March 8 2010

SYSTEMC

SystemC AMS extensions User’s Guide

Abstract
Thisisthe SystemC Analog Mixed Signal (AMS) extensions User’s Guide.

Keywords
Open SystemC Initiative, SystemC, Analog Mixed Signal, Heterogeneous Modeling and Simulation.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

Copyright Notice
Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. This software and

documentation are furnished under the SystemC Open Source License (the License). The software and
documentation may be used or copied only in accordance with the terms of the License agreement.

Right to Copy Documentation

The License agreement permits licensee to make copies of the documentation. Each copy shall include all
copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States

of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It isthe
reader’ s responsibility to determine the applicable regulations and comply with them.

Disclaimer
THE CONTRIBUTORS AND THEIR LICENSORS MAKE NO WARRANTY OF ANY KIND

WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

SystemC and the SystemC logo are trademarks of OSCI.

Bugs and Suggestions
Please report bugs and suggestions about this document to:

http://www.systemc.org/

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. iii

This page is intentionally left blank.

SystemC AMS extensions User’s Guide

About this document

March 8 2010

This user’s guide is an informative document explaining how to use the SystemC AMS extensions. This
document is part of the release of the SystemC AMS extensions |anguage standard.

Contributors

This document was created under the leadership of the following people:

Martin Barnasconi, NXP Semiconductors (AMS Working Group Chair)
Christoph Grimm, TU Vienna (AMS Working Group Vice-Chair)

The following people have also contributed to the creation of this user’s guide:

Markus Damm, TU Vienna

Karsten Einwich, Fraunhofer IIS'/EAS
Marie-Minerve Louérat, UPMC
Torsten Maehne, EPFL

Francois Pecheux, UPMC

Alain Vachoux, EPFL

AMS Working Group

At thetime the AMS standard was created, the AM S working group had the following membership:

Bas Arts, NXP Semiconductors

John Aynsley, Doulos

Kenneth Bakalar, Mentor Graphics
Martin Barnasconi, NXP Semiconductors
David Black, XtremeEDA

Christof Bodner, Infineon

Paul Chun, Intel

Julien Denoulet, UPMC

Karsten Einwich, Fraunhofer II1S/TEAS
Stefan Erb, Infineon

Alan Fitch, Doulos

Patrick Garda, UPMC

Thorsten Gerke, Synopsys

Mark Glasser, Mentor Graphics
Wolfgang Granig, Infineon

Christoph Grimm, TU Vienna

Eric Grimme, Intel

Philipp Hartmann, OFFIS

Walter Hartong, Cadence

Gino van Hauwermeiren, NXP Semiconductors
Thomas Herndl, Infineon

Martin Klein, NXP Semiconductors
Francois Lemery, ST Microelectronics
David Long, Doulos

Marie-Minerve Louérat, UPMC
Torsten Maehne, EPFL

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

Michael Meredith, Forte

Chunduri Mohan, Intel

Josef Miinzer, CISC Semiconductor
Abhilash Nair, Texas Instruments
Gerhard Néssing, Infineon

Frank Oppenheimer, OFFIS

Oury Patrick, Cadence

Francois Pecheux, UPMC

Markus Pistauer, CISC Semiconductor
Rajendra Pratap, Cadence

Vincent Regnauld, NXP Semiconductors
Martin Schell, Infineon

Wolfgang Scherr, Infineon

Martin Schnieringer, VaST

Andreas Schuhai, CISC Semiconductor
Serge Scotti, ST Microelectronics

Pratul Singh, Cadence

David Smith, Synopsys

Aravinda Thimmapuram, NXP Semiconductors
Thomas Uhle, Fraunhofer IISJEAS
Alain Vachoux, EPFL

Louie Valena, CoWare

Gaurav Verma, Mentor Graphics
Predrag Vukovic, NXP Semiconductors
Charles Wilson, XtremeEDA

Jagan Y eccaluri, Intel

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

Preface

Thisuser’ sguideis meant as an introductory guide for el ectronic system-level engineersand architectswho
would like to use the SystemC AMS extensions for their system-level design and verification tasks. The
main aim isto provide a self-learning guide on how to use the SystemC AMS extensions by explaining the
modeling fundamental s and giving examples on how to start with AMS system-level design at higher levels
of abstraction. It assumesthat the user has some prior knowledge on SystemC modeling and simulation and
C++ in general and isfamiliar with analog/mixed-signal design and modeling.

After going through thisguide, the reader should bein aposition to start using the SystemC AM Sextensions,
and should be able to:

» Get insight in the applicable use cases and requirements of the SystemC AMS extensions.

» Understand the introduced models of computation and associated execution semantics.

» Use the language constructs to create discrete-time and continuous-time models at different levels of
abstraction.

* Combine SystemC and the AM S extensions to design a mixed-signal system.
 Perform time- and frequency-domain analysis and tracing of AMS signals.
The AMS design methodology, modeling style, and examples given in this user’s guide are based on the

Open SystemC Initiative AMS language standard. Any simulator implementation compatible with this
standard can be used to build and execute these examples.

This document is an informative guide, intended to clarify the usage and intended behavior of the SystemC
AMS extensions. The precise and complete definition of the SystemC AMS extensions is standardized in
the AMS Language Reference Manual.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. vii

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

Contents
COPYFIGNE NOTICE ..ttt e et e ettt e et et e e e e e e e e aa s iii
ADOUL thiS DOCUMENTeeeeeeieie et et e e e e e e e s \Y
= = o TP vii
R 1 oo 1o o 1
Y o (Y= o] o I TP PPP PP PPPPPTTRPPPPIN 1
1.2, SySteMC AMS EXEENSIONSeeteit ettt e e e e e e et e e e e e et e e eb e e eanaaenes 1
1.2.1. Use cases and reqUITEIMENTSieuuiei ettt e e e e et e e e eanns 2
1.2.2. MOdel @DSIFACIONSvuneieiii et e 3
1.2.3. Modeling fOrmaliSMSccuuiiiiei e 3
1.2.4. Time-domain and frequency-domain analySiScccuieiiiiiiiiiiiiiine e, 4
1.2.5. Language arChiteCIUrec.uiiieiiii et 4
2. Timed Data FIOW MOGEIINGuiiiiiii e e e e e et e e e eaes 7
2.1. Modeling fuNdamentalSc.ouuuniiiii e 7
2.1.1. TDF module and port attribDUEScouuniiiiiii e 7
2.1.2. TDF MOdel tOPOIOGIESceevtieeeiiii ettt ettt e e et e e e et e e ena e eens 8
2.1.3. Time step assignment and Propagationeeeeerueeriiinee et e e 11
2.1.4. Multiple schedules or CIUSLE'Scoouvuiiiii e 13
2.1.5. Signal processing behavior of TDF MOdelSuvviviiiiiiiiiiiicce e 13
2.2, LaNQUEGE CONSITUCESeetieirieeei et e ettt ettt e e et e et e e e et e e e e e e enes 14
A T I T 0T (1= 14
2,22, TDF POITS ..ttt ettt e 17
2.2.3. TDF SIGNAIS ittt 20
2.3. Modeling discrete-time and continuous-time beENaVIorccoevviieiiiiiiii i 20
2.3.1. Discrete-time MOGEINGueiiiiiieiiii et 21
2.3.2. ContinUOUS-tIME MOEIINGuniiiiiiie e 21
2.3.3. Structural composition of TDF MOAUIEScoovvuniiiiiiiiiciiii e 26
2.3.4. MUItITate DENAVION ...oeeieee e e 28
2.3.5. INrOdUCING DEIAYS ...ttt 29
2.4. Interaction between TDF and discrete-event domainoeveeveniiieiiiieieiii e 30
2.4.1. Reading from the discrete-event domainoovvveiiniiiiiiiniiei e 30
2.4.2. Writing to the discrete-event domaincoeuvuiiiiiiiiiie e 31
2.4.3. Using discrete-event CONtrol SIgNaAlSccuvurieiiiiiieeeiiiie e 32
2.5. TDF €X@CULION SEMANTICS ...ovuuiiiiieeii ettt et e et e et e et e e et e e e een s 32
2.6. APPlICAioN EXAMPIESuiiieiei e 33
2.6.1. BASK MOUUIBIOL ...uuiiieieei ettt e et e e e e e et e e et e e eanaeeanaees 33
2.6.2. BASK demMOUUIBIONcieeeiiiee e e e e e e e e e e e e en e eens 35
2.6.3. TDF simulation of the BASK eXxamplecoouiiiiiiiiiie e 36
2.6.4. Interfacing the BASK example with SystemCcooiiiiiiiiniiiii e, 37
3. Linear Signal FIOW MOGEIINGuierniiiei e e 41
3.1. Modeling fuNamMENLalSoeveeiiiiice e e e e 41
3.1.1. Setup of the LSF equation SYStEMcc.uiiii e e e e 41
3.1.2. Time step assignment and Propagationuvevuieeeiieeeinieriie e e e e e 42
10 T2 I o (1= [o) 1 o £ 42
320, LSF MOGUIES ...t 42
2 I e oo 4 1= 43
B.2.3. LSF SIONAIS coetiieii e 44
3.3. Modeling continuous-time BENAVIONccuuiiiiiiii e 44
3.3.1. Structural composition of LSF MOdUIEScovviiiiiiii e 44

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. ix

March 8 2010 SystemC AMS extensions User’'s Guide

3.3.2. ContinUOUS-tIME MOEIINGvuneiiiiiieee e 46

3.4. Interaction between LSF and discrete-event or TDF modelS.........cc.vvieiiiiiniiiiiiinniiiinnn, 47
3.4.1. Reading from and writing to discrete-event modelsoooevevviieiiiiiieiiiineees 47
3.4.2. Reading from and writing to TDF MOdelSoviiiiiiiiiii e 47
3.4.3. Using discrete-event or TDF control SignalSvveeeeiiiiiiiiiieciieeceii e 48
3.4.4. LSF model enCapSUIBLIONuuuieiiiiiieeiii e eeenns 49

3.5. LSF EXECULION SEMANTICSueieiieiii et e e e e e e e e e e e ean s 50
3.6. APPlICAioN EXAMPIESuiiieii e 50
IO 00 I 1 o o 50
3.6.2. Continuous-time sigma-delta MOdUIELOrc.uuiiiiiiiiieiei e, 52

4. Electrical Linear NetWOrksS MOEIiNGoeuuiiiiiiiie e 55
4.1. Modeling fuNdamENtalScoouuiiiiii e 55
4.1.1. Setup of the equatioN SYSEEMccuuiiii e e 55
4.1.2. Time step assignment and Propagationoeveuveerreeeierinereneesinrereeeeaaeens 56

4.2, LaNQUAJE CONSIIUCESuieeiieeeeieeie e et e et e e e e e e e e e e s e e s e e e e e e e et e et e e an e e eneeaneeeeenns 56
421 ELN MOGUIES ..ottt et et e e et e e et e e eab e 56
4.2.2. ELN tOIMINGIS ...t eaeas 58
A.2.3. ELIN NOOES ...veeiii ettt et e 58

4.3. Modeling continuoUS-time DENAVIONccuuiviiic e 58
4.3.1. Structural composition of ELN MOAUIEScoeviiiiiiieiiiecii e eeees 59
4.3.2. ContinUOUS-tiME MOEIING .. .ccvuiiiieii e e e e e e e 60

4.4. Interaction between ELN and discrete-event or TDF ModelS.........ovvvviiiviiiiiiiiiiiiiiieeees 61
4.4.1. Reading from and writing to discrete-event modelS..........coccvviveiiviiiiiiiieciieee, 61
4.4.2. Reading from and writing to TDF MOCEISccvvviiiiiiii e 62
4.4.3. ELN model enCapSUIGLioNcceuuniiiiieiieeei e e e e e e e e e 63

4.5, ELN €XECULION SEMEBNTICS .. eeivtiieeiiii ettt e et e e et e e e aee s 64
4.6. APPlICALiON EXAMPIES .. eveiei e e 65
4.6.1. POTS frONE-6N .. eeeviieeiiii e et e et eeees 65

5. Small-signal frequency-domain @NAYSESuiiiriiieiiiii et 69
5.1. Modeling fuNdamentalSc.u i 69
5.1.1. Setup of the equation SYSIEMcouuiiiiii e 69
5.1.2. ANAlYSIS MEINOOSeeeeii e e 69

5.2, LaNQUAGE CONSITUCESueeiteiteee ettt ettt et et e e et et e et e e e e e e e eneees 70
5.2.1. Small-signal frequency-domain description in TDF modules............cc.occeveennnneen. 70
5.2.2. POI BCCESSieiiiie ettt 70

5.3 ULHHLY FUNCLIONS ...ttt et e e 71
5.3.1. Frequency-domain delaycc.oiiuiiiiiiiii e 71
5.3.2. Laplace transfer fUNCLIONSoieuniiiiiii e 71
5.3.3. S-domain definitioNSooieuniiiiiii e 72
5.3.4. Z-domain defiNitiONSooouniiiiiii e 73
5.3.5. Detection of small-signal frequency-domain analySes...........coocevveevnieiiineeinneennnn. 74

5.4. Small-signal frequency-domain analysis with combined TDF, LSF and ELN models.......... 75
LSS T g V1= o) =g Lo I 1 o o 77
LS IS T g0 = oo 1 o PP 77
6.1.1. Time-domain SIMUIALTONooeuniiiie e 77
6.1.2. Small-signal frequency-domain SIMUIELIONuveieeueieiiiiieeei e 78

O I = o] o R PO PTTR 78
6.2.1. Trace files and fOrMALSccun i e 79
6.2.2. Tracing Signals and COMIMENSccuuuriiiiiieeiiii et e 80

Lo T 1= 1 1= o - S 82
7. MOCEIING SIIAIEOIES ...c.u ettt ettt e e e et e et e e et e e e tt e e eaeeaan e 85

X Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

7.1. Behavioral modeling using the available models of computationccoeevvvviiieiennnnnn. 85
7.1.1. Macromodeling with Electrical Linear NetWOrkSocoevviiieiiiiiiiiiiiineecei, 86
7.1.2. Behavioral modeling with Linear Signal FIOWcccoviiiiiiiiiiiiiii e, 87
7.1.3. Behavioral and baseband modeling with Timed Data FIOWccocvvivieiinnnnnee. 89

7.2. Modeling embedded analog/mixed-signal SYyStEMSoviviiiiiieiiiiie e 91
7.2.1. Partitioning behavior to different models of computationcccceeveeeeiinneeees 91
7.2.2. Modeling of architecture-level propertiesc..uovvviiiiieiiiiiece e 92

7.3. Design refinement and mixed-level modelingooovviiiiiiiiiii 93
7.3.1. Mixed-signal, mixed-level SImulationccoouiiiiiiiiiii e 93
7.3.2. Design refinement and USE CBSESuuiieriiieieiie et 94

7.4. Modeling and COdiNg SEYIEooeuiiii e 96
4.1 NAIMESPACES ...ceveietie ettt ettt e e et e et et e e ea e ene e 96
7.4.2. Dynamic memory @lOCaliONcc.uuiiiiiiiiiiiiiii e 97
7.4.3. MOGUIE PAIrBIMELENS ...ttt et e e et e et e et e e eabe e eeens 98
7.4.4. Separation of module definition and implementationcccooooiiiiiiinnnn. 100
745, Class tEMPIBLESccovuieeiii e e et 101
7.4.6. Public and private class membersooiviiiiiiiii 102

Appendix A. Language rEfEIENCE it 105

AL TDF MOGUIES ...evniiiii ettt et e e et r e e e et r e e e eabneeeenanaeeees 105

R I 5 | 0 105

e T I T o 106

A.4. Embedded Laplace transfer FUNCLIONSc..veviiiiiiii e 106
A.4L sca tdfisca Itf N ..oovniee 106
A.4.2. sCa tdfiSCa ItF ZP covnie e 107
AL4.3. SCA fISCA SS ivviiii e 107

A5, LSF primitive MOCUIESuueiiicei e et e e e e e e e e e e e e e eees 108
A5.L SCA ISFiSCA @0 ..vevieee e 108
A.5.2. SCA ISFIISCA SUD ovuiiiiii e 109
PANR ST I o= W = o 1 o 1 S 110
A5.4. SCA ISFiSCA Ot ..eveciii e 110
F NSRS TE or= U F =or T 1= N 111
A.5.6. SCA ISFiSCA AElAY .vvviveecee e 111
F T A o= N s o T o 11 o= 112
A.5.8. sCa Isfiista It NA ..oveecee e 113
A.5.9. SCa ISFiSCA It ZP coeeniee e 114
A.5.10. SCA ISFIIS0A SO 1ivvuiiiii it et e e e 115
A.5.11. sca Isf:isca tdf::sca gain, sca Isf::isca tdf gainc.ccoevvviiiiiiviinc e, 116
A.5.12. sca Isf::sca tdf::sca source, sca |sf::sca tdf source.........coceevvviiiiiiiveennnn, 116
A.5.13. sca Isf::sca tdf::sca sink, sca Isfiisca tdf Sinkcoevveviiiiiiii e, 117
A.5.14. sca Isf::sca tdf::sca mux, sca Isf:isca tdf muXcooeeviviiiiiiiiniiieeen, 117
A.5.15. sca Isf::sca tdf::sca demux, sca |Isf::sca tdf demuXcoocevveiiiiiviinininnnnn, 118
A.5.16. sca Isf::sca de:isca gain, sca lsf:isca de gainooooeveveiiviicii e, 119
A.5.17. sca Isf:isca_de::sca_source, sca Isf::sca de SOUrCEvvvvvivenieiiiiieiiieeeinns 119
A.5.18. sca Isf::sca deisca sink, sca Isfiisca de SiNK ...ovvveveeecvevivi e, 120
A.5.19. sca Isf:isca deisca mux, sca ISfisca de MUX ..ovvvneeeeeviiieei e, 121
A.5.20. sca Isf:isca _de::sca_demux, sca Isf:isca de demuXxc.oveveviveiiiiiiiieennnennn, 121

A.6. ELN primitive MOQUIEScoviiiiiiei et e e e e e e e e aens 122
T I o= N = | o 1 122
F N T o= N = | o o 123
ALB.3. SCA BINISCA | iiveiiii i 123
YN T o= N = [o= Y oY £ 124
PN RS TE or- N = [s o= Yo o: 125
YN T o= N = [o= T o0V S 125
PN T o= N = [o T ol o P 126
WA GRS o= N = [o= T 011 | o 127
VNGRS IS o= W = [s o= W0 1Y/ - o) 127

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. Xi

March 8 2010

SystemC AMS extensions User’'s Guide

A.6.10. sca_eln::sca ideal _transformerovoieiuiieiiii e 128
A.6.11. sca eln::sca transmisSSION_TINEociiieiieiii e 129
A.B.12. SCA EINIISCA VSOUICE «..vueeeiti et et e ettt e et e ettt e e et e e e e e enanns 130
A.B6.13. SCA EINIISCATSOUICE ...ttt ettt ettt e e e e e eaees 131
A.6.14. sca_eln::sca tdf:isca r, sca eln:sca tdf I 132
A.6.15. sca_eln::sca tdf:isca ¢, sca @ln:isca tdf C...oevveeeeiiiiiii 132
A.6.16. sca_eln::sca tdf:isca |, sca eln:isca tdf |ooeveviiiiiii 133
A.6.17. sca_eln::sca tdf::sca rswitch, sca_eln::sca tdf_rswitchcooooiiviinnnn, 134
A.6.18. sca_eln::sca tdf::sca vsource, sca_eln::sca tdf_VSourcecoocvevvveevennnnnen. 134
A.6.19. sca_eln::sca tdf::sca isource, sca_eln:isca tdf_isource..........ocoeeviveveiiinneeenn, 135
A.6.20. sca_eln::sca tdf::sca vsink, sca eln::isca tdf vsink ... 136
A.6.21. sca_eln::sca tdf::sca isink, sca_eln::sca tdf_iSinkccooevviiiiiiiiiiniinn, 136
A.6.22. sca eln:isca deiisca I, Sca elNiiSCa de I ...ovveeeeiiiiii e 137
A.6.23. sca_eln:isca deiisca C, SCa elNiiSCa de C .oovvvvneveeiiieeeei e 138
A.6.24. sca eln:isca deiisca |, sca elnisca de | .o 138
A.6.25. sca_eln::sca_deiisca rswitch, sca eln:isca de rswitChovveveiiiieiiiinnenes 139
A.6.26. sca_eln::sca_deiisca vsource, Sca eln::sca de VSOUICEuuvevevveneveiiineeennnn 140
A.6.27. sca_eln::sca _deisca isource, sca eln:isca de iSOUrcecocuuveeviiinneeeeninnnnn. 140
A.6.28. sca_eln::sca deiisca vsink, sca eln:isca de VSINKovveieiiiiieiiiiineeeeie, 141
A.6.29. sca_eln::sca deiisca isink, sca eln::sca de iSinKo.eeevcviiiiiciiiin e, 142
Appendix B. Symbols and graphical representationsooovveiieiiiiinieie e 143
F N o]0 o[O €] o 1S Y/ 145
30 [PSPPSR 147
Xii Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

1. Introduction

1.1. Motivation

There is a growing trend for tighter interaction between embedded hardware/software (HW/SW) systems
and their analog physical environment. This leads to systems, in which digital HW/SW is functionally
interwoven with analog and mixed-signal blocks such as RF interfaces, power electronics, sensors, and
actuators, as shown for example by the communication system in Figure 1.1. Such systems are called
Embedded Analog/Mixed-Sgnal (E-AMS) systems. Examples of E-AMS systems are cognitive radios,
sensor networks or systems for image sensing. A challenge for the development of E-AMS systems is to
understand theinteraction between HW/SW and the anal og and mixed-signal subsystemsat the architectural
level. Thisrequires new means to model and simulate the interacting analog/mixed-signal subsystems and
HWI/SW subsystems at functional and architectural level.

Receiver Serial Modulator/
odulator,
> v Interf > PR Host
m @.'- nterface demod. «> &> [rocessor
X x ‘ : DSP
Lt !
Antenna . .
front-end > Calibration & Control M|tcrc|,|.
X " controller i
‘ L] Memory reple» ImDaSg}Tg
Transmitter
—4 4
‘ & " ll to all blocks
' ‘ 14414 High
Power Audio «alen Speed
RF Temp. Oscillator Clock Manage- DSP 17| Serial
detector | | sensor Generator ment Interface

Figure 1.1. A Communication System, example of an embedded anal og/mixed-signal architecture

SystemC supports the refinement of HW/SW systems down to cycle-accurate behavior by providing a
discrete-event simulation framework. A methodology for generalized modeling of communication and
synchronization built upon this framework is also available: Transaction Level Modeling (TLM). It allows
designersto perform abstract modeling, simulation, and design of HW/SW system architectures. However,
the SystemC simulation kernel has not been designed to handle the modeling and simulation of analog/
continuous-time systems and lacks the support of a refinement methodology to describe analog behavior
from afunctional level down to the implementation level.

In response to the needs from telecommunication, automotive, and semiconductor industries, AMS
extensions are introduced based on SystemC, to provide a uniform and standardized methodology for
modeling E-AMS systems.

1.2. SystemC AMS extensions

The SystemC AMS extensions are built on top of the SystemC language standard |EEE 1666-2005 and
define additional language constructs, which introduce new execution semantics and system-level modeling
methodologies to design and verify mixed-signal systems.

The class definitions provided by the AMS language standard form the foundation for the creation of a
C++ class library implementation, which can be used in combination with an |EEE 1666-2005 compatible
SystemC implementation. Such an implementation can be used to create AMS system-level models to
build an executabl e specification, to validate and optimize the AM S system architecture, to explore various
algorithms, and to provide the software development team with an operational virtual prototype of an
entire AMS system, including also the analog functionality. To support these use cases, the SystemC AMS
extensions define the necessary modeling formalisms to model AMS system-level behavior at different
levels of abstraction.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 1

March 8 2010 SystemC AMS extensions User’'s Guide

1.2.1. Use cases and requirements

Asdepictedin Figure 1.2, the SystemC AM S extensions can be used for awide variety of use cases such as:
» Executable specification;

* Virtual prototyping;

« Architecture exploration, and

* Integration validation.

Use cases
Executable Virtual Architecture Integration
specification prototyping exploration validation
Discrete-time Continuous-time
static non-linear dynamic linear
Non-conservative behavior Conservative behavior

\ 4 ¥ \ 4

Modeling formalism

Electrical Linear

Timed Data Flow (TDF) Linear Signal Flow (LSF) Networks (ELN)

Figure 1.2. Use cases, model abstractions, and modeling formalisms
Executable specification

An executable specification is made to verify the correctness of the system requirement specification by
creating an executable description of the system by using simulation. For this use case, models at a high
level of abstraction are created, which do not necessarily need to relate to the physical architecture or
implementation of the system. The models are, therefore, called functional or algorithmic models.

SystemC and the AMS extensions define both the system-level modeling language and their execution
semantics for simulation purposes. They are entirely implemented in the form of C++ libraries, which are
linked to the compiled AMS models to create an executable description of the system. This entirely C++-
based modeling approach offers a unique flexibility as it allows, e.g., the easy integration of embedded
software, 3rd party libraries, and legacy code into the system models.

Virtual prototyping

The virtual prototyping use case aims at providing software devel opers with a high-level untimed or timed
model, that representsthe hardware architecture, and provides high simulation speed. Especialy for EFAMS
systems, where software or firmware is interacting directly with AMS hardware, interoperability using
SystemC Transaction-Level Modeling (TLM) extensions isimportant.

The usage of Timed Data Flow modeling for (over)sampled continuous-time and signal processing behavior
provides high simulation speed with appropriate accuracy. In this way, the AMS subsystem can become
part of the virtual prototype for further development of the HW/SW subsystem.

Architecture exploration

The architecture exploration use case will evaluate if and how the ideal functions and algorithms defined
during the executabl e specification phase can be mapped onto the envisioned system architecture. The key
properties of the system architecture are defined and should match with the actual functionality required.

2 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Architecture explorationisstructured intwo phases: In thefirst phase, the executable specificationisrefined
by adding the non-ideal properties of animplementation to get a better understanding of their impact on the
overall system behavior. In the second phase, the architecture’ s structure and interfaces are refined to get a
more accurate model by introducing architectural elements and communication between these elements.

Integration validation

After thearchitecture definition and design of theanalog and digital HW/SW components, these components
are integrated and their correctness is verified within the overall system. For the integration validation use
case, the interfaces of all subsystems must be modeled accurately. The interfaces and data types used in the
models should match the physical implementation. For analog circuits this relates to electrical nodes. For
digital circuits, thisrelatesto pin accurate buses. For HW/SW systems, TLM interfaces might be appropriate.

1.2.2. Model abstractions

The SystemC AMS extensions add new abstraction methods for system-level modeling and simulation
of AMS systems to the existing SystemC framework. The model abstractions supported by the SystemC
AMS extensions are based on well-known methods for abstracting analog and mixed-signal behavior. As
shown in Figure 1.2, the abstraction levels distinguish discrete-time from continuous-time behavior and
non-conservative from conservative descriptions. Chapter 7 will present the available abstraction methods
in more detail.

Discrete-time vs. continuous-time descriptions

Discrete-time modeling abstracts signals (e.g., audio or video streams) or physical quantities (e.g.,
voltages, currents, and forces) as sequences of values only defined at discrete time points. Vaues may
be either real values or discrete values (e.g., integer or logic values). Vaues between time points are
formally not defined, although it is common to consider them as constant. Behaviors are then abstracted
as procedural assignments involving sampled signals. The description of static (algebraic) non-linear
behaviors(e.g., using polynomials) is supported. Discrete-time modelingis particul arly suited for describing
signal-processing-dominated behaviors, for which signals are naturally (over)sampled. It can be also
used for describing continuous-time behaviors, provided that the discrete abstraction produces reasonable
approximations.

Continuous-time modeling gets closer to the physical world, assignalsand physical quantities are abstracted
as real-valued functions of time. The time is now considered as a continuous value. Behaviors are then
described using mathematical equations that can include time-domain derivatives of any order (so-called
differential algebraic equations (DAESs) or ordinary differential equations (ODES)). Equations must be
solved by using a dedicated linear or non-linear solver, which usually requires complex numerical or
symbolic algorithms. Continuous-time modeling is particularly suited for describing physical behaviors, as
it can naturally account for dynamic effects.

Non-conservative vs. conservative descriptions

Continuous-time models can be divided into two classes: non-conservative and conservative models. Non-
conservative models express behaviors as directed flows of continuous-time signals or quantities, on which
processing functions such asfiltering or integration are applied. Non-linear dynamic effects can be properly
described, but mutual effects and interactions between AMS blocks, such as impedances or loads, are not
naturally supported.

Conservative models are the most detailed continuous-time models at system level and circuit level, as

energy conservation laws (Kirchhoff’s laws) must be satisfied. Asaresult, the set of equationsto be solved
islarger and possibly more complex than the ones inferred by non-conservative models.

1.2.3. Modeling formalisms

The SystemC AMS extensions define the essential modeling formalisms required to support AMS
behavioral modeling at different levelsof abstraction. These modeling formalismsareimplemented by using

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 3

March 8 2010 SystemC AMS extensions User’'s Guide

different models of computation: Timed Data Flow (TDF), Linear Signal Flow (L SF), and Electrical Linear
Networks (ELN).

Timed Data Flow (TDF)

The execution semantics based on TDF introduce discrete-time modeling and simulation without the
overhead of the dynamic scheduling imposed by the discrete-event kernel of SystemC. Simulation is
accelerated by defining a static schedule, which is computed before simulation starts, and which executes
the processing functions of the scheduled TDF modules according to the stream direction of the dataflow.
The sampled, discrete-time signals, which propagate through the TDF modules may represent any C++
type. If, e.g, areal-valued type such as doubleis used, the TDF signal can represent avoltage or current at a
given point in time. Complex values can be used to represent an equivalent baseband signal. TDF modeling
is presented in Chapter 2.

Linear Signal Flow (LSF)

The Linear Signal Flow formalism supports the modeling of continuous-time behavior by offering a
consistent set of primitive modules such as addition, multiplication, integration, or delay. An LSF model is
made up from a connection of such primitives through real-valued time-domain signas, representing any
kind of continuous-time quantity. An LSF model defines a system of linear equations that is solved by a
linear DAE solver. LSF modeling is presented in Chapter 3.

Electrical Linear Networks (ELN)

Modeling of electrical networks is supported by instantiating predefined linear network primitives such as
resistorsor capacitors, which are used as macro model sfor describing the continuous-time rel ations between
voltages and currents. A restricted set of linear primitives and switches is available to model the electrical
energy conserving behavior. ELN modeling is presented in Chapter 4.

1.2.4. Time-domain and frequency-domain analysis

The SystemC AMS extensions support both time-domain (transient) and frequency-domain analysis, by
introducing new execution semantics and additional functions for simulation control.

Time-domain simulation can be applied to descriptions made using the TDF, LSF or ELN models of
computation. The analysis computes the time-domain behavior of the overall system, possibly composed by
different models of computation and could even include descriptions defined in the discrete-event domain.
Theexecution semanticsfor time-domain simulation of TDF, L SFand ELN modelsare described in Chapter
2, 3, and 4, respectively.

Frequency-domain simulation can be applied to the same descriptions, combining different models of
computation, where the analyses computes the small-signal frequency-domain behavior of the overall
system. Besides small-signal frequency-domain analyses, also small-signal frequency-domain noise
analysisisavailable. Chapter 5 will describe both analysis methods in more detail.

The simulation control and signal tracing techniques for time-domain and frequency-domain simulation are
presented in Chapter 6. Also the creation and basic structure of testbenches is explained in this chapter.

1.2.5. Language architecture

The SystemC AMS extensions are fully compatible with the SystemC language standard as shown in
Figure 1.3. The AM S language standard defines the execution semantics of the TDF, L SF, and ELN models
of computation and gives an insight on the underlying enabling technology such as the linear solver,
scheduler, and synchronization layer. Currently, the interfaces to and class definitions of this enabling
technology is implementation-defined. The AMS designer (end-user) can take advantage of dedicated
classesand interfacesto create TDF, L SF or ELN models, by using the predefined modul es, ports, terminals,
signals and nodes.

4 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

Semantics
defined in
the AMS
language
standard

AMS methodology-specific elements
elements for AMS design refinement, etc.

Synchronization layer

Electrical Linear || Linear Signal || Timed Data

Networks (ELN) Flow (LSF) Flow (TDF)

modules modules modules

terminals ports ports

nodes signals signals
Linear DAE solver Scheduler

SystemC Language Standard (IEEE Std 1666-2005)

March 8 2010

User features

Classes and interfaces
defined in the AMS
language standard

Enabling technology
Classes and interfaces
not defined in the AMS
language standard
(implementation defined)

Figure 1.3. Architecture of the AMS language standard

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

2. Timed Data Flow modeling

2.1. Modeling fundamentals

The Timed Data Flow (TDF) model of computation is based on the well-known Synchronous Data
Flow (SDF) modeling formalism. Unlike the untimed SDF model of computation, TDF is a discrete-time
modeling style, which considers data as signals sampled in time. These signals are tagged at discrete points
in time and carry discrete or continuous values like amplitudes.

Figure 2.1 shows the basic principle of the Timed Data Flow modeling. In this figure, there are three
communicating TDF modules called A, B, and C. A TDF model is composed of a set of connected
TDF modules, which form adirected graph called TDF cluster. TDF modules are the vertices of the graph,
and TDF signals correspond to its edges. A TDF module may have several input and output TDF ports. A
TDF module containing only output portsisalso called aproducer (source), whilea TDF module with only
input portsis aconsumer (sink). TDF signals are used to connect ports of different modules together.

Each TDF module contains a C++ method that computes a mathematical function f (i.e., fa, fg, and fc),
which dependsonitsdirect inputsand possibleinternal states. The overall behavior of the cluster istherefore

defined as the mathematical composition of the functions of the involved TDF modules in the appropriate
order, fc (fg (fa (...))), indicated with { A~ B - C} in Figure 2.1.

[V(t)
t

Possible schedule: {A—B—C}

/

TDF module TDF signal TDF port TDF cluster

Figure 2.1. A basic TDF model with 3 TDF modules and 2 TDF signals

A given function is processed (or “fired” according to the SDF formalism) if and only if there are enough
samples available at the input ports. In this case, the input samples are read by the TDF module, where the
function uses these values to compute one or more resultants, which are written to the appropriate output
ports. In TDF, the number of samples read from or written to the module ports is fixed during simulation,
but the numbers of read and written samples by a TDF module are not necessarily equal. A time stamp
is associated to each sample using the local TDF module time. The fixed interval between two samplesis
called time step.

2.1.1. TDF module and port attributes

The flexibility and expressiveness of TDF modeling comes from the ability to define the attributes of each
TDF module and of each of its ports. In TDF, it is possible:

e To assign a particular time step to a TDF module (module time step assignment). Figure 2.2 a shows a
TDF module A with amodule time step (Tm) of 20 ps.

» To assign a particular time step to a given port of a module belonging to the cluster (port time step
assignment). Figure 2.2b shows a TDF module B with a TDF input port time step (Tp) of 10 ps.

» To assign a particular rate to a given port of a module belonging to the cluster (port rate assignment).
Figure 2.2b shows a TDF module B, where at each module activation 2 samples are read (input port rate
R set to 2, indicated with R:2).

» Toassign aparticular delay to agiven port of amodule belonging to the cluster (port delay assignment).
Figure 2.2c shows a TDF module C, where at each module activation, the sample corresponding to the
previous time step is written (output port delay D set to 1 sample, indicated with D:1).

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 7

March 8 2010 SystemC AMS extensions User’'s Guide

» To assign a particular time offset to a given port of a module belonging to the cluster (port time offset
assignment). Figure 2.2d shows a TDF module D, with a module time offset (Tpf) of 1 ps. A time offset
can only be assigned to specialized portsto connect to the discrete-event domain, so called TDF converter
ports.

Tpf:1us
A C D 1
Tm:20us
a) Module time step b) Port time step and rate c) Port delay d) Port time offset

Figure 2.2. TDF module and port attributes

Provided that the attribute assignment on the ports and modules of a TDF model are compatible, the order
of activation of the TDF modules in a cluster and the number of samples they read (consume) and write
(produce) can be statically determined before simulation starts. Thus, and more formally, a TDF cluster can
be defined asthe set of connected TDF modules, which belong to the same static schedule. If the assignments
arenot compatible, the stati c schedul e cannot be established and the TDF cluster issaid to be not schedulable
(see also Section 2.1.3). Therefore, after the required TDF cluster consistency check, the schedule defines
a sequence, in which the algorithmic or procedural description of each TDF module is executed.

The main advantage of this approach is that the execution of TDF models does not rely on the evaluate/
update mechanism of SystemC's discrete-event kernel, and, therefore, can be simulated more efficiently.
TDF models are processed independently, using alocal time annotation mechanism. Interactions between
TDF models and pure SystemC models are supported through specific converter ports, as discussed in
Section 2.4.

2.1.2. TDF model topologies

Figure 2.3 shows an example of a TDF model with multirate characteristics. A port rate assignment with
rate value 2 (R:2) has been performed on the output port of TDF module A. Ports with no rate attribute
are considered to have arate of 1 (not graphically represented). When module A is activated, 2 samples
are written. Since both modules B and C read one sample at each activation, a possible schedule for this
TDF cluster is{A-B-C B -C}.

Possible schedule: {A—B—C—B—C}

Figure 2.3. Multirate TDF model using port rate assignment

In order to handle TDF models containing loops, it is compulsory to introduce a delay on a module port
belonging to one of the modules of the loop. This port delay has to be defined during elaboration of the
simulation, to make the static scheduling feasible. A simple example is given in Figure 2.4, without loop,
that shows amodule A with adelay of one sample associated to the output port (D:1). A possible scheduleis
{A-B} butaso{B- A}, sinceat module B first activation, theinput port of module B will read the sample
aready available thanks to the assigned delay defined in the elaboration phase.

8 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

A D B

Possible schedule: {B—A}

Figure 2.4. TDF model with port delay

Theinitia value of the sample of a port with adelay is determined by the constructor of the corresponding
data types. For basic data types (double, int, etc.), the constructor does not necessarily assign an initial
value, resulting in an undefined value. The user is advised to set the values of the initial samplesin case
port delays are used.

Figure 2.5 shows an example of a TDF model containing a loop, a quite common situation when dealing
with signal processing with feedback. A mandatory port delay assignment with delay value 1 (D:1) has been
performed on the output port of TDF module C. Assigning a delay to the output port of module C, allows
module B to be “fired” when the first sample of module A becomes available on input in0 of module B. A
possible schedule for this TDF model is{A - B - C}.

Possible schedule: {A—B—C}

Figure 2.5. TDF model with loop, and port delay assignment

Figure 2.6 shows a more complex example mixing multirate and delay. A possible cluster schedule is
{A-B-B-C-D}. ModuleB is executed twice because of the port rate (R:2) assignments performed on
the two connected ports (output port of module A and input port of module C). The port delay assignment
on the output port of module D (D:1) isrequired for the schedule to be computed properly.

Possible schedule: {A—B—B—C—D}

Figure 2.6. Multirate TDF model with loop

Another prerequisite for a proper schedule is that the sum of samples produced at the output ports within
aloop must be equal to the sum of samples consumed by the input ports within the loop. Otherwise, any

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 9

March 8 2010 SystemC AMS extensions User’'s Guide

finite schedule would accumulate surplus samples somewhere in the cluster when executing it repeatedly.
For example, in the case the rate of the input port of module C in Figure 2.6 were changed from 2 to 1,
the schedule { A~ B - C - D - B - C - D} would result in one extra sample at the output of module D after
executing the schedule once (see Figure 2.7)

write: 1 x 2 samples read/write: 2 x 1 sample read/write: 2 x 1 sample

read: read/write: 2 x 1 sample

1 x 1sample
1 sample left

Infinite (broken) schedule: {A—-B—C—D—B—C—D}

Figure 2.7. Multirate TDF model containing aloop with incompatible rates, resulting
in accumulation of samplesin the cluster yielding to an infinite (broken) schedule

Figure 2.8 shows how it is possible to connect a TDF model with the discrete-event domain, by means
of TDF converter ports (indicated with H). For example, a discrete-event signa is available at the
TDF converter port of TDF module A. Module D has a TDF converter input port, reading a discrete-event
control signal. Special care should betaken with theinteraction between the TDF and discrete-event domain.
Thisisdescribed in Section 2.4.

output

Illll>

Possible schedule: {A—B—B—C—D}

input ctrl

Figure 2.8. TDF model interfacing with discrete-event domain

Another special case is when a TDF model becomes part of a closed loop, which includes a path through
the discrete-event domain, as shown in Figure 2.9. The TDF cluster itself contains no loop, so there is no
port delay assignment necessary to calculate avalid schedule. Module A reads a sample from the discrete-
event domain at the first delta cycle of the time point associated to the sample using a TDF converter input
port. Module C writes a sampl e to the discrete-event domain in the same deltacycle, using a TDF converter
output port. Note that TDF samples read from module C and passed through the discrete-event module D
to the input of module A will be be delayed by one TDF time step due to the evaluate/update mechanism
of the SystemC kernel.

More details on the interaction between the TDF and discrete-event domain is described in Section 2.1.4
and 2.4.

10 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Possible schedule: {A—~B—C}

Figure 2.9. TDF model with loop viathe discrete-event domain

2.1.3. Time step assighment and propagation

The definition of port rates and delays is very useful to handle different frequency domains within the
same TDF model, as well as to create complex TDF module structures involving nested loops. The main
point here is that the consistency of a cluster exclusively relies on the compatibility of port rate and delay
values and is thus intrinsically independent of the chosen time step (sampling period) to run it. Once this
consistency check has been validated for a particular cluster, it may operate at any frequency by means of
aport time step assignment or a modul e time step assignment.

Figure 2.10illustrates the simplest case, in which all rates are set to 1 (not graphically represented). Starting
with a port time step of 10 ps assigned to the input port of module C (denoted as Tp:10us), this figure
shows how thistime step valueis used to transitively calculate the time steps of the other ports and modules
(denoted asiitalic values Tp and Tm). When there is no specific rate (R) nor delay (D) assigned to aport, a
rate of 1 and a delay of zero samples are assumed by default.

Figure 2.10. Propagation of the time step Tp:10ps set on the input port of module C

The time step propagation is performed upstream and downstream of the target element of the performed
time step assignment (port or module) in the TDF model. This process is illustrated by dotted arrows in
Figure 2.10. For instance, the port time step assignment on the input of module C propagates downstream
by setting the module C time step to 10 ps (Tm:10us, dotted arrow @). Similarly, the time step assigned
on the input port of module C (Tp:10ps) is propagated upstream to the output port of module B (dotted
arrow @). Then, the module B time step is assigned with the same time step (Tm:10us, dotted arrow ©),
which isin turn forwarded to the input port of module B (Tp:10us, dotted arrow @), to the output port of
module A (Tp:10us, dotted arrow @), and finally to the module A time step (Tm:10us, dotted arrow ©).

Consistency of time step assignment and propagation

Theexampleof Figure 2.10 illustrates a propagation example with only one port time step assignment (input
port of TDF module C). If the TDF model does not contain any loop, the presented propagation scheme
always generates a valid time step assignment, whether the single time step has been assigned to a port
or to a module. Once two or more port and/or module time steps have been assigned in a TDF cluster, a
consistency check has to be made to ensure their compatibility with the propagated time steps, depending
on the port rates.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 11

March 8 2010 SystemC AMS extensions User’'s Guide

Figure 2.11 below shows a module, where the input port time step is set to 10 s (Tp:10us) with arate of 2
(R:2), and the module time step is set to 20 ps (Tm:20us). As the output port rate is not set, it will use the
default rate of 1, resulting in an output port time step of 20 ps.

out

Figure 2.11. Port time step, port rate, and module time step should be consistent

The module time step should be consistent with the rate and time step of any port within a module. The
relation between these time steps and rates becomes:

module time step = input port time step - input port rate = output port time step - output port rate
In the example of Figure 2.11, the following relation is checked: 20 uys=10ps-2=20 ps - 1.

In the example of Figure 2.12, multiple modules form a cluster, where two time steps are set by the user:
the time step of module A is set to 20 ps (Tm:20us @) and the input port time step of module C is set to
10 ps(Tp:10us @). Furthermore, the user has set the rate of the output port of module A to 2 (R:2). Therefore
module A is activated two times less frequently than modules B and C, as module A writes 2 samples per
activation, see Figure 2.3.

The specified port time step at the input of module C (Tp:10us @) propagates downstream to module C thus
setting its time step to 10 ps (Tm:10us, dotted arrow @). Similarly, the time step assigned to the input port
of module C (Tp:10us @) is propagated upstream to the output port of module B (dotted arrow ©). Then,
the module B time step is assigned with the same time step (Tm:10us, dotted arrow @), which in turn is
forwarded to input port of module B (Tp:10us, dotted arrow ©), and propagated upstream to the output port
of module A (Tp:10us, dotted arrow @). Since the output port rate of module A is 2, the propagated module
time step should become 20 pis (Tm:20ps, dotted arrow @), which matches with the user specified time step
of module A (Tm:20us ©).

C'Tm:20ps0 Tm:10us

Figure 2.12. Time step propagation for a multirate TDF model with consistent time step assignments done by the user

Figure 2.13 shows the same TDF model with an incompatible time step propagation, which leads to a non
schedulable cluster. The expected module A time step, resulting from propagation is 20 ps (Tm:20ps, dotted
arrow @), which is different from the assigned module time step of module A (Tm:10us @). Therefore, no
consistent schedule can be derived.

°
-

9 Tm:1

Ous

Expected: Tm:20us

Figure 2.13. Time step propagation for a multirate TDF model
with inconsistent time step assignments done by the user

12 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

In the case the TDF model contains loops, the defined port rates, delays, and time steps must be consistent
with the time steps propagated through the loop upstream and downstream, to make the TDF model
schedulable.

2.1.4. Multiple schedules or clusters

Itis possibleto have more than one TDF cluster within the same application. In this case, each TDF cluster
hasits own data flow characteristics (sampling rate, sampling period, etc), scheduling and execution order.

The main element to indirectly change the cluster structure, isto use the TDF converter ports. As explained
in Figure 2.8, these ports facilitate an interface to the discrete-event domain and thus define where a static
schedule will start or stop. Figure 2.14 shows an example, in which TDF converter ports are used to
deliberately split acluster. Note that the dashed signal indicates the use of adiscrete-event signal in between
module B and module C.

in = = ujuppl] A 1ILEEERE 1 C ll->0ut

Possible schedule: {A—B} Possible schedule: {C—D}

Figure 2.14. Use of TDF converter portsto deliberately split a cluster in two independent ones

Due to the introduction of a discrete-event signal in the chain of modules, the execution of the schedule
for each cluster becomes independent. The converter port of module B will write its sample value in the
evaluation phase of the SystemC kernel, at thefirst deltacycle of the associated time point of the sample. The
converter port of module C will read asample, for the corresponding time point, during the same eval uation
phase in the same delta cycle. This implies that module C will read the previous value from module B,
as the value written by module B will only be changed in the update phase of the SystemC kernel, which
follows after the completion of the delta cycle’ s evaluation phase for a certain point in time. Thisresultsin
an effective delay of one TDF time step for the samples read by module C.

More details on the interaction between the TDF and discrete-event domain is described in Section 2.4.

2.1.5. Signal processing behavior of TDF models

Figure 2.15 illustrates how a cluster of TDF modules processes signals by repetitively activating the
processing functions of the contained modulesin the order of the derived schedule. It generates samplesfor
each module as a function of time. Because the rates are all set to 1, the processing is obvious: Module A
writes asample at time O ps, which isread by module B at time O ps, and module B writes a sample at time
0 ps, which isread by module C at time 0 ps. From the perspective of the generated samples, it isimportant
to notice that it is the write operation of the sample produced by module A that actually enables module B
to be fired. Respectively, the generation of a sample by module B triggers module C.

The output of module A producesacontinuous-valuesignal (Vin), which valuesareonly available at discrete
time points. The time step between these samples is equidistant, and defined by the time step of the output
port of module A (Tp:10us). Signal Vi, is fed into module B, in this example assumed to be a simple
amplifier, with a constant gain. The samples of the amplified output signal (Vo) become available at the
output of module B at the same time steps as module A.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 13

March 8 2010 SystemC AMS extensions User’'s Guide

Vin(t) Vout(t)

/ us t/us
010 20 30 40 50 010 20 30 40 50

Figure 2.15. TDF module activation (processing) with read and written samples
Besides using TDF modules to describe discrete-time behavior, a TDF module can be used to encapsul ate

continuous-time behavior. Section 2.3 will explain the usage of TDF to model discrete-time and continuous-
time behavior.

2.2. Language constructs

2.2.1. TDF modules

A TDF module is a user-defined primitive module to define discrete-time or to embed continuous-time
behavior. The example below shows the typical structure of a TDF module.

SCA_TDF_MODULE(ny_tdf _nodul e) @
{

/] port declarations

sca_tdf::sca_i n<doubl e> in; (2]
sca_tdf::sca_out <doubl e> out;

SCA CTOR(ny_tdf_nodule) {} ©

void set_attributes() (4]

{

/1 nodul e and port attributes

}
void initialize() @

/1 initial values of ports with a del ay

voi d processing() @

/1 time-donain signal processing behavior or algorithm

voi d ac_processing() (7]

{

/1 small-signal frequency-domain behavi or

}
e

class ny_second_nodul e : public sca_tdf::sca_nodul e (8]

{
public:
/'l port declarations
...

ny_second_nodul e(sc_core::sc_nodul e_nanme) {} o

/1 definition of the TDF nmenber functions as done above
1.

14 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Primitive module declaration using the macro SCA_TDF_MODULE to define a new class derived

from class sca_tdf::sca_module.

A TDF module can have multiple input and output ports. Only TDF ports should be instantiated, see

Section 2.2.2.

Mandatory constructor using the predefined macro SCA_CTOR, which needs to have the module

name as an argument.

Optional member function set_attributes, in which TDF module and port attributes can be defined.

The user is not alowed to call this member function directly. It is called by the simulation kernel

during elaboration.

© Optiona member function initialize, to initialize data members representing the module state and
especialy theinitial samples of portswith assigned delays The user isnot allowed to call this member
function directly. It is called by the simulation kernel, at the end of elaboration, just before transient
simulation starts.

O Mandatory member function processing, which encapsulates the actual signal processing function.
The user is not allowed to call this member function directly. It is called by the simulation kernel as
part of time-domain (transient) simulation, where each module activation advances the local module
time by the assigned or derived module time step.

© Optiona member function ac_processing, which encapsulates the small-signal frequency-domain

(AC) and small-signal frequency-domain noise behavior. The user is not alowed to call this member

function directly. It is called by the simulation kernel while executing small-signal frequency-domain

analyses (see Chapter 5).

TDF module declaration by creating a new class publicly derived from class sca_tdf::sca_ module.

Constructor, which always needs to have a parameter of class sc_core::sc_module_name to assign

aname to the module.

© © © o

(8]
(9]

A TDF module contains elements such as ports, signals, parameters, and member functions for time-
domain (transient) and small-signal frequency-domain (AC) analyses. Together, these elementsimplement
the behavior of the module.

Module attributes

Moduleand port attributes such as sampling rate, delay, and time step, can be defined inthe member function
set_attributes. The member function may use any legal C++ statement in addition to the definition of
module or port attributes. This member function is called at elaboration time. The example below shows
the assignment of a module time step of 10 ms and adelay of one TDF sample to the port out.

void set_attributes()

{

set _tinmestep(10.0, sc_core::SC MS); // nodule tinme step assignnment of a of 10 ns

out.set_delay(1); // set delay of port out to 2 sanples
}

How to define port attributes inside this member function is explained in Section 2.2.2.
Module initialization

The member function initialize can be used to set local variables used as state variables, to read port or
module attributes such as time steps or port rates, or to initialize ports with a delay. This member function
is executed only once, just before the actual module activation starts (see next section). The example below
showstheinitialization of an internal state variable s and the use of the port member function get_timestep
and initialize. The available port member functions are explained in Section 2.2.2.

void initialize()
{
s = 4.56; @

std::cout << out.nane() << ": Tine step = " << out.get_tinestep() << std::endl; (2]

out.initialize(1.23); ©

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 15

March 8 2010 SystemC AMS extensions User’'s Guide

‘ }

© Setlocal state variable ‘s’ (private data member of type double)
® Get time step of output port out.
© Initidizethefirst sample of output port out with value 1.23.

How to use port initialization inside this member function is explained in Section 2.2.2.
Module activation (processing)

The member function processing is the only mandatory function that needs to be overloaded in any
TDF module, since it actually defines the discrete-time or continuous-time behavior of the TDF module.
This member function is executed at each module activation (see Section 2.3). The example below shows
avery simple case, in which the value of an internal data member val iswritten to an output port.

voi d processing()

{

out.wite(val); // wites value to output port out

}

Module local time

The member function get_time can be used within the processing function to obtain the actual, local
module time. It returns the time of the first input sample of the current modul e activation, as atype of class
sca core::sca time. At elaboration and initialization, the actual module time returned by this function is
zero (sc_core::SC_ZERO_TIME), as the module has not been activated yet. The example below shows
how the local module time can be obtained.

voi d processing()

{
sca_core::sca_time |ocal _ting;
local _time = get_tine(); // get actual, |local nodule tine

}

For multirate TDF models, thelocal time of theindividual TDF modules can differ. Furthermore, there may
be time offsets between the local TDF module time and the SystemC kernel time. Therefore, the function
get_time should be used inside a TDF module, as areplacement for sc_core::sc_time_stamp.

Module constructor

Themacro SCA_CTOR helpsto definethe standard constructor of amodule of classsca tdf::sca_module.
It has only one mandatory argument, which isthe module name. I n caseswhere parameters need to be passed
viathe constructor, the user may define aregular constructor with an arbitrary number of parameters.

Member datashould beinitialized in theinitialization list of the constructor, so that all membersare properly
initialized before the constructor of my_tdf _moduleis called.

nmy_tdf _nmodul e(sc_core::sc_nodul e_name nm double param_)
. paran(param) {}

Constraints on usage

A TDF moduleisaprimitive of the TDF model of computation. Thereforeit cannot instantiate submodules.
The structural composition of TDF modules is possible by defining classes derived from the regular
SystemC class sc_core::sc_module, or using the equivalent macro SC_ MODULE. Thisis discussed in
Section 2.3.3.

The member functions set_attributes, initialize, processing, and ac_processing should not be called
directly by the user. These member functions are called as part of the execution semantics for time-domain
simulation (Section 2.5) or small-signal frequency-domain analyses (Section 5.1.2).

SystemC functions to describe discrete-event behavior such as creating methods and threads, specifying
sengitivity, waiting for events, and so on are not alowed to be called in a TDF module. Otherwise,
the execution semantics for SystemC discrete-event processing could interfere with the execution of the

16 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

TDF modules. This means member functions and macros like SC HAS PROCESS, SC METHOD,
SC_THREAD, wait, next_trigger, sensitive should not be used in a TDF module.

Asthelocal time of a TDF module is calculated independently from the time in the discrete-event domain
(SystemC kernel time), the function sc_core::sc_time_stamp should not be used inside a TDF module.
Instead, the member function get_time should be used.

In case SystemC signals are needed for processing in a TDF module, specialized converter ports have to
be used, as described in the next section.

2.2.2. TDF ports

A TDF port is an object that provides a TDF module with a means to communicate with other connected
modules. Due to the nature of the TDF modeling formalism, a TDF port can be either an input port or an
output port, but not inout (which is available in SystemC). TDF ports can be declared for any data type
defined by C++, SystemC, the SystemC AMS extensions, a third-party library, or the user.

There are currently four classes of TDF ports:
e TDF ports of class sca_tdf::sca in<T> (input port) or sca_tdf::sca_out<T> (output port).
e TDF converter ports of class sca tdfiisca de::sca in<T> (input converter port) or

sca_tdf::sca_de::sca out<T> (output converter port).

TDF ports are used to connect TDF modules using signals of classsca_tdf::sca signal<T>. TDF converter
ports allow TDF modules to interact with discrete-event signals of class sc_core::sc_signal<T> or
sc_core::sc_buffer. Thisisexplained in Section 2.4.

The port template classes allow the use of different data types, e.g., double, int or bool. The data type
doubleis often used to represent the amplitude of a continuous-value signal. The example below showsthe
instantiation of the four available TDF port classes.

SCA TDF_MODULE(my_t df _nodul e)
{
sca_tdf::sca_i n<doubl e> in; (1)
sca_tdf::sca_out <doubl e> out; (2]

sca_tdf::sca_de::sca_i n<bool > inp; (3]
sca_tdf::sca_de::sca_out< sc_dt::sc_logic > outp; (4]

/1 rest of nodule not shown

-

TDF input port that carries a continuous-value (real) signal.

TDF output port that carries a continuous-value (real) signal.

TDF input converter port from the discrete-event domain, using a boolean signal.
TDF output converter port to the discrete-event domain, using a SystemC logic signal.

o0 0Q

Port attributes

A number of attributes can be assigned to TDF ports. They are used to control the evaluation and execution
of the TDF cluster, to which the TDF module belongs. TDF port attributes have to be set in the member
function set_attributesof the TDF module, in which the port isdeclared (see 2.2.1). Thefollowing member
functions are available for TDF ports to set or get the attributes:

« The member functions set_timestep and get_timestep will set and return, respectively, the time step
(sampling period) between two consecutive samples.

» The member functions set_rate and get_rate will set and return, respectively, the number of samples
that have to be read or written to the port per module execution. The default rateis 1 (single-rate port).

» The member functions set_delay and get_delay will set and return, respectively, the number of samples,
which are inserted before reading or writing the first time to the port. The default value depends on the
default constructor of the datatype. In case of C++’s base type like booal, int, long, float, and double, the

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 17

March 8 2010 SystemC AMS extensions User’'s Guide

initial value could be undefined. Therefore, it is recommended to initialize the port with an initial value,
if adelay has been specified for a port (see the section called “Port initialization”).

» Member function set_timeoffset and get_timeoffset will set or return the actual time of the first sample
of the port. Thisfunction is only available for converter ports.

The example bel ow shows the use of these member functions:

void set_attributes()

{
out.set_tinmestep(0.01, sc_core::SC_US); /1 set tine step of port out
out.set_rate(1); /1l set rate of port out to 1
out.set_del ay(2); /1 set delay of port out to 2 sanples

outp.set_tinmeoffset (0.2, sc_core::SC US); // set absolute time of first sanple of converter port

}

void initialize()

{
out.get_rate(); // return the rate of port out
out . get _del ay(); // return the delay of port out
out.get_timestep(); // return actual timestep of port out
out p. get _timestep(); // return actual timestep of converter port outp

outp.get_timeoffset(); // return absolute tine of first sanple of converter port outp

Port initialization

Theinitial values of TDF portswith a specified delay have to be specified in the member function initialize
of the corresponding TDF module. The example below shows the initialization of port out, which delay
has been set to 2 samples.

void initialize() // use initialize nmethod of TDM nodule to initialize ports
{
/1 initialize port out (which has a delay attribute of 2)
out.initialize(l.23); // initialize first sanple with value 1.23 or
out.initialize(1.23,0); // initialize first sanple with value 1.23
out.initialize(4.56,1); // initialize second sanple with value 4.56

Port read and write access

Samples can be read from a TDF input port by calling its member function read from within the member
function processing of the corresponding TDF module. In case of a multirate port, the sample index can
be passed as an argument to read.

In the case of asingle rate TDF input port, reading from this port is done as follows:

SCA_TDF_MODULE(ny_t df _si nk)
sca_tdf::sca_i n<doubl e> in;
SCA _CTOR(ny_tdf _sink) : in("in") {}
voi d processing()

/1 local variable
doubl e val; // variable to store value read fromport in

val = in.read(); // reading first sanple fromthe input port
}
Ik

Consecutive read accesses during the same modul e activation returns the same value, i.e., the input sample
is not consumed by the read access.

In the case of amultirate TDF input port, reading from this port is done as follows:

SCA_TDF_MODULE(my_nmul ti _rat e_si nk)
sca_tdf::sca_i n<doubl e> in;

SCA CTOR(nmy_mul ti_rate_sink) : in("in") {}

18 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

void set_attributes()

{
}

in.set_rate(2); // 2 sanples read per nodul e activation

voi d processing()

{

/1 1ocal variable
double val; // variable to store values read fromport in

val =in.read(); // read first sanple
val = in.read(0); // same nmethod with index for first sanple
val = in.read(1); // sanme nethod with index for second sanple

}
be

The rate attribute of the input port defines the number of samples available per module activation. In the
example above, the port rate of 2 gives accessto 2 samples with respectiveindex 0 and 1. Asfor singlerate
ports, consecutive read accesses during the same module activation return the same value.

Samples can be written to a TDF output port by passing the sample value as argument to the member
function write from within the member function processing of the corresponding TDF module. In case of
amultirate port, the sample index can be passed along with the sample value as an argument to write.

In the case of asingle rate TDF output port, writing to this port is done as follows:

SCA_TDF_MODULE(my_const _sour ce)
sca_tdf::sca_out <doubl e> out;

nmy_const _source(sc_core::sc_nodul e_nane, double val _ = 1.0)
out("out"), val(val_) {}

voi d processing()

{

out.wite(val); // wites val as a new sanple to the port out

}

private:
doubl e val; // value to be witten to the port out

b

Consecutive write accesses during the same module evaluation overwrite the sample value, i.e., only the
last written output sample is emitted.

In the case of amultirate TDF output port, writing to this port is done as follows:

SCA_TDF_MODULE(ny_mul ti _rate_const_source)
sca_tdf::sca_out <doubl e> out;

nmy_nul ti _rate_const_source(sc_core::sc_nodul e_nanme, double val _ = 1.0)
out("out"), val(val_) {}

void set_attributes()

{
out.set_rate(2); // 2 sanples witten per nodul e activation
}
voi d processing()
{
out.wite(val); /Il writes val as the first sanple to the port out

out.wite(val,0); // wites val as the first sanple to the port out by specifying the index 0
out.wite(val,1); // wites val as the second sanple to the port out by specifying the index 1

}

private:
doubl e val; // value to be witten to the port out

b

The rate attribute of the output port defines the number of samples, which can be written to the port per
module activation. In the example above, the port rate of 2 gives write access to 2 samples with respective
index 0 and 1. As for single rate ports, consecutive write accesses during the same module activation
overwrite the previous sample value.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 19

March 8 2010 SystemC AMS extensions User’'s Guide

Read and write access to SystemC discrete-event signals is done using so called converter ports of
classsca_tdf::sca _de::sca in<T> or sca_tdf::sca_de::sca_out<T>. The usage of these converter portsis
discussed in Section 2.4.

Port and sample time

The member function get_time can only be used after elaboration is finished, i.e., in the TDF modul€e's
member functions initialize and processing, to obtain the actual time of the requested sample at an input
or output port. In case no argument is used, it returns the time of the first sample, which has been read
from or written to a port. An argument can be passed to this function to specify the sample index, where
0 indicates the first sample.

voi d processing()

{

sca_core::sca_tine t;

t
t

= out.get _time(); // return tine of the first sanple of port out

= out.get_tinme(0); // same nethod, the first sanple has index 0
t

}

in.get_time(1l); // return time of second sanple of port in, with index 1

Constraints on usage

The TDF port member functions set_timestep, set_delay, set_rate, and set_timeoffset for TDF converter
ports can only be called in the TDF module member function set_attributes, asthisinformation is required
for the elaboration phase.

The TDF port member functions get_timestep, get_delay, get_rate, get_time and get_timeoffset for
TDF converter portscanonly becalled after elaborationisfinished, i.e., in the TDF module member function
initialize or processing.

2.2.3. TDF signals

TDF signals are used to connect TDF ports of different primitive TDF modulestogether. TDF signals carry
the samples of a signal, while TDF ports determine the direction of the signals from one TDF module
to another. TDF signals are declared using the template class sca tdf::sca_signal<T>. The data type of
the signal is passed as a template argument to this class. For example, a continuous-value signal can be
represented by using the data type double;

/'l signal declarations
sca_tdf::sca_signal <doubl e> sig; // continuous-val ue signal

Unlike SystemC signals, the TDF signals of the AMS extensions do not provide member functions to
directly read to or write from the channel. Instead, the member functions read and write are defined for
TDF input and TDF output ports, respectively, as already described in Section 2.2.2.

As in SystemC, the constructor initialization of the parent module can be used to assign a user-defined
nameto asignal:

/1 assign the nane "sig" to a TDF signal instance called sig in the constructor initialization Iist
SC CTOR(ny_nodul e) : sig("sig") {}

Section 2.3.3 will describe the structural composition of TDF modules in more detail and will show
examples of assigning user-defined names to ports and signals.

2.3. Modeling discrete-time and continuous-time behavior
A TDF module is the basic structural building block for describing discrete-time and continuous-time

behavior. It isaclassthat implements a TDF behavioral description, and may not instantiate other modules.
TDF modules act as primitive modules.

20 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

2.3.1. Discrete-time modeling

Discrete-time behavior can be defined in the member function processing. In this member function, a pure
algorithmic or procedural descriptionin C++ can be given, which isexecuted at each module activation. The
module activation is defined by the module time step, which can be either user-specified with the member
function set_timestep or derived by time step propagation (see Section 2.1.3).

In Figure 2.16, an example is given for a 1 kHz sinusoidal source. By defining a module time step of
0.125ms, the actual output signal will be oversampled with afactor of 8.

Module time step (Tm)

out w

sin_src

Tm:0.125ms

TDF module TDF output port
Instance of class Instance of class
sca_tdf::sca_module sca_tdf::sca_out<T>

Figure 2.16. TDF primitive module implementing a sinusoidal source

The corresponding C++ source code is given below. The constructor has parameters with default values,
which define the amplitude, frequency and sampling period (in this case equal to the module time step) of
the sine wave to be generated by the source. The module time step is usualy set in the member function
set_attributes. Thesinusfunction sin, whichispart of the C++ math library, isused in the member function
processing. To write the samples to the output port, the port member function writeis used.

SCA_TDF_MODULE(si n_src)
{

sca_tdf::sca_out <doubl e> out; // output port

sin_src(sc_core::sc_nodul e_name nm double anpl_= 1.0, double freq_ = 1.0e3,
sca_core::sca_time Tm = sca_core::sca_tinme(0.125, sc_core::SC M))

: out("out"), anpl(anpl_), freq(freq), Tnm(Tm)

{}

void set_attributes()
{

set _timestep(Tm;
}

voi d processing()

double t = get_tinme().to_seconds(); // actual time
out.wite(anpl * std::sin(2.0 * MPl * freq *t));
}

private:
doubl e anpl; // anplitude
doubl e freq; // frequency
sca_core::sca_tinme Tm // nodule tinme step

h

2.3.2. Continuous-time modeling

A TDF module can be used to embed linear dynamic equationsin the form of linear transfer functionsin the
Laplace domain or state-space equations. Although the TDF model of computation processes the samples
at discrete time steps, the equations of these embedded functions will be solved by considering the input
samples as continuous-time signals. The result of the embedded linear dynamic equations system, which is
also continuous in time and value, is sampled into asignal using atime step which corresponds to the time
step of the port, in which the samples are written.

The example below shows the corresponding signal flow when embedding a Laplace transfer function
(LTF) in a TDF module. The input signal represents a sampled step function. This discrete-time signal is

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 21

March 8 2010 SystemC AMS extensions User’'s Guide

interpreted by the LTF function as a continuous-time signal. The filtered, continuous-time signal iswritten
to the output port. During this write operation, the continuous-time signal is being sampled into a discrete-
time signal using the output port attributes.

in -~ Itf input out - - Itf output

t/ms t/ ms

02 46 810121416 02 46 810121416
Itf input Itf output

Figure 2.17. TDF primitive module embedding a continuous-time Laplace transfer function (LTF)
Laplace transfer functions
A Laplace transfer function (LTF) can be used in the numerator-denominator or zero-pole form.

Theclasssca tdf::sca Itf_nd implements ascaled continuous-time linear transfer function of the Laplace-
domain variable sin the numerator-denominator form:

. e(—s-delay)

wherek isthe constant gain of the transfer function, M and N are the number of numerator and denominator
coefficients, respectively, and num and den; are real-valued coefficients of the numerator and denominator,
respectively. The coefficients must be declared as objects of class sca_util::sca_vector with data type
double. The parameter delay is the time continuous delay applied to the values available at the input.

The example below shows a first-order low-pass filter using the following Laplace transfer function:

H(s)= L

1+ !
2f)}

where Hp isthe DC gain and f. is the filter cut-off frequency in Hz.

The following code implements such a behavior in a TDF module using the class sca_tdf::sca Itf_nd,
which instantiates the corresponding equation system. The numerator and denominator coefficients are
calculated from the user-specified gain and cut-off frequency.

SCA_TDF_MODULE(Itf_nd_filter)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

Itf_nd_filter(sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0)
cin("in"), out("out"), fc(fc_), ho(ho_) {}

void initialize()

{
num(0)
den(0)
den(1)
}

voi d processing()

{

out.wite(Itf_nd(num den, in.read(), h0O));

}

private:
sca_tdf::sca_ltf_nd Itf_nd; // Laplace transfer function

1.0;
1.0;
1.0 /(2.0 * MPl * fc);

22 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sca_util::sca_vector<doubl e> num den; // nunmerator and denomi nator coefficients
double fc; // 3dB cut-off frequency in Hz

doubl e hO; // DC gain

Ik

The next example shows the same filter, but now implemented as zero-pole description, using the class
sca_tdf::sca Itf _zp.

Theclasssca_tdf::sca Itf_zp implements a scaled continuous-time linear transfer function of the Laplace-

domain variable sin the zero-pole form:

M1
I1- 0 (s — zeros;)

HN

1=

H(s)=k- .ol 5 delay)

;l(s — poles)

wherekisthe constant gain of thetransfer function, M and N arethe number of zerosand poles, respectively,
and zeros; and poles; are complex-valued zeros and poles, respectively. If M or N is zero, the corresponding
numerator or denominator term shall be a constant 1. The parameter delay is the time continuous delay
applied to the values available at the input.

The zeros and poles must be declared as objects of class sca_util::sca_vector with a complex data type of
class sca_util::sca_complex.

For afirst-order low-pass filter, the zero-pole respresentation becomes:

HO _H027L'fc
1 - stoaf,
27tfcs

H(s)=

Thisfilter does not require any zeros to be defined. The poles and k-value of the filter are calculated from
the user-defined DC gain Hg and cut-off frequency fe.

SCA_TDF_MODULE(Itf_zp_filter)
{
sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <doubl e> out;

Itf_zp_filter(sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0)
cin("in"), out("out"), fc(fc_), ho(ho) {}

void initialize()

/1 filter requires no zeros to be defined
pol es(0) = sca_util::sca_conplex(-2.0 * MPI * fc, 0.0);
k =h0* 2.0* MPI * fc;

}

voi d processing()

out.wite(Itf_zp(zeros, poles, in.read(), k));

}

private:

double k; // filter gain

sca_tdf::sca_ltf_zp Itf_zp; // Laplace transfer function
sca_util::sca_vector<sca_util::sca_conplex > poles, zeros; // poles and zeros as conpl ex val ues
double fc; // 3dB cut-off frequency in Hz

doubl e hO; // DC gain

The numerator and denominator coefficients or zero-pole values do not need to be static. Their values may
change during simulation.

State-space equations

Theclasssca_tdf::sca_ssimplementsacontinuous-time system, which behavior isdefined by thefollowing
state-space equations:

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 23

March 8 2010 SystemC AMS extensions User’'s Guide

—=A-s5(t)+B-x(t — delay)
y(#) =C-s(t)+Dx(t — delay)
where s(t) is the state vector, X(t) is the input vector, and y(t) is the output vector. The parameter delay is

the time continuous delay applied to the values available at the input. A, B, C, and D are matrices having
the following characteristics:

« A isan-by-n matrix, where n is the number of states.
* B isan-by-m matrix, where m isthe number of inputs.
e Cisar-by-n matrix, wherer is the number of outputs.

e Disar-by-m matrix.
ThematricesA, B, C, and D must be declared asobjectsof classsca_util::sca_matrix with datatypedouble.

The next example shows the same low-pass filter, but now implemented as state-space equation, using the
class sca_tdf::sca ss.

SCA_TDF_MODULE(st at espace_eqn)
{
sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <doubl e> out;

st at espace_eqn(sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0)
cin("in"), out("out"), fc(fc_), ho(ho_) {}

void initialize()
{
doubl e r_val
doubl e c_val

le3;
1.0/ (2.0 * MPI * fc * r_val);

a(0,0) =-1.0/ (c_val * r_val);
b(0,0) = 1.0/ r_val;

c(0,0) = h0o / c_val;

d(0,0) = 0.0;

}

voi d processing()

{
sca_util::sca_vector<doubl e> x;
x(0) = in.read();

sca_util::sca_vector<double>y = state_spacel(a, b, ¢, d, s, x);
out.wite(y(0));
}

private:

sca_tdf::sca_ss state_spacel; /] state-space equation
sca_util::sca_matrix<double> a, b, ¢, d; // state-space matrices
sca_util::sca_vector<doubl e> s; /|l state vector

double fc; // 3dB cut-off frequency in Hz
double hO; // DC gain

Using the state vector

If a coefficient (thus parameter) in a Laplace transfer function or state-space equation has
changed, the corresponding equation system will be reinitiaized. A user-defined vector of class
sca_util::sca_vector<double> can be used to store the state of the equation system. If not specified, an
internal state vector isused, which is not accessible to the user. The user-defined state vector is not changed
during reinitialization, but only the default internal state is reset to zero. This alows the creation of filters
with different parameters, e.g., to realize a switch with different cut-off frequencies, by defining multiple
LTF instances using the same state vector. The example below shows how to model such a switch.

SCA_TDF_MODULE(| t f_swi t ch)
sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <doubl e> out;
sca_tdf::sca_de::sca_in<bool > fc_high; // control signal fromthe discrete-event domain

24 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Itf_switch(sc_core::sc_nodul e_name nm double fcO_, double fcl_, double hO_ = 1.0)
cin("in"), out("out"), fc_high("fc_high"), fcO(fc0_), fcl(fcl), ho(h0_) {}

void initialize()

{

nunm(0) = 1.0;

den0(0) = denl(0) = 1.0;

den0(1) = 1.0/(2.0 * MPI * fc0);
denl(1) =1.0/(2.0 * MPI * fcl);

}

voi d processing() (1]
{

if (fc_high.read())

out.wite(Itfl(num denl, state, in.read(), h0O));
el se

out.wite(ItfO(num den0O, state, in.read(), hO));

}
private:

sca_tdf::sca_ltf_nd 1tf0O, 1tf1;
sca_util::sca_vector<doubl e> num den0O, denil;
sca_util::sca_vector<doubl e> state; (2]

doubl e fcO, fci;

doubl e hO;

-

© The user-defined state vector is kept constant during reinitalization of the LTF function.
® Declaration of user-defined state vector to store the state of the system during reinitalization of the
LTF function.

Using Laplace transfer functions or state-space equations in multirate applications

The Laplace transfer functions or state-space equation examples shown so far use the read method of an
input port to retrieve asingle value, and use the write method to write a single value to an output port.

Laplacetransfer function or state-space equations can al so be embedded in multirate applications, where, for
example, the input signal has a higher rate than the output signal, as shown in Figure 2.18. In this example,
the TDF module needs to read two input values at each module activation, which then need to be passed
to the embedded function.

in -~ Itf input out - - Itf output

L >t/ ms
0

2 46 810121416 02 46 810121416

out

t/ ms

Figure 2.18. Laplace transfer function used for combined filtering and decimation

In order to pass all available samples at the input port directly to the LTF function, not the values, but the
reference to the port itself is passed as argument to the LTF function, as shown in the example below.

SCA_TDF_MODULE(Itf_multirate_filter)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

tf_multirate_filter(sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0)
cin("in"), out("out"), fc(fc_), ho(ho_) {}

set _attributes()

{

in set_rate(2);

}
void initialize()
{

numn(0)

den(0)
den(1)

1.0;
1.0;
1.0 /(2.0 * MPl * fc);

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 25

March 8 2010 SystemC AMS extensions User’'s Guide

}

voi d processing()

{

out.wite(filter(num den, in, hO)); (1]
}
private:
sca_tdf::sca_ltf_nd filter;
sca_util::sca_vector<doubl e> num den;
doubl e fc;

doubl e hO;
¥

© Theargument in directly passes the reference to the input port to the LTF function. Note that in the
previous cases, the input port member read is used, which returns a value of type double, which is
passed to the LTF function.

In asimilar way, TDF modules with embedded L aplace transfer functions or state-space equations can be
designed using output portswith arate higher than 1. Writing multiple samplesto an output port isfacilitated
by the port write method, which can access the continuous-time values from a Laplace transfer or state-
space function, and write the complete set of output samplesto an output port. Thereisno different language
construct needed to make use of this feature.

Special care hasto betakenin case the number of output samplesis higher than the number of input samples.
For example, in a TDF module with an output port rate of 3 and an input port rate of 2, thereis 1 sample
missing at the first modul e activation to write the required samples (3) to the output. To resolve this, atime
continuous delay to the input signal should be specified as additional parameter delay, which is one of the
function parameters.

2.3.3. Structural composition of TDF modules

The way how TDF modules are instantiated and interconnected to form a TDF cluster does not
differ from regular SystemC modules. They can be instantiated as child modules inside a regular
SystemC parent module created with the help of the macro SC_MODULE or by deriving publicly from
sc_core::sc_module. This parent module also instantiates all necessary ports to communicate with the
outside world and internal signals for the interconnection of the child modules. The parameterization of
the instantiated modules as well as the interconnection of the modules should be done in the constructor
(e.g., created with the help of the macro SC_CTOR) of the parent SystemC module. The instantiation and
interconnection of TDF modules on the top-level inside sc_main is done in the same way.

Port binding
In order to connect TDF modules in a proper way to other TDF modules and signals, or even with regular

SystemC modules and signals, the following specific bindings are possible, asillustrated in Figure 2.19 and
Figure 2.20. The port binding rules are compatible and complementary to the SystemC rules.

Port-to-port Port-to-port
binding binding
2 sig O
in int A out out

in2

TDF input port
Instance of class

TDF output port
Instance of class

sca_tdf::sca_in<T> sca_tdf::sca_out<T>
SystemC parent module TDF signal Port-to-port binding
Object of class Instance of class
sc_core::sc_module sca_tdf::sca_signal<T>

Figure 2.19. Port binding rules for TDF input and output ports

26 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sc_sig1 sc_sig2
snnnngl]in E out[Jemmmum Discrete-event Signal

. . Instance of class
Port-to-port - . sc_core::sca_signal<T>
binding . :

- Port-to-port

binding
in

{out

Discrete-event
output port
Instance of class
sc_core::sc_out<T>

Discrete-event
input port
Instance of class
sc_core::sc_in<T>

TDF input converter port Port-to-port TDF output converter port
Instance of class binding Instance of class
sca_tdf::sca_de::sca_in<T> sca_tdf::sca_de::sca_out<T>

Figure 2.20. Port binding for TDF input and output converter ports

© Binding aTDF input port to a TDF signal.

® Binding aTDF input port to a TDF input port of the parent module (port-to-port binding).

©® Binding aTDF input port to a TDF output port of the parent module (port-to-port binding).

O Binding a TDF output port to a TDF signal.

© Binding a TDF output port to a TDF output port of the parent module (port-to-port binding).

O Binding a TDF input converter port to a discrete-event input signal .

© Binding a TDF input converter port to a discrete-event input port of the parent module (port-to-port
binding).

©® Binding a TDF input converter port to a discrete-event output port of the parent module (port-to-port
binding).

O Binding a TDF output converter port to a discrete-event output signal.

® Binding a TDF output converter port to a discrete-event output port of the parent module (port-to-
port binding).

Furthermore, aTDF input port or TDF output port should be bound to exactly one TDF signal throughout the
whole hierarchy. A TDF signal should be bound to exactly one TDF output port of aprimitive TDF module,
and may be bound to TDF input ports of primitive modules throughout the whole hierarchy.

The example below shows the implementation of the structural composition of Figure 2.19.

SC_MODULE(my_st ructural _nodul e)

{
sca_tdf::sca_i n<doubl e> in; (1]
sca_tdf::sca_out <doubl e> out;

nmod_a a; (2]
nmod_b b;

SC_CTOR(ny_structural _nmodul e)
cin("in"), out("out"), a("a"), b("b"), sig("sig") (3]
{
a.inl(in); (4]
.in2(out);
a.out(sig);

Q

o

.in(sig);
.out (out);

o

}

private:
sca_tdf::sca_signal <doubl e> sig; (5]

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 27

March 8 2010 SystemC AMS extensions User’'s Guide

The TDF input and output ports declared inside thismodul e of classsc_core::sc_module become part
of the structural composition.

The child TDF modul es are declared within the parent module. The declaration of these child modules
should be known prior to the declaration in this context, e.g., by including them viatheir header files.
The initialization-list in the parent modul€’s constructor propagates the necessary configuration
parameters to the TDF ports, TDF signals, and child modules.

Port binding is done inside the constructor.

Internal TDF signals are used to connect the TDF ports and child modules. These signal are declared
to be private, as they should not be accessible from outside the module.

206 © o ©

The example bel ow shows the implementation of the structural composition of Figure 2.20.

SC_MODULE(nmy_nmi xed_nodul e)
{
sc_core::sc_in<doubl e> in;

sc_core::sc_out <doubl e> out;

mod_c c¢; // TDF primtive nodul e
nmod_d d; // TDF primitive nodul e
nmod_e e; // SystenC nodul e

SC_CTOR(ny_nmi xed_nodul e)
cin("in"), out("out"), c("c"), d("d"), e("e"),
sig("sig"), sc_sigl("sc_sigl"), sc_sig2("sc_sig2")

c.inl(in);
c.in2(out);
c.out1(sc_sigl);
c.out2(sig);
d.inl(sig);
d.in2(sc_sig2);
d. out (out);

e.in(sc_sigl);
e.out(sc_sig2);

}

private:
sca_tdf::sca_si gnal <doubl e> si g;
sc_core::sc_signal <bool > sc_sigl;
sc_core::sc_signal <bool > sc_sig2;

be

2.3.4. Multirate behavior

To implement multirate behavior in a TDF module, the TDF port member function set_rate can be used.
Figure 2.21 below shows an exampl e, wheretherate of the output port is set to 2. For each module activation,
one sample is read from the input port, and two samples are written to the output port. This resultsin an
oversampled signal at the output, with arate equal to the rate of the output port.

out

t/ us

0 1020 3040 50 60 70 80 90

Figure 2.21. Multirate example: 2 times oversampling by inserting zeros

As already discussed in Section 2.1.3, the time step of the TDF input port, output port and module should
be consistent. As the module time step is set to 20 ps (Tm:20ps), with an input port rate of 1, the samples
at the input port are read each 20 ps. The samples at the output port are written with a time step of 10 ps.
Thisexampleinserts zerosfor the additional samples, but other methodslike linear interpolation or sample-
and-hold could be implemented as well.

SCA_TDF_MODULE(ny_tdf _interp) {

28 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(ny_tdf _interp) : in("in"), out("out") {}

void set_attributes()

{

out.set_rate(2);

}

voi d processing()
{
out.wite(in.read()); // input sanple directly fed to the output
out.wite(0.0, 1); Il insert zero as 2nd sanpl e
}
}i

Figure 2.22 shows an example, which performs decimation of the input signal, as the rate of the input port
is higher than the rate of the output port.

out

t/us
0 10 20 30 40 50 60 70 80 90 0 20 40 60 80

t/ us

Figure 2.22. Multirate example: Downsampling by afactor of 2

SCA_TDF_MODULE(my_t df _deci m)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(ny_tdf _decim) : in("in"), out("out") {}

void set_attributes()

{

in.set_rate(2);

}

voi d processing()
{
out.wite(in.read()); // only wite the first sanple and neglect the second one
}
¥

2.3.5. Introducing delays

Section 2.1.2 explained the cases when delays are essential in a TDF model. The introduction of delays
in a TDF cluster will result in inserted samples at the beginning of the sampled TDF signals. The inserted
samples are of the same value type as used by the TDF port and signal. As the initial value for a regular
C++ data type is undefined, and thus the value of the inserted sample is undefined, it is recommended to
initialize these delay samples.

Figure 2.23 shows abasic TDF module, in which adelay of one sampleisintroduced at the output port.

in out
my_tdf delay

out .
/ N

\
Delay-“~0-' 20 40 60 80 100
sample

t/ us

Figure 2.23. TDF module introducing a delay of one sample

The implementation of this delay is given in the next example. It can be seen in the code, that the delay
valueisalso initialized with a default value of 1.1.

SCA_TDF_MODULE(nmy_t df _del ay) {

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 29

March 8 2010 SystemC AMS extensions User’'s Guide

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(ny_tdf _delay) : in("in"), out("out") {}

void set_attributes()

{
out.set_del ay(1);

}

void initialize()
{
out.initialize(1.1);

}
voi d processing()

out.wite(in.read()); // directly wite the input sanple to the output (incl the del ay)

}
be

2.4. Interaction between TDF and discrete-event domain

Asexplained in Section 2.1, the TDF model of computation has its own mechanisms for time annotation,
which could result in time differences between the local time of each TDF module and the time in the
discrete-event domain (SystemC kernel time). Therefore, special care should be taken in synchronizing
TDF signals with the discrete-event domain of SystemC in both directions (i.e., reading from and writing
to discrete event signals).

To maintain a high simulation efficiency despite the presence of TDF and discrete-event domain
interactions, a loosely-coupled synchronization mechanism is used, which is called data synchronization.
For TDF modeling this means that discrete events will not influence the activation and execution of
TDF modules.

2.4.1. Reading from the discrete-event domain

To read from a channel coming from the discrete-event domain, a TDF input converter port of
class sca tdf::sca_de::sca in<T> has to be used, see Figure 2.24. For convenience, the shorter name
sca_tdf::sc_in<T> can be used, which class name sc_in indicates the interface to the SystemC discrete-
event domain. Unliketheregular TDF input portsof classsca_tdf::sca_in<T>, theavailability of adiscrete-
event signal at the TDF input converter ports will not activate (“fire”) module execution. Instead, the
TDF module activation order (schedule) is determined independently at its individual port time step in
accordance with the converter port rate and the TDF module time step.

Precondition for correct data synchronization is that the value read from the converter port should be
available at the first delta cycle of the corresponding time point in the discrete-event domain. Asthe TDF
cluster runs independently from the discrete-event domain, it could happen that the previous discrete-event
value is read, indicating that a discrete-event process did not write the value to the channel before the
first deltacycle. Thiswould result in adelay in the signal. To overcome this, a small time offset could be
introduced using the port member function set_timeoffset (see the section called “Port attributes”).

The example below shows the use of a TDF module, which reads the values from the discrete-event for
further TDF signal processing and writes them to a TDF output port each millisecond.

. Discrete-event signal TDF signal
NP |nstance of class sc_core::sc_signal<T> out |nstance of class sca_tdf::sca_signal<T>
A A
T oo b1 o]
. | ‘ N =
W i 1 trpr / MS
0123456789101

TDF input converter port TDF output port
Instance of class Instance of class
sca_tdf::sca_de::isca_in<T> sca_tdf:isca_out<T>

Figure 2.24. TDF module with converter port as input

30 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

SCA_TDF_MODULE(ny_de2t df)
{

sca_tdf::sca_de::sca_in<double> inp; // TDF input converter port
sca_tdf::sca_out <doubl e> out; // TDF output port

SCA_CTOR(ny_de2tdf) : inp("inp"), out("out") {}

void set_attributes()

{

set_timestep(1.0, sc_core::SC_MS);

}
voi d processing()

out.wite(inp.read());
}
e

2.4.2. Writing to the discrete-event domain

To write to a channel in the discrete-event domain, a TDF output converter port of class
sca tdf::sca de::sca out<T> should be used, see Figure 2.25. For convenience, the shorter name
sca_tdf::sc_out<T> can be used, which class name sc_out directly indicates the interface to the SystemC
discrete-event domain. The time offset and time step assigned to the output converter port define, at which
time point and time interval avalue is written to the discrete-event domain.

Precondition for correct data synchronization is that the sample written to the converter port can be written
to the associated channel at the first delta cycle of the corresponding discrete-event time point. In case a
channel of class sc_core::sc_signal<T> is connected to the converter port, there is only a discrete-event
generated in case of asignal change, as indicated with the events e4, &, and es. In case a channel of class
sc_core::sc_buffer<T> is connected to the converter port, all samples written to the port will generate an
event, which isindicated with the additional samples e11, €10, €13, €tc.

TDF signal Discrete-event signal
in Instance of class sca_tdf::sca_signal<T> outp Instance of class sc_core::sc_signal<T>
or class sc_core::sc_buffer<T>
my_tdf2de 4
in outp | |
troe / Ms >
0123456789101 €1 €41€,,€43 €, €5 €,€,y; €3 €, €, €5 event
0123456789101 toe / Ms

TDF input port TDF output converter port

Instance of class Instance of class

sca_tdf:isca_in<T> sca_tdf::sca_de::sca_out<T>

Figure 2.25. TDF module with a converter port as output

The example below shows the implementation of a TDF module, which writes samples to the discrete-
event domain.

SCA_TDF_MODULE(ny_t df 2de)
{

sca_tdf::sca_i n<doubl e> i n; /1 TDF input port
sca_tdf::sca_de::sca_out <doubl e> outp; // TDF output converter port

SCA CTOR(ny_tdf2de) : in("in"), outp("outp") {}
void set_attributes()
{
set _tinmestep(1l.0, sc_core::SC MS);
}

voi d processing()

outp.wite(in.read());

}

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 31

March 8 2010 SystemC AMS extensions User’'s Guide

‘};

2.4.3. Using discrete-event control sighals

The example below shows a simple digitally controlled gain amplifier, in which the gain is defined by an
external control signal from the discrete-event domain. The execution frequency of the member function
processing is defined by the module time step, which is set to 1 ms. Each time the processing function is
called, data from the discrete-event domain is read.

TDF input signal TDF output signal
Instance of class sca_tdf::sca_signal<T> Instance of class sca_tdf::sca_signal<T>
in "’. out

t/ms t/ms

02 46 81012 02 46 81012

high_gain_state

high_gain_state

A

Discrete-event signal

I I > o i < >
‘ ‘ >t/ ms Instance of class sc_core::sc_signal<bool

5 1"

Figure 2.26. TDF module with a converter port used as control input

SCA_TDF_MODULE(ny_dga)
{
sca_tdf::sca_i n<doubl e> in, // input port

sca_tdf::sca_out <doubl e> out; // output port

/1 control signal fromthe discrete-event domain
sca_tdf::sca_de::sca_i n<bool > high_gain_state; // input converter port

SCA_CTOR(ny_dga)
cin("in"), out("out"), high_gain_state("high_gain_state"),
hi gh_gai n(100.0), low gain(1.0) {}

void set_attributes()

{
set _tinmestep(1.0, sc_core::SC M);

}

voi d processing()

doubl e gain = high_gain_state.read() ? high_gain : |ow_ gain;
out.wite(gain * in.read());

}

private:
doubl e hi gh_gain, |ow gain;

h

2.5. TDF execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard |EEE
1666-2005, specific functionality is implemented for the elaboration and execution of TDF models. The
essential TDF module member functions for time-domain simulation are set_attributes, initialize and
processing. A user should overload these member functions to implement initialization the initialization
and signal processing behavior of his user defined TDF module. It is not allowed to call these member
functions directly.

Asdepicted in Figure 2.27, the elaboration phase includes the following steps:
» TDF module attribute settings: Execute the member function set_attributes of all TDF modules.

» TDF time step calculation and propagation: Propagate and cal culate unassigned port and module time
steps based on the assigned time steps and port rates. (see Section 2.1.3).

32 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

» TDF cluster computability check: Define and check the cluster schedule.

The steps for the simulation phase are;
« TDF moduleinitialization: Execute the (optional) member function initialize of all TDF modules.

« TDF module activation and processing: Continuously execute member function processing of each
TDF module, till all samples have been processed.

« TDF module post-processing: Execute the (optional) member function end_of simulation of all
TDF modules. Note that this member function is not AMS specific, but is inherited from the SystemC
modul e base class.

TDF module attribute settings:
Execute all set_attributes member functions

|

TDF time step calculation and propagation:
Define time step and check their consistency TDF elaboration phase

|

TDF cluster computability check:
Define and check the cluster schedule

]

TDF module initialization:
Execute all initialize member functions once

|

TDF module activation and processing:
Repeatedly execute all processing member functions

|

TDF module post processing:
Execute all end_of_simulation member functions once

TDF simulation phase

Figure 2.27. TDF elaboration and simulation phases

The elaboration and simulation phases are executed by starting atime-domain simulation using the function
sc_core::sc_start. Thisisexplained in Section 6.1.1.

2.6. Application examples

This section shows concrete application examples of the Timed Data Flow model of computation and its
multirate capabilities. Especialy, the interaction of time steps and data rates will play an important role
here. The reader is encouraged to reproduce the computations regarding data rates and time steps of the
examplesin this section in order to grasp the concepts of Timed Data Flow modeling.

2.6.1. BASK modulator

This example considers Binary Amplitude Shift Keying (BASK) modulation, where a sinusoidal carrier is
modulated by abinary signal. A BASK modulator consistsof the carrier signal source (si n_sr ¢) and amixer
(mi xer), which basically multiplies a binary baseband signal (bi t _sr ¢) with segments of the carrier signal.
Figure 2.28 shows a structural composition of the BASK modulator. The signalsin thisfigureillustrate the
concept of Binary Amplitude Shift Keying.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 33

March 8 2010 SystemC AMS extensions User’'s Guide

carrier
bask_mod

sin_src

Tp:5ns

carrier

bit_src

Figure 2.28. BASK modulator

Themodulesi n_src isalready described in Section 2.3.1. The mixer reads 40 carrier samples per baseband
sample. It can be implemented as follows:

SCA_TDF_MODULE(mi xer)

{
sca_tdf::sca_i n<bool > in_bin; /1 input port baseband signal
sca_tdf::sca_i n<doubl e> in_wav; /1 input port carrier signal
sca_tdf::sca_out <doubl e> out; /1 output port nodul ated signal

SCA_CTOR(mi xer)

in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(40) {} // use a carrier data rate of 40
void set_attributes()
{

in_wav.set_rate(rate);

out.set_rate(rate);

}
voi d processing()
for(unsigned long i = 0; i < rate; i++)

if (in_bin.read())

out.wite(in_wav.read(i), i);
el se
out.wite(0.0, i);
}
}
private:

unsigned long rate;

b

Thisis obviously more sensible than up-sampling the binary signal first to a data rate of 40 such that both
the carrier signal and the base band signal fit to a mixer with both input ports set to a data rate of 1. The
next code snippet shows how the two modules can be combined to form a BASK modulator module. Note
that aregular SC_M ODUL E isused in this case, in which the two TDF primitive modules are instantiated.

SC_MODULE(bask_nod)

sca_tdf::sca_i n<bool > in;
sca_tdf::sca_out <doubl e> out;

sin_src sine;
m xer m X;

SC_CTOR(bask_nod)

cin("in"), out("out"),
sine("sine", 1.0, 1.0e7, sca_core::sca_time(5.0, sc_core::SCNS)),
m x("mx")

sine.out(carrier);
m x.in_wav(carrier);
m x.in_bin(in);

m x. out (out);

}

private:

34 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sca_tdf::sca_signal <doubl e> carrier;

be

Note that the carrier frequency of 10 MHz is set by passing a parameter to the module si n_sr ¢, while the
baseband frequency is determined indirectly by the data rate of the module ni xer, and the time step set at
the output of module si n_src. The port i n_wav of the module ni xer has the same time step as the output
of module si n_src (namely 5 ns), but a data rate of 40. Therefore, the port i n_bi n of the module ni xer,
which hasadatarate of 1, getsatime step of 200 ns. Thisresultsin abaseband frequency of 5 MHz, which
is exactly the situation depicted in Figure 2.28.

For the sake of completeness, the code of the binary baseband source, which produces a random binary
signal is given below.

SCA_TDF_MODULE(bi t _src)
sca_tdf::sca_out <bool > out; // output port
SCA CTOR(bit_src) : out("out") {}
voi d processing()
out.wite((bool)(std::rand()%));

}
b

2.6.2. BASK demodulator

The demodulation of a BASK modulated signal is done by first using arectifier (which takes the absolute
value of the signal), followed by alow-pass filter, which can be implemented as described in Section 2.3.2
withthemodulel tf _nd_filter. Therectifier can beimplemented as follows:

SCA_TDF_MODULE(rectifier)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(rectifier) : in("in"), out("out") {}

voi d processing()
{
out.write(std::abs(in.read()));
}
B

The output signal of the low-pass filter is asigna of type double, which contains 40 samples per 200 ns,
and needs to get sampled down to 1 sample per 200 ns (see Figure 2.29).

bask_demod

rectifier sampler
I Tp:5ns

. \
in rc out lp_out out
N | . |

__';// __,(l /\,__’/'
%tMtTﬂ —,, Ll 1
\\ _,I _/I

Figure 2.29. BASK demodulator

The next listing shows an implementation of the sampler. It has an input data rate of 40. Therefore, it reads
exactly the number of samples, which are associated to one specific bit in the baseband signal. It only
uses one sample at a fixed sampling position within the second half of the sample stream read per module
execution. The idea behind thisis that the output of the low-pass filter can be expected to be settled by that
time. This sample is compared with a threshold value: If it islarger, the output of the sampler istrue, and
false otherwise. This effectively models a 1-bit A/D converter, which samplesitsinput every 200 ns.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 35

March 8 2010 SystemC AMS extensions User’'s Guide

SCA_TDF_MODULE(sanpl er)
{
sca_tdf::sca_in<double> in; // input port

sca_tdf::sca_out<bool > out; // output port

SCA CTOR(sanpler) : in("in"), out("out"), rate(40), threshold(0.2) {}

void set_attributes()
{
in. set_rate(rate);
sanpl e_pos = (unsigned long)std::ceil(2.0 * (double)rate/3.0);

voi d processing()
{
if(in.read(sanple_pos) > threshold)
out.wite(true);
el se
out.wite(false);
}

private:
unsi gned long rate;
doubl e threshol d;
unsi gned | ong sanpl e_pos;

¥

Note that the above code bears a certain causal 1ooseness, which can occur if the rate of the input port is
larger than 1: The value of the output sample is computed based on an input sample, which has atime stamp
larger than the output token. Therefore, regarding the simulation time of the TDF model of computation,
effect precedes cause. Thisirregularity can easily be resolved by introducing a delay, for example with a
set_delay(1) at the output port. However, thisisnot really necessary since serious problems (i.e. paradoxes)
could occur only if aproduced output value would be fed into afeedback loop. But in this case, adelay has
to be introduced anyway (see Section 2.1.2), which resolves the problem automatically.

The next listing shows how the three modules are combined for the overall BASK demodulator module.
Note that no time step is explicitly set here, since we expect it to be set in the part of the model which
provides the modulated signal.

SC_MODULE(bask_dennd)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out<bool > out;

rectifier rc;
Itf_nd_filter Ip;
sanpl er sp;

SC_CTOR(bask_dennd)
cin("in"), out("out"), rc("rc"), Ip("Ip", 3.3e6), sp("sp"), rc_out("rc_out"), Ip_out("lp_out")
{

rc.in(in);

rc.out(rc_out);

Ip.in(rc_out);
I p.out(lp_out);

sp.in(lp_out);
sp. out (out);

}

private:
sca_tdf::sca_signal <doubl e> rc_out, |p_out;

h

2.6.3. TDF simulation of the BASK example

Theimplementation of the complete BASK applicationisdoneinthesc_main program. Within the program
body, the bit source modulebi t _sr ¢, BASK modulator module bask_rmod and BASK demodul ator module
bask_denod are instantiated. These TDF modules are interconnected using TDF signals.

int sc_main(int argc, char* argv[])
{

sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

36 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sca_tdf::sca_signal <bool > in_bits, out_bits;
sca_tdf::sca_si gnal <doubl e> wave;

bit_src bs("bs"); /1 random bit source
bs.out(in_bits);

bask_nod nod("nmod"); /1 nodul at or
nmod. in(in_bits);
nmod. out (wave) ;

bask_denod denod("denod"); // denpdul at or
denod. i n(wave) ;
denod. out (out _bits);

sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file("tr.vecd");
sca_util::sca_trace(atf, in_bits, "in_bits");

sca_util::sca_trace(atf, wave, "wave");

sca_util::sca_trace(atf, out_bits, "out_bits");

sc_core::sc_start(1, sc_core::SC_US);
sca_util::sca_close_vcd_trace_file(atf);

return O;

}

More information on the simulation control and tracing capabilities can be found in Chapter 6.

2.6.4. Interfacing the BASK example with SystemC

As shown by Figure 2.28, the components instantiated in the BASK example are all TDF modules that
belong to the same TDF cluster. In particular, the random binary signal at the data input of the mixer is
generated by the pure TDF modulebi t _src.

In practice, this binary signal is more likely to be produced by a digital component that follows the
discrete-event domain rules, resulting in a true heterogeneous system composed of two digital parts (the
random data generator and the datadrain) and one AMS TDF part (the BASK modulator and demodulator).
Figure 2.30 shows the major modification induced by this design: the data input of the BASK modulator
(resp. the data output of the BASK demodulator) should now be a SystemC sc_core::sc_in<T> port (resp.
sc_core::sc_out<T> port) carrying bool values. From the TDF perspective, aconverter port isthus required
to read from the channel (resp. to write to the channel) corresponding to the discrete-event domain port.
Such ports are indicated by the symbol I in this Figure.

bask_mod_de

sin_src

Tp:5ns

carrier

in R:40
bit_src_de[Je===nssp[Ju= _ R40 \
- - mixer_de 1
1

Figure 2.30. BASK modulator, mixing discrete-event and TDF domain

The following code is pure SystemC. Thanks to the infinite loop in a SystemC SC_THREAD construct,
this new version of the bit source, now called bi t _sr c_de, generates anew random bool value on its output
port out every 200 ns.

SC_MODULE(bit_src_de)
{

sc_core::sc_out<bool > out;

SC CTOR(bit_src_de): out("out")

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 37

March 8 2010 SystemC AMS extensions User’'s Guide

SC_THREAD(bi t _gen_t hr ead) ;
}

voi d bit_gen_thread()
whi | e(true)

bool var = (bool)(std::rand()%);
out.wite(var);
sc_core::wait(200, sc_core::SC NS);
}
}
}i

The TDF mixer module has now adigital inputi n_bi n connected to the output of thebi t _src_de SystemC
module. The mixer source code does not differ too much from the previous one, the major modification
being the introduction of the discrete-event converter port:

SCA_TDF_MODULE(i xer _de)

{
sca_tdf::sca_de::sca_in<bool > in_bin; // TDF converter input port from discrete-event domain
sca_tdf::sca_i n<doubl e> in_wav;
sca_tdf::sca_out <doubl e> out;

SCA_CTOR(m xer _de)
in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(40) {}

void set_attributes()

{
in_wav.set_rate(rate);
out.set_rate(rate);

}
voi d processing()
{
for(unsigned long i = 0; i <rate; i++)
if(in_bin.read())
out.wite(in_wav.read(i), i);
el se
out.wite(0.0, i);
}
}
private:

unsigned | ong rate;

b

Accordingly, the source code for the BASK modulator, shown below, details the slight change needed: the
data input is now a discrete-event input port:

SC_MODULE(bask_nod_de)

{
sc_core::sc_i n<bool > in, // data input is now digital
sca_tdf::sca_out <doubl e> out;

sin_src sine;
m xer_de mx; // use mxer with discrete-event input

SC_CTOR(bask_nod_de)

cin("in"), out("out"),
sine("sine", 1.0, 1.0e7, sca_core::sca_time(5.0, sc_core::SCNS)),
mx("mx"), carrier("carrier")

sine.out(carrier);
m x.in_wav(carrier);
m x.in_bin(in);

m x. out (out);

}

private:
sca_tdf::sca_signal <doubl e> carrier;

h

For completeness, the source code for the BASK sampler in the demodulator is given below. The data
output out iS now a converter output port. The corresponding port in the demodulator which instantiates
the sampler is declared as a traditional SystemC output port.

38 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

SCA_TDF_MODULE(sanpl er _de)
{
sca_tdf::sca_in<double> in; // input port
sca_tdf::sca_de::sca_out<bool> out; // TDF converter output port to discrete-event domain

SCA _CTOR(sanpler_de) : in("in"), out("out"), rate(40), threshold(0.2) {}

void set_attributes()
{
in. set_rate(rate);
sanpl e_pos = (unsigned long)std::ceil(2.0 * (double)rate/3.0);

voi d processing()
{
if(in.read(sanple_pos) > threshold)
out.wite(true);
el se
out.wite(false);

}

private:
unsi gned long rate;
doubl e threshol d;
unsi gned | ong sanpl e_pos;

¥

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 39

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

3. Linear Signal Flow modeling

3.1. Modeling fundamentals

The Linear Signal Flow model of computation allows the modeling of AMS behavior defined as relations
between variables of a set of linear algebraic equations. LSF is a continuous-time modeling style using
directed real-valued signals, resulting in a non-conservative system description. There is ho dependency
between flow and potential quantities; instead only one real-value quantity is used to represent each signal.

Signal flow models can be described in a block diagram notation. The elementary parts or functions are
represented by blocks. Signals are used to interconnect these blocks. The resulting relations between the
blocks define equivalent mathematical equations. Figure 3.1 shows an example of such asignal flow block
diagram, composed of four LSF modules, which areinterconnected using LSF signals. Notethat the addition
“operator”, athough having a different graphical representation, is also an LSF module. An LSF model is
composed of a set of connected L SF modules, which will form together an LSF equation system or LSF
cluster. The resulting LSF model has input and output LS portsto connect it with other modules.

LSF port LSF module LSF signal LSF equation system

x(t)L k1 —>@ > kgdt ()
X(t) [
2 i k2
t

Figure 3.1. Example of abasic LSF model composed of 4 L SF modules

3.1.1. Setup of the LSF equation system

The SystemC AMS extensions offer a finite set of predefined LSF primitive modules implementing
functions such as addition, multiplication, integration, etc. Unlike the TDF modeling style, LSF models can
only be composed from these primitives. The AM S extensions do not offer the possibility to implement user-
defined L SF primitives. Instead, the mathematical equations describing the intended functionality should be
created by composing the predefined set of L SF primitive modules. Figure 3.2 shows some basic examples
of LSF primitives and their corresponding mathematical equations.

k, k,
x,(1) :/—D > y(t) =k, x,(1) + K, x,(1) x,(1) :O > y(t) = k; X,(1) — k; x,(1)
k, k,
x1) x1)
a) Weighted addition (add) b) Weighted subtraction (sub)
Xty —> kb=)= kx) x(t) —>| k % > (f) = k dggt)
c) Multiplication (gain) d) Scaled first-order time derivative (dot)

Figure 3.2. Examples of some basic L SF primitives and their corresponding mathematical equations

When creating an LSF model (block diagram), the mathematical equations for each block and their
interconnection will be used to composethe overall equation system. For example, the L SF model presented

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 41

March 8 2010 SystemC AMS extensions User’'s Guide

in Figure 3.1 will result in the following equation system based on the contributed equations of each
primitive as shown in Figure 3.2:

dx(t) dy(t)
J’(f):kl‘%*'kz'%

Note that the scale coefficients of the addition and the first-order time derivative block are set to 1. Instead,
additional multiplication blocks k1 and k2 are used for this example.

3.1.2. Time step assighment and propagation

Similar as for a TDF module, a time step can be assigned to an LSF module directly or can be assigned
automatically using the propagation mechanism of the time step within an LSF cluster. In case an LSF
model is connected to a TDF model, the time step from the connected TDF port(s) is propagated to the LSF
model. Consistency between locally defined LSF module time step and propagated time step is essential.
Otherwise, thetime pointsfor the solution of the L SF equation system or communi cation with the connected
TDF model cannot be defined properly (see also Section 2.1.3). The time step should be defined at least
at onelocation in the entire system.

During simulation, the L SF equation system is solved numerically with appropriate time steps, which could

be smaller than the assigned time step. The solver will at least provide results at the time points cal culated
from the assigned time steps.

3.2. Language constructs

3.2.1. LSF modules

A Linear Signa Flow module is a predefined primitive module to represent a particular function or
mathematical relation, which will become part of an overall equation system. The available predefined L SF
primitive modules are listed in Table 3.1 below. Appendix A givesthe details for each L SF module.

L SF module name Description

sca_|sf::sca_add Weighted addition of two LSF signals.

sca Isf::sca_sub Weighted subtraction of two L SF signals.

sca |sf::sca_gain Multiplication of an LSF signal by a constant gain.

sca_Isf::sca_dot Scaled first-order time derivative of an LSF signal.

sca_Isf::sca_integ Scaled time-domain integration of an LSF signal.

sca Isf::sca_delay Scaled time-delayed version of an LSF signal.

sca Isf::sca_source L SF source.

sca Isf::sca_Itf_nd Scaled Laplace transfer function in the time-domain in the
numerator-denominator form.

sca_Isf::sca_Itf_zp Scaled Laplace transfer function in the time-domain in the zero-pole
form.

sca Isf::sca_ss Single-input single-output state-space equation.

sca |sf::sca_tdf::sca_gain, Scaled multiplication of a TDF input signal with an LSF input signal.

sca |sf::sca_tdf_gain

sca_Isf::sca_tdf::sca source, Scaled conversion of a TDF input signal to an L SF output signal.

sca_Isf::sca_tdf_source

sca_Isf::sca_tdf::sca sink, Scaled conversion from an LSF input signal to a TDF output signal.

sca lsf::sca tdf _sink

sca Isf::sca tdf::sca mux, Selection of one of two LSF input signals by a TDF control signal

sca Isf::sca_tdf mux (multiplexer).

42 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

L SF module name Description

sca_Isf::sca_tdf::sca_demux, Routing of an L SF input signal to either one of two L SF output
sca_Isf::sca_tdf demux signals controlled by a TDF signa (demultiplexer).

sca |sf::sca_de::sca gain, Scaled multiplication of a discrete-event input signal by an LSF input
sca_Isf::sca_de _gain signal.

sca_lsf::sca_de::sca_source, Scaled conversion of a discrete-event input signal to an L SF output
sca_lsf::sca_de source signal.

sca Isf::sca_de::sca_sink, Scaled conversion from an LSF input signal to a discrete-event

sca Isf::sca_de sink output signal.

sca |sf::sca_de::sca_mux, Selection of one of two LSF input signals by a discrete-event control
sca |sf::sca_de _mux signa (multiplexer).

sca |sf::sca_de::sca_demux, Routing of an LSF input signal to either one of two L SF output
sca_Isf::sca_de _demux signals controlled by a discrete-event signal (demultiplexer).

Table 3.1. LSF primitive modules

Module time step

In order to solve the LSF equation system, a time step has to be associated to the set of connected
L SF modules as part of the elaboration phase. This can be done with the LSF module member function
set_timestep. Alternatively, the LSF model can rely on the time step propagati on mechanism, which passes
the time step from module to module viaits ports across the TDF, LSF, and ELN models of computation.
S0 in cases where an LSF model is connected to a TDF model, the time step from the connected port, if
available, is propagated to the LSF model. In case propagated time steps and user-defined time steps are
used, consistency between these time steps is compulsory, similar as described in Section 2.1.3.

The module time step can be assigned by calling the member function set_timestep of the instantiated
object within the constructor of the parent modul e, and passing adouble value and the time unit or an object
of type sca_core::sca_time, as shown in the following example:

SC_MODULE(ny_I sf _source)

/'l port declaration
sca_l sf::sca_out vy;

// child nodul e decl aration
sca_l sf::sca_source src;

SC_CTOR(ny_I| sf_source)

y("y"),

src("src", 0.0, 0.0, 1.0e-3, 1.0e3) /1 1 kHz sinusoidal source with an anplitude of le-3
{

src.set_tinmestep(0.5, sc_core::SC MS); // set nodule tinestep of source to 0.5 ns

src.y(y);

3.2.2. LSF ports

An LSF port is an object that can be used to connect several L SF models together using L SF signals which
are bind to this port. Due to the nature of the L SF modeling formalism, an LSF port can be either an input
port or an output port, but not inout. LSF ports are used to connect LSF modules using signals of class
sca |sf::sca_signal. As LSF ports are always hierarchical ports inside a parent module, they can be used
to connect to the LSF child modules directly, following the port-to-port binding rule (see Section 3.3.1).
L SF ports have a predefined data type, also called signal flow nature, which prevents the usage of user-
defined data types.

There are currently two classes of L SF ports:
e LSFinput portsof classsca |sf::sca in.

» LSF output ports of class sca_|sf::sca_out.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 43

March 8 2010 SystemC AMS extensions User’'s Guide

The example below shows how L SF ports are used within an L SF structural model.

SC_MODULE(ny_| sf _nodel)
{

/] port declarations
sca_l sf::sca_in x; (1)
sca_l sf::sca_out vy; (2]

SC CTOR(ny_I sf_nmodel) : x("x"), y("y") (3]

/1 nodel inplenmentation here

}

-

L SF input port that carries a continuous-time and continuous-value signal x(t).

L SF output port that carries a continuous-time and continuous-value signal y(t).

Using the constructor initialization-list to assign the names “x” and “y” to the input and output ports,
respectively.

(N

There are no converter ports available for LSF. Instead, specialized converter modules are provided to
connect to the TDF or discrete-event domain. Thisisexplained in Section 3.4. Unlike TDF ports, the LSF
ports do not provide member functions to directly read to or write from the channel.

3.2.3. LSF signals

L SF signalsare used to connect L SF primitive modulestogether. L SF signals carry the continuous-time and
continuous-value of asignal, while L SF ports determine the direction of the signals from one L SF module
to another. Similar asfor L SF ports, LSF signals use an internal data structure to hold the continuous-time/
continuous-value signal. Therefore, the LSF signals are not defined as a template class and should be used
according to the example below:

/'l signal declaration
sca_l sf::sca_signal sig; // LSF signal

Asin SystemC, the constructor initialization-list of the parent module can be used to assign a user-defined
nameto asignal:

/'l assign the nanes of LSF signal instance in the constructor initialization-Ilist
SC CTOR(ny_nodul e) : sig("sig") {}

Section 3.3 will describe the creation of structural L SF models and will show examples of assigning user-
defined names to ports and signals.

3.3. Modeling continuous-time behavior

L SF models can be used to implement linear dynamic, continuous-time behavior. L SF models can only be
composed using L SF primitive modules. Therefore an LSF model is always a structural model.

3.3.1. Structural composition of LSF modules

L SF modules should be instantiated as child modules inside a regular SystemC parent module created
with the help of the macro SC_M ODULE or by deriving publicly from sc_core::sc_module. This parent
module also instantiates al necessary ports to communicate with the outside world and internal signals for
the interconnection of the child modules. The parameterization of the instantiated modules as well as the
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module.

Port binding

In order to connect L SF modulesin a proper way to other L SF modules and signals, the following specific
bindings are possible, illustrated in Figure 3.3. The port binding rules are compatible and complementary
to the SystemC and TDF rules (see also Section 2.3.3).

44 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Port-to-port binding)

x(f) k1 ¥(t)

LSF input port
Instance of class
sca_lsf:isca_in

) LSF output port
Instance of class
sca_lsf::sca_out

SystemC parent module LSF signal Port-to-port binding
Object of class Instance of class
sc_core::sc_module sca_lsf::sca_signal

Figure 3.3. Port binding rules for LSF input and output ports

Binding an L SF input port to an LSF signal.

Binding an L SF input port to an L SF input port of the parent module (port-to-port binding).
Binding an LSF input port to an L SF output port of the parent module (port-to-port binding).
Binding an L SF output port to an L SF signal.

® 6 © 0 ©

Binding an L SF output port to an L SF output port of the parent module (port-to-port binding).
Furthermore, each L SF signal should be bound to exactly one L SF output port of an L SF primitive module,
and may be bound to any number of LSF input ports of LSF primitive modules throughout the whole
hierarchy.

For LSF primitive modules, which have ports connected to TDF or discrete-event signals or ports, should
follow the port binding rules of the corresponding models of computation.

The example below shows the implementation of the structural composition of Figure 3.3.

SC_MODULE(my_structural _I| sf_nodel)

{
sca_l sf::sca_in x; (1)
sca_| sf::sca_out y;

sca_| sf::sca_gain gainl, gain2; (2]
sca_l sf::sca_dot dot1;
sca_l sf::sca_add addi;

ny_structural _| sf_nodel (sc_core::sc_nodul e_nanme, double k1, double k2)
©ox("x"), y("y"), gaini("gainl", k1), gain2("gain2", k2), doti("dotl1"), addi("addi"), ©
sigl("sigl"), sig2("sig2"), sig3("sig3")
{
gai nl. x(x); (4]
gainl.y(sigl);
gainl.set_timestep(1,sc_core::SC M5); (5)

addl. x1(sigl);
addl. x2(sig3);
addl.y(sig2);

dot 1. x(si g2);
dot 1.y(y);

gai n2. x(y);
gain2.y(sig3);
}

private:

sca_| sf::sca_signal sigl, sig2, sig3; (6]
Ik

© TheLSFinput and output ports declared inside this module of classsc_core::sc_module become part
of the structural composition.
® The LSF primitive modules are declared within the parent module as child modules.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 45

March 8 2010 SystemC AMS extensions User’'s Guide

The initialization-list in the parent modul€’s constructor propagates the necessary configuration
parameters to the L SF ports, L SF signals, and child modules.

Port binding is done inside the constructor of the parent module.

Thetime step for LSF primitive modules is done inside the constructor of the parent module. An LSF
module could also get its time step via propagation of the time step of its connected modules.
Internal L SF signals are used to connect the L SF ports and child modules. These signals are declared
to be private, as they should not be accessible from outside the module.

© 006 ©o

3.3.2. Continuous-time modeling

The example below shows a first-order low-pass filter, based on the same Laplace transfer function as
described in Section 2.3.2:

H,
1
27tfcs

H(s)=
1+

where Hp is the DC gain and f; is the filter cut-off frequency in Hz. The Laplace transfer function can be
rewritten for an L SF implementation into:

dy(t
§0= Hyx) - 7

The corresponding block diagram notation and code implementation is given below, where the scaling
coefficients of the LSF primitive modules are used to implement the DC gain Hg and the filter cut-off
frequency f :

x(f))
LSF module

Instance of class
sca_lsf::sca_sub

LSF module
Instance of class
sca_lsf::sca_dot

Figure 3.4. Example of an LSF model implementing afirst-order low-pass filter

SC_MODULE(ny_I sf _filter)
{

sca_lsf::sca_in x;
sca_l sf::sca_out vy;

sca_l sf::sca_sub subl;
sca_l sf::sca_dot dot1;

nmy_l sf_filter(sc_core::sc_nodul e_nanme, double hO = 1.0, double fc = 1.0e3)
ox("x"), y("y"), subl("subl", hO), dotl("dotl", 1.0/(2.0*MPI*fc)), sig("sig")
{

subl. x1(x);

subl. x2(sig);

subl.y(y);

dot 1. x(y);
dot1.y(sig);
}

private:
sca_l sf::sca_signal sig;

b

The gain coefficient hO for the input signal is passed via the constructor to the instance subl and the
frequency fc is passed viathe constructor to the instance dot1.

46 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

3.4. Interaction between LSF and discrete-event or TDF models

The L SF model of computation will setup and solve an equation system to simul ate the model ed continuous-
time behavior, based on the basic set of L SF primitive modules described in Section 3.2.1. Any “external”
input value, e.g., from adiscrete-event signal or TDF sample, needsto be contributed to the equation system
via one of these LSF primitive modules. Therefore, specialized L SF primitive modules with ports to the
discrete-event domain and TDF models of computation are available, which are called converter modules.
Main purpose of these modules is to establish an interface to convert and transfer data from one model of
computation to the other.

3.4.1. Reading from and writing to discrete-event models

In order to connect LSF models with discrete-event models, the LSF converter modules with an internal
port of classsc_core::sc_in or sc_core::sc_out should be used.

Figure 3.5 shows the LSF primitive module sca Isf::sca_de::sca_source reading from a discrete-event
signal and writing to an LSF signal. In this example a module time step of 1 ms is assigned to the LSF
converter module. The LSF model continuously reads values from the input at the time points, which are
calculated from the assigned time steps. The input value is assumed constant until the next value is read.
Theinput values are interpreted to form a continuous-time signal, which is made available at the output of
the converter module (read input samples shown as a dotted signal).

Discrete-event signal LSF converter module LSF signal
Instance of class Instance of class Instance of class
sc_core::sc_signal<double> sca_lsf::sca_de::sca_source sca_lsf::sca_signal
inp ¥t
A . (t) A
Inp DE W
[. N N B a s P
LSF
H 1 1 F—>t,./ms >t /ms
00 3238 60 82 106 Tm:1ms 0123456789111 *

Figure 3.5. L SF converter module reading from a discrete-event input signal and writing to an L SF output signal

Figure 3.6 shows the LSF primitive module sca |sf::sca de::sca_sink, which reads an LSF signal and
writes the equivalent value to the discrete-event signal. The values at the output port are written at the time
points, which are calculated from the assigned module time step of 1 ms.

LSF signal LSF converter module discrete-event signal
instance of class instance of class instance of class
sca_lsf::sca_signal sca_lsf::sca_de::sca_sink sc_core::sc_signal<double> or
sc_core::sc_buffer<double>
x(1) outp
X(t) LSF outp
— bl’
DE
>t/ . > e/
0123456789101 ™ Tm:1ms 012345678911 =M

Figure 3.6. L SF converter module reading from an L SF input signal and writing to a discrete-event output signal

3.4.2. Reading from and writing to TDF models

In asimilar way, LSF models can be connected to TDF models using converter modules with an internal
port of classsca_tdf::sca in or sca_tdf::sca out.

Figure 3.7 shows the L SF primitive module sca_|sf::sca_tdf::sca source reading from a TDF signal and

writing to an L SF signal . In thisexample amoduletime step of 1 msisassigned to the L SF converter module.
The LSF model continuously reads the samples from the TDF input. The input samples are interpreted to

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 47

March 8 2010 SystemC AMS extensions User’'s Guide

form a continuous-time signal, available at the output of the converter module (input samples shown as a
dotted signal).

TDF signal LSF converter module LSF signal
Instance of class Instance of class Instance of class
sca_tdf::sca_signal<double> sca_lsf::sca_tdf::sca_source sca_lsf::sca_signal
inp ¥t
inp ¥t
e
LSF
0123456789101 w/M Tm:1ms 0123456789101 /M

Figure 3.7. LSF converter module reading from a TDF input signal and writing to an L SF output signal

Figure 3.8 shows the LSF primitive module sca_lIsf::sca _tdf::sca_sink reading an LSF signal and writing
the equivalent values to a TDF signal. The samples at the output port are written at the time points, which
are calculated from the assigned module time step of 1 ms.

LSF signal LSF converter module TDF signal
Instance of class Instance of class Instance of class
sca_lsf::sca_signal sca_lsf::sca_tdf::sca_sink sca_tdf::sca_signal<double>
X(t) outp
X(t) LSF outp
—
0123456780101 u!/mS Tm:1ms 01234567891011 m/m

Figure 3.8. L SF converter module reading from an L SF input signal and writing to a TDF output signal

3.4.3. Using discrete-event or TDF control signals

Although not fundamentally different from the LSF converter modules described in the previous
two sections, additional LSF primitives are available to control or scale variables or signals
within an LSF equation system. The LSF primitives used for control can be identified by
having an input port of class sc core::sc in or sca tdf::sca in of data type bool. Examples
are the multiplexers (sca_lsf::sca dei:sca mux and sca |sf::sca tdf::sca mux) and demultiplexers
(sca_lsf::sca_de::sca demux and sca |sf::sca tdf::sca demux). The primitives, which can scae
variables or signals make use of the same ports, but using data type double. Examples are the multiplication
primitives (sca_lsf::sca_de::sca_gain, and sca |sf::sca tdf::sca_gain). Notethat if aparameter of an LSF
module has changed, the corresponding L SF equation system will be reinitialized.

Figure 3.9 shows an example how LSF primitives can be used in a structura model to control or scale
signals.

Discrete-event control input
— Instance of class
sc_core::sc_in<bool>

¥(t)

[LSF multiplication
Instance of class
sca_lsf::sca_de::sca_gain

x(t)

LSF multiplexer
Instance of class —]
sca_lsf::sca_tdf::sca_mux

TDF control input
— Instance of class
sca_tdf::sca_in<bool>

Figure 3.9. LSF model using discrete-event and TDF control signals

48 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Similar asfor the L SF converter modules described in Section 3.4, the discrete-event or TDF control signals
are read with a fixed time step, which corresponds to the module time step. Only then the L SF equation
system will be updated.

3.4.4. LSF model encapsulation

The converter modules described in the previous sections can be used to encapsulate an L SF model within
adifferent model of computation. Figure 3.10 shows an example on how to use converter modules to and
from the TDF model of computation to encapsulate LSF behavior. In this case, access to and from the
LSF equation system use discrete-time signals following the TDF semantics, whereas the internal LSF
signalsand computationsare continuous-time. Thisapproach gives another possibility to embed continuous-
time behavior in the TDF model of computation, besides the embedded linear dynamic equations for TDF
modules described in Section 2.3.2.

Port-to-port ~ TDF to LSF converter module LSF to TDF converter module Port-to-port

binding Instance of class instance of class binding
sca_tdf::sca_tdf::sca_source sca_tdf::sca_tdf::sca_sink
TDF. | X(9 d | YO [LsF
in — > out
LSF dt TDF

TDF input port TDF output port
Instance of class k2 Instance of class
sca_tdf::sca_in<double> sca_tdf::sca_out<double>

SystemC parent module LSF equation system
Object of class
sc_core::sc_module

Figure 3.10. L SF equation system encapsulated for inclusion into
astructural TDF model description by using converter modules

The example bel ow shows the implementation of Figure 3.10.

SC_MODULE(I sf _i n_tdf)
{
sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <doubl e> out;

sca_|l sf::sca_add addl;

sca_|l sf::sca_dot dot1;

sca_| sf::sca_gain gainl;

sca_|l sf::sca_tdf::sca_source tdf2|sf;
sca_|l sf::sca_tdf::sca_sink | sf 2t df;

I sf_in_tdf(sc_core::sc_nodul e_nanme, double k, double k2)

cin("in"), out("out"), addl("addl"), dot1("dotl", k), gainl("gainl", k2), tdf2lsf("tdf2lsf"),
I sf2tdf ("I sf2tdf"), sigl("sigl"), sig2("sig2"), sig3("sig3"), sig4("sigd")

{
tdf 2l sf.inp(in);
tdf 2l sf.y(sigl);

addl. x1(sigl);
addl. x2(si g3);
addl.y(sig2);

dot 1. x(sig2);
dot1.y(sig4);

gai nl. x(sig4);
gainl.y(sig3);

| sf2tdf. x(sig4);
| sf2tdf . out p(out);
}

private:

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 49

March 8 2010 SystemC AMS extensions User’'s Guide

sca_l sf::sca_signal sigl, sig2, sig3, sig4;

be

A similar approach can be used to encapsulate an L SF model for inclusion into a structural discrete-event
model description, using the converter modules to and from the discrete-event domain as explained in
Section 3.4.1.

3.5. LSF execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard |EEE
1666-2005, specific functionality isimplemented for the elaboration and execution of L SF models.

Asdepicted in Figure 3.11, the elaboration phase includes the following steps:

» LS time step calculation and propagation: Define the time step and check consistency inside each LSF
model (see aso Section 3.1.2).

e LSF equation setup and solvability check: Compose the LSF equation system from the contributing
equations provided by the predefined LSF primitive modules and their relationship defined by the
composition. Check whether the resulting equation system can be solved.

The steps for the simulation phase are;

e LSFinitialization: First set al LSF signalsto zero and then set the initial conditions of the system based
on the potentially defined initial conditions of the L SF primitives.

e LSF time-domain simulation: The LSF equation system is solved numerically using appropriate time
steps, which could be smaller than the assigned time step. The solver will at least provide results at the
time points, calculated from the assigned time step.

LSF time step calculation and propagation:
Define time step and check consistency

i LSF elaboration phase

LSF equation set-up and solvability check:
Define the equation system and check if it can be solved

]

LSF initialization:
Set initial conditions, e.g., defined in LSF primitives

i LSF simulation phase

LSF time-domain simulation:
Provide results at the calculated time points

Figure 3.11. L SF elaboration and simulation phases
The elaboration and simulation phase are executed by starting atime-domain simulation using the function
sc_core::sc_start. Thisisexplained in Section 6.1.1.
3.6. Application examples

This section shows some basic application examples using Linear Signal Flow modeling.

3.6.1. PID controller

The LSF modeling formalism is very suitable to model control systems. An example of such a control
system is shown in Figure 3.12. This example shows the use of a Proportional—Integral—Derivative (PID)
controller, which is part of a control loop. The input of the PID controller is an error signal e(t), which is
the difference between a measured output value y(t) of a certain device and the desired reference input yo.
The control output u(t) generated by the PID controller, which regulates the behavior of the device under

50 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

control, will be such that the error signal will be minimized. The responsiveness and behavior of the PID
controller to an error, either caused by a (sudden) change of the referenceinput or output value, depends on
the PID controller characteristics defined by the parameters Kp, Kj, and Kg.

PID controller
» K e(l) P
device
Yo t ‘ I t t
— el K feqtat O LTF e’
de(t) | D
| G

Figure 3.12. Block diagram of a PID controller within a control loop

The parameters Ky, Kj, and Ky are used within the PID controller to set the proportional, integral, and
derivative terms, which are then summed to calculate the control output. The equation system of the PID
controller, in which e(t) isthe error input signal and u(t) is the controller output, then becomes:

de(t)

ut)=Kp 'e(t)"'Ki'J.;e(t)dt-‘rKd'W

ThePID controller can beimplemented by using L SF primitive modul esin aparent modul e as shown bel ow:

SC_MODULE(pi d_controller)
{

sca_lsf::sca_in e;
sca_l sf::sca_out u;

sca_l sf::sca_gain gainil;

sca_l sf::sca_integ integl;

sca_l sf::sca_dot dot 1;

sca_l sf::sca_add addl, add2; (1)

pid_control ler(sc_core::sc_nodul e_nane, double kp, double ki, double kd) (2]

:e("e"), u("u"), gainl("gainl", kp), integl("integl", ki), dotl("dotl1", kd), addl("addl"),
add2("add2"), sig_p("sig_p"), sig_i("sig_i"), sig_d("sig_d"), sig_pi("sig_pi")

{
gai nl. x(e);
gainl.y(sig_p);

integl. x(e);
integl.y(sig_i);

dot 1. x(e);
dot 1.y(sig_d);

addl. x1(sig_p);
addl. x2(sig_i);
addl.y(sig_pi);

add2. x1(sig_pi);
add2. x2(sig_d);

add2.y(u);
}
private:
sca_| sf::sca_signal sig_p, sig_i, sig_d, sig_pi;

}i

© Inorder to sum the proportional, integral, and derivative terms, two adders are used, as each primitive
adder module has only two inputs.

® The parameters for the PID controller can be assigned via the constructor, which allows their setting
from the parent module (or sc_main function) in which the PID controller isinstantiated.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 51

March 8 2010 SystemC AMS extensions User’'s Guide

3.6.2. Continuous-time sigma-delta modulator

Figure 3.13 shows the application of a continuous-time sigma-delta (CTSD) modulator architecture,
containing aloop filter H(s), aquantizer and a digital to analog converter (DAC) in the feedback path. The
loop filter isimplemented using L SF primitives. The quantizer and DAC areimplemented as TDF modules.
L SF converter modules to and from the TDF model of computation are used, to be able to sample the
continuous-time filter output signal U(s) to adiscrete-time domain signal V(2), and to convert the discrete-
time DAC output signal W(2) to a continuous-time feedback signal T(s).

loop filter H(s)

k3

k2

ki [

U(s)

P
3
—~—
v
—

quantizer

Figure 3.13. Block diagram of a continuous-time sigma-delta (CTSD) modulator

A 3%order loop filter is implemented using three integrators, which are cascaded and summed with
weightingsfactorskl, k2, and k3. The corresponding transfer function H(s) for thisloop filter then becomes:

kls2 +hys+k;
H(s)= N

The loop filter can be implemented by using L SF primitive modules in a parent modul e as shown below:

SC_MODULE(ctsd_l oop_filter)

{
sca_l sf::sca_in x;
sca_tdf::sca_out <doubl e> v;
sca_tdf::sca_i n<doubl e> w;

sca_|l sf::sca_tdf::sca_source tdf2|sf;
sca_|l sf::sca_sub subl;

sca_|l sf::sca_integ integl, integ2, integ3;
sca_|l sf::sca_gain gain2, gain3;

sca_l sf::sca_add addl, add2;

sca_|l sf::sca_tdf::sca_sink |sf2tdf;

ctsd_l oop_filter(sc_core::sc_nodul e_nanme, double k1, double k2, double k3)

oxX(Ux"), v("v"'), w("w'), tdf2lsf("tdf2lsf"), subl("subl"), integl("integl", k1), integ2("integ2"),
integ3("integ3"), gain2("gain2", k2), gain3("gain3", k3), addl("addl"), add2("add2"),
| sf2tdf ("I sf2tdf"), sig_t("sig_t"), sig_i("sig_1"), sig_il("sig_il"), sig_i2("sig_i2"),
sig_i3("sig_i3"), sig_al("sig_al"), sig_a2("sig_a2"), sig_a3("sig_a3"), sig_u("sig_u")

tdf 21 sf.inp(w;
tdf 2l sf.y(sig_t);

subl. x1(x);
subl. x2(sig_t);
subl.y(sig_i);

integ3.x(sig_i);
integ3.y(sig_i3);

integ2. x(sig_i3);
integ2.y(sig_i2);

integl. x(sig_i2);
integl.y(sig_il);

52 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

gai n3. x(sig_i3);
gai n3.y(sig_al);

gai n2. x(sig_i2);
gai n2.y(sig_a2);

addl. x1(sig_al);
addl. x2(sig_a2);
addl.y(sig_a3);

add2. x1(sig_a3);
add2. x2(sig_i1);
add2.y(sig_u);

I sf2tdf.x(sig_u);
| sf2tdf.outp(v);
}

private:
sca_l sf::sca_signal sig_t, sig_i, sig_il, sig_i2, sig_i3;
sca_l sf::sca_signal sig_al, sig_a2, sig_a3, sig_u;

h

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 53

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

4. Electrical Linear Networks modeling

4.1. Modeling fundamentals

The Electrical Linear Networks model of computation introduces the use of electrical primitives and their
interconnections to model conservative, continuous-time behavior. The ELN modeling style allows the
instantiation of electrical primitives, which can be connected together using electrical nodes, to form
an electrical network. The mathematical relations between the electrical primitives are defined at each
node in the network, where both the potential (voltage) and flow (current) quantities are used according
to Kirchhoff’s voltage law (KVL) and Kirchhoff's current law (KCL). As such, the electrical network
is represented by a set of differential algebraic equations, which will be resolved during simulation to
determine the actual circuit behavior.

Figure 4.1 shows an example of an electrical network, with two resistors, a capacitor, and a current source.
Such anetwork iscalled an ELN model and iscomposed of aset of connected ELN primitive modules, which
will form together an ELN equation system or cluster. Each ELN primitive module can have one or more
ELN terminals. The ELN primitive modules are interconnected via their terminals using ELN nodes. The
reference or ground node, which always has avoltage of zero, iscalled ELN reference node. ELN terminals
are aso used as an interface to connect the ELN model with other ELN models.

ELN equation system ELN node ELN terminal

/

v, C v,
I i, | [R1 R2 ELN reference node
(ground)

Figure 4.1. Example of abasic ELN model representing an electrical network

4.1.1. Setup of the equation system

The SystemC AMS extensions offer a finite set of ELN primitive modules such as sources (voltage or
current), linear lumped el ements (resistors, capacitors, inductors), linear distributed elements (transmission
lines), ideal amplifier (nullor), ideal transformer, linear gyrator, and ideal switches. Similar to the LSF
modeling style, ELN models can only be composed from these primitives, as there is no possibility to
implement user-defined electrical primitives. Figure 4.2 shows some ELN lumped elements and their
corresponding mathematical equations.

,, ,, dvpnr+®) diprt + 1)
. . n - n =0
R vpn() = ipn®-R —l—c ipn(t)=C % L Vpnt) =L %

n

Figure 4.2. Examples of the basic ELN lumped elements: resistor (R), capacitor
(©), and inductor (L) with their corresponding mathematical equations

When creating an ELN model (electrical network), the mathematical equations for each primitive and their
relationship defined at each node will be used to compose the overall equation system. For example, the
ELN model presented in Figure 4.1 will result in an ELN equation system for node A and B by following
Kirchhoff's current and voltage laws, and using the contributed equations of each primitive as shown in
Figure4.2.

qO
d(W*E)

Va
St R tC g 0

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 55

March 8 2010 SystemC AMS extensions User’'s Guide

qO
Vp d(v“’ bt E)
RS a O
Note that the current through ELN primitives with two terminals is defined as the current flowing from
terminal p to terminal n. Thisalso holds for the current sources.

4.1.2. Time step assignment and propagation

Similar as for a TDF module, atime step can be assigned to an ELN module directly or can be assigned
automatically using the propagation mechanism of the time step within an ELN equation system. In case
an ELN model is connected to a TDF model, the time step from the connected TDF port(s) is propagated to
the ELN model. Consistency between locally defined ELN modul e time steps and propagated time stepsis
essential. Otherwise, thetime pointsfor the solution of the ELN equation system or communication with the
connected TDF model cannot be defined properly (see aso Section 2.1.3). The time step should be defined
at least at one location in the entire system.

During simulation, this ELN equation system is solved numerically at appropriate time steps, which could
be smaller than the assigned time step. The solver will at least provide results at the time points, cal culated
from the assigned time steps.

4.2. Language constructs

4.2.1. ELN modules

An ELN moduleis a predefined electrical primitive, which can be used to build an electrical network. The
available predefined ELN primitive modules are listed in Table 4.1 below. Appendix A gives the details
for each ELN module.

ELN module name Description

sca eln::sca r Resistor

sca €eln::sca ¢ Capacitor

sca_en::sca | Inductor

sca_eln::sca_vevs Voltage controlled voltage source

sca _eln::sca_vces Voltage controlled current source
sca_eln::sca_ccvs Current controlled voltage source
>sca_eln::sca_cccs Current controlled current source
sca_eln::sca_nullor Nullor (nullator - norator pair), ideal op-amp
sca _eln::sca_gyrator Gyrator

sca _eln::sca_ideal_transformer |ldeal transformer

sca_eln::sca_transmission_line |Transmission line

sca_eln::sca_vsource Independent voltage source
sca €eln::sca_isource Independent current source
sca_eln::sca_tdf::sca r, Variable resistor controlled by a TDF input signal

sca_eln::sca_tdf_r

sca_eln::sca_tdf::sca c, Variable capacitor controlled by a TDF input signal
sca_eln::sca tdf c

sca_eln::sca_tdf::sca |, Variable inductor controlled by a TDF input signal
sca_eln::sca tdf |

sca eln::sca tdf::sca rswitch, |Switch controlled by a TDF input signal
sca _eln::sca_tdf rswitch

56 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

ELN module name Description

sca_eln::sca_tdf::sca vsource, |Voltage sourcedriven by a TDF input signal
sca_eln::sca_tdf_vsource

sca_eln::sca_tdf::sca _isource, |Current source driven by a TDF input signal
sca_eln::sca_tdf isource

sca_eln::sca _tdf::sca vsink, Converts voltage to a TDF output signal

sca_eln::sca_tdf _vsink

sca_eln::sca tdf::sca isink, Converts current to a TDF output signal

sca_eln::sca tdf isink

sca eln::sca_de::sca r, Variable resistor controlled by a discrete-event input signal
sca eln::sca_de r

sca_eln::sca_de::sca c, Variable capacitor controlled by a discrete-event input signal
sca eln::sca_de ¢

sca_eln::sca_de::sca |, Variable inductor controlled by a discrete-event input signal

sca_eln::sca _de |

sca_eln::sca_de::sca rswitch, | Switch controlled by adiscrete-event input signal
sca _eln::sca_de rswitch

sca_eln::sca_de::sca vsource, |Voltage source driven by a discrete-event input signal
sca_eln::sca_de vsource

sca_eln::sca_de::sca isource, |Current source driven by adiscrete-event input signal
sca_eln::sca_de _isource

sca_eln::sca_de::sca_vsink, Converts voltage to a discrete-event output signal
sca_eln::sca_de vsink

sca_eln::sca_de::sca isink, Converts current to a discrete-event output signal
sca _eln::sca_de isink

Table 4.1. ELN primitive modules

Module time step

In order to solve the ELN equation system, a time step should be associated to the set of connected
ELN modules as part of the elaboration phase. This can be done with the ELN module member function
set_timestep. Alternatively, the ELN model canrely on thetime step propagation mechanism, which passes
the time step from module to module via its ports across the TDF, LSF, and ELN models of computation.
S0 in cases where an ELN model is connected to a TDF model, the time step from the connected port, if
available, is propagated to the ELN model. In case propagated time steps and user-defined time steps are
used, consistency between these time steps is compulsory, similar as described in Section 2.1.3.

The module time step can be assigned by calling the member function set_timestep of the instantiated
object within the constructor of the parent module, and passing adouble value and the time unit or an object
of type sca_core::sca_time, as shown in the following example:

SC_MODULE(my_el n_sour ce)
{

/1 term nal declaration
sca_el n::sca_termnal p;

/1 child nodul e decl aration
sca_el n::sca_vsource v_src;

SC_CTOR(ny_el n_sour ce)

p("p"),
v_src("v_src", 0.0, 0.0, 1.0e-3, 1.0e3), // 1 kHz sinusoidal source with an anplitude of 1 nVv
gnd("gnd")
{
v_src.set_tinmestep(0.25, sc_core::SC MS); // set nodule tinestep to 0.25 ns
v_src.p(p);

v_src.n(gnd);

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 57

March 8 2010 SystemC AMS extensions User’'s Guide

private:
sca_el n::sca_node_ref gnd;

h

4.2.2. ELN terminals

An ELN terminal is an object that can be used to connect several ELN models together, using ELN nodes
which are bound to this terminal. Due to the conservative nature of the ELN modeling formalism, an
ELN terminal is not defined as an input or output port; instead, these terminal are used to allow making
connections with nodes of classsca_eln::sca_nodeor sca_eln::sca_node ref (see Section 4.2.3). ASELN
terminals are always used in a structural (parent) module, they can also be used to connect to the ELN child
modules directly, following the port-to-port binding rule (see Section 4.3.1). ELN terminals make use of
an internal datatype, also called electrical nature, which prevents the usage of user-defined data types.

The example below shows how ELN terminals are used within an ELN structural model.

SC_MODULE(my_el n_nodel)

/1 termnal declarations

sca_eln::sca_terninal p; @
sca_eln::sca_termnal n;

SC CTOR(ny_el n_nodel) : p("p"), n("n") (2]

/1 nodel inplenmentation here
}
B

©® ELN positive (p) and negative (n) terminal that carries a continuous-time and -value signal.
@ Using the constructor initialization-list to assign the names “p” and “n” to the p and n terminals,
respectively.

Specialized converter modules are available to connect ELN modules to the TDF or discrete-event domain.
Thisisexplained in Section 4.4. ELN terminals do not provide read or write access methods.

4.2.3. ELN nodes

ELN nodesare used to connect ELN primitive modul estogether. In this case, multiple ELN primitives share
the same node (also called net). There are two classes of ELN nodes:

« ELN node of classsca eln::sca_node.

» ELN reference node (ground) of class sca_eln::sca_node ref.

The ELN nodes and reference nodes are used to set up the overall equation system. The example below
shows how to use ELN nodes and ELN reference nodes.

/1 node decl arations
sca_el n:: sca_node netl; // ELN node (called "netl")
sca_el n::sca_node_ref gnd; // ELN reference node (called ground, "gnd")

Asin SystemC, the constructor initialization-list of the parent module can be used to assign a user-defined
name to a node:

/1 using the constructor initialization-list to assign the names to the declared ELN nodes
SC CTOR(ny_el n_nodul e) : netl("netl1"), gnd("gnd") {}

Section 4.3 will describe the creation of structural ELN models and will show examples of assigning user-
defined names to terminals and nodes.

4.3. Modeling continuous-time behavior

ELN models can be used to implement linear dynamic, continuous-time, conservative behavior. ELN
models can only be composed using EL N primitive modules. Thereforean ELN model isawaysastructural
model.

58 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

4.3.1. Structural composition of ELN modules

ELN modules should be instantiated as child modules inside a regular SystemC parent module created
with the help of the macro SC_M ODULE or by deriving publicly from sc_core::sc_module. This parent
module also instantiates all necessary terminals to communicate with the outside world and internal nodes
for theinterconnection of the child modules. The parameterization of the instantiated modulesaswell asthe
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module.

Port (terminal) binding
In order to connect ELN modulesin a proper way to other ELN modules and nodes, the following specific

bindings are possible, as shown in Figure 3.3. The port binding rules are compatible and complementary
to the SystemC rules.

R1 ELN terminal
© e Instance of class
sca_eln::sca_terminal

Port-to-port binding

a
Port-to-port binding

ELN node R2
Instance of class

sca_eln::sca_node
- - net1
(1]
ELN reference node C1 Sy;temC parent module
Instance of class o Object of class
sca_eln::sca_node_ref sc_core::sc_module
gnd

Figure 4.3. Port binding rules for ELN terminals

© Binding an ELN terminal to an ELN node.
® Binding an ELN terminal to an ELN reference node.

©® Binding an ELN terminal to an ELN terminal of the parent module (port-to-port binding).
Furthermore, an ELN terminal should be bound to exactly one ELN node or reference node throughout the
whole hierarchy. An ELN node or ELN reference node should be bound to one or more ELN terminals
throughout the whole hierarchy.

ELN primitive modules, which have ports to connect to TDF or discrete-event signals or ports, should
follow the port binding rules of the corresponding models of computation.

The example below shows the implementation of the structural composition of Figure 4.3.

SC_MODULE(my_structural _el n_nodel)

sca_eln::sca_termnal a; (1]
sca_eln::sca_termnal b;

sca_eln::sca_r rl, r2; (2]
sca_eln::sca_c cl;
SC _CTOR(ny_structural _el n_nodel)

ca("a"), b("b"), ri("r1", 10e3), r2("r2", 100.0), cl("cl", 100e-6), netl("netl"), gnd("gnd") (3]
{

rl.p(a); (4]

rl.n(b);

r2.p(a;
r2.n(netl);

cl.p(netl);

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 59

March 8 2010 SystemC AMS extensions User’'s Guide

cl.n(gnd);
}

private:

sca_el n::sca_node net1; (5]
sca_el n::sca_node_ref gnd;

}i

The ELN terminals declared inside this module of class sc_core::sc_module become part of the
structural composition.

The ELN primitive modules are declared within the parent module as child modules.

The initialization-list in the parent modul€’s constructor propagates the necessary configuration
parameters to the ELN terminals, ELN nodes, and child modules.

Port (terminal) binding is done inside the constructor of the parent module.

Internal ELN nodesare used to connect the ELN terminalsand child modules. These nodesare declared
in the private space, as they should not be accessible from outside the module.

0 o000 ©

4.3.2. Continuous-time modeling

The example below shows a first-order low-pass filter, based on the same Laplace transfer function as
described in Section 2.3.2. The cut-off frequency of thefilter is defined by the time constant T of the filter,
which is the product of the resistance and capacitance value:

1 __1
f€_2m'_27tRC

The circuit implementation of thisfilter israther simple, as shown in Figure 4.4.

R1 ELN resistor
b Instance of class
sca_eln::sca_r

C1 ELN capacitor
Instance of class
sca_eln::sca_c
gnd

Figure 4.4. ELN circuit implementation of afirst-order low-pass filter

The code implementation for the first-order low-pass filter, implemented as RC network is given below:

SC_MODULE(mny_el n_filter)
{

sca_eln::sca_termnal a;
sca_eln::sca_term nal b;

sca_eln::sca_r ri;
sca_eln::sca_c cl;

my_eln_filter(sc_core::sc_nodul e_nanme, double ri1_value, double cl_value)
ca("a'), b("b"), ri("r1", rl_value), cl("cl", cl_value), gnd("gnd"),
{

rl.n(a);

rl. p(b);

cl.n(b);
cl.p(gnd);
}

private:
sca_el n::sca_node_ref gnd;

h

Note that the time step for this network has not been defined in this ELN module. This means that this
model relies on the time step propagation mechanism.

60 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

4 4. Interaction between ELN and discrete-event or TDF models

The ELN model of computation will setup and solve an equation system to simul ate the model ed continuous-
time behavior, based on the basic set of ELN primitive modules described in Section 4.2.1. Any “external”
input value, e.g., from adiscrete-event signal or TDF sample, need to be contributed to the equation system
via one of these ELN primitive modules. Therefore, specialized ELN primitive modules with ports to the
discrete-event domain and TDF models of computation are available, which are called converter modules.
Main purpose of these modules is to establish an interface to convert and transfer data from one model of
computation to the other.

4.4.1. Reading from and writing to discrete-event models

In order to connect ELN models with discrete-event models, the ELN converter modules with an internal
port of classsc_core::sc inor sc_core::sc_out should be used.

Figure 45 shows the ELN primitive modules sca eln::sca de:sca vsource and
sca_eln::sca_de::sca_isource, which read a discrete-event signal representing areal value and converting
this value to an electrical voltage or current respectively. In this example a module time step of 1 msis
assigned to the ELN converter module. The ELN model continuously reads values from the input at the
time points, which are calculated from the assigned time steps. The input value is assumed constant until
the next value is read. The input values are interpreted to form a continuous-time signal, which is made
available at the output of the converter module (read input samples shown as a dotted signal).

Discrete-event signal ELN converter module ELN output voltage
Instance of class Instance of class
sc_core::sc_signal<double> sca_eln::sca_de::sca_vsource

in
A

ten / Ms

0.0 0123456789111

Discrete-event signal ELN converter module ELN output current
Instance of class Instance of class
sc_core::sc_signal<double> sca_eln::sca_de::sca_isource

01234567891011 '=/ms

Figure 4.5. ELN converter modules reading double values from a discrete-event
input signal and converting them to a continuous-time electrical voltage or current

Figure 4.6 showsthe ELN primitivemodulessca _eln::sca de::sca vsink andsca_eln::sca_de::sca isink,

which convert an electrical voltage or current to areal value, discrete-event signal. The values at the output
port are written at the time points, calculated from to the assigned module time step of 1 ms.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 61

March 8 2010

ELN converter module
Instance of class
sca_eln::sca_de::sca_vsink

ELN input voltage

SystemC AMS extensions User’'s Guide

Discrete-event signal
Instance of class
sc_core::sc_signal<double> or
sc_core::sc_buffer<double>

Volf) S ‘ out
o po— | P
! ' outp
| Vo D'>
I
| - |
I
1 >t/ mMs no—' ! >tz / Mms
0123456789101 Tmms 01234567891011
ELN input current ELN converter module Discrete-event signal
Instance of class Instance of class
sca_eln::sca_de::sca_isink sc_core::sc_signal<double> or
. sc_core::sc_buffer<double>
Ipn(t) Po | outp
! | outp
- Yi, O
n } i
» | »
tan/ms - DT ; 0123456789101 be/ms

345678 910M1

Figure 4.6. ELN converter modules to convert an electrical
voltage or current to areal value, discrete-event output signal

4.4.2. Reading from and writing to TDF models

In asimilar way, ELN models can be connected to TDF models using converter modules with an internal
port of classsca_tdf::sca in or sca_tdf::sca out.

Figure 4.7 shows the ELN primitive modules sca eln::sca tdf::sca vsource and
sca_eln::sca_tdf::sca isource, which read avaluefromaTDF signal and convert thisvalueto an electrical
voltage or current, respectively. In this example amoduletime step of 1 msisassigned to the ELN converter
module. The ELN model continuously reads the samples from the TDF input. The input samples are
interpreted to form a continuous-time signal, which is made available at the output of the converter module
(input samples shown as a dotted signal).

ELN converter module
Instance of class
sca_eln::sca_tdf::sca_vsource

TDF signal
Instance of class
sca_tdf::sca_signal<double>

inp

ELN output voltage

012345678 91011 01234567891011 =n/m
TDF signal ELN converter module ELN output current
Instance of class Instance of class
sca_tdf::sca_signal<double> sca_eln::sca_tdf::sca_isource
inp ip.a(0)
> ton/ ms

0123456 738910M1 (51234567891011

Figure 4.7. ELN converter modules reading double values from a TDF input
signal and converting them to a continuous-time electrical voltage or current

Figure 48 shows the ELN primitive modules sca eln::sca tdf::sca vsink and
sca_eln::sca tdf::sca _isink, which will convert an electrical voltage or current to a TDF signal. The
samples at the output port are written at the cal culated time points, which correspond to the assigned module
time step of 1 ms.

62 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

ELN input voltage

vp,n(t)

ELN converter module
Instance of class
sca_eln::sca_tdf::sca_vsink

012345678 910M1

ELN input current

o)

N

>t/ ms

ELN converter module
Instance of class
sca_eln::sca_tdf:isca_isink

3456738 910M1

P |
: . outp
Y, B
>t/ Mms n‘ i

March 8 2010

TDF signal
Instance of class
sca_tdf::sca_signal<double>

outp

0123456789101 /M
TDF signal
Instance of class
sca_tdf::sca_signal<double>
outp
tror / MS

0123456789101

Figure 4.8. ELN converter modules convert an electrical voltage or current to a TDF output signal

4.4.3. ELN model encapsulation

The converter modules described in the previous sections can be used to encapsulate an ELN model within
adifferent model of computation. Figure 4.9 shows an example on how to use converter modules to and
from the TDF model of computation to encapsulate ELN behavior. Inthis case, accessto and from the ELN
equation system use discrete-time signals following the TDF semantics, whereas the internal ELN signals
and computations are continuous-time.

TDF to ELN converter module
Instance of class
sca_eln::sca_tdf::sca_vsource

ELN to TDF converter module
Instance of class
sca_eln::sca_tdf::sca_vsink

TDF input port

w
Instance of class

sca_tdf::sca_in<double>

ﬂut

TDF output port
Instance of class
sca_tdf::sca_out<double>

SystemC parent module
Object of class
sc_core::sc_module

ELN equation system

Figure 4.9. ELN equation system encapsulated for inclusion into
astructural TDF model description by using converter modules

The example below shows the implementation of Figure 4.9.

SC_MODULE(el n_i n_tdf)
{
sca_tdf::
sca_tdf::

sca_eln::sca_tdf::
sca_eln::sca_tdf::
sca_eln::sca_r r;
sca_eln::sca_c c;

el n_in_tdf (sc_core::sc_nodul e_nanme, double r_val,

sca_i n<doubl e>
sca_out <doubl e> out;

sca_vsource vin;
sca_vsi nk

vout ;

doubl e c_val)

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 63

March 8 2010 SystemC AMS extensions User’'s Guide

cin("in"), out("out"), vin("vin"), vout("vout"), r("r", r_val), c("c", c_val),
n1l("n1"), n2("n2"), gnd("gnd")

vin.inp(in);
vin.p(nl);
vin.n(gnd);

r.p(ni);
r.n(n2);

c.p(n2);
c.n(gnd);

vout . p(n2);
vout . n(gnd);
vout . out p(out);

}

private:
sca_el n::sca_node nl, n2;
sca_el n::sca_node_ref gnd;

h

A similar approach can be used to encapsulate an ELN model for inclusion into a structural discrete-event
model description, using the converter modules to and from the discrete-event domain as explained in
Section 4.4.1.

4.5. ELN execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard 1EEE
1666-2005, specific functionality isimplemented for the elaboration and execution of ELN models. These
additions are similar to the onesin L SF.

Asdepicted in Figure 4.10, the elaboration phase includes the following steps:

« ELN time step calculation and propagation: Define the time step and check consistency inside each ELN
model (see also Section 4.1.2).

* ELN equation setup and solvability check: Compose the ELN equation system from the contributing
equations provided by the predefined ELN primitive modules and their relationship defined by the
composition. Check whether the resulting equation system can be solved.

The steps for the simulation phase are;

« ELNinitialization: First set all ELN signalsto zero and then set the initial conditions of the system based
on the potentially defined initial conditions of the ELN primitives.

e ELN time-domain simulation: The ELN equation system is solved numerically using appropriate time
steps, which could be smaller than the assigned time step. The solver will at least provide results at the
time points, calculated from the assigned time step.

ELN time step calculation and propagation:
Define time step and check consistency

i ELN elaboration phase

ELN equation set-up and solvability check:
Define the equation system and check if it can be solved

I

ELN initialization:
Set initial conditions, e.g., defined in ELN primitives

i ELN simulation phase

ELN time-domain simulation:
Provide results at the calculated time points

Figure 4.10. ELN elaboration and simulation phases

The elaboration and simulation phase are executed by starting a time-domain simulation using the function
sc_core::sc_start. Thisisexplained in Section 6.1.1.

64 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

4.6. Application examples

This section shows some basic application examples using ELN modeling.

4.6.1. POTS fro

nt-end

March 8 2010

The Plain Old Telephone System (POTS) front-end is depicted in Figure 4.11. It consists of a phone,
transmission line, a protection circuit and a subscriber line interface circuit (SLI1C), which can be modeled
naturally using ELN primitives. Theinterface from and to the POT S front-end are based on TDF or discrete-

transmission line

protection circuit

event signals.
phone
hook
voice

tip al

ring b1

subscriber line interface circuit (slic)

a2 i

p

b2

ring

rprot1 ¢ rprot2 |tiP_slic
Icprot1
Icprot2

rprot3 & rprot4 fing_slic ring

tip | |—

\

\

1
V2w \
- \

| |i_trans

——p

Figure 4.11. The Plain Old Telephone System (POTS) front-end

The implementation of the phone, protection circuit and SLIC are given below.

SC_MODULE(phone)

/1 electrical
sca_el n::
sca_eln::
sca_eln::
sca_eln::
sca_eln::

sca_c
sca_r

/Il termnals and ports

primtives
sca_de: :sca_rswitch swil;
sca_de: :sca_rswitch sw2;

cr,
rr,

cp;

rs, rp;

sca_el n::sca_term nal tip;
sca_el n::sca_term nal ring;
sca_tdf::sca_i n<doubl e> Voi ce;
sc_core::sc_in<bool > hook;

sca_tdf::sca_vsource mc;

phone(sc_core::sc_nodul e_name nm

doubl e cr_val
doubl e rs_val
doubl e rp_val

1. 0e-6, double rr_val
220.0, double cp_val
820.0)

/'l architecture
swil. p(tip);

swl. n(w_onhook) ;
swl. ctrl (hook);
swl. of f _state = tr

sw2
swW2
sw2

-p(tip);
. n(w_of f hook) ;
.ctrl (hook);

cr.p(wing);
cr. n(w_onhook) ;

rr.
rr.

p(wring);
n(ring);

rs.
rs.

p(wl);
n(wz) ;

cp. p(wl);

ue;

1. 0e3,

tip("tip"), ring("ring"), voice("voice"), hook("hook"),

swi("swl"), sw2("sw2"), cr("cr", cr_val), cp("cp", cp_val),

re("rr", rr_val), rs("rs", rs_val), rp("rp", rp_val), mc("mc"),

w_of f hook("w_of f hook"), w_onhook("w_onhook"), wi("wl"), w2("w2"), wing("wing")

115. Oe- 9,

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

65

March 8 2010

cp. n(w_of f hook) ;

rp. p(w_of f hook) ;
rp.n(wl);

mc. p(w2);
mc.n(ring);
m c.inp(voice);

SystemC AMS extensions User’'s Guide

}
private:
/'l nodes
sca_el n::sca_node w_of f hook, w_onhook, wl, w2, wing;
}i
SC_MODULE(protection_circuit)
{
/Il termnals
sca_eln::sca_termnal tip_slic;
sca_eln::sca_termnal ring_slic;
sca_eln::sca_termnal tip;
sca_eln::sca_termnal ring;
/Il electrical primtives
sca_eln::sca_r rprotl, rprot2, rprot3, rprot4;
sca_eln::sca_c cprotl, cprot2;
protection_circuit(sc_core::sc_nodul e_nanme, double rprotl_val = 20.0, double rprot2_val = 20.0,
doubl e rprot3_val = 20.0, double rprot4_val = 20.0,
doubl e cprotl_val = 18.0e-9,
doubl e cprot2_val = 18.0e-9)
tip_slic("tip_slic"), ring_slic("ring_slic"), tip("tip"), ring("ring"),
rprot1(“rprotl", rprotl_val), rprot2("“rprot2", rprot2_val),
rprot3(“"rprot3", rprot3_val), rprot4(“rprot4", rprot4_val),
cprotl(“"cprotl", cprotl_val), cprot2(“cprot2", cprot2_val),
n_tip("n_tip"), n_ring("n_ring"), gnd("gnd")
{
/1 architecture
rprotl. p(tip);
rprotl.n(n_tip);
rprot2. p(tip_slic);
rprot2.n(n_tip);
cprotl. p(n_tip);
cprotl.n(gnd);
rprot3.p(ring);
rprot3.n(n_ring);
rprot4.p(ring_slic);
rprot4.n(n_ring);
cprot2.p(n_ring);
cprot2.n(gnd);
}
private:
/'l nodes
sca_el n::sca_node n_tip, n_ring;
sca_el n::sca_node_ref gnd;
}i
SC_MODULE(slic)
{
/1l termnals and ports
sca_eln::sca_termnal tip;
sca_eln::sca_termnal ring;
sca_tdf::sca_i n<doubl e> v2w;
sca_tdf::sca_out <doubl e> i _trans;
/Il electrical primtives
sca_eln::sca_tdf::sca_vsource driverl, driver2;
sca_el n::sca_tdf::sca_vsink itr_meas;
sca_eln::sca_cccs mrrorl, mrror2;
sca_eln::sca_r rtr;
slic(sc_core::sc_nodul e_name, double scale_v_tr = 1.0, double scale_i_tr =1.0)
cotip(ttip"), ring("ring"), va2w("v2w'), i_trans("i_trans"),
driverl("driverl", scale_v_tr/2.0), driver2("driver2", scale_v_tr/2.0),
itr_meas("itr_meas", scale_i_tr),
mrrorl("mrrorl", 0.5), mrror2("mrror2", -0.5), rtr("rtr", 1.0),
66 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

n_tr_i("n_tr_i"),
gnd("gnd")

n_tip_gnd("n_tip_gnd"), n_ring_gnd("n_ring_gnd"),

/'l architecture
driverl.inp(v2w);
driverl.p(tip);
driverl.n(n_tip_gnd);

driver2.inp(v2w);
driver2.p(ring);
driver2.n(n_ring_gnd);

rrorl.ncp(n_tip_gnd);
rrorl.ncn(gnd);
rrorl.np(n_tr_i);
rrorl.nn(gnd);

3.3 3 3

rror2.ncp(n_ring_gnd);
rror2.ncn(gnd);
rror2.np(n_tr_i);
rror2.nn(gnd);

3.3 3 3

rtr.op(n_tr_i);
rtr.n(gnd);

itr_meas.p(n_tr_i);
itr_meas.n(gnd);
itr_meas.outp(i_trans);

}
private:
/'l nodes

sca_el n::sca_node n_tr_i,
sca_el n::sca_node_ref gnd;

h

n_tip_gnd, n_ring_gnd;

March 8 2010

The implementation of the POTS front-end is done in the function sc_main, which is the main program.

Only the instantiation and structural composition is shown here.

int sc_main(int

{

argc, char* argv[])

sca_eln::sca_node n_slic_tip, n_slic_ring;
sca_eln::sca_node n_tip_al, n_tip_a2, n_ring_b1l,
transm ssion_line;

n_ring_b2;

sca_tdf::sca_signal <doubl e> s_v_in;
sca_tdf::sca_signal <doubl e> s_i _trans;

sca_tdf::sca_signal <doubl e> s_voi ce;
sc_core::sc_signal <bool > s_hook;

/'l testbench nodul es

slic i_slic("i_slic");
i_slic.tip(n_slic_tip);
i_slic.ring(n_slic_ring);
i_slic.v2w(s_v_in);
i_slic.i_trans(s_i_trans);

protection_circuit i_protection_circuit("i_protection_circuit");
i_protection_circuit.tip_slic(n_slic_tip);
i_protection_circuit.ring_slic(n_slic_ring);
i_protection_circuit.tip(n_tip_a2);
i_protection_circuit.ring(n_ring_b2);

sca_eln::sca_transmssion_line i_transm ssion_line("i_transm ssion_line",
50.0, sc_core::SC ZERO TIME, 0.0);

_transmi ssion_line
_transmi ssion_line
_transmi ssion_line

i
i
i
i_transm ssion_line

.al(n_tip_al);
.b1l(n_ring_bl);
.a2(n_tip_a2);
.b2(n_ring_b2);

phone i _phone("i _phone");

i _phone
i _phone
i _phone
i _phone

.tip(n_tip_al);
.ring(n_ring_bl);
.voi ce(s_voice);
. hook('s_hook) ;

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

67

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

5. Small-signal frequency-domain analyses

5.1. Modeling fundamentals

To anayze the frequency-domain behavior of an analog/mixed-signal system, varying small signals, called
alternating-current (AC) signals, at different frequencies are used to stimulate and analyze the steady-state
response of the circuit. Either small-signal sinusoidal sources or noise sources are used, and applied to the
circuit, whichisbeing linearized around agiven direct-current (DC) operating-point. Thismeansthat large-
signal behavior, such as non-linearities causing distortion, are not captured during small-signal frequency-
domain analyses.

These AC-domain analysis methods can compute the small-signal frequency-domain behavior of the
entire analog/mixed-signal system, which can be composed of modules from the available models of
computation. TDF modules can embed a user-defined small-signal frequency-domain description. For L SF
and ELN primitive modules, the small-signal frequency-domain behavior isimplicitly part of the primitive’'s
description. Figure 5.1 shows an example of amixed-signal system containing TDF, LSF and ELN models.
The modules labeled with “AC” have, besides their time-domain description, a small-signal frequency-
domain representation associated with it. Based on the structural composition, a linear complex equation
is extracted.

Isf_model tdf_model
AC
LSF 0 I
-) @
Pl
dt
ELN model Complex linear equation system LSF model TDF model

Figure 5.1. Small-signal frequency-domain description using TDF, LSF and ELN modules

5.1.1. Setup of the equation system

Thelinear complex equation system will make use of the TDF cluster aswell asthe LSF and ELN equation
systems, which areinitially defined for time-domain simulation. Transformation of L SF and ELN equation
systemsfrom the time-domain representation into the small-signal frequency-domain representation isdone
using the Laplace transform rules. Generally, for a given function f(t), the following substitutions will be
applied to the time-domain-oriented ELN and L SF equation systems:

* A derivation d/dt is substituted by jc.

e Anintegration is substituted by 1/jc.

« A delay f(t-delay) is substituted by e1® - 4y
Substitution will result in the frequency-domain function F(jw) for the LSF and ELN contributions.

TDF modules allow the definition of user-defined small-signal frequency-domain behavior as part of the
primitive definition. There is no mechanism available to derive an “AC representation”. It is entirely the
responsibility of the user to ensure the consistency of the defined frequency-domain and time-domain
representations. How to implement small-signal frequency-domain behavior in TDF modules is discussed
in Section 5.2.1.

5.1.2. Analysis methods

Two types of analyses are supported:

1. Small-signal frequency-domain analysis: Solves for each frequency point the linear complex equation
system, including all small-signal frequency-domain source contributions.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 69

March 8 2010 SystemC AMS extensions User’'s Guide

2. Small-signal frequency-domain noise analysis: Solves the linear complex equation system for each
frequency point and each small-signal frequency-domain noise source contribution, whereby all
contributions of small-signa frequency-domain sources and small-signal frequency-domain noise
sources, except the currently activated noise source, are set to zero.

The result of a small-signal frequency-domain or noise analysis is the steady-state response or transfer
function of the circuit, described from the input port to the output port of the overall system. During analysis,
the resulting linear complex equation system is solved for the given frequency points.

5.2. Language constructs

5.2.1. Small-signal frequency-domain description in TDF modules

The small-signal frequency-domain behavior of a TDF module can be defined in the member function
ac_processing. Thedescription should bewrittenin theform of alinear complex transfer function, capturing
the behavior from the TDF input port to the TDF output port. Different functions are available to define the
linear complex transfer function, as presented in the next sections. For these calculations, a data container
of type sca_util::sca_complex should be used.

The example below shows the implementation of a transfer function H(s) = 1. The intermediate result is
stored in a variable res of type sca util::sca_complex, which is assigned to the TDF output port. More
details on the port access methods are given in the next section.

SCA_TDF_MODULE(f 1 at _response)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(fl at _response) {}

voi d processing()

{

out.wite(in.read());

}
voi d ac_processing()

double h = 1.0; // flat frequency response H(s) =1
sca_util::sca_conpl ex res;

res = h * sca_ac_anal ysis::sca_ac(in);
sca_ac_anal ysis::sca_ac(out) = res;
}
B

In case a small-signal frequency-domain analysisis performed, but no member function ac_processing is
defined, or if no complex value is assigned to one or more TDF output ports, all related port values are set
to zero, independently from the available value(s) at the input ports.

Note that there is no automatic consistency check between the time- and frequency-domain descriptions,
as these definitions are used-defined.

5.2.2. Port access

For small-signal frequency-domain analysis, the complex value of all TDF ports, excluding the converter
ports, can be accessed by using the function sca_ac_analysis::sca_ac with as argument the port instances,
as shown in the previous example. This access method is independent from the port type required in time-
domain simulation.

For input ports, the function sca_ac analysis:.:sca_ac returns a constant reference to a value of type
sca_util::sca_complex, which means that no value can be assigned to a TDF input port. For output ports,
the function returns a reference to a value of type sca_util::sca_complex, alowing the assignment of a
contribution for small-signal frequency-domain analysis.

70 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

For small-signal frequency-domain noise analysis, a noise source independent from the input port values,
can be assigned to a TDF output port using the function sca_ac_analysis::sca_ac_hoise. In this case, a
value assigned using the function sca_ac_analysis::sca_ac will be ignored.

Note that the vaues returned from the functions sca ac analysis::sca ac and
sca_ac_analysis::sca_ac_noise are implementation-defined and have no physical interpretation. These
values can only be used to describe the complex linear relation between the input and output ports, accessed
using these port access functions.

5.3. Utility functions

The SystemC AMS extensions offer a set of utility functions, which can be used within the the member
function ac_processing to define the small-signal frequency-domain behavior. Note that these functions
cannot be used in the time-domain processing method processing.

5.3.1. Frequency-domain delay

Thefunctionsca_ac_analysis::sca_ac_delay can be used to implement acontinuous-time delay, defined as
g9 98 The next exampleisan extension of the TDF delay example presented in Section 2.3.5. The delay
is now a module parameter, and used to initialize the delay samplesto 0.0 for the time-domain simulation.
Note that the delay parameter is an integer value, reflecting the number of samples which will be inserted
for time-domain simulation, using a discrete time step. The member function ac_processing implements
the frequency-domain behavior of this delay. First, the delay is translated in a continuous-time variant,
using the member function get_timestep multiplied with the number of delayed samples. Thisvalue of type
sca_core::sca timeis passed as argument to the function sca_ac_analysis::sca_ac_delay, which defines
the delay in the frequency domain.

SCA_TDF_MODULE(ny_t df _ac_del ay)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

nmy_tdf _ac_del ay(sc_core::sc_nodul e_nane, unsigned |long delay_)
cin("in"), out("out"), delay(delay_) {}

voi d set_attributes()

{
out. set _del ay(del ay);

}
void initialize() /] tinme-donmin initialization

for(unsigned long i = 0; i < delay; i++)
out.initialize(0.0, i);

}
voi d processing() /1 time-donmin inplenentation

out.wite(in.read());

}

voi d ac_processing() // frequency-donain inplenentation

{

sca_core::sca_tinme ct_delay = out.get_tinmestep() * delay; // calculate continuous-tinme del ay

sca_ac_anal ysi s::sca_ac(out) = sca_ac_anal ysis::sca_ac(in) *
sca_ac_anal ysi s::sca_ac_del ay(ct_delay);

}

private:
unsi gned | ong del ay;

be

5.3.2. Laplace transfer functions

The frequency-domain descriptions of the Laplace transfer functions in the numerator-denominator
and zero-pole form are available, using the utility functions sca ac analysis.:sca ac Itf nd or

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 71

March 8 2010 SystemC AMS extensions User’'s Guide

sca_ac_analysis::sca_ac_Itf_zp, respectively. They can be used in combination with the time-domain
representation, as shown in the example below.

SCA_TDF_MODULE(Itf_filter_ac)

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

Itf_filter_ac(sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0)
in("in"), out("out"), fc(fc_), ho(ho_) {}

void initialize()

{
num(0) = 1.0;
den(0) = 1.0;
den(1) = 1.0/ (2.0 * MPI * fc);
}
voi d processing() /1 time-donmin inplenmentation

out.wite(Itf_nd(num den, in.read(), h0O));

}

voi d ac_processing() // frequency-domain inplenentation

{
sca_ac_anal ysi s::sca_ac(out) = sca_ac_anal ysis::sca_ac_|ltf_nd(
num den, sca_ac_analysis::sca_ac(in), h0);

}

private:

sca_tdf::sca_ltf_nd Itf_nd; /'l Laplace transfer function
sca_util::sca_vector<doubl e> num den; // nunerator and denom nator coefficients

doubl e fc; // 3dB cutoff frequency in Hz
doubl e hO; // DC gain
Ik

5.3.3. S-domain definitions

The function sca_ac analysis::sca_ac s supports frequency-domain representations defined in the
s-domain, by using the Laplace operator " = (jw)".

Figure 5.2 shows the definition and frequency response H(s) and implementation of a second order low-
pass filter, implemented in the time- and frequency-domain.

Ip_filter_ac_s H(s)
CY(s) 1 X(s) Y(s)
H(S)_X(s)_sz+s+1 \

Figure 5.2. Frequency response of second order low-pass filter implemented in the s-domain

> f(Hz)

SCA_TDF_MODULE(I p_filter_ac_s)
{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;
SCA CTOR(I p_filter_ac_s) : in("in"), out("out") {}

void initialize()

{

num(0) = 1.0

den(0) = 1.0

den(1) = 1.0

den(2) = 1.0
}
voi d processing() /1 tinme-donmin inplenentation
{

out.wite(Itf_nd(num den, in.read(), 1.0));
}

voi d ac_processing() // frequency-donain inplenentation

{

72 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sca_util::sca_conplex h = 1.0 / (sca_ac_anal ysis::sca_ac_s(2) +
sca_ac_anal ysis::sca_ac_s(1) + 1.0);

sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in);

}

private:
sca_tdf::sca_ltf_nd I tf_nd;
sca_util::sca_vector<doubl e> num den;

h

Alternatively, the frequency-domain behavior can be implemented using the relation s = jw. The member
function ac_processing from the previous example can be replaced with an implementation which usesthe
function sca_ac_analysis::sca_ac_w, which returns the current angular frequency in radians/seconds:

voi d ac_processing() // frequency-donmain inplenentation using s = j*w
{
sca_util::sca_conpl ex

s c
sca_util::sca_conplex h

sca_| | :: SCA_ COWLEX J * sca_ac_anal ysis::sca_ac_w);
1.0

i
(s*s+s +1.0);

ut
/

sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in);

}

According to the relation w = 21, the frequency term can be used as well. The implementation using the
function sca_ac_analysis::sca_ac _f, which returns the current frequency in Hertz, becomes:

voi d ac_processing() // frequency-domain inplenentation using s = j*2*Pl*f
sca_util::sca_conplex s = sca_util::SCA COWLEX J * 2.0 * MPI * sca_ac_anal ysis::sca_ac_f();
sca_util::sca_conplex h =1.0/ (s *s +s + 1.0);

sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in);

}

5.3.4. Z-domain definitions

The function sca_ac_analysis::sca_ac_z supports frequency-domain representations defined in the
z-domain, by using the the operator " (= €% " "'*P) Where n is an integer defining the delay, and tstep
is the timestep between the delays. In case this argument is not used, tstep will be defined as the timestep
returned by the member function get_timestep.

Figure 5.3 shows the definition and frequency response H(z) of a comb-filter.

comb_filter H(2)

Y2
28
> f/ Hz

Figure 5.3. Frequency response of a comb-filter implemented in the z-domain

Hn= YO _ 1-7+Y
C X(2) (1-Z!

For the frequency-domain implementation, the function sca_ac_analysis::sca_ac_z is used, as shown in
the example below.

SCA_TDF_MODULE(comb_filter)

{
sca_tdf::sca_i n<bool > in;
sca_tdf::sca_out<sc_dt::sc_int<28> > out;

conb_filter(sc_core::sc_nodul e_name, int k_ =64, int n_ =3)
in("in"), out("out"), k(k.), n(n.) {}

void set_attributes()

{
in set_rate(k);
out.set_rate(1l);

}

voi d ac_processing() // frequency-domain inplenentation

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 73

March 8 2010 SystemC AMS extensions User’'s Guide

{
/'l conplex transfer function
sca_util::sca_conplex h = pow((1.0 - sca_ac_anal ysis::sca_ac_z(-k)) /
(1.0 - sca_ac_analysis::sca_ac_z(-1)), n);

sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in) ;

}
voi d processing() /1 time-donmin inplenentation
{

int x, vy, i;

for(i =0; i <k; i++) {

X = in.read(i);

}

out.wite(y);
}
private:

int k; // decimtion factor
int n; // order of filter

h

5.3.5. Detection of small-signal frequency-domain analyses

The utility functions sca_ac_analysis::sca_ac _is running and
sca_ac_analysis.:sca_ac _noise is running can be used within the member function processing or
ac_processing of a TDF module, to implement specific behavior, which depends on the type of analysis
running.

The function sca_ac_analysis::sca_ac_is running returns true when a small-signal frequency-domain or
noise analysis is running. The function sca_ac_analysis::sca_ac_noise_is running only returns true if a
small-signal frequency-domain noise analysisis running.

The example below shows the implementation of a sinusoidal source, which can be used in time-domain
and frequency-domain simulations.

SCA_TDF_MODULE(si n_src)
{

sca_tdf::sca_out <doubl e> out;

sin_src(sc_core::sc_nodul e_nane nm double offset_= 0.0, double anpl_= 1.0,
doubl e noi se_anpl _= 0.1, double freq_ = 1.0e3,
sca_core::sca_time Tm = sca_core::sca_tinme(0.125, sc_core::SC M))
out ("out"), offset(offset_), anpl (anpl_), noise_anpl (noise_anpl_), freq(freq.), Tm Tm)
{}

void set_attributes()

{
set _timestep(Tm;

}
voi d processing()
double t = get_time().to_seconds(); // actual time

out.wite(offset + anpl * std::sin(2.0*MPl*freq*t));
}

voi d ac_processing()
{
if(sca_ac_analysis::sca_ac_noise_is_running()) (1]
sca_ac_anal ysi s: :sca_ac_noi se(out) = noise_anpl;
el se
sca_ac_anal ysi s::sca_ac(out) = anpl;
}.
private:
doubl e of fset, anpl, noise_anpl, freq;
sca_core::sca_time Tm

I

© Ony for small-signal frequency-domain noise analysis, the function
sca_ac_analysis::isca_ac noise is running returns true. In this case, the noise amplitude of the
source s set.

74 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

5.4. Small-signal frequency-domain analysis with combined TDF, LSF and ELN
models

As dready stated in the introduction of this chapter, the small-signal frequency-domain analysis is able
to extract the frequency behavior of the entire analog/mixed-signal system. The frequency response of the
entire system can be analyzed by using TDF modules, which have their frequency-domain behavior defined
in their member function ac_processing, plusthe frequency-domain description of LSF and ELN primitive
modules, which is extracted from the LSF and ELN equation system during elaboration.

The implementation shown below is based on the module composition as presented in Figure 5.1. The
exampl e showstime-, frequency-domain and noise simulation. Theresultsarewritten to different tracefiles.

int sc_main(int argc, char* argv[])

{
sca_el n::sca_node net1;
sca_tdf::sca_signal <doubl e> sigl, sig2, sig3;
/'l source and sink

el n_nodel a("a");

a.p(netl);

a.outp(sigl);
| sf _nmodel b("b");

b.in(sigl);

b. out (si g2);
tdf _nodel c("c");

c.in(sig2);

c.out(sig3);
/'l tracing
sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat");
sca_util::sca_trace(tf, netl, "netl");
sca_util::sca_trace(tf, sigl, "sigl");
sca_util::sca_trace(tf, sig2, "sig2");
sca_util::sca_trace(tf, sig3, "sig3");
/1 start tinme-domain sinulation
sc_core::sc_start(10, sc_core::SC M);
tf->reopen("ac_trace.dat");
tf->set_node(sca_util::sca_ac_format(sca_util::SCA_AC MAG RAD));
/'l start frequency-donain sinulation
sca_ac_anal ysis::sca_ac_start(1.0e3, 100.0e4, 4, sca_ac_anal ysis::SCA LOG ;
tf->reopen("ac_noi se_trace.dat");
tf->set_node(sca_util::sca_noise_format(sca_util::SCA NO SE_ALL));
/'l start frequency-donain noise sinulation
sca_ac_anal ysi s::sca_ac_noi se_start(1.0e3, 100.0e4, 4, sca_ac_anal ysis::SCA LOG ;
sca_util::sca_close_tabular_trace_file(tf);
return O;

}

More information on the simulation control and tracing capabilities can be found in Chapter 6.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 75

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

6. Simulation and tracing

The AMS extensions use the SystemC functions to start and stop time-domain simulations. New functions
are available for frequency-domain simulation. Advanced tracing mechanism are available to enable or
disable time-domain or frequency-domain tracing while running simulations.

6.1. Simulation control

6.1.1. Time-domain simulation

Time-domain (transient) simulation is started by calling sc_core::sc_start from within the function
sc_main, as shown in the example below.

#i ncl ude <systent-ans>

#i ncl ude "ny_source. h"
#i ncl ude "ny_control . h"
#i ncl ude "ny_dut.h"

#i ncl ude "ny_sink. h"

int sc_main(int argc, char* argv[])
{

sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

sca_tdf::sca_signal <doubl e> sigl, sig2;
sc_core::sc_signal <bool > sc_sig;

my_source i_ny_source("i_ny_source");
i_my_source.out(sigl);

my_control i_my_ctrl("i_my_ctrl");
i_my_ctrl.out(sc_sig);

my_dut i_ny_dut("i_nmy_dut");
i_my_dut.in(sigl);
i_my_dut.ctrl(sc_sig);
i_nmy_dut.out(sig2);

nmy_sink i_nmy_sink("i_ny_sink");
i_nmy_sink.in(sig2);

sc_core::sc_start(10.0, sc_core::SC M5);

return O;

}

Program arguments

The function sc_main acts as main program, and has the same signature of arguments and return value as
C++'susual programentry functioni nt nai n(int argc, char* argv[]). Theargumentar gc specifiesthe
number of arguments passed to the main routine. The argument ar gv[] isafield of pointersto the different
string arguments.

Notethat implementations or simulators, which support SystemC and the AM S extensions may use different
mechanisms to define the main program body or even use an alternative approach to sc_main.

Time resolution

For AMS simulations, it is recommended to use the smallest time resolution possible covering the required
simulationtimeusingthefunctionsc_core::sc_set_time resolution. Itisrecommended to add thisfunction
asfirst statement in the sc_main function. For time-domain simulation, atime resolution of 1 femtosecond
(fs) is recommended, which is the smallest time resolution possible allowing a maximum simulation time
of 254 fs, which is approximately 5 hours. In case longer simulation times are needed, the time resolution
should be increased resulting in a coarser time grid and in possible rounding errors.

Simulation arguments

The function sc_core::sc_start without arguments will result in a simulation that runs until the last event
has been processed, which might be forever. To simulate for alimited amount of time, the to-be-simul ated-

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 77

March 8 2010 SystemC AMS extensions User’'s Guide

time can be specified as adouble value together with the time unit, or asan object of classsc_core::sc_time.
The function sc_core::sc_start can be called multiple times, as shown in the example below:

int sc_main(int argc, char* argv[])

/1 instantiate design and testbench, setup tracing, ...

sc_core::sc_start(10.0, sc_core::SC M5); (1]

sc_core::sc_time simtinme(10.0, sc_core::SC MS);
sc_core::sc_start(simtine); (2]

sc_core::sc_start(); ©

return O;

O Starttransient analysis, where the smulation time is specified with two arguments. Thefirst argument
is the time of type double. The second argument is the time unit, which is an object of class
SC_core::sc_time_unit.

©® Start transient analysis, where the simulation time is specified with a single argument, which is an
object of classsc_core::sc_time.

© Inthiscase, no simulation timeis specified. Transient analysis will run till the event queue is empty.

6.1.2. Small-signal frequency-domain simulation

Frequency = domain simulations ae adso started from within the function
sc_ main, using sca ac analysis::sca ac start for a smal-signa (AC) simulation and
sca_ac_analysis::sca_ac_noise start for a small-signal frequency-domain noise simulation. In the case
that the model description has not been elaborated, because sc_core::sc_start has not yet been called, this
will be automatically done before the first frequency-domain simulation starts.

It is possible to succeedingly call the frequency-domain and time-domain analyses start functions in any
order inside the function sc_main, to analyze the system description under different operating points or
digital states.

The example below shows the usage of the functions, which take as arguments the start frequency, stop
freguency, number of frequency points, and whether alinear (sca_ac_analysis::SCA_LIN) or logarithmic
(sca_ac_analysis::SCA_L OG) frequency scale should be used.

/] frequency-domain sinmulations from1lkHz to 10kHz with 100 points on a linear scale:
sca_ac_anal ysis::sca_ac_start(1.0e3, 10.0e3, 100, sca_ac_anal ysis::SCA LIN);
sca_ac_anal ysi s::sca_ac_noi se_start(1.0e3, 10.0e3, 100, sca_ac_anal ysis::SCA LIN);

/1 frequency-domain sinmulations from1Hz to 1MHz with 1001 points on a logarithm c scale:
sca_ac_anal ysis::sca_ac_start(1.0, 1.0e6, 1001, sca_ac_anal ysis:: SCA LOG;
sca_ac_anal ysi s::sca_ac_noi se_start(1.0, 1.0e6, 1001, sca_ac_anal ysis:: SCA LOG ;

6.2. Tracing

The SystemC AMS extensions provide utility functions to record the simulation results (waveforms) into
trace files, using the Vaue Change Dump (VCD) format or tabular format. The VCD format has limited
capabilities to trace AMS signals, nodes, ports, terminals, or variables. Besides the tracing of regular
SystemC variables and signals, it only supports tracing for time-domain simulations. The tabular format
can be used to record both time-domain and frequency-domain traces.

The trace file is usualy created at the top-level (e.g., inside sc main) after all modules and

signals have been instantiated, and just before starting the actual simulation using sc_core::sc_start,
sca_ac_analysis.:sca_ac_start, or sca_ac_analysis.:sca_ac_noise start.

78 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

6.2.1. Trace files and formats
Tracing to a VCD file

For tracing waveforms using the VCD format, the trace file is created by calling the function
sca util::sca create ved_trace file with the name of the file as an argument. This function returns a
pointer to a data structure that is used for tracing. Closing the trace file is done using the function
sca util::sca _close ved_trace file with as argument the pointer to the same data structure.

/1 open trace file in VCD fornmat
sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file("ny_trace.vcd");

Il close the trace file
sca_util::sca_close_vcd_trace_file(atf);

Note: the regular SystemC VCD tracing can be used to trace AMS signdls, using functions
sc_core:sc_create ved_trace file, sc_core:sc_trace and sc_core::sc_close ved_trace file, but in this
casethe AMS signals are translated and traced as discrete-event signals, using TDF converter output ports.
As such, the synchronization aspects between the TDF and the discrete-event models of computation could
play arolein the timing accuracy of the individual samples of these signals (see Section 2.4).

Tracing to a tabular file

For tracing waveforms using the tabular format, the trace file is created by calling the function
sca_util::sca_create tabular_trace file with the name of the file as an argument. The function returns
a pointer to a data structure that is used for tracing. Closing the trace file is done using the function
sca_util::sca_close tabular_trace file with as argument the pointer to the same data structure, as shown
in the example below.

/1 open trace file in tabular format
sca_util::sca_trace_file* atf = sca_util::sca_create_tabular_trace_file("ny_trace.dat");

Il close the trace file
sca_util::sca_close_tabular_trace_file(atf);

Tracing to a tabular stream

As tracing of analog signals could result in very big trace files, the AMS tracing functionality has been
extended to trace to an output stream, so there is no file generated. This allows direct processing of the
AMS signals available in the output stream derived from std::ostream, for example to immediately display
the results or to compact the results into an archive file.

For tracing waveforms to an output stream, the trace file is created by calling the function
sca util::sca create tabular_trace file with the output stream object as an argument. The function
returns a pointer to an object of class sca util::sca trace file, which references the stream and
is used to manage the signa tracing to it. Closing the trace file is done using the function
sca _util::sca _close tabular_trace file with as argument the pointer to the same output stream, as shown
in the example below.

Il trace in tabular format to the shell
sca_util::sca_trace_file* atfs = sca_util::sca_create_tabular_trace_file(std::cout);

/Il close the trace file handle, the streamis automatically closed once the scope of os is left.
sca_util::sca_close_tabular_trace_file(atfs);

Trace file control

As tracing of AMS signals could result in very large and unmanageable waveform files, additional
functionality isavailable to control the recording of tracefiles. The following trace file control methods are
available for class sca_util::sca_trace file:

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 79

March 8 2010 SystemC AMS extensions User’'s Guide

The member function enable will start tracing at the simulation time where this method is called.
The member function disable will stop tracing at the simulation time where this method is called.

The member function reopen will close the existing trace file (if it was open), and will continue tracing
in anew tracefile at the simulation time where this method is called.

The member function set_mode will change the mode of the trace file at the simulation time where this
method is called. The following modi are available:

» Thetime step (sampling) between samples can be set by using the function sca_util::sca_sampling,
where the first argument is the time step and the second argument is the time offset. Both arguments
should be an object of classsca core::sca time.

» Thefunction sca_util::sca_decimation, with argument n, will only write the n-th sample to the trace
file.

» The function sca_util::sca_multirate defines which signal value should be written to the trace
file if no actual value is available. This can occur while tracing signals with different rates
and time steps. Available arguments are to interpolate (sca_util::SCA_INTERPOLATE), to
use the last available value (sca util::SCA_HOLD_SAMPLE), or to not write a value at all
(sca_util::SCA_DONT_INTERPOLATE). In the latter case, the symbol ‘*’ is written to the trace
file

e For smal-signa frequency domain tracing, the function sca util:;sca ac format defines
the format, in which the signals are written. Available function arguments are: real/
imaginary (sca_util::SCA_AC_REAL _IMAG) and amplitude/phase in magnitude/radians
(sca_util::SCA_AC_MAG_RAD) or dB/degrees (sca_util::SCA_AC_DB_DEG).

» For small-signal frequency domain tracing, the function sca_noise format defines how the noise
contribution is written to the trace file. If sca_util::SCA_NOISE_ALL is passed, each individual
noise contribution is written to the trace file. If sca_util::SCA_NOISE_SUM is passed, the sum of
al noise contributions is written to the trace file..

The following sections give some examples on how to use trace file control in combination with simulation
control.

6.2.2. Tracing sighals and comments

Supported AMS signals

The function sca_util::sca_trace is used to trace the actual AMS signals. The following elements can be
traced:

For TDF models, tracing is possible for TDF signals, TDF ports, and variables derived from class
sca_tdf::sca trace variable.

For LSF models, tracing is possible for LSF signals and L SF ports.

For ELN models, voltage tracing is supported for nodes and terminals. Current tracing through ELN
primitive modules having two terminas is supported. Some simulators also support current tracing
through ELN primitive modules with more than two terminals.

SystemC (discrete-event) signals and ports.

The example below shows how to use the function sca_util::sca_trace for the tracing of AMS signals of
TDF, LSF or ELN models.

sca_util::sca_trace(atf, sigl, "sigl"); /1 trace TDF signal sigl
sca_util::sca_trace(atf, sig_de, "sig_de"); /1 trace SystenC signal sig_de
sca_util::sca_trace(atf, ny_source.out, "outl"); /1 trace output of nodule ny_source
sca_util::sca_trace(atf, nmy_source.i_sin_src->out, "out2"); // trace output of nested nodul e
sca_util::sca_trace(atf, ny_sink.trv, "trv"); /1 trace variable in nodul e ny_sink

Writing comments to a trace file

In order to write some user-specific comments or remarks in a tabular trace file, the function
sca _util::sca write_comment can be used, where the first argument is the pointer to the data structure of

80 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

the trace file and the second argument is the string containing the comment. The comment, including the
preceding character ‘%', is added to the trace file at the simulation time where this function is called.

/1 open trace file in tabular format
sca_util::sca_trace_file* atf = sca_util::sca_create_tabular_trace_file("ny_trace.dat");

// add conmment to trace file
sca_util::sca_wite_coment(atf, "user-defined comments");

Il close the trace file
sca_util::sca_close_tabular_trace_file(atf);

Note that adding user-specific comments could result in incompatibilities when using a specific waveform
viewer, depending on file formats supported. It is recommended to check whether a particular waveform
viewer supports aformat which allows inclusion of user-specific comments.

Trace file example

This section shows some results of tracing time- and frequency signals, based on the following tracing
definition in asc_main program:

sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat"); (1]

sca_util::sca trace(tf, sigl, "sigl"); @
sca_util::sca_trace(tf, sig2, "sig2");

sc_core::sc_start(2.0, sc_core::SC_M); (3]

tf->reopen("ac_trace.dat"); (4)
tf->set_node(sca_util::sca_ac_format(sca_util::SCA AC MAG RAD)); ©
sca_ac_anal ysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_anal ysis::SCA LOG; (6

sca_util::sca_close_tabular_trace_file(tf); (7]

Trace AMS signalsto afile in tabular format using the tracing functionality of the AM S extensions.
Define which signals to trace.

Start time-domain simulation. Signals “sigl” and “sig2” will be traced.

Close the current trace file and start tracing to a new file for frequency-domain analysis.

Defintion to trace the amplitude and phase of the signals in magnitude and radians.

Start frequency-domain simulation from 1kHz to IMHz with 4 points on alogarithmic scale.
Closethetracefile.

Q0000000

Thefiletrace. dat is shown below. The %time in the first line indicates that this file was created during
time-domain simulation, and showsthe signal names, which aretraced. Each line showsthetimein seconds
and signal values at that point in time. The values are separated by one or more spaces.

%ime sigl sig2
00

.0005 1 1le-6
.001 2 1.5e-6
.0015 3 2e-6
.002 4 2.5e-5

[cNeoNeoNoNe}

The next exampl e shows the result of the small-signal frequency-domain tracinginac_t race. dat . Thefile
starts with %frequency in the header. The format of the AC signalsis set to amplitude (the magnitude) and
phase (in radians) indicated with .mag and .rad suffixes to the signal names, respectively.

% requency sigl.mag sigl.rad sig2.mag sig2.rad
1000 1 0 2.53302962314e-08 -3.14143349864
10000 1 O 2.53302959138e-10 -3.1415767381

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 81

March 8 2010 SystemC AMS extensions User’'s Guide

100000 1 O 2.53302959106e-12 -3.14159106204
1000000 1 O 2.53302959106e-14 -3.14159249443

6.3. Testbenches

Testbenches are used to provide stimulus to a device under test (DUT) and check the results or response
of the DUT. Very often the DUT is put into a certain state, using an external control. A typical testbench
structureisgiven in Figure 6.1.

main program
: Testbench :
: Control :
|
. :
I R —————— I
: 1 l i : !
| - |
I . > device II |
1 Stimuli I under i, | Checker | !
1 p—p— ﬁl 1
1 | test | |
! | I |

Figure 6.1. Testbench containing stimulus, control, checker, and device under test

A testbench can be implemented in various ways:

e The stimulus and controller can be embedded in the main program and the results is checked in another
module. In this way, the main program acts as the testbench.

« The stimulus, controller, and checker are part of a dedicated module, which is instantiated in the main
program. Such a module is often called a verification component, which basically acts as the testbench.

» The stimulus and controller are separate modules, both instantiated in the main program. The checker is
embedded in the main program, which acts as the testbench.

Besides the examples listed above, there are other possihilities to create atestbench. Obviously, thereisno
single “right” way to create a testbench; it depends on the application.

The example below shows the main program in which the stimuli ny_sour ce, the control ny_control and
the sink ny_si nk are instantiated as objects. Together with the tracing implemented as inline code, they
form the testbench. The deviceunder test ny_dut isinstantiated asamodule and is connected to the modules
of the testbench.

#i ncl ude <systent-ans>

#i ncl ude "ny_source. h"
#i ncl ude "ny_control . h"
#i ncl ude "ny_dut.h"

#i ncl ude "ny_sink. h"

int sc_main(int argc, char* argv[])
{

sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

sca_tdf::sca_signal <doubl e> sigl, sig2;
sc_core: :sc_signal <bool > sc_sig;

my_source i_my_source("i_my_source");
i_my_source.out(sigl);

my_control i_my_ctrl("i_my_ctrl");
i_my_ctrl.out(sc_sig);

my_dut i_my_dut("i_my_dut");

i_my_dut.in(sigl);
i_my_dut.ctrl(sc_sig);

82 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

i_my_dut.out(sig2);

nmy_sink i_my_sink("i_my_sink");
i_nmy_sink.in(sig2);

sc_core::sc_trace_file* tf = sc_core::sc_create_vcd_trace_file("ny_sc_trace"); (1]
sc_core::sc_trace(tf, sc_sig ,"sc_sig");

sca_util::sca_trace_file* atfl = sca_util::sca_create_vcd_trace_file("anms_vcd_trace.vcd"); (2]
sca_util::sca_trace(atfl, sigl ,h"sigl");
sca_util::sca_trace_file* atf2 = sca_util::sca_create_tabular_trace_file("ans_trace.dat"); (3]
sca_util::sca_trace(atf2, sig2 ,"sig2");

sc_core::sc_start(2.0, sc_core::SC_M); (4)

atf2->reopen("anms_trace.dat"); (5]
sc_core::sc_start(2.0, sc_core::SC_M);

atf2->di sable(); O
sc_core::sc_start(2.0, sc_core::SC_M);

atf 2->enabl e(); (7]
atf2->set _node(sca_util::sca_decimtion(2));
sc_core::sc_start(2.0, sc_core::SC _M);

atf 2->reopen("ans_trace3.dat"); (8]

sca_core::sca_tinme tstep(1.0, sc_core::SC M5); (9]
atf2->set_node(sca_util::sca_sanpling(tstep, sc_core::SC ZERO TIME));
sc_core::sc_start(10.0, sc_core::SC M5);

sc_core::sc_close_vcd_trace_file(tf); ®
sca_util::sca_close_vcd_trace_file(atfl);
sca_util::sca_close_tabular_trace_file(atf2);

return O;

800 0O0O0OCOO0

Trace signals using SystemC' s standard tracing facility. Be aware that in the case AMS (e.g., TDF)
signals are traced, they are automatically converted to discrete event signals using TDF converter
ports, which impacts the timing precision of the recorded samples.

Trace AMS signalsto afilein VCD format using the tracing functionality of the AM S extensions.
Trace AMS signalsto afile in tabular format using the tracing functionality of the AM S extensions.
Start time-domain simulation. Signals“sigl” and “sig2” will be traced.

Close the current trace file and start tracing to a new file (with same name).

Disable tracing to atf2 to not record the next 2 ms.

Re-enable tracing to atf2, but with a different sample period defined by a decimation factor of 2 (skip
one sample).

Close the current trace file of atf2 and start tracing to anew file using a different time step.

Define how samples are written to the trace file. Sample every 1 ms starting from O ms.

Close dl tracefiles.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 83

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

7. Modeling strategies

The SystemC AMS extensions provide designers with powerful tools for modeling anal og/mixed-signal
systems. The extensions cover the use cases described in Chapter 1, by providing the models of computation
Timed Data Flow, Linear Signal Flow, and Electrical Linear Networks, in addition to the discrete-event
and Transaction Level Modeling approaches of SystemC. This chapter gives additiona advice on how
to use and combine these models of computation in an efficient way. The presented strategies are not
mandatory, and sometimes there might be other or better approaches. They are provided in order to guide
an inexperienced user and help him to create hisfirst models, to achieve high simulation performance, and
to increase productivity when designing mixed analog/digital systems.

7.1. Behavioral modeling using the available models of computation

The models of computation provided by the SystemC AMS extensions are primarily intended to facilitate
the behavioral modeling of analog circuits, as well as of signal processing functions (no matter whether
they will beimplemented in the analog or digital domain). Depending on the abstraction required, asuitable
model of computation for behavioral modeling has to be selected. Figure 7.1 gives an overview of the
available models of computation and the abstractions imposed by them, considering the aspects behavior,
structure, communication, and time/frequency.

Imposed abstractions

Model of
Computation Behavior Structure Communication Time/Frequency
Timed Data Algorithmic descriptions, Functional blocks Sequence of samples (Over)sampling,
Flow (TDF) transfer functions (non-conservative system) of arbitrary type baseband modeling
Linear Signal Linear functional Structl_JraI represgntatlon Directed signals, No abstraction
- of linear equations . . .
Flow (LSF) descriptions . continuous value (continuous time)
(non-conservative system)
Electrical Macro modeling with
Linear . odeling Simplified network No abstraction No abstraction
linear primitives and " . s) .
Networks : . (conservative system) (physical quantities) (continuous time)
(ELN) ideal switches

Figure 7.1. Abstractions imposed by the AMS models of computation

The most important abstractions imposed by the models of computation are:

« Linearization of non-linear behavior due to the focus on linear behavior in the models of computation
that require the solving of egquation systems (LSF, ELN).

« Abstraction to functional blocks (non-conservative systems) with directed signals in the models of
computation LSF and TDF. This abstraction replaces the physical quantities (i(t), u(t)) with abstract
guantities x(t).

» Sampling of continuous-time signals to discrete-time signals for the TDF model of computation.

Figure 7.2 shows the impact of abstraction and sampling to non-conservative behavior of a signal in an
electrical network.

x(t) x(t)

abstraction abstraction
- ailiil

>t >t T >t

a) Electrical Linear Networks b) Linear Signal Flow ¢) Timed Data Flow

Figure 7.2. Abstraction of communication and time using the AM S models of computation

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 85

March 8 2010 SystemC AMS extensions User’'s Guide

Inthefollowing subsections, abrief and general description of the capabilities of each model of computation
is given. When using multiple models of computation, it is important to combine them appropriately. The
required partitioning of functionality onto different models of computation is discussed in Section 7.2.1.

7.1.1. Macromodeling with Electrical Linear Networks

The ELN model of computation permits macromodeling: Accurate physical devices such astransistors are
modeled by simple electrical primitives such as (ideal) switches, voltage sources, and other electrical linear
primitives. The objectiveis to specify an abstract model with simplified behavior. Considering signals and
interfaces, no abstraction isrequired. The ELN model of computation should be used in the following cases:

1. Description of systemswhere it is not easy or natural to give equations, e.g., transmission-line models,
or nearly linear loads that are switched within a duty cycle.

2. Analog interfaces and components, which are relevant for the dimensioning of the system or its overall
behavior. Therefore, they must show up at the system level.

In order to setup an ELN macromodel, the electrical circuit behavior must be linearized. The availability
of switches in addition to linear components enables to handle the switching between different operating
modes or the on/off switching of loads. The following strategy might be useful to get an ELN model from
agiven circuit:

1. Identify partitions of the circuit with nearly linear behavior, and model them using ELN components.
Components that are not required for the overall functionality (e.g. clamping diodes) can be omitted.

2. Identify switching components and replace them with ideal switches.
3. Depending on the intended environment of the model:
« If applied as part of ELN, model input and output impedances.

« If applied as part of TDF or discrete-event, use appropriate converter elements.

Note that the ELN model of computation does not support modeling of non-linear limitation or saturation
effects. Itisrecommended to partition amodel such that non-linear effects are model ed using the TDF model
of computation.

Figure 7.3 shows an exampl e of apower driver using Pulse Width Modulation (PWM). The original circuit
isshown in Figure 7.3a. In order to apply ELN macromodeling, the clamping diodes are omitted assuming
that the circuit itself has been validated using a circuit simulator. The CMOS transistors that are switching
the load, a coil with 10 Ohm resistance, are replaced with ideal switches. The resulting ELN macromodel
is shown in Figure 7.3b.

From controller
From (SystemC, Discrete-event)
controller :

+ ’

[

O

_J ELN
Vo= 5V : it) macromodel <
Lcoil <
L]
a) Circuit netlist of PWM power driver b) Macromodel using ELN primitives

Figure 7.3. Abstraction of PWM power driver into an ELN macromodel

The PWM driver together with its load has the behavior of alow pass filter for the load current 1 (t). As
such, it could also be modeled as a functional block. However, the load itself is usually an external part,

86 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

and thus might be changed by the user. Therefore, it makes sense to provide an electrical terminal, and a
(linear) macromodel of the load. The next code example shows the ELN model of the PWM driver.

SC_MODULE(pwm dri ver)

sc_core::sc_in<bool > in;
sca_eln::sca_termnal out;

sca_el n::sca_vsource vcc; // voltage source
sca_eln::sca_de::sca_rswitch highside, lowside; // two sw tches

pwm driver(sc_core::sc_nodul e_name nm double vcc_ = 5.0)
cin("in"), out("out"),

vce("vece"), highside("highside"), |owside("lowside"), node("node"), gnd("gnd")
{

vcc. of fset = vec_; // usage as constant voltage source

vce. p(node) ;

vce. n(gnd);

highside.ctrl(in); // 1st switch
hi ghsi de. p(node) ;
hi ghsi de. n(out);

lowside.ctrl (in); /1 2nd switch...

| owsi de. p(out);

| owsi de. n(gnd) ;

| owsi de. of f_state = true; // ...is inverted

}

private:
sca_el n: : sca_node node;
sca_el n::sca_node_ref gnd;

h

The load can as well be described easily using linear primitives, in the most simple case, a coil with some
resistance might be sufficient:

SC_MODULE(| oad)
{

sca_eln::sca_termnal p, n;

sca_eln::sca_r r;
sca_eln::sca_l |;

| oad(sc_core::sc_npdul e_name nm

doubl e res_ = 500.0, double ind_ = 0.000001)
op(tp"), n("n"), r("r", res_), I("I", ind_), node("node")
{

r.p(p);
r.n(node);

| . p(node);
I.n(n);

private:
sca_el n:: sca_node node;

b

7.1.2. Behavioral modeling with Linear Signal Flow

The LSF model of computation permits the description of block diagrams for the computation of linear
differential equations. Compared to transfer functions, L SF allowsto specify the order of computations and
to access intermediate results or coefficients. In particular, LSF is useful to:

1. Mode filterswith a given structure that has, e.g., impact on noise.

2. Model continuous-time control systems, in particular those that require access to coefficients from other
models of computation.

For LSF, an abstraction of physical signalsis required as described in Chapter 3. Most notably, this also
reguiresthe abstraction of communication towards directed signals. Considering the structure and behavior,
functional blocks have to be identified, and their behavior has to be described by instantiating the pre-
defined functional primitives. Considering time, no abstraction is required.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 87

March 8 2010 SystemC AMS extensions User’'s Guide

Note that L SF does not provide means to specify non-linear limitation or saturation. It is recommended
to partition a model in a way that non-linear effects, if needed, are specified using the TDF model of
computation. A typical application examplewhere L SFisuseful isshown by Figure7.4. ItisaPID controller
that can be part of a closed loop control system model. Its coefficients can be adjusted from a TDF model.
In order to model a closed-loop control system without delay, the device itself must also be modeled using
the LSF model of computation. Using any other model of computation (ELN, TDF) will introduce a delay
in the control loop.

PID controller
P
» X
L}
. L}
ing@ z » X f out
L}
L}
L}
L} L}
u L}
T i » X
L} L}
n u LN
|} L} *
u L]
n n [|
p i d
Figure 7.4. LSF model of aPID controller with adjustable coefficients
SC_MODULE(| sf _pi d_external _control)
{
sca_lsf::sca_in in;
sca_|l sf::sca_out out;
sca_tdf::sca_in<double> p, i, d; // adjustable coefficients
sca_|l sf::sca_tdf::sca_gain gain_p, gain_i, gain_d; // coefficients used to scale the gain

sca_|l sf::sca_integ integ;
sca_l sf::sca_dot dot ;
sca_l sf::sca_add addl, add2;

| sf _pid_external _control (sc_core::sc_nodul e_nanme nane)

cin(tin"), out("out"), p("p"), i("i"), d("d"),
gain_p("gain_p"), gain_i("gain_i"), gain_d("gain_d"),
integ("integ"), dot("dot"), addl("addl"), add2("add2"),
sig_gain("sig_gain"), sig_integl("sig_integl"), sig_integ2("sig_integ2"),
sig_dot1("sig_dot1"), sig_dot2("sig_dot2"),
si g_add("sig_add")

gai n_p. x(in);
gai n_p.y(sig_gain);
gai n_p.inp(p);

gain_i.x(in);
gain_i.y(sig_integl);
gain_i.inp(i);

gai n_d. x(in);
gain_d.y(sig_dotl);
gain_d.inp(d);

integ.x(sig_integl);
integ.y(sig_integ2);

dot . x(sig_dot1);
dot . y(sig_dot2);

addl. x1(sig_gain);
addl. x2(si g_i nteg2);
addl. y(sig_add);

add2. x1(si g_add);

add2. x2(si g_dot 2);
add2. y(out);

88 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

private:
sca_l sf::sca_signal sig_gain, sig_integl, sig_integ2, sig_dotl, sig_dot2, sig_add;

h

7.1.3. Behavioral and baseband modeling with Timed Data Flow

The TDF model of computation permits the modeling of analog systems at a high level of abstraction, as
well asthe modeling of signal processing functions.

For modeling analog behavior, the TDF model of computation requires a discrete-time approximation of
the continuous-time analog signals. However, TDF permits, in contrast to L SF and ELN, the modeling of
non-linear behavior. The discrete-time approximation reduces the continuous-time signal to a sequence of
discrete samples. This abstraction avoids the need for solving (non-linear) equations and thus improves
simulation performance. Besides the discretization, the TDF model of computation also requires the
breaking of cyclic dependencies (also known as algebraic loops) by inserting delays (see Section 2.1.2).

In exchange for these abstractions, TDF models permit to describe the processing of streams of samplesin
an arbitrary, algorithmic way with the hel p of the member function processing. In particul ar, aso non-linear
transfer functions (i.e., for modeling limitation) or look-up tables can be implemented easily. Furthermore,
the specification of signal processing methods in terms of transfer functions H(s), H(2), or state space
representationsis supported in TDF (see Section 2.3.2).

The following abstractions are introduced by TDF:

1. Likein LSF, ablock diagram structure has to be defined. Unlike in LSF, thereisvirtually no restriction
to the behavior of single blocks.

2. The sampling frequency must be defined.

3. The TDF model requires acyclic structures to ensure schedulability. The acyclic structure can be
achieved by introducing adelay into the cycle (Section 2.1.2). Note that most control |oops use nowadays
digital controllers that anyhow introduce delays. The location of the digital controller might be a good
location for introducing such a delay.

Definition and propagation of time steps and rates

The time steps and rates in TDF must be selected carefully to match the modeling problem. It is also
recommended to carefully select the places where time steps and rates are defined.

For modeling analog behavior, is is recommended to ensure a sufficiently high sample frequency. The
sampling frequency must be significantly higher than twice the frequency defined by the lowest time
constant in the system. In doubt, afactor 10 is recommended. Selecting a higher rate or smaller time steps
resultsin ahigher accuracy at high frequencies at the cost of simulation performance. An appropriate place
to define the time step might be the test bench.

Systems with time constants that differ by orders of magnitudes (stiff systems) are a particular problem.
We recommend to partition such systems into parts with low time constants, and parts with higher time
constants. Then, different rates of the TDF model of computation can be used to define different sample
frequenciesin each partition.

For modeling digital signal processing (DSP) methods (e.g. using H(2), or state space representations of
digital filters) leads to a dependency between functionality and the selected time step. For DSP methods
that are intended for use at a particular sample frequency, it is recommended to define atime step in the
module itself (or at its ports respectively). Note that a test bench still can define time steps. However, an
error will be reported if the consistency check after propagation of time steps fails (see Section 2.5).

Behavioral modeling with TDF

Section 2.6 gives two application examples introducing behavioral modeling using the TDF model
of computation. Note that the SystemC AMS extensions permit to write arbitrary C++ code into the

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 89

March 8 2010 SystemC AMS extensions User’'s Guide

TDF module member function processing. Thisallowscombining ideal signal processing functions (usually
found in block libraries) such as amplification, multiplication, or transfer functions in a very easy and
effective way with non-ideal behavior. An amplifier, for example, can be modeled by combining the
following features:

1. Itsbehavior in the frequency domain can be modeled using a Laplace transfer function, as discussed in
Section 2.3.2. Poles and zeros can be identified easily using circuit smulation, or using the bode plot.

2. Large-signa behavior (e.g., limitation, non-linearity) can be modeled by using C++ code.

SCA_TDF_MODULE(anplifier)

{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;
anplifier(sc_core::sc_nodul e_nane, double gain_ = 100.0,
doubl e dom pol e_ = 5.0e8,
double limt_ =5.0)
in("in"), out("out"), gain(gain_), dompole(dompole_), limt(limt_) {}
void initialize()
/1 filter requires no zeros to be defined
pol es(0) = sca_util::sca_conplex(-2.0 * MPI * dompole, 0.0);
k = gain* 2.0 * MPl * dom pole;
}
voi d processing()
{
/1 tinme-domain inplenentation of anplifier behavior as function of frequency
double internal = Itf_zp(zeros, poles, state, in.read(), k);
/1 limting the signal
if (internal >1limt) internal =1limt;
else if (internal < -limt) internal = -limt;
out.wite(internal);
}
private:
doubl e gai n; /1 DC gain
doubl e dom pole; // 3dB cutoff frequency in Hz
double limt; // limter value
doubl e k; /1 filter gain
sca_tdf::sca_ltf_zp Itf_zp; // Laplace transfer function
sca_util::sca_vector<sca_util::sca_conplex > poles, zeros; // poles and zeros as conpl ex val ues
sca_util::sca_vector<doubl e> state; // state vector
B

Baseband modeling with TDF

When modeling radio frequency (RF) systems with high carrier frequencies, a significant speed-up of
simulation can be achieved by applying baseband modeling. This modeling strategy is based on the fact that
digital modulation techniques use the amplitude r and the phase @ to transmit information. The information
itself is then independent from the (usually high) carrier frequency. The idea of baseband modeling is to
map the RF carrier frequency to zero, as shown in Figure 7.5. The required sampling rate then only depends
on the bandwidth of the modulated signal.

bandwidth = f_+b ba‘ndwidth‘ =2b
4—»{ [
m » frequenc ﬁ—* frequenc
0 fb f, f+b auency b 0 b aueney
a) passband signal b) baseband signal

Figure 7.5. Passband (a) and baseband (b) representation of signals in the frequency domain

Formally, the modulated carrier signal x(t) can be described as:

90 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

x(t) = r()cos(2xf 1+ p(1))
= Re {r(t) o/ Crft+ w(t))}
Re{r(r)e/ e/}

wherer(t) isthe modulating signal, ¢(t) the modulating phase and f.. the carrier frequency. The term, which
includes the carrier frequency f;, can be separated from the signal part, which contains the transmitted
information. The signal v(t), which contains the information, isindependent from the carrier frequency f.:

w(t) = r(t) e’ "

Thissignal is called the complex low-pass equivalent or the complex envelope. For the baseband signal, the
carrier frequency fcisset to zero. With s = r cos(¢) and s5 = r sin(¢), the resulting baseband signal becomes:

V() = 5{0) + J sq(0)

where s represents the in-phase term of the baseband signal, and sy represents the quadrature term. The
amplitude and phase of the carrier signal can be computed from these signals at each point in time.

In order to make use of these baseband signals, a specialized data type is needed, which supports the
definition of complex values. The SystemC AM S extensions offer the class sca_util::sca_complex, which
can be used for this purpose. These signals can be used in TDF modules, in which the value type of the
TDF ports are changed from scalar values (of type double) to complex values, as shown in the example
below. The function std: : pow(c, y) from the C++ standard library conpl ex is used, which computes c
raised to the power of y, where c is a complex value.

#i ncl ude <conpl ex>

SCA_TDF_MODULE(baseband_anplifier)
{
sca_tdf::sca_in< sca_util::sca_conplex > in;

sca_tdf::sca_out< sca_util::sca_conplex > out;

baseband_anplifier(sc_core::sc_nodul e_nanme, double gain = 1.0, double iip3 = 1le-3)
cin("in"), out("out"), al(gain), a3(-4/3 * (gain / std::pow(iip3,2))) {}

voi d processing()

out.wite(al * in.read() + a3 * std::pow in.read(),3));
}

private:
doubl e a1, a3;

h

Thelimitation of using sca_util::sca_complex asthe datatypeisthat it only describesthe complex envel ope
of the modulated signal, and that the carrier frequency informationislost. Duetothis, effectslike harmonics
of the carrier or intermodulation products are not represented, as they fall outside the signal bandwidth.
The solution to thisisto create a user-defined data type similar to sca_util::sca_complex, which supports
multi-carrier baseband computations.

7.2. Modeling embedded analog/mixed-signal systems

Behaviora modeling using a single model of computation imposes a number of restrictions as shown
in Figure 7.1. They can be overcome by combining (the strengths of) different models of computation.
The following subsections describe how to partition the functional behavior onto the different models of
computation. Then, a number of ssmple modeling guidelines is given, how to model architecture-level
properties of analog circuits.

7.2.1. Partitioning behavior to different models of computation

A simple, but general strategy that allows beginners to distribute a block diagram like specification to the
different models of computation provided by the SystemC AMS extensions is shown by Figure 7.6. It can
be applied for each block successively.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 91

March 8 2010 SystemC AMS extensions User’'s Guide

For each functional block:

1]
Signal processing functionality?
no yes
v (2)
Control system
functionality? yes

no
A\ 4 A 4

Interaction with
analog/physical part? yes

A 4

(Over)sampling possible?

no yes no
\ 4

Behavior easy to describe in equations

Delay in loops | "°©

possible? (e.g., transfer function) or block diagram?
yes yes no
A 4 A 4
1 i no
Separat‘e §tat|c non-hpear & > Need to model non-linear elements?
dynamic linear equations?
yes, non- yes, no yes
\ 4 A 4 w linear part linear part L 2 v

Discrete Timed Data Linear Signal Electrical Non-linear

Event Flow Flow Linear Networks solver

SystemC SystemC AMS extensions Spice, ...

Figure 7.6. Partitioning of behavior to different models of computation

In afirst step (labels 1, 2 and 3), it should be investigated whether the discrete-event model of computation
is appropriate, or whether the AMS extensions are the better choice. The SystemC AMS extensions are
the best choice for modeling signal processing functions. Note that signal processing functions that are
implemented in digital or software can also be modeled efficiently using the SystemC AMS extensions at
functional level. If aconcrete mapping to hardware at architecturelevel or below shall be modeled, SystemC
is more appropriate. Another good reason to use the AM S extensions would be the need for having analog
terminals and/or physical quantities such as current available, e.g., for modeling external loads or analog
behavior of communication lines.

In a second step (Iabels 4 and 5), the Timed Data Flow model of computation should be considered to
model the AMS subsystem. It requires discrete-time modeling of analog signals, and (in case of cyclic
dependencies) theinsertion of additional delays. It offers most optionsfor specification of analog and signal
processing behavior.

If a discrete approximation is not appropriate (labels 6, 7, and 8), one has to consider the models of
computation L SFand ELN. Both rely on alinear solver. Therefore, behavior hasto be partitioned into linear
and non-linear functionality, where the latter can be implemented using TDF. If the accurate modeling of
non-linear conservative behavior or el ectrical networksisrequired, one should consider using an appropriate
non-linear solver or circuit simulator, maybe coupled with SystemC.

7.2.2. Modeling of architecture-level properties

In order to evaluate feasibility and performance of different architectures, the functional model can be
used and refined by adding specific properties. These properties include: noise, attenuation, distortions,
limitation, jitter, delays, quantization, sampling frequencies, and many other. In the following, some simple
guidelines for handling these effects during architecture exploration are given.

Modeling distortions, limitation, and quantization

Inorder to study theimpact of distortionsand limitationson the overall system functionality, analog modules
should be split into linear dynamic behavior and nonlinear static behavior. Linear dynamic behavior can be
specified, e.g., using transfer functionsin TDF (see Section 2.3.2). Non-linear behavior such as distortions
and limitation can be modeled easily using C++ functionsin the TDF modul€’ s member function processing
(see Section 7.1.3).

92 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Modeling noise in time domain

Noise in the TDF model of computation can be modeled by adding gaussian distributed random numbers
to a TDF signal. The following example demonstrates a simple model for (white) noise and attenuation
in awireless communication link. For this purpose, a function gauss_r and is used that generates gaussian
distributed random numbers.

/1 the gauss_rand() function returns a gaussian distributed
/1 random nunmber with variance "variance", centered around O, using the Marsaglia pol ar nethod

#i nclude <cstdlib> // for std::rand
#i ncl ude <cnmat h> /1 for std::sqrt and std::log

doubl e gauss_rand(doubl e vari ance)

double rndl, rnd2, Q Q, @;

do

{
rndl = ((double)std::rand()) / ((double) RAND MAX) ;
rnd2 = ((double)std::rand()) / ((doubl e) RAND MAX) ;
QL =20 * rndl - 1.0 ;
@ =2.0"*rnd2 - 1.0 ;
Q=QAa * A +@* Q@

} while (Q> 1.0) ;

return (std::sqrt(variance) *(std::sqrt(- 2.0 * std::log(Q / Q * QL));
}

SCA_TDF_MODULE(ai r _channel _wi t h_noi se)
{
sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <doubl e> out;

voi d processing()
{
out.wite(in.read() * attenuation + gauss_rand(variance));

}

ai r_channel _wi t h_noi se(sc_core::sc_npdul e_nanme nm
doubl e attenuation_,
doubl e variance_)
pin("in"), out("out"), attenuation(attenuation_), variance(variance_) {}

private:
doubl e attenuation;
doubl e vari ance;

b

In order to get colored noise, the output of the function gauss_r and can befiltered using appropriate transfer
functions.

7.3. Design refinement and mixed-level modeling

7.3.1. Mixed-signal, mixed-level simulation

Thedesign of embedded anal og/digital systemsrequiresthe combination of different modelsof computation
and of different levels of abstraction. This requires the conversion of communication/synchronization at
the border between different models of computation. The SystemC AMS extensions provide a basic set
of language primitives that enable conversion between SystemC (discrete-event), TDF, ELN, and LSF. In
ELN and L SF, converter modules are provided; in TDF, converter ports are available. Note that ELN and
L SF can communicate with discrete-event and TDF, but not with each other in a direct way.

It is recommended to model the general signal flow of a system using the TDF model of computation, if
possible. This has the following advantages:

1. The TDF model of computation provides conversion to al other models of computation.

2. The TDF model of computation is needed to provide time stepsto connected ELN and L SF components.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 93

March 8 2010 SystemC AMS extensions User’'s Guide

Figure 7.7 shows a part of asignal processing chain as an example: The LSF controller (shown left) feeds
its output via a controlled voltage sourceinto an ELN low-passfilter. In order to connect ELN and LSF, an
LSF signa is converted to a TDF signal, for which atime step must be given. The TDF signal controls a
(TDF) controlled voltage source that is part of the ELN model.

Isf_model eln_model R, Y
N
x(t k% o Veo]
k2

Figure 7.7. Coupling of LSF and ELN viaan L SF/TDF converter module

Be aware, that the conversion from LSF (or ELN) to TDF and then to ELN (or LSF) introduces a delay
of one time step.

7.3.2. Design refinement and use cases

For the design of digital systems, top-down design is state-of-the-art. The integration of anal og/mixed-
signal subsystems, which are mostly designed bottom-up, into adigitally dominated top-down flow isstill a
challenge. In Section 1.2.1, theintended use cases of the AM S extensions have been introduced. This section
describes how to apply the SystemC AM S extensionsin order to yield higher efficiency and productivity in
the design process of embedded analog/digital systems. This complements the refinement approach known
from SystemC. Figure 7.8 gives an overview of the application of the SystemC AMS extensions.

System-level design: Block and circuit design:

Change

Executable specification specification

---------------- Specification of
’) block properties

Architecture exploration .) .
s System integration Behavioral model
Characterization
] of blocks
Architecture model | e,
Change"****Ia o
design Analog circuit

Figure 7.8. Use cases for the SystemC AM S extensions within top-down refinement

In the ideal case, top-down refinement begins with an executable specification of the intended behavior
at system level. Usualy, the TDF model of computation is suitable to develop afunctional model for this
purpose. Refinement of the executable specification is part of the architecture exploration use case. The
refinement process consists of a stepwise approach of replacing the blocksin the system with more accurate
(less abstract) models.

Architecture exploration distinguishes three separate aspects, each one being the opposite of one of the
abstractionsin Figure 7.1:

* Refinement of behavior
» Refinement of structure

* Refinement of communication/interfaces

94 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Behavioral refinement augments the functional model used for the executable specification with specific
properties of an architecture (implementation). This permits the evaluation of the feasibility and
performance of different architectures (implementations). Properties that can easily be included in a
functional model include: Noise, attenuation, distortions, limitation, jitter, delays, quantization, sampling
frequencies, and many other.

As an example, Figure 7.9 shows an ideal (linear) and non-linear amplifier, where the linear gain (al) and
non-linear term (a3) are added with a polynomial representation.

Refinement

of behavior

Vou = a1V, Vou = a1V, + a;V°
a) Ideal (linear) amplifier b) Non-linear amplifier
Figure 7.9. Refinement of behavior of an amplifier

The code example below shows how the non-linear behavior can be implemented. The function
std:: pow(x, y) fromthe C++ standard library crmat h is used, which computes x raised to the power of .

#i ncl ude <cnat h>

SCA_TDF_MODULE(non_l i near _anplifier)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

non_| i near _anplifier(sc_core::sc_nodul e_nane, double gain = 1.0, double iip3 = le-3)
cin("in"), out("out"), al(gain), a3(-4/3 * (gain / std::pow(iip3,2))) {}

voi d processing()

out.wite(al * in.read() + a3 * std::powin.read(),3));
}

private:
doubl e al, a3;

%

Refinement of structure repartitions the (usually block-diagram-like) system, used for executable
specification, with a structure of functional blocks that each represent a circuit or processor to be designed.
Note that also the model of computation changes depending on the intended domain of implementation.

] R
of structure
out = f(in) I

a) Laplace transfer function b) Electrical network

Refinement _lj
—>

C

Figure 7.10. Structural refinement of afilter

In order to make the refinement of a model easier, the namespace concept alows to re-use alarge part of
existing modeling infrastructure such as module and port declarations. However, behavior and (refined)
structure have to be written from scratch.

Refinement of communi cation/interfaces replaces the abstract communication used within the TDF model of
computation with concrete signals, e.g., electrical voltages and currents or digital (discrete-event) SystemC
signals. Thisrequiresto also add converter ports or modulesto the models. Conversion between the models

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 95

March 8 2010 SystemC AMS extensions User’'s Guide

of computationisdiscussedin Section 7.3.1. In order to support the refinement of communi cation/interfaces,
it is recommended to create adapter/converter classes as known from SystemC TLM extensions.

7.4. Modeling and coding style

7.4.1. Namespaces

The SystemC AMS extensions make extensive use of C++ namespaces to be able to clearly identify the
available models of computation and use the available primitive modules within the right context. The
namespaces sca_tdf, sca |sf and sca_eln are reserved names for the language constructs used for the TDF,
L SFand ELN model of computation, respectively. Other reserved namespacesaresca_util for utility classes
and functions, and sca_ac_analysis for small-signal frequency-domain analyses. The user should not add
new definitionsin these namespaces. Instead, it is recommended to declare user-defined modul es belonging
to the same model of computation to a unique user-defined namespace, as shown in the example below.

nanmespace ny_tdf {

SCA_TDF_MODULE(my_sour ce)
{

o

}; /1 namespace ny_tdf

Instantiation of this object will 1ook like this:

SC_MODULE(anal og_t op)
{

ny_tdf::ny_source i _ny_source("i _ny_source");

}

Header files and naming conventions

The header file <systemc-ams> does not import the reserved namespaces sca tdf, sca Isf, sca eln,
sca_util, and sca_ac_analysisinto the scope of the program. This means the user has to explicitly add the
namespace identifier to each element, when instantiating or declaring such an object. Although the names
areabit longer towrite, it will result in aclear naming convention, wherethe user can recognizeimmediately
whether the object belongs to a particular class library of the SystemC AMS extensions, or whether the
object is part of auser-defined library. The example below, and the previous examples given in thisuser’s
guide follow this naming convention.

#i ncl ude <systent-ans>
#i ncl ude "ny_source. h"
int sc_main(int argc, char* argv[])
{
sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);
sca_tdf::sca_si gnal <doubl e> si g1;
/'l instantiate user-defined nodul e fromuser-defined 'ny_tdf' namespace
my_tdf::my_source i_mny_source("i_my_source");
i_my_source.out(sigl);
/1 instantiate other nodul es
/'l tracing AVS signals
sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat");
sca_util::sca_trace(tf, sigl ,"sigl");
sc_core::sc_start(10.0, sc_core::SC M);

tf->set_node(sca_util::sca_ac_format(sca_util::SCA AC MAG RAD));

sca_ac_anal ysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_anal ysis::SCA LOG ;

96 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sca_util::sca_close_tabular_trace_file(tf);

return O;

}

When using the header file <systemc-ams.h>, all elements, which belong to the namespace sca core,
sca_util and sca_ac_analysis, are imported into the scope of the program. This means the user can omit to
prefix the elements in these namespaces. Note that the namespace for the different models of computation
are not declared, so even in this case, the user has to explicitly use the namespace to create TDF, L SF, and
ELN models. The program below shows the same example as given above, but now using the header file
<systemc-ams.h>.

#i ncl ude <systent-ans. h>
#i ncl ude "ny_source. h"
int sc_main(int argc, char* argv[])
{
sc_set _tine_resolution(1.0, sc_core::SC FS);
sca_tdf::sca_si gnal <doubl e> si g1;
/1 instantiate user-defined nodul e fromuser-defined 'ny_tdf' nanmespace
my_tdf::my_source i_mny_source("i_my_source");
i _ny_source.out (sigl);
/1l instantiate other nodul es
/'l tracing AVS signals
sca_trace_file* tf = sca_create_tabular_trace_file("trace.dat");
sca_trace(tf, sigl ,"sigl");
sc_start(10.0, SC MS);
tf->reopen("ac_trace.dat");
tf->set_node(sca_ac_format (SCA_AC_MAG RAD));
sca_ac_start(1.0e3, 1.0e6, 4, SCA LOG;

sca_cl ose_tabul ar_trace_file(tf);

return O;

It is recommended to use the header file <systemc-ams>, resulting in a naming convention reflecting the
full names of classes and functions.

Using directive

The using directive of C++ allows the elements in a namespace to be used without explicitly adding the
namespace identifier to each element. It should only be used in amodul e implementation, not in the module
declaration (e.g. definition in aheader file). It is recommended to apply the using directive only within the
local scope, e.g., as part of the implementation of aclass member function. The example bel ow shows how
this concept can be applied for a frequency-domain description as described in Section 5.3.3.

voi d ac_processing()

{
usi ng nanmespace sca_util;
usi ng nanmespace sca_ac_anal ysi s;

sca_conplex s
sca_conpl ex h

SCA COWPLEX_ J * sca_ac_W();
1.0/ (s *s +s +1.0);

=

sca_ac(out) = * sca_ac(in);

7.4.2. Dynamic memory allocation

Most of the examples shown in this user’s guide use objects (e.g., primitive modules), which are directly
instantiated in a function body, and thus are allocated automatically on the stack. In case of big designs

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 97

March 8 2010 SystemC AMS extensions User’'s Guide

using many modules in a complex hierarchy, this approach is not the most efficient way as it can lead to
an overflow of the stack for automatic variables. Dynamic memory allocation has the advantage to give the
user more direct control, in which order the modules are constructed. The instantiated objects are referenced
by pointers so that they do not need to reside anymore in a consecutive memory area, which can lead to
resource alocation problems. Furthermore, it allows the instantiation of an arbitrary number of modules
determined at runtime, which are referenced from a dynamically created array of module pointers, and
which constructors can be called individually to vary the parameterization of each object.

The C++ operator newis used to dynamically allocate memory on the heap to store the objects. Asallocation
returns the address to the newly allocated memory, access to the object’s member functionsis done using
apointer. Any memory dynamically allocated with the operator new must be released (deallocated) using
the operator del et e. This operator is usualy called for each dynamically created member object in the
destructor of the class.

The example below shows the use of dynamic memory allocation and deallocation for the BASK
demodulator similar as described in Section 2.6.2.

SC_MODULE(bask_denod)

{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out<bool > out;

rectifier* rc;
Itf_nd_filter* Ip;
sanpl er * sp;

SC _CTOR(bask_denod) : in("in"), out("out"), rc_out("rc_out"), Ip_out("lp_out")
{

rc = newrectifier("rc");

rc->in(in);

rc->out(rc_out);

Ip =new ltf_nd_filter("lp", 3.3e6);
I p->in(rc_out);
| p->out (I p_out);

sp = new sanpler("sp");
sp->in(l p_out);
sp->out (out);

}
~bask_denod()
{

del ete(rc);

del ete(lp);

del ete(sp);
}

private:
sca_tdf::sca_signal <doubl e> rc_out, |p_out;

b

7.4.3. Module parameters

Modules need to be flexible to be reusable, i.e., their behavior and internal structure must be parameterized
to a reasonable degree to allow their adoption to varying specifications. This is especially interesting for
the early design stages of architecture exploration and successive refinement of the system structure.

In Section 2.6.1, aBASK modul ator model was presented with hard coded design parameters, likethe carrier
frequency of 70 MHz. With respect to this carrier frequency, the time step values and the data rates where
hard coded, such that the resulting signal was sufficiently sampled. Such “magic numbers’, hard coded port
rates, delays, and time steps, are typical signs of an inflexible implementation. If, for example, the carrier
frequency would be increased without changing the time step, the model might not work properly because
of undersampling.

A more flexible approach isto derive time step and data rate values from the functional module parameters.
Inthissection it is shown how to make a parameterized version of the BASK-modulator from Section 2.6.1,
with adjustable carrier-frequency and baseband frequency, and how to derive data rates and time steps
automatically from that. Firstly, a mixer with parameterized datarate is needed:

98 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

SCA_TDF_MODULE(mi xer)

{
sca_tdf::sca_i n<bool > in_bin; // input port baseband signal
sca_tdf::sca_in<double> in_wav; // input port carrier signal
sca_tdf::sca_out <doubl e> out; // output port npdul ated signal

m xer (sc_core::sc_nodul e_nane nm unsigned long rate_)
in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(rate_)

{
usi ng namespace sc_core; // essential for sc_assert to work, when using OSCl systenc-2.2.0
sc_assert(rate_ > 0);

}

void set_attributes()

{
in_wav.set_rate(rate);
out.set_rate(rate);

}
voi d processing()
{
for(unsigned long i = 0; i < rate; i++)
if(in_bin.read())
out.wite(in_wav.read(i), i);
else out.wite(0.0, i);
}
}
private:

unsigned long rate;

¥

If parameters are used which are computed elsewhere, it is always a good idea to make plausibility checks.
Therefore, the mixers' constructor containsthe line sc_assert(rate_> 0) to check if the rate parameter is at
least 1. Note that the implementation of sc_assert in the OSCI SystemC reference implementation release
2.2 (systemc-2.2.0) is not compliant to the IEEE 1666-2005 standard, and therefore a usi ng nanespace
sc_core; hasto be added, before calling sc_assert.

Using this mixer, and the parameterized sinusoidal source already used in Section 2.6.1, a parameterized
BASK modulator can be implemented as follows:

SC_MODULE(bask_nod)

{
sca_tdf::sca_i n<bool > in;
sca_tdf::sca_out <doubl e> out;
sin_src sine;
m xer m X;
bask_nod(sc_core::sc_nodul e_name nm
doubl e baseband_freq,
doubl e carrier_freq,
doubl e carrier_anmpl = 1.0,
unsi gned | ong sanpl es_per_period = 20)
in("in"), out("out"),
si ne("sine",
carrier_anpl,
carrier_freq,
sca_core::sca_time((1.0 / (sanples_per_period * carrier_freq)), sc_core::SC SEC)),
mx("mx", (int)ceil(static_cast<doubl e>(sanples_per_period) * carrier_freq / baseband_freq)),
carrier("carrier")
{
usi ng nanmespace sc_core; // essential for sc_assert to work, when using OSCl systenc-2.2.0
/Il Plausibility checks
sc_assert(carrier_freq > baseband_freq); // wouldn't nake sense otherw se!
sc_assert (sanpl es_per_period > 2); /1 Nyquist criterion satisfied?
sc_assert(carrier_anpl > 0.0); /1 OQtherwise the output is 0 all the way!
sine.out(carrier);
m x.in_wav(carrier);
m x.in_bin(in);
m x. out (out);
}
private:

sca_tdf::sca_signal <doubl e> carrier;

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 99

March 8 2010 SystemC AMS extensions User’'s Guide

‘};

The BASK modulator above can be configured with the following parameters:
* baseband_freq isthe frequency of the binary signal.

e carrier_freq isthefrequency of the carrier signal.

e carrier_anpl istheamplitude of the carrier signal, which defaultsto 1.

* sanpl es_per _peri od isthe number of samples used for one period of the sinusoidal carrier signal. The
default of 20 ensures sufficient sampling.

From these parameters, the appropriate parameters for the constructors of si n_sr c and ni xer are computed.
Again, the constructor contains some plausibility checks using sc_assert. The timestep of sin_src isthe
reverse of the product of the carrier frequency and the samples per sinus period used. For example, if the
carrier frequency is 10 MHz, and 20 samples per period are used, the overall sampling frequency becomes
200 MHz, which resultsin atime step of 5 ns. The rate of the port i n_wav of the mixer has to be the ratio
of the product of samples per period and carrier frequency to the baseband frequency. Assuming the latter
to be 2 MHz, and again a 10 MHz carrier frequency with 20 samples per period, thiswould result in adata
rate of 100. Note that the ceiling operation in the modulator code might result in aslightly higher samples
per period rate than intended.

7.4.4. Separation of module definition and implementation

The condensed examples shown so far have implemented the behavior or structural composition
directly inside the class definition. It is recommended to separate the module definition from the actual
implementation, into a header file (with .h or .hpp extension) and an implementation file (with .cpp
extension), asit iscommon C++ coding practice. Thus, only the information necessary to usethe moduleis
exposed to other filesincluding the header and not itsimplementation details. Duplicated code generationis
avoided reducing overall compilation time. Only for template classes declaration and implementation need
to be both kept in the header files, as the C++ compiler needs to be able to specialize the implementation
to the passed templ ate parameters.

The example below shows the BASK demodulator example from Section 2.6.2, where the structural
composition isimplemented in a separate implementation file, as part of the module constructor. The class
definition is put in a header file, which alows inclusion in other files. Note that this separation cannot be
applied in case amodule is created using a class template.

/'l bask_denod. h

#i f ndef BASK_DEMOD_H_
#def i ne BASK_DEMOD_H_

#i ncl ude <systent-ans>

#include "rectifier.h"
#include "Itf_nd_filter.h"
#incl ude "sanpler.h"

SC_MODULE(bask_denod)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <bool > out;

rectifier* rc;
Itf_nd_filter* Ip;
sanpl er * sp;

bask_denpnd(sc_core::sc_npdul e_name nm);
private:
sca_tdf::sca_signal <doubl e> rc_out, |p_out;

b

#endif // BASK_DEMOD_H_

The class implementation containing the actual structural composition is stored in a separate file:

‘ /'l bask_denod. cpp

100 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

#i ncl ude "bask_denod. h"

bask_denod: : bask_denod(sc_core:: sc_nodul e_nanme nm
in("in"), out("out"), rc_out("rc_out"), Ip_out("lp_out")

{
rc = newrectifier("rc");
rc->in(in);
rc->out(rc_out);

Ip =new ltf_nd_filter("lp", 3.3e6);
I p->in(rc_out);
| p->out (I p_out);

sp = new sanpler("sp");
sp->in(l p_out);
sp->out (out);

7.4.5. Class templates

C++ class templates can be used in case multiple instances using different data types or sizes are needed in
adesign. For example, if a parallel data stream of width N has to be serialized, this can be modeled very
naturally with a TDF module having an input data rate of 1 and an output data rate of N. Figure 7.11 shows
the definition of a serializer, implemented as template class with parameter N. For seriaization of a 3 bit
vector, the template parameter N is set to 3.

in |serializer<3>| out

1
|
\

in 101 out

011 20101110
201 T
t/us t/us
0 30 60 0 30 60

Figure 7.11. Seridization of a 3-hit vector

tenplate <int N>
SCA_TDF_MODULE(seri al i zer)

{
sca_tdf::sca_in<sc_dt::sc_bv<N> > in; // input port
sca_tdf::sca_out<bool > out; // output port
SCA CTOR(serializer) : in("in"), out("out") {}
voi d set_attributes()
{
out.set_rate(N);
}
voi d processing()
for(int i =0; i <N i++)
{
out.wite(in.read().get_bit(i), i);
}
}
}

The example below shows how such atemplate class can be used within a structural module.

SC_MODULE(nodul at or)
{

sca_tdf::sca_in<sc_dt::sc_bv<3> > in;
sca_tdf::sca_out <doubl e> out;

serializer<3> ser;

bask_nod nmod;
SC CTOR(nodul ator) : in("in"), out("out"), ser("ser"), mod("md"), bits("bits")
{

ser.in(in);

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 101

March 8 2010 SystemC AMS extensions User’'s Guide

ser.out(bits);

mod. in(bits);
nmod. out (out) ;

}

private:
sca_tdf::sca_signal <bool > bits;

h

Classtemplatesal so facilitate refinement of communication, asdiscussed in Section 7.3. The examplebel ow
shows the amplifier module of Section 7.2 implemented as a class template. Depending on the template
parameter type, the modul e can be used either asapassband model, when using type doubl e, or asabaseband
model using data type sca_util::sca_complex.

#i ncl ude <cnat h>
#i ncl ude <conpl ex>

tenpl ate <class T>

SCA_TDF_MODULE(anplifier)

{
sca_tdf::sca_in<T> in;
sca_tdf::sca_out<T> out;

anplifier(sc_core::sc_nodul e_nane, double gain = 1.0, double iip3 = le-3)
in("in"), out("out"), al(gain), a3(-4/3 * (gain / std::powiip3,2))) {}

voi d processing()

{
out.wite(al * in.read() + a3 * std::powin.read(),3));

}

private:
doubl e al, a3;
-

7.4.6. Public and private class members

When creating a module using the macro SC_MODULE or SCA_TDF_MODULE, aclassis defined by
using the C++ keyword st ruct . In this case, al class members, such as functions and data variables, are
public by default. These members can be accessed from outside the class, for example from afunction, e.g.,
the main program sc_main, or from another class, e.g., a parent module. Modules which are defined with
the keyword cl ass have private members by default.

In order to be able to instantiate a module, and connect it with other modules, the constructor and ports
have to be declared as public. It isrecommended to declare internal signals, nodes, variables, functions and
primitive modules as private, unless there is a good reason to access them from outside the scope of the
class. For example, signals and nodes could be made public to facilitate debugging.

Tofacilitate tracing of signals or nodeswhich are declared private, ahelper functiontrace _internalscan be
defined as public member, which will write the signalsto atrace file defined by the argument. The example
below extends the BASK demodulator from Section 2.6.2 with tracing of private members. In this case,
thereis no need to declare the signalsitself as public.

SC_MODULE(bask_denod)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out<bool > out;

rectifier rc;
Itf_nd_filter Ip;
sanpl er sp;

SC_CTOR(bask_denod)
cin("in"), out("out"), rc("rc"), Ip("Ip", 3.3e6), sp("sp"), rc_out("rc_out"), Ip_out("lIp_out")
{

rc.in(in);

rc.out(rc_out);

Ip.in(rc_out);
I p.out (I p_out);

sp.in(lp_out);

102 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

sp. out (out);

}
void trace_internal s(sca_util::sca_trace_file* tf)
sca_util::sca_trace(tf, rc_out, rc_out.nanme());
sca_util::sca_trace(tf, Ip_out, |p_out.nanme());
}
private:

sca_tdf::sca_signal <doubl e> rc_out, |p_out;

h

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 103

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

Appendix A. Language reference

Note: This appendix gives only a list of the basic language definitions for TDF, LSF or ELN primitive
modules. The complete list of definitions can be found in the Language Reference Manual of the SystemC

AMS extensions.

If the default value for a parameter is not given in the tables below, then the value has to be provided by

the user and cannot be omitted during construction.

A.1. TDF modules

/'l Nanme Type Descri ption

A R e T
11 T Arbitrary data type (e.g double, sca_util::sca_vector,

/Il tstep sca_core::sca_tinme Time step as obj ect

/1 abstine sca_core::sca_tine Time step as obj ect

Il tstepd doubl e Time step in seconds

/1 tunit sc_core::sc_time_unit Time unit (e.g., sc_core::SCUS, sc_core::SC M, ...)

/'l nanme const char* Mbdul e nane as string

/'l nodnane sc_core::sc_nodul e_nane Mdul e nane as obj ect

A R e T

SCA_TDF_MODULE(nane)

{
/'l port declarations
sca_tdf::sca_in<T> in; // input port
sca_tdf::sca_out<T> out; // output port

/'l Converter ports
sca_tdf::sca_de::sca_in<T> inp; [/ converter port fromdiscrete-event domain
sca_tdf::sca_de::sca_out<T> outp; // converter port to discrete-event domain

/1 TDF nethods, called automatically by the schedul er
void set_attributes()

/1 nodul e and port attributes (optional)

}

void initialize()

{ /1 initial values of ports with a delay (optional)

}

voi d processing()

{ /1 tine-domain signal processing behavior or algorithm (nmandatory)
}

voi d ac_processing()

{ /1 small-signal frequency-donmain behavior (optional)

}

/1 modul e constructor
SCA CTOR(nane) {} // macro, or
name(nodname) {} // full constructor, can also be used to pass paraneters

A.2. TDF ports

/'l Name Type Description

L A e e
/1 val ue T Value with arbitrary type (double, sca_util::sca_vector, ..
/Il sanple_id unsi gned | ong Sample ID: 0 for single-rate, 0...(rate-1) for nmultirate
/'l nsanpl es unsi gned | ong Nunmber of sanpl es

Il rate unsi gned | ong Rate of the port

Il tstep sca_core::sca_tinme Tinme step as object

/Il tstepd doubl e Tinme step in seconds

/1 tunit sc_core::sc_time_unit Tinme unit (e.g., sc_core::SC US, sc_core::SC M, ...)

Il toffset sca_core::sca_tinme Tinme of fset as object

Il toffsetd doubl e Time offset in seconds

L A e e

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

105

March 8 2010

sca_td

sca_tdf::

sca_td

sca_tdf::

out.
out
out.
out.

se

fo:

f

fo:

f

t

sca_i n<T> in;
sca_out <T> out;

sca_de: :sca_i n<T> inp;
sca_de: : sca_out <T> outp;

_del ay(nsanples);

.set_rate(rate);
set _tinmestep(tstep);
set _timestep(tstepd,

tunit);

outp.set_tinmeoffset(toffset);

outp.set _tinmeoffset(toffsetd,

tunit);

nsanpl es = out.get_del ay();

rate = out.get_rate();

abstime = out.get_time();

abstime = out.get_time(sanple_id);

tstep = out.get_timestep();

tstepd = out.get_tinmestep().to_seconds();
tof fset = outp.get_tineoffset();

out.initialize(value,

val ue
val ue

sanmple_id);

in.read();
in.read(sanple_id);

out.wite(value);

out.wite(value,

sanple_id);

SystemC AMS extensions User’'s Guide

A.3. TDF signals

Il type T

sca_tdf::sca_signal <T>

/1 TDF signal

A.4. Embedded Laplace transfer functions

A.4.1. sca_tdf::sca_Itf_nd

Description

Scaled Laplace transfer function in the time-domain in the numerator-denominator form.

Definition
sca_tdf::sca_ltf_nd(num den, delay, state, input, k, tstep);
Equation
-1 i
Z _ . hum;s
H(s)=k- ;01 . ol s delay)
- i
Zi: , den;s
Parameters
Name |Type Default Description
num sca_util::sca vector <double> Numerator coefficients
den sca_util::sca vector <double> Denumerator coefficients
delay sca_core::sca time sc_core::SC_ZERO_TIME | Time continuous delay
(optional)
state sca_util::sca_vector <double> State vector (optional)
input Input value, or signal from
port
106 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Name |Type Default Description

double, sca tdf::sca_in<double>,
sca_tdf::sca _de::sca_in<double>,
sca_util::sca vector <double>

k double 1.0 Gain coefficient (optional)

tstep sca_core::sca_time sc_core::SC_ZERO_TIME |Time step

Constraint of usage
The delay shall be greater or equal to zero.
A.4.2. sca_tdf::sca_Itf_zp

Description

Scaled Laplace transfer function in the time-domain in the zero-pole form.

Definition

sca_tdf::sca_ltf_zp(zeros, poles, delay, state, input, k, tstep);

Equation
{Vi; 1(s — zeros;)
H(s)= k'—;[7 1 .ol 8 delay)
[1._, (s = poles)
Parameters
Name |Type Default Description
Zeros sca_util::sca vector< Numerator coefficients
sca_util::sca_complex >
poles sca_util::sca vector< Denumerator coefficients
sca_util::sca_complex >
delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
(optional)
state sca_util::sca vector <double> State vector (optional)
input double, sca tdf::sca in<double>, Input value, or signal from
sca_tdf::sca de::sca _in<double>, port
sca_util::sca vector <double>
k double 1.0 Gain coefficient (optional)
tstep sca_core::sca_time sc core::SC_ZERO _TIME |Time step

Constraint of usage

The delay shall be greater or equal to zero.

A.4.3. sca_tdf::sca_ss
Description

Single-input single-output state-space equation.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 107

March 8 2010 SystemC AMS extensions User’'s Guide

Definition

‘sca_tdf::ss_eqn(a, b, ¢, d, delay, s, x, tstep);

Equation

ds(f)
— = A-s(O)+B-x(t — delay)

y(t) =C-s(t)+D-x(¢t — delay)

Parameters

Name |Type Default Description

a sca_util::sca_matrix<double> Matrix A of size n-by-n (n

= number of states)

b sca_util::sca_matrix<double> Matrix B of size n-by-m

(m = number of inputs)

C sca_util::sca_matrix<double> Matrix C of sizer-by-n (r

= number of outputs)

d sca_util::sca_matrix<double> Matrix D of sizer-by-m

delay sca core::sca time sc _core;:SC_ZERO _TIME |Time continuous delay

(optional)

state sca_util::sca_vector <double> State vector (optional)

X sca_util::sca_vector <double>, Input vector, matrix or
sca_util::sca_matrix<double>, signal from port
sca_tdf::sca_in<double>,
sca_tdf::sca in<
sca_util::sca_vector <double>,
sca_tdf::sca de::sca in<
sca_util::sca_vector <double>

tstep sca_core::sca time sc core;:SC_ZERO _TIME |Timestep

Constraint of usage

The delay shall be greater or equal to zero.

A.5. LSF primitive modules

A.5.1. sca_lsf::sca_add
Description
Weighted addition of two L SF signals.

Definition

sca_l sf::sca_add(nm ki1, k2);

Symbol

K,
x,(0) o)

k2
x1)

108 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

Equation

y(t) = kg - Xa(t) + ko - xo(t)

March 8 2010

Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
k1 double 1.0 Weighting coefficient for LSF signal at port x1
k2 double 1.0 Weighting coefficient for LSF signal at port x2
Ports
Name |Interface Type/Nature |Description
x1 sca_Isf::sca in Signal flow LSFinput 1
x2 sca Isf::sca in Signal flow LSFinput 2
y sca_Isf::sca_out Signal flow L SF output
A.5.2. sca_lsf::sca_sub
Description
Weighted subtraction of two L SF signals.
Definition
sca_|l sf::sca_sub(nm ki1, k2);
Symbol
k,
x(1) ¥t
k2
xy(1)
Equation
Y(t) = ka - xa(t) —ka - Xa(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
k1 double 1.0 Weighting coefficient for LSF signal at port x1
k2 double 1.0 Weighting coefficient for LSF signal at port x2
Ports
Name |Interface Type/Nature |Description
x1 sca_Isf::sca in Signal flow LSFinput 1
X2 sca_Isf::sca in Signal flow LSFinput 2
y sca_Isf::sca_out Signal flow L SF output

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

109

March 8 2010 SystemC AMS extensions User’'s Guide

A.5.3. sca_lsf::sca_gain
Description
Multiplication of an LSF signal by a constant gain.

Definition

sca_l sf::sca_gain(nm Kk);

Symbol
x)=> k =)

Equation

y(t) =k - x(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module_name Module name
k double 1.0 Gain coefficient
Ports
Name |Interface Type/Nature |Description
X sca Isf::sca in Signal flow L SF input
y sca_lsf::sca_out Signal flow L SF output

A.5.4. sca_lsf::sca_dot
Description
Scaled first-order time derivative of an LSF signal.

Definition

sca_| sf::sca_dot(nm k);

Symbol
st =] kL oo
dt
Equation
dx(t)

Yy =k—
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
k double 1.0 Scale coefficient

110 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Ports

Name |Interface Type/Nature |Description
X sca lsf::sca in Signal flow L SF input

y sca_Isf::sca_out Signal flow L SF output
A.5.5. sca_lIsf::sca_integ

Description

Scaled time-domain integration of an LSF signal.

Definition

sca_|l sf::sca_integ(nm k, y0);

Symbol

O = k [[0
Equation
t
Y= k-] xd+y,

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

k double 1.0 Scale coefficient
y0 double 0.0 Initial condition at t=0
Ports

Name |Interface Type/Nature |Description
X sca Isf::sca in Signal flow L SF input
y sca_Isf::sca_out Signal flow L SF output
A.5.6. sca_lsf::sca_delay

Description

Scaled time-delayed version of an LSF signal.

Definition

sca_|l sf::sca_delay(nm delay, k, y0);

Symbol

X(t) =] x(t —A) p=by(1)

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

111

March 8 2010 SystemC AMS extensions User’'s Guide

Equation
t<dela
=1 o i
k-x(t—delay) t>delay
Parameters
Name |Type Default Description
nm sc_core::sc_module name Module name
delay sca core::sca time sc core;:SC_ZERO _TIME |Time continuous delay
k double 1.0 Scale coefficient
y0 double 0.0 Output value before delay is
in effect

Ports
Name |Interface Type/Nature |Description
X sca_Isf::sca in Signal flow L SF input
y sca_Isf::sca_out Signal flow L SF output

Constraint of usage

The delay shall be greater or equal to zero.

A.5.7. sca_lsf::sca_source
Description
L SF source.

Definition

sca_| sf::sca_source(nm init_value, offset, anplitude, frequency, phase, delay,
ac_anpl i tude, ac_phase, ac_noise_anplitude);

Symbol

/\/ > y(t)

Equation
For time-domain simulation:

y(t)= init_value t<delay
offset + amplitude -sin(2x - frequency -(t — delay)+ phase) t>delay

For small-signal frequency-domain simulation:
v(f)=ac_amplitude- {cos(ac_phase)+ j -sin(ac_phase)}
For small-signal frequency-domain noise simulation:

y(f)= ac_noise_amplitude

112 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Parameters

Name Type Default Description

nm SC_core:: Module name
sc_module_name

init_value double 0.0 Initial value

offset double 0.0 Offset value

amplitude double 0.0 Source amplitude

frequency double 0.0 Source frequency in Hertz

phase double 0.0 Source phase in radian

delay sca_core::sca time |sc_core:SC ZERO_TIME | Time continuous delay

ac_amplitude |double 0.0 Small-signal amplitude *)

ac_phase double 0.0 Small-signal phasein radian

*)
ac_noise_ double 0.0 Small-signal noise amplitude
amplitude *x)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports
Name |Interface Type/Nature |Description
y sca_Isf::sca_out Signal flow L SF output

Constraint of usage

The delay shall be greater or equal to zero.

A.5.8. sca_lsf::sca_ltf_nd
Description
Scaled Laplace transfer function in the time-domain in the numerator-denominator form.

Definition

sca_lsf::sca_ltf_nd(nm num den, delay, k);

Symbol
x(t) =» 22 ()
den
Equation
-1 N-2
(0 d y@ dy(?)
deny _ 7 +d€nN—2T +oee +den17 +deny- y(t)
dM B 1)c(t —delay) a’M R 2x(t —delay) dx(t —delay)
=k \numy, _ T + numy, _ T +o iy + numy-x(t — delay)

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 113

March 8 2010 SystemC AMS extensions User’'s Guide

Parameters

Name |Type Default Description

nm sc_core::sc_module name Module name

num sca_util::sca_vector <double> Numerator coefficients
den sca_util::sca_vector <double> Denumerator coefficients
delay sca_core::sca_time sc _core;:SC_ZERO_TIME |Time continuous delay
k double 1.0 Gain coefficient

Ports

Name |Interface Type/Nature |Description

X sca |sfiisca_in Signal flow L SF output

y sca_lsf::sca_out Signal flow L SF output

Constraint of usage

The delay shall be greater or equal to zero.

A.5.9. sca_lsf::sca_ltf_zp
Description
Scaled Laplace transfer function in the time-domain in the zero-pole form.

Definition

sca_l sf::sca_ltf_zp(nm zeros, poles, delay, k);

Symbol

zZeros

t
poles >0

Equation

d d d d
7 —polest1 7 —polesl\F2 7 —poles1 7 —poles0 v (%)

el zerosn G zeros o)+ (5 zeros [erasc et

= 1 Zerosy -\ g ~zerosy 2 a1 Zerosi\ g ~ zeros x(elay)
Parameters

Name |Type Default Description
nm sc_core::sc_module name Module name
Zeros sca_util::sca_vector< Zeros

sca_util::sca_complex>

poles sca_util::sca_vector< Poles
sca_util::sca_complex>

delay sca core::sca time sc _core;:SC_ZERO _TIME |Time continuous delay

114 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Name |Type Default Description

k double 1.0 Gain coefficient
Ports

Name |Interface Type/Nature |Description

X sca Isf::sca in Signal flow L SF output

y sca_lsf::sca_out Signal flow L SF output

Constraints on usage

The expansion of the numerator and the denominator shall result in areal value, respectively. The delay
shall be greater or equal to zero.

A.5.10. sca_lsf::sca_ss

Description

Single-input single-output state-space equation.

Definition

sca_l sf::sca_ss(nm a, b, ¢, d, delay);

Symbol
A B
t) =] —> /(1
(1) C D y(t)

Equation

ds(?)

7 A-s(t)+B-x(t —delay)

y(t) =C-s(t)+D-x(¢t — delay)
Parameters
Name |Type Default Description
nm sc_core::sc_module name Module name

sca_util::sca_matrix<double> Matrix A of size n-by-n
b sca_util::sca_matrix<double> Matrix B with one column
of sizen
c sca_util::sca_matrix<double> Matrix C with one row of
sizen

d sca_util::sca_matrix<double> Matrix D of size 1
delay sca_core::sca_time sc_core::SC_ZERO_TIME |Time continuous delay
Ports
Name |Interface Type/Nature |Description
X sca_Isf::sca in Signal flow L SF output
y sca_Isf::sca_out Signal flow L SF output

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 115

March 8 2010 SystemC AMS extensions User’'s Guide

Constraint of usage

The delay shall be greater or equal to zero.

A.5.11. sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain
Description
Scaled multiplication of a TDF input signal by an LSF input signal.

Definition

sca_| sf::sca_tdf::sca_gain(nm scale);

sca_| sf::sca_tdf _gain(nm scale);

Symbol
inp

Equation

y(t) = scale - inp - x(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
inp sca_tdf::sca in<T> double TDF input
X sca_Isf::sca in Signal flow L SF output
y sca_Isf::sca_out Signal flow L SF output

A.5.12. sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source
Description
Scaled conversion of a TDF input signal to an L SF output signal.

Definition

sca_| sf::sca_tdf::sca_source(nm scale);

sca_| sf::sca_tdf _source(nm scale);

Symbol

in > \/(
P UsF w(t)

116 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Equation

y(t) = scale - inp
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
inp sca_tdf::sca_in<T> double TDF input
y sca_lsf::sca_out Signa flow L SF output

A.5.13. sca_lIsf::sca_tdf::sca_sink, sca_lsf::sca_tdf sink
Description
Scaled conversion from an LSF input signal to a TDF output signal.

Definition

sca_l sf::sca_tdf::sca_sink(nm scale);

sca_l sf::sca_tdf _sink(nm scale);

Symbol

LSF
X(t) == S outp

Equation

There is no equation contributed to the overall equation system for this module.

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports

Name |Interface Type/Nature |Description
X sca Isf::sca in Signal flow L SF input
outp sca_tdf::sca_out<T> double TDF output

A.5.14. sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux
Description

Selection of one of two L SF input signals by a TDF control signal (multiplexer).

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

117

March 8 2010

Definition

SystemC AMS extensions User’'s Guide

sca_l sf::sca_tdf::sca_nmux(nm);

sca_l sf::sca_tdf _mux(nm);

Symbol
x,(1)
()
x(1)
ctrl
Equation
2(0)= x,(8) ctrl= false
X5(t) ctrl=true
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
Ports
Name |Interface Type/Nature |Description
x1 sca_Isf::sca_in Signal flow LSFinput 1
x2 sca Isf::sca in Signal flow LSFinput 2
ctrl sca_tdf::sca in<T> bool TDF control input
y sca_|sf::sca_out Signal flow L SF output

A.5.15. sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux

Description

Routing of an LSF input signal to either one of two LSF output signals controlled by a TDF signal
(demultiplexer).

Definition

sca_l sf::sca_tdf::sca_denux(nm);

sca_l sf::sca_tdf _demux(nm);

Symbol

Equation

yl(t): {x(t) ctrl = false

v 0= {

118

0 ctrl=true

0 ctrl= false
x(t) ctrl=true

/ y1(t)

yAt)

ctrl

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

Ports

Name |Interface Type/Nature |Description

X sca_Isf::sca in Signal flow L SF input

ctrl sca_tdf::sca in<T> bool TDF control input
yl sca_Isf::sca_out Signal flow LSF output 1

y2 sca |sf::sca_out Signal flow L SF output 2

A.5.16. sca_lIsf::sca_de::sca_gain, sca_lIsf::sca_de_gain
Description
Scaled multiplication of adiscrete-event input signal by an LSF input signal.

Definition

sca_| sf::sca_de::sca_gain(nm scale);

sca_l sf::sca_de_gain(nm scale);

Symbol
xt)=> X)
inp
Equation
y(t) = scale - inp - x(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
inp SC_core::sc in<T> double Discrete-event input
X sca Isf::sca in Signal flow L SF input
y sca_Isf::sca_out Signal flow L SF output

A.5.17. sca_lsf::sca_de::sca_source, sca_Isf::sca_de_source
Description

Scaled conversion of a discrete-event input signal to an L SF output signal.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

119

March 8 2010 SystemC AMS extensions User’'s Guide

Definition

sca_| sf::sca_de::sca_source(nm scale);

sca_| sf::sca_de_source(nm scale);

Symbol
DE

inp = —> /(1

inp = =] - vt
Equation

y(t) = scale - inp

Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
inp sC_core::sc in<T> double Discrete-event input
y sca_Isf::sca_out Signal flow L SF output

A.5.18. sca_lsf::sca_de::sca_sink, sca_Isf::sca_de_sink
Description
Scaled conversion from an LSF input signal to a discrete-event output signal.

Definition

sca_|l sf::sca_de::sca_sink(nm scale);

sca_|l sf::sca_de_sink(nm scale);

Symbol

X() = LSE [k =» outp
DE

Equation

There is no equation contributed to the overall equation system for this module.

Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name

120 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Name |Type Default |Description

scale double 1.0 Scale coefficient

Ports

Name |Interface Type/Nature |Description

X sca_Isf::sca in Signal flow L SF input

outp SC_core::sc_out<T> double Discrete-event output

A.5.19. sca lIsf::sca_de::sca_mux, sca _Isf::sca_de_mux

Description

Selection of one of two LSF input signals by a discrete-event control signal (multiplexer).

Definition

sca_| sf::sca_de::sca_nux(nm);

sca_| sf::sca_de_nmux(nm);

Symbol
1(£) =
—> (1)
0|
ctrl
Equation
y() = x,(t) ctrl= false
X,(f) ctrl=true
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
Ports
Name |Interface Type/Nature |Description
x1 sca Isf::sca in Signal flow LSFinput 1
x2 sca Isf::sca in Signal flow LSFinput 2
ctrl SC_core::sc in<T> bool Discrete-event control input
y sca_Isf::sca_out Signal flow L SF output

A.5.20. sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux

Description

Routing of an L SFinput signal to either one of two L SF output signals controlled by adiscrete-event control
signal (demultiplexer).

Definition

sca_l sf::sca_de::sca_demux(nm);

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 121

March 8 2010 SystemC AMS extensions User’'s Guide

‘ sca_l sf::sca_de_denux(nm);

Symbol
x(ty—»| —~ = [>V0
= — [VA1)
Equation

0 ctrl=true

v (0= {x(t) ctrl = false

v 0= 0 ctrl= false
x(t) ctrl=true

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

Ports

Name |Interface Type/Nature |Description

X sca |sfiisca_in Signal flow LSF input

ctrl SC_core::sc in<T> bool Discrete-event control input
yl sca_lsf::sca_out Signal flow L SF output 1

y2 sca_Isf::sca_out Signal flow L SF output 2

A.6. ELN primitive modules

A.6.1.sca eln::sca_r
Description
Resistor.

Definition

sca_eln::sca_r(nm value);

Symbol
o 1o
p n
Equation
Vp,ult) = ip,n(t)-value
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
value double 1.0 Resistance in Ohm

122 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

Ports

March 8 2010

Name Interface

Type/Nature

Description

p sca_eln::sca_terminal

Electrical

Positive terminal

n sca_eln::sca_terminal

Electrical

Negative terminal

A.6.2.sca_eln::sca ¢
Description
Capacitor.

Definition

sca_eln::sca_c(nm value, q0);

Symbol

Equation

d(value Vpul(t)+ 4,)
i) = —

Parameters

Name |Type

Default |Description

nm sc_core::sc_module name

Module name

value double

1.0 Capacitancein Farad

q0 double

0.0 Initial charge in Coulomb

Ports

Name Interface

Type/Nature

Description

p sca_eln::sca_terminal

Electrical

Positive terminal

n sca_eln::sca_terminal

Electrical

Negative terminal

Constraint of usage

The parameter value shall not be numerically zero.

A.6.3. sca_eln::sca_|
Description
Inductor.

Definition

sca_eln::sca_l (nm value, phiO);

Symbol

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

123

March 8 2010

SystemC AMS extensions User’'s Guide

Equation
d (value “ipnt)+ phi 0)

Vpa’l(t) = dt
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
value double 1.0 Inductance in Henry
phi0 double 0.0 Initial magnetic flux in Weber
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrica Negative terminal

Constraint of usage

The parameter value shall not be numerically zero.

A.6.4. sca_eln::sca_vcvs
Description
Voltage controlled voltage source.

Definition

sca_el n::sca_vcvs(nm value);

Symbol
ncp 9—++ np
ncn “?,_:,,,,_,,,J nn
Equation
Vip,nn(t) = value - Vingp,nen(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
value double 1.0 Scale coefficient of the control voltage
Ports
Name |Interface Type/Nature |Description
ncp sca_eln::sca_terminal Electrical Positive control terminal
ncn sca_eln::sca_terminal Electrical Negative control terminal
124 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Name Interface

Type/Nature |Description

np sca_eln::sca_terminal Electrica Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source
A.6.5. sca_eln::sca_vccs
Description
Voltage controlled current source.
Definition
sca_el n::sca_vccs(nm value);
Symbol
nopo— o np
ncn E 7777777 ‘ nn
Equation
inp,nn(t) =value - Vncp,ncn(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
value double 1.0 Scale coefficient in Siemens of the control voltage
Ports
Name |Interface Type/Nature |Description
ncp sca_eln::sca_terminal Electrical Positive control terminal
ncn sca_eln::sca_terminal Electrica Negative control terminal
np sca_eln::sca_terminal Electrica Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source
A.6.6. sca_eln::sca_ccvs
Description
Current controlled voltage source.
Definition
sca_el n::sca_ccvs(nm value);
Symbol
ncp — T ,: ”“ np
ncn ‘ = ‘ nn

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 125

March 8 2010

Equation
Vnp,nn(t) =value - incp,ncn(t)

Vncp,ncn(t) =0

SystemC AMS extensions User’'s Guide

Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
value double 1.0 Scale coefficient in Ohm of the control current
Ports
Name |Interface Type/Nature |Description
ncp sca_eln::sca_terminal Electrica Positive control terminal
ncn sca_eln::sca terminal Electrical Negative control terminal
np sca_eln::sca_terminal Electrical Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source
A.6.7.sca_eln::sca_cccs
Description
Current controlled current source.
Definition
sca_el n::sca_cccs(nm value);
Symbol
ncp ‘7777777777: np
ncn ‘ 7777777777 j nn
Equation
inp,nn(t) = value - incp nen(t)
Vncp,ncn(t) =0
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
value double 1.0 Scale coefficient of the control current
Ports
Name |Interface Type/Nature |Description
ncp sca_eln::sca_terminal Electrical Positive control terminal
ncn sca_eln::sca_terminal Electrical Negative control terminal
126 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Name |Interface Type/Nature |Description
np sca_eln::sca_terminal Electrica Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source

A.6.8. sca_eln::sca_nullor

Description

Nullor (nullator - norator pair), ideal Opamp.

Definition

‘ sca_eln::sca_nullor(nm);

Symbol
nip ‘ 77777777777 ‘ nop
nin L,,,,,,,,,,J non
Equation
Vnip,nin(t) =0
inip,nin(t) =0

Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
Ports
Name |Interface Type/Nature |Description
nip sca_eln::sca_terminal Electrical Positive terminal of nullator
nin sca_eln::sca_terminal Electrica Negative terminal of nullator
nop sca_eln::sca_terminal Electrical Positive terminal of norator
non sca_eln::sca_terminal Electrical Negative terminal of norator
A.6.9. sca_eln::sca_gyrator
Description
Gyrator.
Definition
sca_eln::sca_gyrator(nm gl, g2);
Symbol

nip ‘"7777971, 7 7777 » nop

nin ; ai ‘ non

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

127

March 8 2010

Equation

ipl,nl(t) =02 sz,nz(t)

ipz,ng(t) =—01- Vpl,nl(t)

SystemC AMS extensions User’'s Guide

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

gl double 1.0 Gyration conductance in Siemens

g2 double 1.0 Gyration conductance in Siemens

Ports

Name |Interface Type/Nature |Description

pl sca_eln::sca_terminal Electrical Positive terminal of primary port
nl sca_eln::sca_terminal Electrical Negative terminal of primary port
p2 sca_eln::sca_terminal Electrical Positive terminal of secondary port
n2 sca_eln::sca_terminal Electrical Negative terminal of secondary port

A.6.10. sca_eln::sca_ideal_transformer

Description

Ideal transformer.

Definition

sca_eln::sca_ideal _transformer(nm ratio);

Symbol

Equation
Vpl,nl(t) =ratio - Vp2,n2(t)

ip2,n2(t) =ratio - ipl,nl(t)

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

ratio double 10 Transformation ratio

Ports

Name |Interface Type/Nature |Description

pl sca_eln::sca_terminal Electrical Positive terminal of primary port
128 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

March 8 2010

Name |Interface Type/Nature |Description

nl sca_eln::sca_terminal Electrical Negative terminal of primary port
p2 sca_eln::sca_terminal Electrical Positive terminal of secondary port
n2 sca_eln::sca_terminal Electrical Negative terminal of secondary port

A.6.11. sca_eln::sca_transmission_line

Description

Transmission line.

Symbol

Definition

Bl

‘ sca_eln::sca_transm ssion_line(nm z0, delay, delta0);

Equation
Zg lay,b (1) t<delay
Va[’bl(t) - { —deltay)-delay o . . >
e (Vay byt —delay)+z iq, b\t —delay))+zy ia, b (1) t=delay
2 g, bo(t) t<delay
Vap b= _ deltayy-del o
e 0 vy, p (t — delay) + 2y iay b (t — delay))+ 2y ia,pt) t=delay
Parameters
Name |Type Default Description
nm sc_core::sc_module name Module name
z0 double 100.0 Characteristic impedance of
the transmission linein Ohm
delay sca core::sca time sc core;:SC_ZERO TIME |Transmission delay
delta0 |double 0.0 Dissipation factor in 1/
seconds.
Ports
Name |Interface Type/Nature |Description
al sca_eln::sca_terminal Electrical Wire A at primary side
bl sca_eln::sca_terminal Electrical WireB at primary side
a2 sca_eln::sca_terminal Electrical Wire A at secondary side
b2 sca_eln::sca_terminal Electrical Wire B at secondary side

Constraint of usage

The delay shall be greater or equal to zero.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

129

March 8 2010

A.6.12. sca_eln::sca_vsource
Description

Independent voltage source.

SystemC AMS extensions User’'s Guide

Definition
sca_el n::sca_vsource(nm init_value, offset, anplitude, frequency, phase, delay,
ac_anplitude, ac_phase, ac_noise_anplitude);

Symbol

P9

ne-
Equation
For time-domain simulation:

init_value t<delay

Vpu(t) =

offset +amplitude-sin(2x - frequency -(t — delay)+ phase) t=>delay

For small-signal frequency-domain simulation:

vpu(f)= ac_amplitude-{cos(ac_phase)+ j -sin(ac_phase)}

For small-signal frequency-domain noise simulation:

vpu(f) = ac_noise_amplitude

Parameters

Name Type Default Description

nm sC_core: Module name
sc_module_name

init_value double 0.0 Initial value

offset double 0.0 Offset value

amplitude double 0.0 Source amplitude

frequency double 0.0 Source frequency in Hertz

phase double 0.0 Source phase in radian

delay sca_core::sca_time sc_core::SC_ZERO_TIME |Time continuous delay

ac_amplitude |double 0.0 Small-signal amplitude *)

ac_phase double 0.0 Small-signal phasein radian

*)
ac_noise_ double 0.0 Small-signal noise amplitude
amplitude **)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal

130 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Name |Interface Type/Nature |Description

n sca_eln::sca_terminal Electrica Negative terminal

Constraint of usage

The delay shall be greater or equal to zero.

A.6.13. sca_eln::sca_isource
Description
Independent current source.

Definition

sca_eln::sca_isource(nm init_value, offset, anplitude, frequency, phase, delay,
ac_anplitude, ac_phase, ac_noise_anplitude);

Symbol

Equation
For time-domain simulation:

i) = init_value t <delay
NG
! offset +amplitude - sin(2z - frequency -(t — delay)+ phase) t>delay

For small-signal frequency-domain simulation:
ipa(f)=ac _amplitude-{cos(ac_phase)+ j -sin(ac_phase)}
For small-signal frequency-domain noise simulation:

ip(f)=ac_noise_amplitude

Parameters

Name Type Default Description

nm SC_core:: Module name
sc_module_name

init_value double 0.0 Initial value

offset double 0.0 Offset value

amplitude double 0.0 Source amplitude

frequency double 0.0 Source frequency in Hertz

phase double 0.0 Source phase in radian

delay sca_core::sca time |sc_core:SC ZERO_TIME |Time continuous delay

ac_amplitude |double 0.0 Small-signal amplitude *)

ac_phase double 0.0 Small-signal phasein radian

*)
ac_noise_ double 0.0 Small-signal noise amplitude
amplitude *x)

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 131

March 8 2010 SystemC AMS extensions User’'s Guide

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrica Negative terminal

Constraint of usage

The delay shall be greater or equal to zero.

A.6.14. sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf r
Description
Variable resistor controlled by a TDF input signal .

Definition

sca_eln::sca_tdf::sca_r(nm scale);

sca_eln::sca_tdf _r(nm scale);

Symbol

Equation

Vpn(t) = scale - inp - ipn(t)

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

scale double 1.0 Scale coefficient

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrica Negative terminal
inp sca_tdf::sca in<T> double TDF control input

A.6.15. sca_eln::sca_tdf::sca _c, sca_eln::sca _tdf ¢
Description
Variable capacitor controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_c(nm scale, q0);

132 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

‘ sca_eln::sca_tdf _c(nm scale, q0);

March 8 2010

Symbol

Equation

d(inp Vo) + qo)
ipa(t)=scale-——————

dt
Parameters
Name |Type Default |Description
nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient
q0 double 0.0 Initial charge in Coulomb
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrica Negative terminal
inp sca_tdf::sca in<T> double TDF control input

A.6.16. sca_eln::sca_tdf::sca I, sca_eln::sca_tdf |
Description
Variable inductor controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_l (nm scale, phiO);

sca_eln::sca_tdf _I (nm scale, phiO);

Symbol

Equation

d(inp ipa(t)+ phio)

vp,u(t) = scale-

dt
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

133

March 8 2010 SystemC AMS extensions User’'s Guide

Name |Type Default |Description

phiO double 0.0 Initial magnetic flux in Weber
Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrica Negative terminal

inp sca_tdf::sca in<T> double TDF control input

A.6.17. sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf rswitch
Description
Switch controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_rswitch(nm ron, roff, off_state);

sca_eln::sca_tdf _rswitch(nm ron, roff, off_state);

Symbol
inp .! |
__ n,,\
Equation
_ (7ron-ipn(t) ctrl# off state
Vpu(t) =
Toipn(t) ctrl = off state
Parameters
Name |Type Default Description
nm sc_core::sc_module name Module name
ron double 0.0 On resistance in Ohm
roff double sca util::SCA_INFINITY | Off resistancein Ohm
off_state | bool false Define which position isthe
off-position
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
ctrl sca tdf::sca in<T> bool TDF control input

A.6.18. sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf vsource
Description

Voltage source driven by a TDF input signal.

134 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

Definition

March 8 2010

sca_eln::sca_tdf::sca_vsource(nm scale);

sca_el n::sca_tdf _vsource(nm scale);

Symbol

Equation

Vpn(t) =scale - inp

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

scale double 1.0 Scale coefficient

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrica Negative terminal
inp sca_tdf::sca in<T> double TDF input

A.6.19. sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf isource
Description
Current source driven by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_isource(nm scale);

sca_eln::sca_tdf _isource(nm scale);

Symbol

Equation

ipn(t) =scale - inp

Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

135

March 8 2010

SystemC AMS extensions User’'s Guide

Name |Type Default |Description

scale double 1.0 Scale coefficient

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrica Negative terminal
inp sca_tdf::sca in<T> double TDF input

A.6.20. sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf vsink

Description
Converts voltage to a TDF output signal.

Definition

sca_eln::sca_tdf::sca_vsink(nm scale);

sca_el n::sca_tdf _vsink(nm scale);

Symbol

ST

| Von — outp

Equation
No equation added to the equation system.
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp sca _tdf::sca_out<T> double TDF output

A.6.21. sca_eln::sca_tdf::sca isink, sca eln:

Description
Converts current to a TDF output signal.

Definition

:sca_tdf isink

‘ sca_eln::sca_tdf::sca_isink(nm scale);

136

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010
sca_eln::sca_tdf _isink(nm scale);
Symbol
po— |
i Ipn — outp
Equation
Vpn() =0
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp sca tdf::sca out<T> double TDF output
A.6.22. sca_eln::sca_de::sca_r, sca_eln::sca_de_r
Description
Variable resistor controlled by a discrete-event input signal.
Definition
sca_eln::sca_de::sca_r(nm scale);
sca_eln::sca_de_r(nm scale);
Symbol
Equation
Vp’n(t) = me * |np N |p'n(t)
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 137

March 8 2010 SystemC AMS extensions User’'s Guide

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrica Negative terminal

inp SC_core::sc_in<T> double Discrete-event control input

A.6.23. sca_eln::sca_de::sca_c, sca_eln::sca_de_c
Description
Variable capacitor controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_c(nm scale, q0);

sca_eln::sca_de_c(nm scale, qO0);

Symbol

Equation

d(inp -vp.a(t)+q,)
ipn(t)=scale-——————

dt
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
go double 0.0 Initial chargein Coulomb
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp SC_core::sc_in<T> double Discrete-event control input

A.6.24. sca_eln::sca_de::sca_l, sca_eln::sca_de_|
Description
Variable inductor controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_|l (nm scale, phiO);

138 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

‘ sca_eln::sca_de_| (nm scale, phiO);

March 8 2010

Symbol

Equation

d(inp “ipn(t)+ phio)

vp,u(t) = scale-

dt
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
phiO double 0.0 Initial magnetic flux in Weber
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp SC_core:sc_in<T> double Discrete-event control input

A.6.25. sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch
Description
Switch controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_rswitch(nm ron, roff, off_state);

sca_eln::sca_de_rswitch(nm ron, roff, off_state);

Symbol
inp Ij! |
I__ n77
Equation
_ (7ron-ipa(t) ctrl # off state
Vpu(t) = .
Tor ipu(t) ctrl=off state
Parameters
Name |Type Default Description
nm sc_core::sc_module name Module name

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

139

March 8 2010

SystemC AMS extensions User’'s Guide

Name |Type Default Description

ron double 0.0 On resistance in Ohm

roff double sca_util::SCA_INFINITY | Off resistance in Ohm

off_state | bool false Define which position isthe
off-position

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrica Negative terminal

ctrl SC_core::sc in<T> bool Discrete-event control input

A.6.26. sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource

Description

Voltage source driven by adiscrete-event input signal.

Definition

sca_el n::sca_de::sca_vsource(nm scale);

sca_el n::sca_de_vsource(nm scale);

Symbol

Equation

Vpn(t) = scale - inp

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

scale double 1.0 Scale coefficient

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal
inp SC_core::sc_in<T> double Discrete-event input

A.6.27. sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource

Description

Current source driven by a discrete-event input signal.

140

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

Definition

March 8 2010

sca_el n::sca_de::sca_isource(nm scale);

sca_el n::sca_de_isource(nm scale);

Symbol

Equation

Parameters

Name |Type Default |Description

nm sc_core::sc_module name Module name

scale double 1.0 Scale coefficient

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp sC_core::sc in<T> double Discrete-event input

A.6.28. sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink

Description
Converts voltage to a discrete-event output signal.

Definition

sca_el n::sca_de::sca_vsink(nm scale);

sca_el n::sca_de_vsink(nm scale);

Symbol

e

| Von I:I outp

n $f 777777 |
Equation
No equation added to the equation system.
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

141

March 8 2010

SystemC AMS extensions User’'s Guide

Ports

Name |Interface Type/Nature |Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal
outp SC_core::sc_out<T> double Discrete-event output

A.6.29. sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink

Description

Converts current to a discrete-event output signal.

Definition

sca_eln::sca_de::sca_isink(nm scale);

sca_el n::sca_de_isink(nm scale);

Symbol
Po—m ;
i Ipn Ijoutp
n— |
Equation
Vpn(t) =0
Parameters
Name |Type Default |Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name |Interface Type/Nature |Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp SC_core::sc_out<T> double Discrete-event output

142 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Appendix B. Symbols and graphical representations

This appendix gives an overview of the symbols and graphical representations used in this user’s guide.
In case derivative block diagrams or electrical networks are extracted from this user’s guide, it is strongly

recommended to use these symbols and graphical representations in a consistent manner.

The symbols for theindividual LSF and ELN primitives are given in Appendix A.

TDF module
(with ports and signals)

sca_tdf::sca_module

TDF port sca_tdf::sca_in<T>
sca_tdf::sca_out<T>
1 | TDF converter port sca_tdf::sca_de::sca_in<T>
sca_tdf::sca_de::sca_out<T>
—l TDF signal sca_tdf::sca_signal<T>
discrete-event
aas =ap module (with sc_core::sc_module
ports and signals)
O discrete-event port sc_core:sc_in<T>
sc_core::sc_out<T>
LLEEY 2 discrete-event signal sc_core::sc_signal<T>
LSF module sca_lsf::sca_module
’ > (with ports and signals) (only available as predefined primitives)
sca_lsf:isca_in
o LSF port - -
sca_lsf::sca_out
— LSF signal sca_lsf::sca_signal
ELN module sca_eln::sca_module
o _te (with terminals) (only available as predefined primitives)
° ELN terminal sca_eln::sca_terminal
¢ ELN node sca_eln::sca_node

.

ELN reference node
(ground)

sca_eln::sca_node_ref

Figure B.1. Symbols and graphical representations of TDF, LSF, ELN and discrete-event elements.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

This page is intentionally left blank.

SystemC AMS extensions User’s Guide March 8 2010

Appendix C. Glossary
This glossary contains brief descriptions for a number of terms used in this user’s guide.
C.1. application

A C++ program, written by an end user, that makes use of the classes, functions, macros, and so forth
provided by SystemC and the AMS extensions. An application may use as few or as many features of C++
asis seen fit and as few or as many features of SystemC and the AM S extensions as is seen fit.

C.2. cluster
A cluster is aset of connected modules sharing the same model of computation.
C.3. continuous-time signal

A continuous-time signal is a piecewise contiguous and differentiable signal, which may be represented in
approximation by a set of samples at discrete time points. Values between the samples can be estimated
by different interpolation techniques.

C.4. discrete-time signal

A discrete-timesignal isasignal that has been sampled from acontinuous-time signal resulting in asequence
of values at discrete time points. Each value in the sequenceis called a sample.

C.5. electrical linear networks, ELN
A model of computation that usesthe electrical linear networksformalism for cal culations. (See Chapter 4.)
C.6. frequency-domain processing

Frequency-domain processing can be embedded in timed data flow descriptions for analysis of small-
signal frequency-domain behavior. The frequency-domain behavior of a module instance derived
from sca tdf::sca_module has to be implemented either by overloading its member function
sca_tdf::sca_module::ac_processing or by registering an application-defined member function using
sca_tdf::sca_module::register_ac processing.

C.7. hierarchical port

A port of a parent module.

C.8. implementation

A specific concrete implementation of the full SystemC AMS extensions, of which only the public shell
needs to be exposed to the application (i.e., parts may be pre-compiled and distributed as object code by
atool vendor).

C.9. linear signal flow, LSF

A model of computation that uses the linear signal flow formalism for calculations and signal processing.
(See Chapter 3.)

C.10. model of computation, MoC

A model of computation implements a modeling formalism, which is a set of rules defining the behavior
(computation) and interaction (communication) between AMS primitive modules instantiated within a
module. (See Section 1.2.3.)

C.11. numerically singular

Numerically singular describes asituation, in which the solution of an equation system cannot be cal cul ated.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 145

March 8 2010 SystemC AMS extensions User’'s Guide

C.12. primitive module

A classthat isderived from classsca _core::sca_moduleand compliesto aparticular model of computation.
A primitive module cannot be hierarchically decomposed and contains no child modules or channels.

C.13. primitive port
A port of aprimitive module.
C.14. proxy class

A class, which only purpose is to extend the readability of certain statements that otherwise would be
restricted by the semantics of C++. An example is to use the proxy class to represent a continuous-time
signal and to map it to discrete-time signal. Proxy classes are only intended to be used for the temporary
value returned by a function. A proxy class constructor shall not be called explicitly by an application to
create a named object.

C.15. rate

The rate defines the number of samples that have to be read or written at a port of type sca tdf::sca_in,
sca tdf::sca out, sca tdf::sca_de::sca in, and sca tdf::sca de::sca_out during each execution of
the time-domain and frequency domain processing function of its parent module derived from
sca_tdf::sca_module. Therate of such a port shall have a positive, nonzero value.

C.16. sample

A samplereferstoavalueat acertain pointintimeor refersto aset of valueswith acertain start and end time.
sample_id denotestheindex of the (data) sample, nsample denotes the number of samplesin aset of values.

C.17. solver
A solver computes the solution of an equation system (e.g., aset of differential and algebraic equations).
C.18. terminal

A terminal is a class derived from the class sca_core::sca_port and is associated with the electrical linear
networks model of computation. For electrical primitives with 2 terminals, the terminal names p and n are
defined. Multi-port primitives may use different terminal names.

C.19. timed data flow, TDF

A model of computation that uses the timed data flow formalism for scheduling and signal processing. (See
Chapter 2.)

C.20. time-domain processing

Time-domain processing is done through the repetitive activation of the time-domain processing
member functions as part of the timed data flow model of computation. The time-domain
processing member function can be either the member function sca tdf::sca module::processing
or an application-defined member function, which shall be registered using the member function
sca_tdf::sca_module::register _processing.

C.21. untimed model of computation

In an untimed model of computation, the behavioral description (computation) and interaction with other
modules and processes (communication) does not have anotion of time. Only the order of computations or
events, and cause and effect of computations or events are relevant.

146 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

Index

A
abstraction, 85
ac_processing, member function
class sca tdf::sca module, 105
application
glossary, 145
attribute settings
set_attributes, member function, 15
timed data flow, 15

B

baseband modeling
timed data flow, 89

behavioral modeling
linear signal flow, 87
timed data flow, 89

C

classes
public and private members, 102
sca eln::sca c, 56, 123
sca_eln::sca _cccs, 56, 126
sca_eln::sca _ccvs, 56, 125
sca eln::sca de:sca c, 138
sca_eln::sca de::sca c, class, 56
sca _eln::sca de::sca isink, 56, 142
sca_eln::sca de::sca isource, 56, 140
sca _eln::sca de::sca |, 56, 138
sca eln::sca de::sca r, 56, 137
sca_eln::sca de::sca rswitch, 56, 139
sca _eln::sca de::sca vsink, 56, 141
sca _eln::sca de::sca vsource, 56, 140
sca eln::sca gyrator, 56, 127
sca _eln::sca ideal_transformer, 56, 128
sca_eln::sca isource, 56, 131
sca eln::sca |, 56, 123
sca_eln::sca_node, 58
sca _eln::sca _node ref, 58
sca _eln::sca nullor, 56, 127
sca eln::sca r, 56, 122
sca _eln::sca tdf::sca c, 56, 132
sca _eln::sca tdf::sca isink, 56, 136
sca_eln::sca tdf::sca isource, 56, 135
sca eln::sca tdf::sca |, 56, 133
sca eln::sca tdf::sca r, 56, 132
sca _eln::sca tdf::sca rswitch, 56, 134
sca_eln::sca tdf::sca vsink, 56, 136
sca_eln::sca tdf::sca vsource, 56, 134
sca_eln::sca terminal, 58
sca_eln::sca transmission _line, 56, 129
sca_eln::sca vcces, 56, 125
sca _eln::sca vevs, 56, 124
sca_eln::sca vsource, 56, 130
sca |sf::sca add, 42, 108
sca |sf::sca de::sca demux, 42, 121
sca Isf::sca _de:isca _gain, 42, 119

March 8 2010

sca Isf::sca dei:sca_mux, 42, 121
sca Isf::sca deiisca sink, 42, 120
sca Isf::sca de::sca source, 42, 119
sca_|Isf::sca delay, 42, 111
sca lsf::sca dot, 42, 110
sca |Isf::sca gain, 42, 110
sca Isf:isca in, 43
sca |Isf::sca integ, 42, 111
sca |Isf:isca Itf_nd, 42, 113
sca |Isf::sca ltf_zp, 42, 114
sca Isf::sca out, 43
sca Isf::sca signal, 44
sca Isf::sca source, 42, 112
sca Isfiisca ss, 42, 115
sca Isf::sca sub, 42, 109
sca Isf::sca tdf::sca_demux, 42, 118
sca Isf::sca tdf::sca _gain, 42, 116
sca Isf::sca tdf::sca_mux, 42, 117
sca Isf::sca tdf::sca sink, 42, 117
sca |sf::sca tdf::sca_source, 42, 116
sca_tdf::sca de::sca in, 17, 105
sca tdf::sca de::sca out, 17, 105
sca tdf::sca in, 17, 105
sca tdf::sca Itf_nd, 22, 106
sca_tdf::sca Itf_zp, 22, 107
sca_tdf::sca_module, 105
sca_tdf::sca out, 17, 105
sca_tdf::sca signal, 20, 106
sca_tdf::sca ss, 23, 107
sca tdf::sca trace variable, 80
sca_util::sca trace file, 79
cluster, glossary, 145
coding style, 96
complex
envelope, 91
low-pass equivalent, 91
value, sca_util::SCA_COMPLEX_J, 73
constants
sca_util::SCA_COMPLEX_J, 73
constructor
SCA_CTOR, macro, 16
continuous-time modeling
electrical linear networks, 60
linear signal flow, 46
timed data flow, 21
continuous-time signal, glossary, 145
converter modules
electrical linear networks, 61
linear signal flow, 47
converter ports
timed data flow, 17, 30

D

delay
frequency-domain delay, 71

delays
set_delay, member function, 17, 29
timed data flow, 29

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 147

March 8 2010

design refinement, 94
disable, member function

class sca util::sca trace file, 79
discrete-time modeling

timed data flow, 21
discrete-time signal, glossary, 145
dynamic memory allocation, 97

E
electrical linear networks
continuous-time modeling, 60
glossary, 145
language constructs, 56
macromodeling, 86
modeling fundamentals, 55
module time step, 57
port binding, 59
set_timestep, member function, 57
setup equation system , 55
structural composition of modules, 59
time step assignment, 56
time step propagation, 56
ELN (see electrical linear networks)
embedded equations
laplace transfer functions, 22
state-space equations, 23
enable, member function
class sca util::sca trace file, 79
execution semantics
electrical linear networks, 64
linear signal flow, 50
timed data flow, 32

F
frequency-domain processing, glossary, 145
frequency-domain simulation, 78
functions
SC_core::sc_ac _noise start, 78
SC_core::sc_ac_start, 78
SC_core::sc_start, 77
sca ac_analysis::sca ac, 70
sca ac_analysis::sca ac _delay, 71
sca ac_analysis:sca ac f, 73
sca ac_analysis::sca ac is _running, 74
sca ac_analysis:sca ac Itf_nd, 71
sca ac_analysis::sca ac Itf_zp, 71
sca ac_analysis::sca ac_hoise, 70
sca_ac_analysis::sca ac _nhoise is_running, 74
sca ac_analysis::sca ac s, 72
sca ac_analysis:sca ac w, 73
sca ac_analysis:sca ac z, 73
sca_util::sca close tabular_trace file, 79
sca_util::sca close ved trace file, 79
sca_util::sca create tabular_trace file, 79
sca_util::sca create ved trace file, 79
sca_util::sca_decimation, 79
sca_util::sca_sampling, 79
sca_util::sca trace, 80

SystemC AMS extensions User’'s Guide

sca_util::sca write_comment, 80
small-signal frequency-domain, 71

G
get_delay, member function
class sca tdf::sca de::sca in, 17, 105
class sca tdf::sca de::sca out, 17, 105
classsca tdf::sca in, 17, 105
class sca tdf::sca out, 17, 105
get_rate, member function
class sca tdf::sca dei:sca in, 17, 105
class sca tdf::sca de::sca out, 17, 105
classsca tdf::sca in, 17, 105
class sca tdf::sca out, 17, 105
get_time, member function
class sca tdf::sca module, 105
get_timeoffset, member function
class sca tdf::sca de::sca in, 17, 105
class sca tdf::sca de::sca out, 17, 105
get_timestep, member function
class sca tdf::sca de::sca in, 17, 105
class sca tdf::sca de::sca out, 17, 105
classsca tdf::sca in, 17, 105
class sca tdf::sca module, 105
classsca tdf::sca out, 17, 105

H
header files, 96
hierarchical port, glossary, 145

I
implementation
glossary, 145
initialization
initialize, member function, 15
timed data flow, 15
initialize, member function
classsca tdf::sca de::sca in, 18, 105
class sca tdf::sca de::sca out, 18, 105
class sca tdf::sca in, 18, 105
class sca tdf::sca module, 105
class sca tdf::sca out, 18, 105
interaction between models of computation
eectrical linear networks, 61
linear signal flow, 47
timed data flow, 30
introduction
motivation, 1

L

language architecture, 4

language constructs
electrical linear networks, 56
linear signal flow, 42
small-signal frequency-domain, 70
time dataflow, 14

laplace transfer functions
classsca Isf::sca Itf_nd, 113

148 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

classsca |sf::sca Itf_zp, 114
class sca tdf::sca Itf_nd, 22, 106
class sca tdf::sca Itf_zp, 22, 107
function sca_ac_analysis::sca ac Itf_nd, 71
function sca_ac_analysis::sca ac_Itf zp, 71
linear signal flow
continuous-time modeling, 46
glossary, 145
language constructs, 42
modeling fundamentals, 41
module time step, 43
port binding, 44
set_timestep, member function, 43
setup equation system , 41
structural composition of modules, 44
time step assignment, 42
time step propagation, 42
L SF (seelinear signal flow)
LTF (see laplace transfer functions)

M
macromodeling, 86
model abstractions
conservative descriptions, 3
continuous-time descriptions, 3
discrete-time descriptions, 3
non-conservative descriptions, 3
modeling formalisms
electrical linear networks, 4
linear signal flow, 4
timed data flow, 4
modeling style, 96
model of computation
electrical linear networks, 55,
glossary, 145
linear signal flow, 41,
partitioning behavior, 91
timed data flow, 7,
untimed, glossary, 146
module activation
processing, member function, 16, 105
module [ocal time
get_time, member function, 16
modules
classsca eln::sca_module, 56
class sca |sf::sca_module, 42
class sca tdf::sca_ module, 14, 105
definition and implementation, 100
electrical linear networks, 56
linear signal flow, 42
parameters, 98
time dataflow, 14
module time step
get_timestep, member function, 105
set_timestep, member function, 15, 43, 57, 105
multirate behavior
get_rate, member function, 17, 105
set_rate, member function, 17, 28, 105

March 8 2010

timed data flow, 28

N
namespaces, 96
naming conventions, 96
nodes
class sca_eln::sca_node, 58
classsca eln::sca node ref, 58
electrical linear networks, 58
noise
modeling in time-domain, 93
numericaly singular, glossary, 145

P
PID controller
with adjustable coefficients, 88
port attributes
get_delay, member function, 17, 105
get_rate, member function, 17, 105
get_timeoffset, member function, 17, 105
get_timestep, member function, 17, 105
set_delay, member function, 17, 105
set_rate, member function, 17, 105
set_timeoffset, member function, 17, 105
set_timestep, member function, 17, 105
timed data flow, 17, 105
port binding
electrical linear networks, 59
linear signal flow, 44
timed data flow, 26
port initialization
initialize, member function, 18, 105
port read and write access
read, member function, 18, 105
write, member function, 18, 105
ports
classsca eln::sca terminal, 58
classsca Isf::sca in, 43
classsca Isf::sca out, 43
classsca tdf::sca de::sca in, 17, 105
class sca tdf::sca de::sca out, 17, 105
classsca tdf::sca in, 17, 105
classsca tdf::sca out, 17, 105
electrical linear networks terminals, 58
linear signal flow, 43
timed data flow, 17
port time
get_time, member function, 20, 105
get_timeoffset, member function, 17
set_timeoffset, member function, 17, 105
port time step
get_timestep, member function, 17, 105
set_timestep, member function, 17, 105
primitive modules
classsca eln::sca c, 56, 123
classsca eln::sca cccs, 56, 126
classsca eln::sca ccvs, 56, 125
classsca eln::sca de::sca c, 138

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 149

March 8 2010

class sca_eln::sca de:
class sca_eln::sca de:
class sca_eln::sca de:
class sca_eln::sca de:
class sca_eln::sca de:

:sca_c, class, 56
:sca_isink, 56, 142
:sca_isource, 56, 140
:sca |, 56, 138
'sca r, 56, 137

SystemC AMS extensions User’'s Guide

R

rate, glossary, 146
read, member function

class sca tdf::sca de::sca in, 18, 105

class sca tdf::sca in, 18, 105
reopen, member function
class sca util::sca trace file, 79

classsca_eln::sca de::sca rswitch, 56, 139
classsca eln::sca de:sca vsink, 56, 141
class sca_eln::sca de::sca vsource, 56, 140
class sca_eln::sca_gyrator, 56, 127 S

classsca_eln::sca ideal_transformer, 56, 128 sample, glossary, 146

classsca_eln::sca isource, 56, 131 SC_core::sc_ac_noise_start, function, 78
classsca_eln::sca |, 56, 123 sc_core::sc_ac_start, function, 78

classsca _eln::sca_nullor, 56, 127 sc_core::sc_start, function, 77

classsca eln::sca r, 56, 122 sca_ac_analysis::sca_ac_delay, function, 71
classsca _eln::sca tdf::sca_c, 56, 132 sca_ac_analysis::sca_ac _f, function, 73
classsca _eln::sca tdf::sca isink, 56, 136 sca_ac_analysis::sca_ac_is_running, function, 74
class sca_eln::sca tdf::sca isource, 56, 135 sca_ac_analysis::sca ac_Itf_nd, function, 71
classsca eln::sca tdf::sca |, 56, 133 sca_ac_analysis::sca ac_Itf_zp, function, 71
classsca eln::sca tdf::sca r, 56, 132 sca_ac_analysis::sca_ac_noise is _running,
classsca_eln::sca tdf::sca rswitch, 56, 134 function, 74

classsca _eln::sca tdf::sca vsink, 56, 136 sca_ac_analysis::sca_ac_noise, function, 70
class sca_eln::sca tdf::sca vsource, 56, 134 sca_ac_analysis::sca ac_s, function, 72

class sca_eln::sca transmission_line, 56, 129 sca_ac_analysis::sca_ac_w, function, 73

classsca eln:
classsca eln:
classsca eln:
class sca |sf:
class sca |sf:
class sca |sf:

classsca |sf:
:sca_de::sca sink, 42, 120
:sca_de::sca_source, 42, 119
'sca_delay, 42, 111

:sca_dot, 42, 110

class sca |sf:
class sca |sf:
class sca |sf:
class sca |sf:

'sca_vcecs, 56, 125
‘sca vcevs, 56, 124
‘sca_vsource, 56, 130

'sca_add, 42, 108
:sca_de::sca_demux, 42, 121
:sca_de:isca gain, 42, 119

sca de::sca mux, 42, 121

sca_ac_analysis::sca ac_z, function, 73
sca_ac_analysis::sca ac, function, 70

SCA_CTOR, macro

class sca tdf::sca_ module, 105

sca_eln::sca c, class, 123
sca_eln::sca cccs, class, 126
sca_eln::sca cevs, class, 125
sca_eln::sca de c, typedef

classsca eln::sca de::sca c, 138

sca eln:

:sca_de_isink, typedef

classsca eln::sca de:sca isink, 142

classsca Isf::sca gain, 42, 110 sca_eln::sca_de_isource, typedef
classsca Isf::sca integ, 42, 111 class sca_eln::sca_de::sca isource, 140
classsca Isf::sca Itf_nd, 42, 113 sca_eln::sca _de |, typedef

classsca Isf::sca Itf_zp, 42,114 classsca_eln::sca de::sca |, 138

class sca |sf::sca_source, 42, 112 sca eln::sca de r, typedef

class sca |sf:
class sca |sf:

'sca_ss, 42,115
:sca_sub, 42, 109

classsca eln::sca de:sca r, 137

sca eln:

:sca_de_rswitch, typedef

class sca Isf::sca tdf::sca_demux, 42, 118
class sca Isf::sca tdf::sca gain, 42, 116
class sca Isf::sca tdf::sca_mux, 42, 117
classsca Isf::sca tdf:isca sink, 42, 117
class sca Isf::sca tdf::sca source, 42, 116
class sca tdf::sca_module, 14
class sca tdf::sca ss, 107
electrical linear networks, 56
glossary, 146
linear signal flow, 42
time data flow, 14

primitive port, glossary, 146

processing, member function
class sca tdf::sca_module, 105

proxy class, glossary, 146

classsca eln::sca de::sca rswitch, 139
sca_eln::sca_de vsink, typedef

classsca eln::sca de::sca vsink, 141
sca _eln::sca_de vsource, typedef

classsca eln::sca de::sca vsource, 140
sca_eln::sca de::sca c, class, 138
sca_eln::sca de::sca isink, class, 142
sca_eln::sca de::sca isource, class, 140
sca eln::sca de:sca |, class, 138
sca_eln::sca de::sca r, class, 137
sca_eln::sca de::sca rswitch, class, 139
sca_eln::sca de::sca vsink, class, 141
sca_eln::sca de::sca vsource, class, 140
sca_eln::sca gyrator, class, 127
sca_eln::sca ideal_transformer, class, 128
sca_eln::sca isource, class, 131
sca eln::sca |, class, 123

150 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide

sca eln::sca nullor, class, 127
sca eln::sca r, class, 122
sca_eln::sca tdf_c, typedef

classsca eln::sca tdf::sca c, 132
sca_eln::sca tdf_isink, typedef

classsca eln::sca tdf::sca isink, 136
sca _eln::sca tdf_isource, typedef

class sca_eln::sca tdf::sca isource, 135
sca_eln::sca tdf I, typedef

classsca eln::sca tdf::sca I, 133
sca _eln::sca tdf_r, typedef

classsca eln::sca tdf::sca r, 132
sca _eln::sca tdf_rswitch, typedef

class sca_eln::sca tdf::sca rswitch, 134
sca eln::sca tdf_vsink, typedef

classsca_eln::sca tdf::sca vsink, 136
sca_eln::sca tdf_vsource, typedef

classsca_eln::sca tdf::sca vsource, 134
sca_eln::sca tdf::sca c, class, 132
sca_eln::sca tdf::sca isink, class, 136
sca_eln::sca tdf::sca isource, class, 135
sca _eln::sca tdf::sca |, class, 133
sca_eln::sca tdf::sca r, class, 132
sca _eln::sca tdf::sca rswitch, class, 134
sca_eln::sca tdf::sca vsink, class, 136
sca _eln::sca tdf::sca vsource, class, 134
sca_eln::sca transmission_line, class, 129
sca_eln::sca vccs, class, 125
sca_eln::sca vevs, class, 124
sca_eln::sca vsource, class, 130
sca Isf::sc_de gain, typedef

class sca |sf::sca_de::sca_gain, 119
sca Isf:isca_add, class, 108
sca Isf::sca_de_demux, typedef

class sca Isf::sca de::sca_demux, 121
sca Isf::sca_de_mux, typedef

classsca |sf::sca_de::sca mux, 121
sca Isf::sca_de_sink, typedef

class sca Isf::sca de::sca sink, 120
sca Isf::sca_de_source, typedef

class sca Isf::sca de::sca source, 119
sca Isf:isca_de:isca_demux, class, 121
sca Isf::sca _de:isca _gain, class, 119
sca Isf:isca_de:isca_mux, class, 121
sca Isf:isca_de::sca sink, class, 120
sca Isf::sca_de::sca_source, class, 119
sca Isf::sca_delay, class, 111
sca Isf::sca_dot, class, 110
sca Isf:isca_gain, class, 110
sca |sf::sca integ, class, 111
sca Isf:isca Itf_nd, class, 113
sca |sf::sca Itf_zp, class, 114
sca Isf:isca_source, class, 112
sca Isfisca ss, class, 115
sca Isf:isca_sub, class, 109
sca Isf:isca tdf _demux, typedef

class sca Isf::sca tdf::sca_demux, 118
sca Isf::sca tdf _gain, typedef

March 8 2010

class sca Isf::sca tdf::sca gain, 116
sca |sf::sca tdf_mux, typedef

class sca Isf::sca tdf::sca_mux, 117
sca Isf::sca tdf_sink, typedef

class sca Isf::sca tdf::sca sink, 117
sca |sf::sca tdf_source, typedef

class sca Isf::sca tdf::sca source, 116
sca Isf::sca tdf::sca_demux, class, 118
sca lsf::sca tdf::sca_gain, class, 116
sca Isf::sca tdf::sca_mux, class, 117
sca Isf::sca tdf::sca sink, class, 117
sca Isf::sca tdf::sca_source, class, 116
SCA_TDF_MODULE, macro

class sca tdf::sca_module, 14
sca_tdf::sca Itf_nd, class, 106
sca tdf::sca Itf_zp, class, 107
sca_tdf::sca_module, class, 105
sca_tdf::sca ss, class, 107
sca_util::sca_close tabular_trace file, function, 79
sca_util::sca_close ved trace file, function, 79
sca util::SCA_COMPLEX_J, constant, 73
sca_util::sca_create tabular_trace file, function, 79
sca_util::sca_create ved trace file, function, 79
sca_util::sca_decimation, function, 79
sca_util::sca_sampling, function, 79
sca_util::sca write_comment, function, 80
S-domain

function sca_ac_analysis::sca ac s, 72
set_attributes, member function

class sca_tdf::sca_module, 105
set_delay, member function

class sca tdf::sca de:sca in, 17, 105

class sca tdf::sca de::sca out, 17, 105

classsca tdf::sca in, 17, 105

class sca tdf::sca out, 17, 105
set_mode, member function

class sca util::sca trace file, 79
set_rate, member function

class sca tdf::sca de::sca in, 17, 105

class sca tdf::sca de::sca out, 17, 105

classsca tdf::sca in, 17, 105

class sca tdf::sca out, 17, 105
set_timeoffset, member function

class sca tdf::sca de::sca in, 17, 105

class sca tdf::sca de::sca out, 17, 105
set_timestep, member function

class sca_eln::sca_module, 57

class sca |sf::sca_module, 43

class sca tdf::sca de::sca in, 17, 105

class sca tdf::sca de::sca out, 17, 105

classsca tdf::sca in, 17, 105

class sca tdf::sca_module, 15, 105

class sca tdf::sca out, 17, 105
signals

class sca_eln::sca_node, 58

class sca_eln::sca_node ref, 58

classsca Isf::sca signal, 44

class sca tdf::sca signal, 20

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 151

March 8 2010

electrical linear networks, nodes, 58

linear signal flow, 44

timed data flow, 20
simulation

arguments, 77

frequency-domain, 78

time-domain, transient, 77
simulation control, 77
small-signal frequency-domain

analyses methods, 69

language constructs, 70

modeling fundamentals, 69

setup equation system , 69
solver, glossary, 146
state-space equations

class sca tdf::sca ss, 23
state-space function

classsca Isf::sca ss, 115

class sca tdf::sca ss, 107
structural composition

electrical linear networks, 59

linear signal flow modules, 44

timed data flow modules, 26

T
TDF (see timed data flow)
templates
class templates, 101
terminals
classsca eln::sca terminal, 58
electrical linear networks, 58
glossary, 146
testbench, 82
timed data flow
attributes, 7
baseband modeling, 89
behavioral modeling, 89
continuous-time modeling, 21
discrete-time modeling, 21
glossary, 146
language constructs, 14
laplace transfer functions, 22
modeling fundamentals, 7
module attributes, 15
multirate behavior, 28
port binding, 26
signal processing behavior, 13
state-space equations, 23
structural composition of modules, 26
time step assignment, 11
time step propagation, 11
time-domain processing, glossary, 146
time-domain simulation, 77
time step
electrical linear networks modules, 57
linear signal flow modules, 43
timed data flow modules, 15
timed data flow ports, 17

SystemC AMS extensions User’'s Guide

time step assignment and propagation
electrical linear networks, 56
linear signal flow, 42
timed dataflow, 11, 89
trace variables
class sca tdf::sca trace variable, 80
tracing
reopen trace file, 79
sca_util::sca trace, function, 80
signal types, 80
time-domain, 79
to an output stream, 79
to tabular file, 79
to VCD file, 79
trace file control, 79
trace file mode, 79
writing comments, 80
typedef
sca eln::sca de c, 138
sca_eln::sca de isink, 142
sca_eln::sca de isource, 140
sca eln::sca de |, 138
sca_eln::sca de r, 137
sca_eln::sca_de rswitch, 139
sca_eln::sca_de vsink, 141
sca_eln::sca_de vsource, 140
sca_eln::sca tdf_c, 132
sca_eln::sca tdf_isink, 136
sca_eln::sca tdf_isource, 135
sca eln::sca tdf 1, 133
sca _eln::sca tdf r, 132
sca_eln::sca tdf_rswitch, 134
sca eln::sca tdf_vsink, 136
sca_eln::sca tdf_vsource, 134
sca Isf::sca_de_demux, 121
sca |Isf::sca de gain, 119
sca Isf::sca_de_mux, 121
sca Isf::sca de _sink, 120
sca Isf::sca_de source, 119
sca Isf::isca tdf _demux, 118
sca |Isf::sca tdf_gain, 116
sca |Isf:isca tdf_mux, 117
sca |Isf::sca tdf_sink, 117
sca Isf::sca tdf_source, 116

U

use cases
architecture exploration, 2
executable specification, 2
integration validation, 3
virtual prototyping, 2

using directive, 97

W

write, member function
class sca tdf::sca _de::sca out, 18, 105
class sca tdf::sca out, 18, 105

152 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

SystemC AMS extensions User’s Guide March 8 2010

Z
z-domain
function sca_ac_analysis::sca ac z, 73

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved. 153

This page is intentionally left blank.

	SystemC AMS extensions User’s Guide
	Copyright Notice
	About this document
	Preface
	1. Introduction
	1.1. Motivation
	1.2. SystemC AMS extensions
	1.2.1. Use cases and requirements
	Executable specification
	Virtual prototyping
	Architecture exploration
	Integration validation

	1.2.2. Model abstractions
	Discrete-time vs. continuous-time descriptions
	Non-conservative vs. conservative descriptions

	1.2.3. Modeling formalisms
	Timed Data Flow (TDF)
	Linear Signal Flow (LSF)
	Electrical Linear Networks (ELN)

	1.2.4. Time-domain and frequency-domain analysis
	1.2.5. Language architecture

	2. Timed Data Flow modeling
	2.1. Modeling fundamentals
	2.1.1. TDF module and port attributes
	2.1.2. TDF model topologies
	2.1.3. Time step assignment and propagation
	Consistency of time step assignment and propagation

	2.1.4. Multiple schedules or clusters
	2.1.5. Signal processing behavior of TDF models

	2.2. Language constructs
	2.2.1. TDF modules
	Module attributes
	Module initialization
	Module activation (processing)
	Module local time
	Module constructor
	Constraints on usage

	2.2.2. TDF ports
	Port attributes
	Port initialization
	Port read and write access
	Port and sample time
	Constraints on usage

	2.2.3. TDF signals

	2.3. Modeling discrete-time and continuous-time behavior
	2.3.1. Discrete-time modeling
	2.3.2. Continuous-time modeling
	Laplace transfer functions
	State-space equations
	Using the state vector
	Using Laplace transfer functions or state-space equations in multirate applications

	2.3.3. Structural composition of TDF modules
	Port binding

	2.3.4. Multirate behavior
	2.3.5. Introducing delays

	2.4. Interaction between TDF and discrete-event domain
	2.4.1. Reading from the discrete-event domain
	2.4.2. Writing to the discrete-event domain
	2.4.3. Using discrete-event control signals

	2.5. TDF execution semantics
	2.6. Application examples
	2.6.1. BASK modulator
	2.6.2. BASK demodulator
	2.6.3. TDF simulation of the BASK example
	2.6.4. Interfacing the BASK example with SystemC

	3. Linear Signal Flow modeling
	3.1. Modeling fundamentals
	3.1.1. Setup of the LSF equation system
	3.1.2. Time step assignment and propagation

	3.2. Language constructs
	3.2.1. LSF modules
	Module time step

	3.2.2. LSF ports
	3.2.3. LSF signals

	3.3. Modeling continuous-time behavior
	3.3.1. Structural composition of LSF modules
	Port binding

	3.3.2. Continuous-time modeling

	3.4. Interaction between LSF and discrete-event or TDF models
	3.4.1. Reading from and writing to discrete-event models
	3.4.2. Reading from and writing to TDF models
	3.4.3. Using discrete-event or TDF control signals
	3.4.4. LSF model encapsulation

	3.5. LSF execution semantics
	3.6. Application examples
	3.6.1. PID controller
	3.6.2. Continuous-time sigma-delta modulator

	4. Electrical Linear Networks modeling
	4.1. Modeling fundamentals
	4.1.1. Setup of the equation system
	4.1.2. Time step assignment and propagation

	4.2. Language constructs
	4.2.1. ELN modules
	Module time step

	4.2.2. ELN terminals
	4.2.3. ELN nodes

	4.3. Modeling continuous-time behavior
	4.3.1. Structural composition of ELN modules
	Port (terminal) binding

	4.3.2. Continuous-time modeling

	4.4. Interaction between ELN and discrete-event or TDF models
	4.4.1. Reading from and writing to discrete-event models
	4.4.2. Reading from and writing to TDF models
	4.4.3. ELN model encapsulation

	4.5. ELN execution semantics
	4.6. Application examples
	4.6.1. POTS front-end

	5. Small-signal frequency-domain analyses
	5.1. Modeling fundamentals
	5.1.1. Setup of the equation system
	5.1.2. Analysis methods

	5.2. Language constructs
	5.2.1. Small-signal frequency-domain description in TDF modules
	5.2.2. Port access

	5.3. Utility functions
	5.3.1. Frequency-domain delay
	5.3.2. Laplace transfer functions
	5.3.3. S-domain definitions
	5.3.4. Z-domain definitions
	5.3.5. Detection of small-signal frequency-domain analyses

	5.4. Small-signal frequency-domain analysis with combined TDF, LSF and ELN models

	6. Simulation and tracing
	6.1. Simulation control
	6.1.1. Time-domain simulation
	Program arguments
	Time resolution
	Simulation arguments

	6.1.2. Small-signal frequency-domain simulation

	6.2. Tracing
	6.2.1. Trace files and formats
	Tracing to a VCD file
	Tracing to a tabular file
	Tracing to a tabular stream
	Trace file control

	6.2.2. Tracing signals and comments
	Supported AMS signals
	Writing comments to a trace file
	Trace file example

	6.3. Testbenches

	7. Modeling strategies
	7.1. Behavioral modeling using the available models of computation
	7.1.1. Macromodeling with Electrical Linear Networks
	7.1.2. Behavioral modeling with Linear Signal Flow
	7.1.3. Behavioral and baseband modeling with Timed Data Flow
	Definition and propagation of time steps and rates
	Behavioral modeling with TDF
	Baseband modeling with TDF

	7.2. Modeling embedded analog/mixed-signal systems
	7.2.1. Partitioning behavior to different models of computation
	7.2.2. Modeling of architecture-level properties
	Modeling distortions, limitation, and quantization
	Modeling noise in time domain

	7.3. Design refinement and mixed-level modeling
	7.3.1. Mixed-signal, mixed-level simulation
	7.3.2. Design refinement and use cases

	7.4. Modeling and coding style
	7.4.1. Namespaces
	Header files and naming conventions
	Using directive

	7.4.2. Dynamic memory allocation
	7.4.3. Module parameters
	7.4.4. Separation of module definition and implementation
	7.4.5. Class templates
	7.4.6. Public and private class members

	Appendix A. Language reference
	A.1. TDF modules
	A.2. TDF ports
	A.3. TDF signals
	A.4. Embedded Laplace transfer functions
	A.4.1. sca_tdf::sca_ltf_nd
	Description
	Definition
	Equation
	Parameters
	Constraint of usage

	A.4.2. sca_tdf::sca_ltf_zp
	Description
	Definition
	Equation
	Parameters
	Constraint of usage

	A.4.3. sca_tdf::sca_ss
	Description
	Definition
	Equation
	Parameters
	Constraint of usage

	A.5. LSF primitive modules
	A.5.1. sca_lsf::sca_add
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.2. sca_lsf::sca_sub
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.3. sca_lsf::sca_gain
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.4. sca_lsf::sca_dot
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.5. sca_lsf::sca_integ
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.6. sca_lsf::sca_delay
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.5.7. sca_lsf::sca_source
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.5.8. sca_lsf::sca_ltf_nd
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.5.9. sca_lsf::sca_ltf_zp
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraints on usage

	A.5.10. sca_lsf::sca_ss
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.5.11. sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.12. sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.13. sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.14. sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.15. sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.16. sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.17. sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.18. sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.19. sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.5.20. sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6. ELN primitive modules
	A.6.1. sca_eln::sca_r
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.2. sca_eln::sca_c
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.6.3. sca_eln::sca_l
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.6.4. sca_eln::sca_vcvs
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.5. sca_eln::sca_vccs
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.6. sca_eln::sca_ccvs
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.7. sca_eln::sca_cccs
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.8. sca_eln::sca_nullor
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.9. sca_eln::sca_gyrator
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.10. sca_eln::sca_ideal_transformer
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.11. sca_eln::sca_transmission_line
	Description
	Symbol
	Definition
	Equation
	Parameters
	Ports
	Constraint of usage

	A.6.12. sca_eln::sca_vsource
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.6.13. sca_eln::sca_isource
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports
	Constraint of usage

	A.6.14. sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.15. sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.16. sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.17. sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.18. sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.19. sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.20. sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.21. sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.22. sca_eln::sca_de::sca_r, sca_eln::sca_de_r
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.23. sca_eln::sca_de::sca_c, sca_eln::sca_de_c
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.24. sca_eln::sca_de::sca_l, sca_eln::sca_de_l
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.25. sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.26. sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.27. sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.28. sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	A.6.29. sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink
	Description
	Definition
	Symbol
	Equation
	Parameters
	Ports

	Appendix B. Symbols and graphical representations
	Appendix C. Glossary
	C.1. application
	C.2. cluster
	C.3. continuous-time signal
	C.4. discrete-time signal
	C.5. electrical linear networks, ELN
	C.6. frequency-domain processing
	C.7. hierarchical port
	C.8. implementation
	C.9. linear signal flow, LSF
	C.10. model of computation, MoC
	C.11. numerically singular
	C.12. primitive module
	C.13. primitive port
	C.14. proxy class
	C.15. rate
	C.16. sample
	C.17. solver
	C.18. terminal
	C.19. timed data flow, TDF
	C.20. time-domain processing
	C.21. untimed model of computation

	Index

