sca_tdf::sca_out, 17, 105
electrical linear networks terminals, 58
linear signal flow, 43
timed data flow, 17

port time
get_time, member function, 20, 105
get_timeoffset, member function, 17
set_timeoffset, member function, 17, 105

port time step
get_timestep, member function, 17, 105
set_timestep, member function, 17, 105

primitive modules
class sca_eln::sca_c, 56, 123
class sca_eln::sca_cccs, 56, 126
class sca_eln::sca_ccvs, 56, 125
class sca_eln::sca_de::sca_c, 138
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class sca_eln::sca_de::sca_c, class, 56
class sca_eln::sca_de::sca_isink, 56, 142
class sca_eln::sca_de::sca_isource, 56, 140
class sca_eln::sca_de::sca_l, 56, 138
class sca_eln::sca_de::sca_r, 56, 137
class sca_eln::sca_de::sca_rswitch, 56, 139
class sca_eln::sca_de::sca_vsink, 56, 141
class sca_eln::sca_de::sca_vsource, 56, 140
class sca_eln::sca_gyrator, 56, 127
class sca_eln::sca_ideal_transformer, 56, 128
class sca_eln::sca_isource, 56, 131
class sca_eln::sca_l, 56, 123
class sca_eln::sca_nullor, 56, 127
class sca_eln::sca_r, 56, 122
class sca_eln::sca_tdf::sca_c, 56, 132
class sca_eln::sca_tdf::sca_isink, 56, 136
class sca_eln::sca_tdf::sca_isource, 56, 135
class sca_eln::sca_tdf::sca_l, 56, 133
class sca_eln::sca_tdf::sca_r, 56, 132
class sca_eln::sca_tdf::sca_rswitch, 56, 134
class sca_eln::sca_tdf::sca_vsink, 56, 136
class sca_eln::sca_tdf::sca_vsource, 56, 134
class sca_eln::sca_transmission_line, 56, 129
class sca_eln::sca_vccs, 56, 125
class sca_eln::sca_vcvs, 56, 124
class sca_eln::sca_vsource, 56, 130
class sca_lsf::sca_add, 42, 108
class sca_lsf::sca_de::sca_demux, 42, 121
class sca_lsf::sca_de::sca_gain, 42, 119
class sca_lsf::sca_de::sca_mux, 42, 121
class sca_lsf::sca_de::sca_sink, 42, 120
class sca_lsf::sca_de::sca_source, 42, 119
class sca_lsf::sca_delay, 42, 111
class sca_lsf::sca_dot, 42, 110
class sca_lsf::sca_gain, 42, 110
class sca_lsf::sca_integ, 42, 111
class sca_lsf::sca_ltf_nd, 42, 113
class sca_lsf::sca_ltf_zp, 42, 114
class sca_lsf::sca_source, 42, 112
class sca_lsf::sca_ss, 42, 115
class sca_lsf::sca_sub, 42, 109
class sca_lsf::sca_tdf::sca_demux, 42, 118
class sca_lsf::sca_tdf::sca_gain, 42, 116
class sca_lsf::sca_tdf::sca_mux, 42, 117
class sca_lsf::sca_tdf::sca_sink, 42, 117
class sca_lsf::sca_tdf::sca_source, 42, 116
class sca_tdf::sca_module, 14
class sca_tdf::sca_ss, 107
electrical linear networks, 56
glossary, 146
linear signal flow, 42
time data flow, 14

primitive port, glossary, 146
processing, member function

class sca_tdf::sca_module, 105
proxy class, glossary, 146

R
rate, glossary, 146
read, member function

class sca_tdf::sca_de::sca_in, 18, 105
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electrical linear networks, nodes, 58
linear signal flow, 44
timed data flow, 20

simulation
arguments, 77
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time-domain, transient, 77

simulation control, 77
small-signal frequency-domain

analyses methods, 69
language constructs, 70
modeling fundamentals, 69
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structural composition
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class templates, 101
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behavioral modeling, 89
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laplace transfer functions, 22
modeling fundamentals, 7
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multirate behavior, 28
port binding, 26
signal processing behavior, 13
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structural composition of modules, 26
time step assignment, 11
time step propagation, 11
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time-domain simulation, 77
time step

electrical linear networks modules, 57
linear signal flow modules, 43
timed data flow modules, 15
timed data flow ports, 17

time step assignment and propagation
electrical linear networks, 56
linear signal flow, 42
timed data flow, 11, 89
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reopen trace file, 79
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to an output stream, 79
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to VCD file, 79
trace file control, 79
trace file mode, 79
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sca_eln::sca_tdf_r, 132
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sca_lsf::sca_tdf_sink, 117
sca_lsf::sca_tdf_source, 116

U
use cases

architecture exploration, 2
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integration validation, 3
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Z
z-domain

function sca_ac_analysis::sca_ac_z, 73
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