
Portable Test and Stimulus Standard
Version 1.0

June 2018
Copyright © 2017 - 2018 Accellera. All rights reserved.

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Abstract: The definition of the language syntax, C++ library API, and accompanying semantics for the spec-
ification of verification intent and behaviors reusable across multiple target platforms and allowing for the
automation of test generation is provided. This standard provides a declarative environment designed for ab-
stract behavioral description using actions, their inputs, outputs, and resource dependencies, and their com-
position into use cases including data and control flows. These use cases capture verification intent that can
be analyzed to produce a wide range of possible legal scenarios for multiple execution platforms. It also in-
cludes a preliminary mechanism to capture the programmer’s view of a peripheral device, independent of the
underlying platform, further enhancing portability.

Keywords: behavioral model, constrained randomization, functional verification, hardware-software inter-
face, portability, PSS, test generation.
Copyright © 2017 - 2018 Accellera. All rights reserved.
ii

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied "AS IS."

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.
8698 Elk Grove Blvd Suite 1, #114
Elk Grove, CA 95624
USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not
Copyright © 2017 - 2018 Accellera. All rights reserved.
iii

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1,
#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the Portable Test and Stimulus 1.0 Language Reference Manual are wel-
come. They should be sent to the PSS email reflector

pswg@lists.accellera.org

The current Working Group web page is:
http://www.accellera.org/activities/working-groups/portable-stimulus
Copyright © 2017 - 2018 Accellera. All rights reserved.
iv

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Introduction

The definition of a Portable Test and Stimulus Standard (PSS) will enable user companies to select the best
tool(s) from competing vendors to meet their verification needs. Creation of a specification language for
abstract use-cases is required. The goal is to allow stimulus and tests, including coverage and results
checking, to be specified at a high level of abstraction, suitable for tools to interpret and create scenarios and
generate implementations in a variety of languages and tool environments, with consistent behavior across
multiple implementations.
Copyright © 2017 - 2018 Accellera. All rights reserved.
v

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Participants

The Portable Stimulus Working Group (PSWG) is entity based. At the time this standard was developed, the
PSWG had the following active participants:

Faris Khundakjie, Intel Corporation, Chair
Tom Fitzpatrick, Mentor, a Siemens business, Vice-Chair

David Brownell, Analog Devices, Inc., Secretary
Tom Anderson, previous Secretary

Joe Daniels, Technical Editor
Agnisys, Inc: Anupam Bakshi
AMD: Karl Whiting
AMIQ EDA: Cristian Amitroaie, Stefan Birman
Analog Devices, Inc: David Brownell
Breker Verification Systems, Inc.: Leigh Brady, Adnan Hamid, Dave Kelf
Cadence Design Systems, Inc.: Bishnupriya Bhattacharya, Steve Brown, Stan Krolikoski,

Larry Melling, Sharon Rosenberg, Matan Vax
Cisco Systems, Inc.: Somasundaram Arunachalam
IBM: Holger Horbach
Intel Corporation: Ramon Chemel, Faris Khundakjie, Jeffrey Scruggs
Mentor, a Siemens business: Matthew Ballance, Dennis Brophy, Tom Fitzpatrick
National Instruments Corporation: Hugo Andrade
NVIDIA Corporation: Mark Glasser, Gaurav Vaidya
NXP Semiconductors N.V.: Monica Farkash
Qualcomm Incorporated: Sanjay Gupta
Semifore, Inc.: Jamsheed Agahi
Synopsys, Inc.: Hillel Miller, Srivatsa Vasudevan
Vayavya Labs Pvt. Ltd.: Karthick Gururaj, Sandeep Pendharkar

At the time of standardization, the PSWG had the following eligible voters:

AMD Mentor, a Siemens business

AMIQ EDA NXP Semiconductors N.V.

Analog Devices, Inc. OneSpin Solutions

Breker Verification Systems, Inc. Qualcomm Incorporated

Cadence Design Systems, Inc. Semifore, Inc.

Cypress Semiconductor Synopsys, Inc.

Infineon Technologies AG Texas Instruments

Intel Corporation Vayavya Labs Pvt. Ltd.
Copyright © 2017 - 2018 Accellera. All rights reserved.
vi

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Contents

1. Overview.. 1

1.1 Purpose ... 1
1.2 Language design considerations... 1
1.3 Modeling basics.. 2
1.4 Test realization ... 2
1.5 Conventions used ... 3

1.5.1 Visual cues (meta-syntax) ... 3
1.5.2 Notational conventions ... 4
1.5.3 Examples ... 4

1.6 Use of color in this standard... 4
1.7 Contents of this standard .. 4

2. References.. 5

3. Definitions, acronyms, and abbreviations.. 6

3.1 Definitions .. 6
3.2 Acronyms and abbreviations .. 7

4. Lexical conventions ... 8

4.1 Comments... 8
4.2 Identifiers ... 8
4.3 Escaped identifiers ... 8
4.4 Keywords ... 8

5. Modeling concepts ... 10

5.1 Modeling data flow .. 11
5.1.1 Buffers ... 11
5.1.2 Streams .. 12
5.1.3 States ... 12
5.1.4 Data object pools ... 13

5.2 Modeling system resources .. 13
5.2.1 Resource objects ... 13
5.2.2 Resource pools .. 13

5.3 Basic building blocks ... 14
5.3.1 Components and binding .. 14
5.3.2 Evaluation and inference ... 14

5.4 Constraints and inferencing.. 16
5.5 Summary .. 16

6. Execution semantic concepts ... 17

6.1 Overview .. 17
6.2 Assumptions of abstract scheduling... 17

6.2.1 Starting and ending action executions .. 17
6.2.2 Concurrency .. 17
6.2.3 Synchronized invocation ... 17

6.3 Scheduling concepts ... 18
Copyright © 2017 - 2018 Accellera. All rights reserved.
vii

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
6.3.1 Preliminary definitions .. 18
6.3.2 Sequential scheduling ... 18
6.3.3 Parallel scheduling .. 19

7. C++ specifics ... 20

8. Data types... 22

8.1 Scalars .. 22
8.1.1 DSL syntax .. 22
8.1.2 C++ syntax .. 23
8.1.3 Examples ... 26

8.2 Booleans ... 27
8.3 enums ... 27

8.3.1 DSL syntax .. 27
8.3.2 C++ syntax .. 27
8.3.3 Examples ... 28

8.4 Strings... 29
8.4.1 DSL syntax .. 29
8.4.2 C++ syntax .. 29
8.4.3 Examples ... 30

8.5 chandles .. 31
8.5.1 C++ syntax .. 31
8.5.2 Examples ... 32

8.6 Structs... 32
8.6.1 DSL syntax .. 32
8.6.2 C++ syntax .. 33
8.6.3 Examples ... 33

8.7 User-defined data types .. 34
8.7.1 DSL syntax .. 34
8.7.2 C++ syntax .. 34
8.7.3 Examples ... 34

8.8 Arrays ... 34
8.8.1 C++ syntax .. 34
8.8.2 Examples ... 36
8.8.3 Properties .. 37

8.9 Access protection ... 38
8.10 Data type conversion.. 39

8.10.1 DSL syntax .. 39
8.10.2 Examples ... 39

9. Components ... 41

9.1 DSL syntax... 41
9.2 C++ syntax ... 41
9.3 Examples .. 43
9.4 Components as namespaces ... 43
9.5 Component instantiation .. 44

9.5.1 Semantics .. 44
9.5.2 Examples ... 45

9.6 Component references.. 45
9.6.1 Semantics .. 46
9.6.2 Examples ... 46
Copyright © 2017 - 2018 Accellera. All rights reserved.
viii

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
10. Actions ... 48

10.1 DSL syntax... 49
10.2 C++ syntax ... 49
10.3 Examples .. 50

10.3.1 Atomic actions .. 50
10.3.2 Compound actions .. 50

11. Activities .. 52

11.1 Activity declarations .. 52
11.2 Activity evaluation with extension and inheritance ... 52
11.3 Activity constructs.. 54

11.3.1 DSL syntax .. 55
11.3.2 C++ syntax .. 55

11.4 Action scheduling statements... 56
11.4.1 Action traversal statement ... 56
11.4.2 Sequential block .. 60
11.4.3 parallel ... 62
11.4.4 schedule ... 65

11.5 Activity control-flow constructs... 68
11.5.1 repeat (count) .. 68
11.5.2 repeat while ... 71
11.5.3 foreach ... 74
11.5.4 select ... 76
11.5.5 if-else ... 79
11.5.6 match ... 81

11.6 Symbols .. 83
11.6.1 DSL syntax .. 84
11.6.2 C++ syntax .. 84
11.6.3 Examples ... 84

11.7 Named sub-activities .. 87
11.7.1 DSL syntax .. 87
11.7.2 Scoping rules for named sub-activities ... 87
11.7.3 Hierarchical references using named sub-activity .. 87

11.8 Explicitly binding flow objects .. 88
11.8.1 DSL syntax .. 89
11.8.2 C++ syntax .. 89
11.8.3 Examples ... 89

11.9 Hierarchical flow object binding.. 90
11.10 Hierarchical resource object binding.. 92

12. Flow objects ... 94

12.1 Buffer objects ... 94
12.1.1 DSL syntax .. 94
12.1.2 C++ syntax .. 94
12.1.3 Examples ... 95

12.2 Stream objects .. 95
12.2.1 DSL syntax .. 95
12.2.2 C++ syntax .. 95
12.2.3 Examples ... 96

12.3 State objects.. 96
Copyright © 2017 - 2018 Accellera. All rights reserved.
ix

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
12.3.1 DSL syntax .. 96
12.3.2 C++ syntax .. 97
12.3.3 Examples ... 98

12.4 Using flow objects.. 98
12.4.1 DSL syntax .. 98
12.4.2 C++ syntax .. 99
12.4.3 Examples ... 99

13. Resource objects .. 102

13.1 Declaring resource objects ... 102
13.1.1 DSL syntax .. 102
13.1.2 C++ syntax .. 102
13.1.3 Examples ... 103

13.2 Claiming resource objects .. 103
13.2.1 DSL syntax .. 103
13.2.2 C++ syntax .. 103
13.2.3 Examples ... 104

14. Pools .. 106

14.1 DSL syntax... 106
14.2 C++ syntax ... 106
14.3 Examples .. 107
14.4 Static pool binding directive .. 107

14.4.1 DSL syntax .. 108
14.4.2 C++ syntax .. 108
14.4.3 Examples ... 109

14.5 Resource pools and the instance_id attribute ... 112
14.6 Pool of states and the initial attribute ... 114

15. Randomization specification constructs .. 116

15.1 Algebraic constraints.. 116
15.1.1 Member constraints ... 116
15.1.2 Constraint inheritance ... 120
15.1.3 Action-traversal in-line constraints ... 120
15.1.4 Set membership expression ... 123
15.1.5 Implication constraint ... 124
15.1.6 if-else constraint .. 125
15.1.7 foreach constraint .. 127
15.1.8 Unique constraint .. 129

15.2 Scheduling constraints.. 130
15.2.1 DSL syntax .. 130
15.2.2 Example .. 131

15.3 Sequencing constraints on state objects ... 131
15.4 Randomization process .. 133

15.4.1 Random attribute fields ... 133
15.4.2 Randomization of flow objects ... 136
15.4.3 Randomization of resource objects ... 138
15.4.4 Randomization of component assignment .. 140
15.4.5 Random value selection order ... 140
15.4.6 Evaluation of expressions with action-handles ... 141
15.4.7 Relationship lookahead ... 143
Copyright © 2017 - 2018 Accellera. All rights reserved.
x

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.4.8 Lookahead and sub-actions ... 145
15.4.9 Lookahead and dynamic constraints ... 147
15.4.10 pre_solve and post_solve exec blocks .. 149
15.4.11 Body blocks and sampling external data .. 154

16. Action inferencing ... 157

16.1 Implicit binding and action inferences ... 159
16.2 Object pools and action inferences... 162
16.3 Data constraints and action inferences ... 163

17. Coverage specification constructs.. 168

17.1 Defining the coverage mode: covergroup .. 168
17.1.1 DSL syntax .. 168
17.1.2 C++ syntax .. 169
17.1.3 Examples ... 169

17.2 covergroup instantiation... 171
17.2.1 DSL syntax .. 171
17.2.2 C++ syntax .. 171
17.2.3 Examples ... 172

17.3 Defining coverage points ... 174
17.3.1 DSL syntax .. 175
17.3.2 C++ syntax .. 176
17.3.3 Examples ... 178
17.3.4 Specifying bins .. 178
17.3.5 coverpoint bin with covergroup expressions .. 182
17.3.6 Automatic bin creation for coverage points .. 184
17.3.7 Excluding coverage point values .. 184
17.3.8 Specifying illegal coverage point values .. 185
17.3.9 Value resolution .. 186

17.4 Defining cross coverage ... 187
17.4.1 DSL syntax .. 187
17.4.2 C++ syntax .. 188
17.4.3 Examples ... 189

17.5 Defining cross bins... 190
17.6 Specifying coverage options .. 191

17.6.1 C++ syntax .. 192
17.6.2 Examples ... 196

17.7 covergroup sampling .. 197
17.8 Per-type and per-instance coverage collection... 197

17.8.1 Per-instance coverage of flow objects .. 198
17.8.2 Per-instance coverage in actions ... 198

18. Type extension ... 200

18.1 Specifying type extensions... 200
18.1.1 DSL syntax .. 200
18.1.2 C++ syntax .. 201
18.1.3 Examples ... 201
18.1.4 Compound type extensions ... 202
18.1.5 Enum type extensions ... 205
18.1.6 Ordering of type extensions .. 206

18.2 Overriding types ... 207
Copyright © 2017 - 2018 Accellera. All rights reserved.
xi

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
18.2.1 DSL syntax .. 207
18.2.2 C++ syntax .. 207
18.2.3 Examples ... 208

19. Packages... 210

19.1 Package declaration.. 210
19.1.1 DSL syntax .. 211
19.1.2 Examples ... 211

19.2 Namespaces and name resolution .. 211
19.3 Import statement... 212
19.4 Naming rules for members across extensions .. 212

20. Test realization... 213

20.1 exec blocks ... 213
20.1.1 DSL syntax .. 213
20.1.2 C++ syntax .. 214
20.1.3 Examples ... 214

20.2 Exec block evaluation with extension and inheritance ... 217
20.2.1 Inheritance and overriding .. 217
20.2.2 Using super ... 218
20.2.3 Type extension .. 219

20.3 Referencing PSS fields in target-template exec blocks.. 221
20.3.1 Examples ... 222
20.3.2 Formatting ... 223

20.4 Implementation using a procedural interface (PI).. 223
20.4.1 Function declaration .. 224
20.4.2 DSL syntax .. 224
20.4.3 C++ syntax .. 224
20.4.4 Examples ... 225
20.4.5 Method result .. 225
20.4.6 Method parameters .. 225
20.4.7 Parameter direction ... 226

20.5 PI PSS layer.. 226
20.6 PI function qualifiers .. 226

20.6.1 DSL syntax .. 227
20.6.2 C++ syntax .. 227
20.6.3 Specifying function availability .. 227
20.6.4 Specifying an implementation language ... 229

20.7 Calling PI methods ... 230
20.8 Target-template implementation for functions... 234

20.8.1 DSL syntax .. 235
20.8.2 C++ syntax .. 235
20.8.3 Examples ... 235

20.9 Import classes ... 236
20.9.1 DSL syntax .. 236
20.9.2 C++ syntax .. 236
20.9.3 Examples ... 237

20.10 Implementation using target-template code blocks.. 237
20.10.1 Target-template code exec block kinds ... 238
20.10.2 Target language ... 238
20.10.3 exec file ... 238

20.11 C++ in-line solve exec implementation ... 238
Copyright © 2017 - 2018 Accellera. All rights reserved.
xii

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.12 C++ generative target exec implementation... 239
20.12.1 Generative PI execs ... 240
20.12.2 Generative target-template execs .. 241

20.13 Comparison between mapping mechanisms .. 243
20.14 Exported actions ... 244

20.14.1 DSL syntax .. 244
20.14.2 C++ syntax .. 245
20.14.3 Examples ... 245
20.14.4 Export action foreign-language binding ... 246

21. Conditional code processing .. 247

21.1 Overview .. 247
21.1.1 Statically-evaluated statements ... 247
21.1.2 Elaboration procedure ... 247
21.1.3 Constant expressions ... 247

21.2 compile if.. 247
21.2.1 Scope ... 247
21.2.2 DSL syntax .. 247
21.2.3 Examples ... 248

21.3 compile has... 249
21.3.1 DSL syntax .. 249
21.3.2 Examples ... 249

21.4 compile assert ... 250
21.4.1 DSL syntax .. 250
21.4.2 Examples ... 250

Annex A (informative) Bibliography .. 252

Annex B (normative) Formal syntax... 253

B.1 Package declarations.. 253

B.2 Action declarations .. 254

B.3 Struct declarations.. 255

B.4 Procedural interface (PI) .. 256

B.5 Component declarations... 257

B.6 Activity statements... 257

B.7 Overrides.. 259

B.8 Data declarations.. 259

B.9 Data types... 259

B.10 Constraint... 260

B.11 Coverage specification... 261

B.12 Conditional-compile .. 262

B.13 Expression.. 263

B.14 Identifiers and literals .. 265
Copyright © 2017 - 2018 Accellera. All rights reserved.
xiii

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
B.15 Numbers... 266

B.16 Additional lexical conventions .. 266

Annex C (normative) C++ header files... 268

C.1 File pss.h .. 268

C.2 File pss/action.h ... 269

C.3 File pss/action_attr.h .. 271

C.4 File pss/action_handle.h... 272

C.5 File pss/attr.h.. 272

C.6 File pss/bind.h .. 276

C.7 File pss/bit.h... 276

C.8 File pss/buffer.h ... 276

C.9 File pss/chandle.h... 277

C.10 File pss/comp_inst.h .. 277

C.11 File pss/component.h ... 278

C.12 File pss/cond.h ... 278

C.13 File pss/constraint.h ... 278

C.14 File pss/covergroup.h... 279

C.15 File pss/covergroup_bins.h .. 279

C.16 File pss/covergroup_coverpoint.h.. 283

C.17 File pss/covergroup_cross.h... 284

C.18 File pss/covergroup_iff.h ... 285

C.19 File pss/covergroup_inst.h ... 285

C.20 File pss/covergroup_options.h ... 285

C.21 File pss/enumeration.h ... 286

C.22 File pss/exec.h.. 288

C.23 File pss/export_action.h ... 289

C.24 File pss/extend.h .. 289

C.25 File pss/foreach.h ... 290

C.26 File pss/function.h.. 292

C.27 File pss/if_then.h.. 295

C.28 File pss/import_class.h... 296

C.29 File pss/in.h .. 296

C.30 File pss/input.h... 297

C.31 File pss/lock.h .. 297

C.32 File pss/output.h... 297
Copyright © 2017 - 2018 Accellera. All rights reserved.
xiv

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
C.33 File pss/override.h.. 298

C.34 File pss/pool.h .. 298

C.35 File pss/rand_attr.h... 299

C.36 File pss/range.h .. 302

C.37 File pss/resource.h.. 302

C.38 File pss/scope.h .. 303

C.39 File pss/share.h... 303

C.40 File pss/state.h.. 304

C.41 File pss/stream.h .. 304

C.42 File pss/structure.h ... 305

C.43 File pss/symbol.h ... 305

C.44 File pss/type_decl.h.. 305

C.45 File pss/unique.h .. 305

C.46 File pss/vec.h.. 306

C.47 File pss/width.h .. 306

C.48 File pss/detail/activityStmt.h ... 306

C.49 File pss/detail/algebExpr.h... 307

C.50 File pss/detail/comp_ref.h.. 309

C.51 File pss/detail/FunctionParam.h... 309

C.52 File pss/detail/FunctionResult.h... 309

Annex D (normative) Foreign-language data type bindings ... 310

D.1 C primitive types.. 310

D.2 C++ composite and user-defined types.. 310

D.3 SystemVerilog.. 313

Annex E (informative) Solution space .. 314
Copyright © 2017 - 2018 Accellera. All rights reserved.
xv

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Portable Test and Stimulus Standard
Version 1.0

1. Overview

This clause explains the purpose of this standard, describes its key concepts and considerations, details the
conventions used, and summarizes its contents.

The Portable Test and Stimulus Standard syntax is specified using Backus-Naur Form (BNF). The rest of
this Standard is intended to be consistent with the BNF description. If any discrepancies between the two
occur, the BNF formal syntax in Annex B shall take precedence. Similarly, the C++ class declarations in
Annex C shall take precedence over the rest of this Standard when C++ is used as the input format.

1.1 Purpose

The Portable Test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration under different
configurations, enabling the generation of different implementations of a scenario that run on a variety of
execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA prototyping, and
post-Silicon. With this standard, users can specify a set of behaviors once, from which multiple
implementations may be derived.

1.2 Language design considerations

The Portable Test and Stimulus Standard describes a declarative domain-specific language (DSL), intended
for modeling scenario spaces of systems, generating test cases, and analyzing test runs. Scenario elements
and formation rules are captured in a way that abstracts from implementation details and is thus reusable,
portable, and adaptable. This specification also defines a C++ input format that is semantically equivalent to
the DSL, as shown in the following clauses (see also Annex C). The portable stimulus specification captured
either in DSL or C++ is herein referred to as PSS.

PSS borrows its core concepts from object-oriented programming languages, hardware-verification
languages, and behavioral modeling languages. PSS features native constructs for system notions, such as
data/control flow, concurrency and synchronization, resource requirements, and states and transitions. It also
includes native constructs for mapping these to target implementation artifacts.

Introducing a new language has major benefits insofar as it expresses user intention that would be lost in
other languages. However, user tasks that can be handled well enough in existing languages should be left to
Copyright © 2017 - 2018 Accellera. All rights reserved.
1

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
the language of choice, so as to leverage existing skill, tools, flows, and code bases. Thus, PSS focuses on
the essential domain-specific semantic layer and links with other languages to achieve other related
purposes. This eases adoption and facilitates project efficiency and productivity.

Finally, PSS builds on prevailing linguistic intuitions in its constructs. In particular, its lexical and syntactic
conventions come from the C/C++ family and its constraint and coverage language uses SystemVerilog
(IEEE Std 1800)1 as a referent.

1.3 Modeling basics

A PSS model is a representation of some view of a system’s behavior, along with a set of abstract flows. It is
essentially a set of class definitions augmented with rules constraining their legal instantiation. A model
consists of two types of class definitions: elements of behavior, called actions; and passive entities used by
actions, such as resources, states, and data-flow items, collectively called objects. The behaviors associated
with an action are specified as activities. Actions and object definitions may be encapsulated in components
to form reusable model pieces. All of these elements may also be encapsulated and extended in a package to
allow for additional reuse and customization.

A particular instantiation of a given PSS model is a called a scenario. Each scenario consists of a set of
action instances and data object instances, as well as scheduling constraints and rules defining the
relationships between them. The scheduling rules define a partial-order dependency relation over the
included actions, which determines the execution semantics. A consistent scenario is one that conforms to
model rules and satisfies all constraints.

Actions constitute the main abstraction mechanism in PSS. An action represents an element in the space of
modeled behavior. Actions may correspond directly to operations of the underlying system under test (SUT)
and test environment, in which case they are called atomic actions. Actions also use activities to encapsulate
flows of simpler actions, constituting some joint activity or scenario intention. As such, actions can be used
as top-level test intent or reusable test specification elements. Actions and objects have data attributes and
data constraints over them.

Actions define the rules for legal combinations in general, not relative to a specific scenario. These are stated
in terms of references to objects, having some role from the action’s perspective. Objects thus serve as data,
and control inputs and outputs of actions, or they are exclusively used as resources. Assembling actions and
objects together, along with the scheduling and arithmetic constraints defined for them, produces a model
that captures the full state-space of possible scenarios. A scenario is a particular solution of the constraints
described by the model to produce an implementation consistent with the described intent.

1.4 Test realization

A key purpose of PSS is to automate the generation of test cases and test suites. Tests for electronic systems
often involve code running on embedded controllers, exercising the underlying hardware and software
layers. Tests may involve code in hardware-verification languages (HVLs) controlling bus functional
models, as well as scripts, command files, data files, and other related artifacts. From the PSS model
perspective, these are called target files, and target languages, which jointly implement the test case for a
target platform.

The execution of a concrete scenario essentially consists of invoking its actions’ implementations, if any, in
their respective scheduling order. An action is invoked immediately after all its dependencies have
completed and subsequent actions wait for it to complete. Thus, actions that have the same set of

1Information on references can be found in Clause 2.
Copyright © 2017 - 2018 Accellera. All rights reserved.
2

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
dependencies are logically invoked at the same time. Mapping atomic actions to their respective
implementation for a target platform is captured in one of three ways: as a sequence of calls to external
functions implemented in the target language; as parameterized, but uninterpreted, code segments expressed
in the target language; or as a C++ member function (for the C++ input format only).

PSS features a native mechanism for referring to the actual state of the system under test (SUT) and the
environment. Runtime values accessible to the generated test can be sampled and fed back into the model as
part of an action’s execution. These external values are sampled and, in turn, affect subsequent generation,
which can be checked against model constraints and/or collected as coverage. The system/environment state
can also be sampled during pre-run processing utilizing models and during post-run processing, given a run
trace.

Similarly, the generation of a specific test-case from a given scenario may require further refinement or
annotations, such as the external computation of expected results, memory modeling, and/or allocation
policies. For these, external models, software libraries, or dedicated algorithmic code in other languages or
tools may need to be employed. In PSS, the execution of these pre-run computations is defined using the
same scheme as described above, with the results linked in the target language of choice.

1.5 Conventions used

The conventions used throughout the document are included here.

1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate key terms and punctuation, text that shall be typed exactly
as it appears. For example, in the following state declaration, the keyword "state" and spe-
cial characters "{" and "}" (and optionally ":" and/or ";") shall be typed as they appear:

state identifier [: struct_super_spec] { { struct_body_item } } [;]

plain text The normal or plain text font indicates syntactic categories. For example, an identifier
needs to be specified in the following line (after the "state" key term):

state identifier [: struct_super_spec] { { struct_body_item } } [;]

italics The italics font in running text indicates a definition. For example, the following line
shows the definition of "activities":

The behaviors associated with an action are specified as activities.
The italics font in syntax definitions depicts a meta-identifier, e.g., action_identifier.
See also 4.2.

courier The courier font in running text indicates PSS, DSL, or C++ code. For example, the
following line indicates PSS code (for a state):

state power_state_s { int[0..4] val; };

[] square brackets Square brackets indicate optional items. For example, the struct_super_spec and (ending)
semicolon (;) are both optional in the following line:

state identifier [: struct_super_spec] { { struct_body_item } } [;]
Copyright © 2017 - 2018 Accellera. All rights reserved.
3

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
1.5.2 Notational conventions

The terms "required", "shall", "shall not", "should", "should not", "recommended", "may", and
"optional" in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC
2119.

1.5.3 Examples

Any examples shown in this Standard are for information only and are only intended to illustrate the use of
PSS.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not effect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:
— Clause 2 provides references to other applicable standards that are assumed or required for this stan-

dard.
— Clause 3 defines terms and acronyms used throughout the different specifications contained in this

standard.
— Clause 4 defines the lexical conventions used in PSS.
— Clause 5 defines the PSS modeling concepts.
— Clause 6 defines the PSS execution semantic concepts.
— Clause 7 details some specific C++ considerations in using PSS.
— Clause 8 highlights the PSS data types.
— Clause 9 - Clause 21 describe the PSS modeling constructs.
— Annexes. Following Clause 21 are a series of annexes.

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example,
the following shows zero or more struct_body_items can be specified in this declaration:

state identifier [: struct_super_spec] { { struct_body_item } } [;]

| separator bar The separator bar (|) character indicates alternative choices. For example, the following
line shows the "input" or "output" key terms are possible values in a flow object refer-
ence:

input | output action_data_declaration

Table 1—Document conventions (Continued)

Visual cue Represents
Copyright © 2017 - 2018 Accellera. All rights reserved.
4

Copyright © 2017 - 2018 Accellera. All rights reserved.
5

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018

2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.2, 3

The IETF Best Practices Document (for notational conventions) is available from the IETF web site:
https://www.ietf.org/rfc/rfc2119.txt.

ISO/IEC 14882:2011, Programming Languages—C++.4

2The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
44ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States
from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]5 should be referenced for terms not defined in this clause.

3.1 Definitions

action: An element of behavior.

activity: An abstract, partial specification of a scenario that is used in a compound action to determine the
high-level intent and leaves all other details open.

atomic action: An action that corresponds directly to operations of the underlying system under test (SUT)
and test environment.

component: A structural entity, defined per type and instantiated under other components.

compound action: An action which is defined in terms of one or more sub-actions.

constraint: An algebraic expression relating attributes of model entities used to limit the resulting scenario
space of the model.

coverage: A metric to measure the percentage of possible scenarios that have actually been processed for a
given model.

exec block: Specifies the mapping of PSS scenario entities to its non-PSS implementation.

identifier: Uniquely name an object so it can be referenced.

inheritance: The process of deriving one model element from another of a similar type, but adding or mod-
ifying functionality as desired. It allows multiple types to share functionality which only needs to be speci-
fied once, thereby maximizing reuse and portability.

loop: A traversal region of an activity in which a set of sub-actions is repeatedly executed. Values for the
fields of the action are selected for each traversal of the loop, subject to the active constraints and resource
requirements present.

model: A representation of some view of a system’s behavior, along with a set of abstract flows.

object: A passive entity used by an action, such as resources, states, and data-flow items.

override: To replace one or all instances of an element of a given type with an element of a compatible type
inherited from the original type.

package: A way to group, encapsulate, and identify sets of related definitions, namely type declarations and
type extensions.

resource: A computational element available in the target environment that may be claimed by an action for
the duration of its execution.

5The number in brackets correspond to those of the bibliography in Annex A.
Copyright © 2017 - 2018 Accellera. All rights reserved.
6

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
root action: An action designated explicitly as the entry point for the generation of a specific scenario. Any
action in a model can serve as the root action of some scenario.

scenario: A particular instantiation of a given PSS model.

target file: Contains textual content to be used in realizing the test intent.

target language: The language used to realize a specific unit of test intent, e.g., ANSI C, assembly lan-
guage, Perl.

target platform: The execution platform on which test intent is executed.

type extension: The process of adding additional functionality to a model element of a given type, thereby
maximizing reuse and portability. As opposed to inheritance, extension does not create a new type.

3.2 Acronyms and abbreviations

API application programming interface

DSL domain-specific language

HSI Hardware/Software Interface

PI procedural interface

PSS Portable Test and Stimulus Standard

SUT system under test
Copyright © 2017 - 2018 Accellera. All rights reserved.
7

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
4. Lexical conventions

PSS borrows its lexical conventions from the C language family.

4.1 Comments

The token /* introduces a comment, which terminates with the first occurrence of the token */. The C++
comment delimiter // is also supported and introduces a comment which terminates at the end of the
current line.

4.2 Identifiers

An identifier is a sequence of letters, digits, and underscores; it is used to give an object a unique name so it
can be referenced. Identifiers are case-sensitive. A meta-identifier can appear in syntax definitions using the
form: construct_name_identifer, e.g., action_identifier. See also B.14.

4.3 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab,
newline). They provide a means of including any of the printable ASCII characters in an identifier (the
decimal values 33 through 126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the
identifier. Therefore, an escaped identifier \cpu3 is treated the same as a non-escaped identifier cpu3.

\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)

4.4 Keywords

PSS reserves the keywords listed in Table 2.

Table 2—PSS keywords

abstract action activity assert bind bins

bit body bool buffer chandle class

compile component const constraint covergroup coverpoint

cross declaration default do dynamic else

enum exec export extend false file

foreach function has header if iff

ignore_bins illegal_bins import in init inout

input instance int lock match memory
Copyright © 2017 - 2018 Accellera. All rights reserved.
8

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
option output override package parallel pool

post_solve pre_solve private protected public rand

repeat resource run_end run_start schedule select

sequence share solve state static stream

string struct super symbol target true

type type_option typedef unique void while

with

Table 2—PSS keywords (Continued)
Copyright © 2017 - 2018 Accellera. All rights reserved.
9

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
5. Modeling concepts

A PSS model is made up of a number of elements (described briefly in 1.3) that define a set of possible
scenarios to be applied to the Design Under Test (DUT) via the associated test environment. Scenarios are
comprised of behaviors—ultimately executed on some combination of components that make up the DUT or
on verification components that define the test environment—and the communication between them. This
clause introduces the elements of a PSS model and defines their relationships.

The primary behavior abstraction mechanism in PSS is an action, which represents a particular behavior or
set of behaviors. Actions combine to form the scenario(s) that represent(s) the verification intent. Actions
that correspond directly to operations performed by the underlying DUT or test environment are referred to
as atomic actions, which contain an explicit mapping of the behavior to an implementation on the target
platform in one of several supported forms. Compound actions encapsulate flows of other actions using an
activity that defines the critical intent to be verified by specifying the relationships between specific actions.

The remainder of the PSS model describes a set of rules that are used by a PSS processing tool to create the
scenario(s) that implement(s) the critical verification intent while satisfying the data flow, scheduling, and
resource constraints of the target DUT and associated test environment. In the case where the specification
of intent is incomplete (partial), the PSS processing tool shall infer the execution of additional actions and
other model elements necessary to make the partial specification complete and valid. In this way, a single
partial specification of verification intent may be expanded into a variety of actual scenarios that all
implement the critical intent, but might also include a wide range of other behaviors that may provide
greater coverage of the functionality of the DUT as demonstrated in Figure 1.

Figure 1—Partial specification of verification intent
Copyright © 2017 - 2018 Accellera. All rights reserved.
10

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
In Figure 1, actions a, b, and c are specified in an activity. This partial specification may be expanded into
multiple scenarios that infer other actions, yet all scenarios satisfy the critical intent defined by the activity.

An activity primarily specifies the set of actions to be executed and the scheduling relationship(s) between
them. Actions may be scheduled sequentially, in parallel, or in various combinations based on conditional
evaluation, looping, or randomization constructs (see 15.4). Activities may also include explicit data
bindings between actions. An activity that traverses a compound action is evaluated hierarchically.

5.1 Modeling data flow

Actions may be declared to have inputs and/or outputs of a given data flow type. The data flow object types
define scheduling semantics for the given action relative to those with which it shares the object. Data flow
objects may be declared directly or may inherit from user-defined data structures or other flow objects of a
compatible type. An action that outputs a flow object is said to produce that object and an action that inputs
a flow object is said to consume the object.

5.1.1 Buffers

The first kind of data flow object is the buffer type. A buffer represents persistent data that can be written
(output by a producing action) and may be read (input) by any number of consuming actions. As such, a
buffer defines a strict scheduling dependency between the producer and the consumer that requires the
producing action to complete its execution—and, thus, complete writing the buffer object—before execution
of the consuming action may begin to read the buffer (see Figure 2). Note that other consuming actions may
also input the same buffer object. While there are no implied scheduling constraints between the consuming
actions, none of them may start until the producing action completes.

Figure 2—Buffer flow object semantics

Figure 2 demonstrates the sequential scheduling semantics between the producer and consumer of a buffer
flow object.

To satisfy the activity shown in Figure 1(i), which shows actions a and b executing sequentially where b
inputs a buffer object, action a needs to produce a buffer object for action b to consume, since the semantics
of the buffer object supports the activity. Similarly, in Figure 1(ii), if action d produced the appropriate
buffer type, it could be inferred as the producer of the buffer for action b to consume. The buffer scheduling
semantics allow action d to be inferred as either d1, d2, or d3, such that actions a and d each complete
before action b starts, but there is no explicit scheduling constraint between a and d.
Copyright © 2017 - 2018 Accellera. All rights reserved.
11

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
5.1.2 Streams

The stream flow object type represents transient data shared between actions. The semantics of the stream
flow object requires that the producing and consuming actions execute in parallel (i.e., both activities shall
begin execution when the same preceding action(s) complete; see Figure 3). In a stream object, there needs
to be a one-to-one connection between the producer and consumer.

Figure 3—Stream flow object semantics

Figure 3 demonstrates the parallel scheduling semantics between the producer and consumer of a stream
flow object.

In Figure 1(iii), the parallel execution of actions f and g dictates that any data shared between these actions
shall be of the stream type. Either of these actions may produce a buffer object type that may be consumed
by the action b. If action f were inferred to supply the buffer to action b, and f inputs or outputs a stream
object, then the one-to-one requirement of the stream object would require action g also be inferred to
execute in parallel with f.

NOTE—Figure 1(iv) shows an alternate inferred scenario that also satisfies the base scenario of sequential execution of
actions a, b, and c.

5.1.3 States

The state flow object represents the state of some element in the DUT or test environment at a given time.
Multiple actions may read or write the state object, but only one write action may execute at a time. Any
number of read actions may execute in parallel, but read and write actions need to be sequential (see
Figure 4).

Figure 4—State flow object semantics

Figure 4 reinforces writing a state flow object shall be sequential; reading the state flow object may occur in
parallel.
Copyright © 2017 - 2018 Accellera. All rights reserved.
12

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
State flow objects have a built-in Boolean initial attribute that is automatically set to true initially and
automatically set to false on the first write operation to the state object. This attribute can be used in
constraint expressions to define the starting value for fields of the state object and then allow the values to be
modified on subsequent writes of the state object.

5.1.4 Data object pools

Data flow objects are grouped into pools, which can be used to limit the set of actions that can communicate
using objects of a given type. For buffer and stream types, the pool will contain the number of objects of the
given type needed to support the communication between actions sharing the pool. For state objects, the
pool will only contain a single object of the state type at any given time. Thus, all actions sharing a state
object via a pool will all see the same value for the state object at a given time.

5.2 Modeling system resources

5.2.1 Resource objects

In addition to declaring inputs and outputs, actions may require system resources that need to be accessible
in order to accomplish the specified behavior. The resource object is a user-defined data object that
represents this functionality. Similar to data flow objects, a resource may be declared directly or may inherit
from a user-defined data structure or another resource object.

5.2.2 Resource pools

Resource objects are also grouped into pools to define the set of actions that have access to the resources. A
resource pool is defined to have an explicit number of resource objects in it (the default is 1), corresponding
to the available resources in the DUT and/or test environment. In addition to optionally randomizable data
fields, the resource has a built-in non-negative numeric attribute called instance_id, which serves to
identify the resource and is unique for each resource in the given pool.

5.2.2.1 Locking resources

An action that requires exclusive access to a resource may lock the resource, which prevents any other action
that claims the same resource instance from executing until the locking action completes. For a given pool of
resource R, with size S, there may be S actions that lock a resource of type R executing at any given time.
Each action that locks a resource in a given pool at a given time will have access to a unique instance of the
resource and the instance_id value for each instance shall be unique. For example, if a DUT contains
two DMA channels, the PSS model would define a pool containing two instances of the DMA_channel
resource type. In this case, no more than two actions that lock the DMA_channel resource could be
scheduled concurrently.

5.2.2.2 Sharing resources

An action that requires non-exclusive access to a resource may share the resource. An action may not share
a resource instance that is locked by another action, but may share the resource instance with other actions
that also share the same resource instance. If all resources in a given pool are locked at a given time, then no
sharing actions can execute until at least one locking action completes to free a resource in that pool.
Copyright © 2017 - 2018 Accellera. All rights reserved.
13

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
5.3 Basic building blocks

5.3.1 Components and binding

A critical aspect of portability is the ability to encapsulate elements of verification intent into "building
blocks" that can be used to combine and compose PSS models. A component is a structural element of the
PSS model that serves to encapsulate other elements of the model for reuse. A component is typically
associated with a structural element of the DUT or testbench environment, such as hardware engines,
software packages, or test bench agents, and contains the actions that the element is intended to perform, as
well as the data and resource pools associated with those actions. Each component declaration defines a
unique type that can be instantiated inside other components. The component declaration also serves as a
type namespace in which other types may be declared.

A PSS model is comprised of one or more component instantiations constituting a static hierarchy beginning
with the top-level or root component, called pss_top by default, which is implicitly instantiated.
Components are identified uniquely by their hierarchical path. In addition to instantiating other components,
a component may declare functions and class instances (see 9.5).

When a component instantiates a pool of data flow or resource objects, it also needs to bind the pool to a set
of actions and/or subcomponents to define who has access to the objects in the pool. Actions may only
communicate via an object pool with other actions that are bound to the same object pool. Object binding
may be specified hierarchically, so a given pool may be shared across subcomponents, allowing actions in
different components to communicate with each other via the pool.

5.3.2 Evaluation and inference

A PSS model is evaluated starting with the top-level root action, which shall be specified to a tool. The
component hierarchy, starting with pss_top or a user-specified top-level component, provides the context
in which the model rules are defined. If the root action is a compound action, its activity forms the root of a
potentially hierarchical activity tree that includes all activities present in any sub activities traversed in the
activity. Additional actions may be inferred as necessary to support the data flow and binding requirements
of all actions explicitly traversed in the activity, as well as those previously inferred. Resources add an
additional set of scheduling constraints that may limit which actions actually get inferred, but resources do
not cause additional actions to be inferred.

The semantics of data flow objects allow the tool to infer, for each action in the overall activity, connections
to other actions already instantiated in the activity; or to infer and connect new action instances to conform
to the scheduling constraints defined in the activity and/or by the data and resource requirements of the
actions, including pool bindings. The model thus consists of a set of actions, with defined scheduling
dependencies, along with a set of data flow objects that may be explicitly bound or inferred to connect
between actions and a set of resources that may be claimed by the actions as each executes. Actions and flow
objects and their bindings may only be inferred as required to make the (partial) activity specification legal.
It shall be illegal to infer an action or object binding that is not required, either directly or indirectly, to make
the activity specification legal. See also Figure 5, which demonstrates how actions can be inferred to
generate multiple scenarios from a single activity.
Copyright © 2017 - 2018 Accellera. All rights reserved.
14

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Figure 5—Single activity, multiple scenarios

Looking at Figure 5, actions a, b, and c are scheduled sequentially in an activity. The data flow and
resource requirements specified in the model (which are not shown in Figure 5) allow for multiple scenarios
to be generated. If and only if action a has a buffer input then an action, f, is inferred to execute sequentially
before a to provide the buffer. Once inferred, if f also has a buffer input, then another action shall be
inferred to supply that buffer and so on until an action is inferred that does not have an input (or the tool’s
inferencing limit is reached, at which point an error shall be generated). For the purposes of this example,
action f does not have an input.

In Figure 5(i), presume action a produces (or consumes) a stream object. In this case, action d is inferred in
parallel with a since stream objects require a one-to-one connection between actions. Actions a and d both
start upon completion of action f. If action d also has a buffer input, then another action shall be inferred to
provide that input. For Figure 5(i), action f can be presumed to have a second buffer output that gets bound
to action d, although a second buffer-providing action could also have been inferred.

If action a produces a buffer object, the buffer may be connected to another action with a compatible input
type. In the absence of an explicit binding of a.out to b.in, action e (or a series of actions) may be
inferred to receive the output of action a and produce the input to action b. The direct connection between
a.out and b.in could also be inferred here, in which case no action would be inferred between them.
Similarly, in the absence of an explicit binding of b.out to c.in, a series of actions may be inferred
between the completion of action b and the start of action c to provide the input of action c. As the terminal
Copyright © 2017 - 2018 Accellera. All rights reserved.
15

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
action in the activity, no action may be inferred after action c however, even if action c produces a buffer
object as an output.

If there is no explicit binding between b.out and c.in, it is possible to infer another action, j, to supply
the buffer input to c.in, as shown in Figure 5(ii). In this case, there are two constraints on when the
execution of action c may begin. The activity scheduling requires action b to complete before action c
starts. The buffer object semantics also require action j to complete before action c starts. If action j
requires a buffer input, a series of actions could be inferred to supply the buffer object. That inferred action
chain could eventually be bound to a previously-inferred action, such as action d as shown in Figure 5(ii) or
it may infer an independent series of actions until it infers an initial action that only produces an output or
until the inferencing limit is reached. Since the output of action b is not bound to action c, action b is treated
as a terminating action, so no subsequent actions may be inferred after action b.

Finally, Figure 5(iii) shows the case where action c produces or consumes a stream object. In this case, even
though action c is the terminating action of the activity, action p needs to be inferred to satisfy the stream
object semantics for action c. Here, action p is also treated as a terminating action, so no subsequent actions
may be inferred. However, additional actions may be inferred either preceding or in parallel to action p to
satisfy its data flow requirements. Each action thus inferred is also treated as a terminating action. Similarly,
since action b is not bound to action c, it shall also be treated as a terminating action.

5.4 Constraints and inferencing

Data flow and resource objects may define constraint expressions on the values of their data fields
(including instance_id in the case of resource objects). In addition, actions may also define constraint
expressions on the data fields of their input/output flow objects and locked/shared resource objects. For data
objects, all constraints defined in the object and all actions that are bound to the object are combined to
define the legal set of values available for the object field. Similarly, the constraints defined for a resource
object shall be combined with the constraints defined in all actions that claim the resource. Inferred actions
or data flow objects that result in constraint contradictions are excluded from the legal scenario. At least one
valid solution needs to exist for the scenario model for that model to be considered valid.

5.5 Summary

In portable stimulus, a single PSS model may be used to generate a set of scenarios, each of which may have
different sets of inferred actions, data objects, and resources, while still implementing the critical
verification intent explicitly specified in the activity. Each resulting scenario may be generated as a test
implementation for the target platform by taking the behavior mapping implementation embedded in each
resulting atomic action and generating output code that assembles the implementations and provides any
other required infrastructure to ensure the behaviors execute on the target platform according to the
scheduling semantics defined by the original PSS model.
Copyright © 2017 - 2018 Accellera. All rights reserved.
16

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
6. Execution semantic concepts

6.1 Overview

A PSS test scenario is identified given a PSS model and an action type designated as the root action. The
execution of the scenario consists essentially in executing a set of actions defined in the model, in some
(partial) order. In the case of atomic actions, the mapped behavior of any exec body clauses (see 20.10.1) is
invoked in the target execution environment, while for compound actions the behaviors specified by their
activity statements are executed.

All action executions observed in a test run either correspond to those explicitly called by traversed activities
or are implicitly introduced to establish flows that are correct with respect to the model rules. The order in
which actions are executed shall conform to the flow dictated by the activities, starting from the root action,
and shall also be correct with respect to the model rules. Correctness involves consistent resolution of
actions’ inputs, outputs, and resource references, as well as satisfaction of scheduling constraints. Action
executions themselves shall reflect data-attribute assignments that satisfy all constraints.

6.2 Assumptions of abstract scheduling

Guarantees provided by PSS are based on general capabilities that test realizations need to have in any target
execution environment. The following are assumptions and invariants from the abstract semantics
viewpoint.

6.2.1 Starting and ending action executions

PSS semantics assumes target-mapped behavior associated with atomic actions can be invoked in the
execution environment at arbitrary points in time, unless model rules (such as state or data dependencies)
restrict doing so. It also assumes target-mapped behavior of actions can be known to have completed.

PSS semantics makes no assumptions on the duration of the execution of the behavior. It also makes no
assumptions on the mechanism by which an implementation would monitor or be notified upon action
completion.

6.2.2 Concurrency

PSS semantics assumes actions can be invoked to execute concurrently, under restrictions of model rules
(such as resource contentions).

PSS semantics makes no assumptions on the actual threading framework employed in the execution
environment. In particular, a target may have a native notion of concurrent tasks, as in SystemVerilog
simulation; it may provide native asynchronous execution threads and means for synchronizing them, such
as embedded code running on multi-core processors; or it may implement time sharing of native execution
thread(s) in a preemptive or cooperative threading scheme, as is the case with a runtime operating system
kernel. PSS semantics does not distinguish between these.

6.2.3 Synchronized invocation

PSS semantics assumes action invocations can be synchronized, i.e., logically starting at the same time. In
practice there may be some delay between the invocations of synchronized actions. However, the "sync-
time" overhead is (at worse) relative to the number of actions that are synchronized and is constant with
respect to any other properties of the scenario or the duration of any specific action execution.
Copyright © 2017 - 2018 Accellera. All rights reserved.
17

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
PSS semantics makes no assumptions on the actual runtime logic that synchronizes native execution threads
and puts no absolute limit on the "sync-time" of synchronized action invocations.

6.3 Scheduling concepts

PSS execution semantics defines the criteria for legal runs of scenarios. The criterion covered in this chapter
is stated in terms of scheduling dependency—the fundamental scheduling relation between action-
executions. Ultimately, scheduling is observed as the relative order of behaviors in the target environment
per the respective mapping of atomic actions. This section defines the basic concepts, leading up to the
definition of sequential and parallel scheduling of action-executions.

6.3.1 Preliminary definitions

a) An action-execution of an atomic action type is the execution of its exec-body block,6 with values
assigned to all of its parameters (reachable attributes). The execution of a compound action consists
in executing the set of atomic actions it contains, directly or indirectly. For more on execution
semantics of compound actions and activities, see Clause 11.
An atomic action-execution has a specific start-time—the time in which its exec-body block is
entered, and end-time—the time in which its exec-body block exits (the test itself does not complete
successfully before all actions that have started complete themselves). The start-time of an atomic
action-execution is assumed to be under the direct control of the PSS implementation. In contrast,
the end-time of an atomic action-execution, once started, depends on its implementation in the target
environment, if any (see 6.2.1).
The difference between end-time and start-time of an action-execution is its duration.

b) A scheduling dependency is the relation between two action-executions, by which one necessarily
starts after the other ends. Action-execution b has a scheduling dependency on a if b’s start has to
wait for a’s end. The temporal order between action-executions with a scheduling dependency
between them shall be guaranteed by the PSS implementation regardless of their actual duration or
that of any other action-execution in the scenario. Taken as a whole, scheduling dependencies con-
stitute a partial order over action-executions, which a PSS solver determines and a PSS scheduler
obeys.
Consequently, the lack of scheduling dependency between two action-executions (direct or indirect)
means neither one needs to wait for the other. Having no scheduling dependency between two
actions-executions implies they may (or may not) overlap in time.

c) Action-executions are synchronized (scheduled to start at the same time) if they all have the exact
same scheduling dependencies. No delay shall be introduced between their invocations, except a
minimal constant delay (see 6.2.3).

d) Two or more sets of action-executions are independent (scheduling-wise) if there is no scheduling
dependency between any two action-executions across the sets. Note that within each set, there may
be scheduling-dependencies.

e) Within a set of action-executions, the initial ones are those without scheduling dependency on any
other action-execution in the set. The final action-executions within the set are those in which no
other action-execution within the set depends.

6.3.2 Sequential scheduling

Action-executions a and b are scheduled in sequence if b has a scheduling dependency on a. Two sets of
action-executions, S1 and S2, are scheduled in sequence if every initial action-execution in S2 has scheduling

6Throughout this section exec-body block is referred to in the singular, although it may be the aggregate of multiple exec-body clauses
in different locations in PSS source code (e.g. in different extensions of the same action type).
Copyright © 2017 - 2018 Accellera. All rights reserved.
18

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
dependency on every final action-execution in S2. Generally, sequential scheduling of N action-execution
sets Si .. Sn is the scheduling dependency of every initial action-execution in Si on every final action-
execution in Si-1 for every i <= N.

For examples of sequential scheduling, see 11.4.2.3.

6.3.3 Parallel scheduling

N sets of action-executions Si .. Sn are scheduled in parallel if the following two conditions hold.
— All initial action-executions in all N sets are synchronized (i.e., all have the exact same set of sched-

uling dependencies).
— Si .. Sn are all independent scheduling-wise with respect to one another (i.e., there are no scheduling

dependencies across any two sets Si and Sj).

For examples of parallel scheduling, see 11.4.3.3.
Copyright © 2017 - 2018 Accellera. All rights reserved.
19

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
7. C++ specifics

All PSS/C++ types are defined in the pss namespace and are the only types defined by this specification.
Detailed header files for the C++ construct introduced in the C++ Syntax sections of this document (e.g.,
Syntax 1) are listed in Annex C.

Nested within the pss namespace is the detail namespace. Types defined within the detail
namespace are documented only to capture the intended user-visible behavior of the PSS/C++ types. Any
code that directly refers to types in the detail namespace shall be PSS implementation specific. A PSS
implementation is allowed to remove, rename, extend, or otherwise modify the types in the detail
namespace—as long as user-visible behavior of the types in pss namespace is preserved.

PSS/C++ object hierarchies are managed via the scope object, as shown in Syntax 1.

Syntax 1—C++: scope declaration

Most PSS/C++ class constructors take scope as their first argument; this argument is typically passed the
name of the object as a string.

The constructor of any user-defined classes that inherit from a PSS class shall always take const scope&
as an argument and propagate the this pointer to the parent scope. The class type shall also be declared
using the type_decl<> template object, as shown in Syntax 2.

pss::scope

Defined in pss/scope.h (see C.38).

class scope;

Base class for scope.

Member functions

scope (const char* name) : constructor
scope (const std::string& name) : constructor
template < class T > scope (T* s) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
20

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 2—C++: type declaration

Example 1 shows an example of this usage.

Example 1—C++: type declaration

The PSS_CTOR convenience macro for constructors:

#define PSS_CTOR(C,P) public: C (const scope& p) : P (this) {}

can also be used to simplify class declarations, as shown in Example 2.

Example 2—C++: Simplifying class declarations

pss::type_decl

Defined in pss/type_decl.h (see C.44).

template < class T > type_decl;

Declare a type.

Member functions

type_decl () : constructor
T* operator->() : access underlying type
T& operator*() : access underlying type

class A1 : public action {
public:
 A1 (const scope& s) : action (this) {}
};
type_decl<A1> A1_decl;

class A1 : public action {
 PSS_CTOR(A1,action);
};
type_decl<A1> A1_decl;
Copyright © 2017 - 2018 Accellera. All rights reserved.
21

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
8. Data types

8.1 Scalars

PSS supports two 2-state scalar data types. These fundamental scalar data types are summarized in Table 3,
along with their default value domain.

8.1.1 DSL syntax

The DSL syntax for scalars is shown in Syntax 3.

Syntax 3—DSL: Scalar data declaration

The following also apply.
a) Scalar values of bit type are unsigned values. Scalar values of int type are signed.
b) Integer literal constants can be specified in decimal, hexadecimal, octal, or binary format by follow-

ing SystemVerilog 2-state variable conventions ('h7f, 'b111, 7) or C-style hexadecimal notation
(0x7f).

c) 4-state values are not supported. If 4-state values are passed into the PSS model via the procedural
interface (PI) (see 20.4), any X or Z values are converted to 0.

d) The default values of the bit and int types is 0.
e) The width and domain specifications are independent. A variable of the declared type can hold val-

ues within the intersection of the possible values determined by the specified width (or the default
width, if not specified) and the explicit domain specification, if present.

f) Specifying a range with neither an upper nor lower bound shall be illegal.

Table 3—Scalar data types

Data type Default domain Signed/Unsigned

int -2^31 .. (2^31-1) Signed

bit 0..1 Unsigned

integer_type ::= integer_atom_type
 [[expression [: expression]]]
 [in [domain_open_range_list]]
integer_atom_type ::=
 int
 | bit
domain_open_range_list ::= domain_open_range_value { , domain_open_range_value }
domain_open_range_value ::=
 expression [.. expression]
 | expression ..
 | .. expression
 | expression
Copyright © 2017 - 2018 Accellera. All rights reserved.
22

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
8.1.2 C++ syntax

Contrasting with 8.1.1, b, C++ supports decimal, hexadecimal, and octal literals (e.g., 1, 0x1, and 001,
respectively).

The corresponding C++ syntax for Syntax 3 is shown in Syntax 4, Syntax 5, Syntax 6, Syntax 7, and
Syntax 8.

Syntax 4—C++: bit declaration

Syntax 5—C++: Scalar width declaration

pss::bit

Defined in pss/bit.h (see C.7).

using bit = unsigned int;

Declare a bit.

pss::width

Defined in pss/width.h (see C.47).

class width;

Declare the width of an attribute.

Member functions

width (const std::size_t& size) : constructor, width in bits
width (const std::size_t& lhs, const std::size_t& rhs) : constructor,
width as range of bits
Copyright © 2017 - 2018 Accellera. All rights reserved.
23

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 6—C++: Scalar range declaration

pss::range

Defined in pss/range.h (see C.36).

template <class T = int> class range;

Declare a range of values.

Member functions

range (const detail::AlgebExpr value) : constructor, single value
range (const detail::AlgebExpr lhs, const detail::AlgebExpr rhs) :
constructor, value range
range (const Lower& lhs, const detail::AlgebExpr rhs) : constructor,
Lower bounded value range
range (const detail::AlgebExpr lhs, const Upper& rhs) : constructor,
Upper bounded value range
range& operator() (const detail::AlgebExpr lhs, const detail
::AlgebExpr rhs) : function chaining to declare additional value ranges
range& operator() (const detail::AlgebExpr value) : function chaining to
declare additional values
Copyright © 2017 - 2018 Accellera. All rights reserved.
24

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 7—C++: Scalar non-rand declarations

pss::attr

Defined in pss/attr.h (see C.5).

template <class T> class attr;

Declare a scalar non-random attribute.

Member functions

attr (const scope& name) : constructor
attr (const scope& name, const T& init_val) : constructor, with initial value
attr (const scope& s, const width& a_width) : constructor, with width
(T = int or bit only)
attr (const scope& s, const width& a_width, const int& init_val) :
constructor, with width and initial value (T = int or bit only)
attr (const scope& s, const range& a_range) : constructor, with range
(T = int or bit only)
attr (const scope& s, const range& a_range, const int& init_val) :
constructor, with range and initial value (T = int or bit only)
attr (const scope& s, const width& a_width, const range& a_range)
: constructor, with width and range (T = int or bit only)
attr (const scope& s, const width& a_width, const range& a_range,
const int& init_val) : constructor, with width, range and initial value
(T = int or bit only)
T& val() : Enumerator access
Copyright © 2017 - 2018 Accellera. All rights reserved.
25

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 8—C++: Scalar rand declarations

8.1.3 Examples

The DSL and C++ scalar data examples are shown in-line within this section.

Declare a signed variable that is 32-bits wide.

DSL: int a;
C++: attr<int> a{"a"};

Declare a signed variable that is 5-bits wide.

DSL: int [4:0] a;
C++: attr<int> a {"a", width (4, 0) };

Declare a 5-bit unsigned variable with a value range 0..31.

DSL: bit [5] in [0..31] b;
C++: attr b { "b", width(5), range (0,31) };

Declare an unsigned variable that is 5-bits wide and has the valid values 1, 2, and 4.

DSL: bit [5] in [1,2,4] c;
C++: attr<bit> c { "c", width(5), range (1)(2)(4) };

Declare an unsigned variable that is 5-bits wide and has the valid values 0..10.

DSL: bit [5] in[..10] b; // 0 <= b <= 10
C++: attr<bit> b {"b", width(5), range(lower,10);

pss::rand_attr

Defined in pss/rand_attr.h (see C.35).

template <class T> class rand_attr;

Declare a random attribute.

Member functions

rand_attr (const scope& name) : constructor
rand_attr (const scope& name, const width& a_width) : constructor, with
width (T = int or bit only)
rand_attr (const scope& name, const range& a_range) : constructor, with
range (T = int or bit only)
rand_attr (const scope& name, const width& a_width, const range&
a_range) : constructor, with width and range (T = int or bit only)
T& val() : access randomized data
T* operator->() : access underlying structure
T& operator*() : access underlying structure
Copyright © 2017 - 2018 Accellera. All rights reserved.
26

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Declare an unsigned variable that is 5-bits wide and has the valid values 10..31.

DSL: bit [5] in [10..] b; // 10 <= b <= 31
C++: attr<bit> b {"b", width(5), range(10, upper);

8.2 Booleans

The PSS language supports a built-in Boolean type, with the type name bool. The bool type has two
enumerated values true (=1) and false (=0). When not initialized, the default value of a bool type is false.

C++ uses attr<bool> or rand_attr<bool>.

8.3 enums

8.3.1 DSL syntax

The enum declaration is consistent with C/C++ and is a subset of SystemVerilog, as shown in Syntax 9.
When not initialized, the default value of an enum shall be the first item in the list.

Syntax 9—DSL: enum declaration

8.3.2 C++ syntax

The corresponding C++ syntax for Syntax 9 is shown in Syntax 10.

The PSS_ENUM macro is used to declare an enumeration. As in C++, enumeration values may optionally
define values.

The PSS_EXTEND_ENUM macro is used when extending an enumeration. Again, enumeration values may
optionally define values..

enum_declaration ::= enum enum_identifier { [enum_item { , enum_item }] } [;]
enum_item ::= identifier [= constant_expression]
enum_type ::= enum_type_identifier [in [open_range_list]]
enum_type_identifier ::= type_identifier
Copyright © 2017 - 2018 Accellera. All rights reserved.
27

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 10—C++: enum declaration

8.3.3 Examples

Examples of enum usage are shown in Example 3 and Example 4.

Example 3—DSL: enum data type

The corresponding C++ example for Example 3 is shown in Example 4.

Example 4—C++: enum data type

Domain specifications are allowed for enum data types (see 8.1.3). Additional examples are shown in-line
within this section.

pss::enumeration

Defined in pss/enumeration.h (see C.21).

#define PSS_ENUM(enum_name, enum_item, enum_item=value, ...) // 1
#define PSS_EXTEND_ENUM(ext_name, base_name,

 enum_item, enum_item=value, ...) // 2

1) Declare an enumeration with a name and a list of items (values optional)
2) Extend an enumeration with a name and a list of items (values optional)

Member functions

template <class T> enumeration& operator=(const T& t) : assign an enum
value

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20, MODE_C=35,
MODE_D=40};

component uart_c {
 action configure {
 rand config_modes_e mode;
 constraint { mode != UNKNOWN; };
 }
};

PSS_ENUM(config_modes_e, UNKNOWN, MODE_A=10, MODE_B=20, MODE_C=35,
MODE_D=40);

class uart_c : public component { ...
 class configure : public action { ...
 PSS_CTOR(configure, action);
 rand_attr<config_modes_e> mode{"mode"};
 constraint c {"c", mode != config_modes_e::UNKNOWN};
 };
 type_decl<configure> configure_decl;
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
28

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Declare an enum of type config_modes_e with values MODE_A, MODE_B, or MODE_C.

DSL: config_modes_e in [MODE_A..MODE_C] mode_ac;

C++: rand_attr<config_modes_e>
mode_ac{"mode_ac",range<config_modes_e>(MODE_A,MODE_C)};

Declare an enum of type config_modes_e with values MODE_A or MODE_C.

DSL: config_modes_e in [MODE_A, MODE_C] mode_ac;

C++: rand_attr<config_modes_e>
mode_ac{"mode_ac",range<config_modes_e>(MODE_A)(MODE_C)};

Declare an enum of type config_modes_e with values UNKNOWN, MODE_A, or MODE_B.

DSL: config_modes_e in [..MODE_B] mode_ub;

C++: rand_attr<config_modes_e>
mode_ub{"mode_ub",range<config_modes_e>(min(),MODE_B)};

Declare an enum of type config_modes_e with values MODE_B, MODE_C, or MODE_D.

DSL: config_modes_e in [MODE_B..] mode_bd;

C++: rand_attr<config_modes_e>
mode_bd{"mode_bd",range<config_modes_e>(MODE_B, max())};

Note that an open_range_list may also be used for enums in select (see 11.5.4) and match (see 11.5.6)
statements, as well as in constraints (see Clause 15).

8.4 Strings

The PSS language supports a built-in string type with the type name string. When not initialized, the default
value of a string shall be the empty string (""). See also Syntax 11, Syntax 12, and Syntax 13.

8.4.1 DSL syntax

Syntax 11—DSL: string declaration

8.4.2 C++ syntax

C++ uses attr<std::string> (see Syntax 12) or rand_attr<std::string> (see Syntax 13) to
represent strings.

string_type ::=
string [in [DOUBLE_QUOTED_STRING { , DOUBLE_QUOTED_STRING }]]
Copyright © 2017 - 2018 Accellera. All rights reserved.
29

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 12—C++: Scalar string declaration

Syntax 13—C++: Scalar rand string declaration

8.4.3 Examples

The value of a random string-type field can be constrained with equality constraints and can be compared
using equality constraints, as shown in Example 5 and Example 6.

Example 5—DSL: String data type

The corresponding C++ example for Example 5 is shown in Example 6.

pss::attr

Defined in pss/attr.h (see C.36).

template<> class attr<std::string>;

Declare a non-rand string attribute.

Member functions

attr(const scope& name) : constructor
std::string& val() : Access to underlying data

pss::rand_attr

Defined in pss/rand_attr.h (see C.35).

template<> class rand_attr<std::string>;

Declare a randomized string.

Member functions

rand_attr(const scope& name) : constructor
std::string& val() : Access to underlying data

struct string_s {
 rand bit a;
 rand string s;

 constraint {
 if (a == 1) {
 s == "FOO";
 } else {
 s == "BAR";
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
30

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 6—C++: String data type

Comma-separated domain specifications are allowed for string data types (see 8.1.1).

Declare string with values "Hello", "Hallo", or "Ni Hao".

DSL: string in ["Hello", "Hallo", "Ni Hao"] hello_s;

C++: rand_attr<std::string>
hello_s{"hello_s",range<std::string>("Hello")("Hallo")("Ni Hao")};

Note that a comma-separated open_range_list may also be used for string in select (see 11.5.4) and
match (see 11.5.6) statements, as well as in constraints (see Clause 15).

8.5 chandles

The chandle type (pronounced "see-handle") represents an opaque handle to a foreign-language pointer as
shown in Syntax 14. A chandle is used with the PI (see 20.4) to store foreign-language pointers in the PSS
model and pass them to foreign-language functions and methods. See Annex D for more information about
the foreign-language PI.

8.5.1 C++ syntax

Syntax 14—C++: chandle declaration

struct string_s : public structure { ...
 rand_attr<bit> a {"a"};
 rand_attr<std::string> s {"s"};

 constraint c1 { "c1",
 if_then_else {
 cond (a == 1),
 s == "FOO",
 s == "BAR"
 }
 };
};
...

pss::chandle

Defined in pss/chandle.h (see C.9).

class chandle;

Declare a chandle.

Member functions

chandle& operator= (detail::AlgebExpr val) : assign to chandle
Copyright © 2017 - 2018 Accellera. All rights reserved.
31

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
8.5.2 Examples

Example 7 shows a struct containing a chandle field that is initialized by the return of a foreign-
language function.

Example 7—DSL: chandle data type

8.6 Structs

A struct declares a collection of data items and constraints that relate the values of the data items, as shown
in Syntax 15 or Syntax 16.

8.6.1 DSL syntax

Syntax 15—DSL: struct declaration

function chandle do_init();

struct info_s {
 chandle ptr;

 exec pre_solve {
 ptr = do_init();
 }
}

struct_declaration ::= struct_kind identifier [: type_identifier] { { struct_body_item } } [;]
struct_kind ::=
 struct
 | object_kind
object_kind ::=
 buffer
 | stream
 | state
 | resource
struct_body_item ::=
 constraint_declaration
 | attr_field
 | typedef_declaration
 | covergroup_declaration
 | exec_block_stmt
 | static_const_field_declaration
 | attr_group
 | compile_assert_stmt
 | inline_covergroup
 | struct_body_compile_if
Copyright © 2017 - 2018 Accellera. All rights reserved.
32

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
A struct is a pure-data type; it does not declare an operation sequence. A struct declaration can specify a
struct_identifier, a previously defined struct type from which the new type inherits its members, by using a
colon (:), as in C++. In addition, structs can

— include constraints (see 15.1) or bins (see 17.5);
— represent data flow objects (see Clause 12) and resources (see Clause 13).

The following also apply.
a) Data elements within a struct may be declared to be of int, bit, struct or enum type, and may

optionally include the rand keyword to indicate the element should be randomized when the overall
struct is randomized (as shown in Example 8).

b) Applying the rand modifier to a field of a struct type causes all fields (and sub-fields) of the struct
that are qualified as rand to be randomized when the struct is randomized.

c) Fields (and sub-fields) of the struct that are not qualified as rand are not randomized when the
struct is randomized.

8.6.2 C++ syntax

In C++, structures shall derive from the structure class.

The corresponding C++ syntax for Syntax 15 is shown in Syntax 16.

Syntax 16—C++: struct declaration

8.6.3 Examples

Struct examples are shown in Example 8 and Example 9.

Example 8—DSL: Struct with rand modifier

pss::structure

Defined in pss/structure.h (see C.42).

class structure;

Base class for declaring a structure.

Member functions

structure (const scope& s) : constructor
virtual void pre_solve() : in-line pre_solve exec block
virtual void post_solve() : in-line post_solve exec block

struct axi4_trans_req {
rand bit[31:0] axi_addr;
rand bit[31:0] axi_write_data;
rand bit is_write;
rand bit[3:0] prot;
rand bit[1:0] sema4;

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
33

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 9—C++: Struct with rand modifier

8.7 User-defined data types

The typedef statement declares a user-defined type name in terms of an existing data type, as shown in
Syntax 17.

8.7.1 DSL syntax

Syntax 17—DSL: User-defined type declaration

8.7.2 C++ syntax

C++ uses the built-in typedef construct.

8.7.3 Examples

typedef examples are shown in Example 10 and Example 11.

Example 10—DSL: typedef

Example 11—C++: typedef

8.8 Arrays

PSS supports fixed-sized arrays of scalar data types, and arrays of structs and components.

8.8.1 C++ syntax

The corresponding C++ syntax for arrays is shown in Syntax 18 and Syntax 19.

struct axi4_trans_req : public structure { ...
 rand_attr<bit> axi_addr { "axi_addr", width {31, 0} };
 rand_attr<bit> axi_write_data { "axi_write_data", width {31, 0} };
 rand_attr<bit> is_write {"is_write" };
 rand_attr<bit> prot { "prot", width {3, 0} };
 rand_attr<bit> sema4 { "sema4", width {1, 0} };
};
type_decl<axi4_trans_req> axi4_trans_req_decl;

typedef_declaration ::= typedef data_type identifier ;

typedef bit[31:0] uint32_t;

typedef unsigned int uint32_t;
Copyright © 2017 - 2018 Accellera. All rights reserved.
34

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 18—C++: Arrays of non-random attributes

pss::attr_vec

Defined in pss/attr.h (see C.5).

template < class T > using vec = std::vector <T>;
template < class T > using attr_vec = attr< vec <T> >;

Declare array of non-random attributes.

Member functions

attr_vec(const scope& name, const std::size_t count) : constructor
attr_vec(const scope& name, const std::size_t count, const width&
a_width) : constructor, with element width (T = int or bit only)
attr_vec(const scope& name, const std::size_t count, const range&
a_range) : constructor, with element range (T = int or bit only)
attr_vec(const scope& name, const std::size_t count, const width&
a_width, const range& a_range) : constructor, with element width and range
(T = int or bit only)
attr(std::initializer_list<attr<T>> values) : constructor creating array
from list of elements
attr<T>& operator[](const std::size_t idx) : access to a specific element
std::size_t size() : get size of array
detail::AlgebExpr operator[](const detail::AlgebExpr& idx); : con-
strain an element
detail::AlgebExpr sum() : constrain sum of array
Copyright © 2017 - 2018 Accellera. All rights reserved.
35

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 19—C++: Arrays of random attributes

8.8.2 Examples

Examples of fixed-size array declarations are shown in Example 12 and Example 13.

Example 12—DSL: Fixed-size arrays

The name of each array element is obtained by appending [N] to the array name, where N is the index of the
element in the array. In Example 12, the names of the individual elements of the east_routes array are
east_routes[0], east_routes[1]…east_routes[7], respectively.

pss::rand_attr_vec

Defined in pss/rand_attr.h (see C.35).

template < class T > using vec = std::vector <T>;
template < class T > using rand_attr_vec = rand_attr< vec <T> >;

Declare array of random attributes.

Member functions

rand_attr_vec(const scope& name, const std::size_t count) : construc-
tor
rand_attr_vec(const scope& name, const std::size_t count, const
width& a_width) : constructor, with element width (T = int or bit only)
rand_attr_vec(const scope& name, const std::size_t count, const
range& a_range) : constructor, with element range (T = int or bit only)
rand_attr_vec(const scope& name, const std::size_t count, const
width& a_width, const range& a_range) : constructor, with element width and
range (T = int or bit only)
rand_attr<T>& operator[](const std::size_t idx) : access to a specific ele-
ment
std::size_t size() : get size of array
detail::AlgebExpr operator[](const detail::AlgebExpr& idx); : con-
strain an element
detail::AlgebExpr sum() : constrain sum of array (T = int or bit only)

int fixed_sized_arr [16]; // array of 16 signed integers
bit [7:0] byte_arr [256]; // array of 256 bytes
route east_routes [8]; // array of 8 route structs
Copyright © 2017 - 2018 Accellera. All rights reserved.
36

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 13—C++: Fixed-size arrays

In C++, the name of each array element is obtained by appending _N to the array name, where N is the index
of the element in the array. In Example 13, the names of the individual elements of the east_routes
array are east_routes_0, east_routes_1 …east_routes_7, respectively.

8.8.3 Properties

Arrays of scalar quantities provide properties, such as sum and size (see 8.8.3.1 and 8.8.3.2), that may be
used in constraint expressions.

8.8.3.1 Sum

The sum property shall return the sum of all elements in the array.

8.8.3.2 Size

The size property shall return the number of elements in the array.

8.8.3.3 Examples of property usage

The sum property shown in Example 14 and Example 15 constrains the element values of an array of
scalars.

Example 14—DSL: sum property of an array

Example 15—C++: sum property of an array

The size property shown in Example 16 and Example 17 constrains the number of elements in an array of
scalars.

// array of 16 signed integers
attr_vec <int> fixed_sized_arr { "fixed_size_arr", 16 };
// array of 256 bytes
attr_vec <bit> byte_arr { "byte_arr", 256, width{ 7, 0 } };
// array of 8 route structs
attr_vec <route> east_routes {"east_routes", 8 };

bit [7:0] data [4];
 constraint data_c {
 data.sum > 0 && data.sum < 1000;
 }

attr_vec<bit> data {"data", 4, width {7,0} };
constraint data_c { data.sum() > 0 && data.sum() < 1000 };
Copyright © 2017 - 2018 Accellera. All rights reserved.
37

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 16—DSL: size property of an array

Example 17—C++: size property of an array

8.9 Access protection

By default, all data attributes of components, actions, and structs have public accessibility. The default
accessibility can be modified for a single data attribute by prefixing the attribute declaration with the desired
accessibility. The default accessibility can be modified for all attributes going forward by specifying a
block-access modifier.

The following also apply.

— A public attribute (see B.2) is accessible from any element in the model.

— A private attribute (see B.2) is accessible only from within the element in which it is declared. Fur-
thermore, these private attributes are not visible within sub-elements that inherit from or are inher-
ited from the base element that originally defined the attribute.

— A protected attribute (see B.2) is accessible only from within the element in which it is declared and
any extensions or inherited elements thereof.

NOTE—C++ supports public/private/protected.

Example 18 shows using a per-attribute access modifier to change the accessibility of the random attribute
b. Fields a and c are publicly accessible.

Example 18—DSL: Per-attribute access modifier

Example 19 shows using block access modifiers to set the accessibility of a group of attributes. Fields w and
x are private due to the private: directive. Field y is public because its access modifier is explicitly
specified. Field z is private, since the private: block access modifier is in effect. Field s is public, since the
preceding public: directive has changed the default accessibility back to public.

const int data_words = 64;

bit [7:0] data [data_words*4];
constraint data_c {
 data.size < 1024; // abstracting from details of the array declaration
}

const int data_words = 64;

attr_vec<bit> data {"data", data_words*4, width {7,0} };
constraint data_c { data.size() < 1024 };

struct S1 {
 rand int a; // public accessibility (default)
 private rand int b; // private accessibility
 rand int c; // public accessibility (default)
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
38

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 19—DSL: Block access modifier

8.10 Data type conversion

Expressions of types int, bit, bool, or enum in DSL can be changed to another type in this list by using a
cast operator. C++ casting is handled using the existing C++ mechanism.

8.10.1 DSL syntax

Syntax 3 defines a cast operator.

Syntax 20—DSL: cast operation

In a cast_expression, the expression to be cast shall be preceded by the casting data type enclosed in
parentheses (()). The cast shall return the value of the expression represented as the casting_type.

The following also apply.

a) Any non-zero value cast to a bool type shall evaluate to true. A zero value cast to a bool type shall
evaluate to false.

b) When casting a value to a bit type, the casting_type shall include the width specification of the
resulting bit vector. The expression shall be converted to a bit vector of sufficient width to hold the
value of the expression, and then truncated or left-zero-padded as necessary to match the casting_-
type.

c) When casting a value to a user-defined enum type, the value shall correspond to a valid integral
value for the resulting enum type. When used in a constraint, the resulting domain is the intersection
of the value sets of the two enum types.

d) All numeric expressions (int and bit types) are type-compatible, so an explicit cast is not required
from one to another.

8.10.2 Examples

Example 20 shows the overlap of possible enum values (from 8.10.1 (c)) when used in constraints.

struct S2 {
 private:
 rand int w; // private accessibility
 rand int x; // private accessibility
 public rand int y; // public accessibility
 rand int z; // private accessibility

 public:
 rand int s; // public accessibility
}

cast_expression ::= (casting_type) expression
Copyright © 2017 - 2018 Accellera. All rights reserved.
39

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 20—DSL: Overlap of possible enum values

Example 21 shows the casting of al from the align_e enum type to a 4-bit vector to pass into the
alloc_addr imported function.

Example 21—DSL: Casting of variable to a vector

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};
enum foo_e {A=10, B, C};

action my_a {
 rand config_modes_e cfg;
 rand foo_e foo;
 constraint cfg == (config_modes_e)11; // illegal
 constraint cfg == (config_modes_e)foo; // cfg==MODE_A,

 // the only value in the numeric domain of both cfg and foo
 ...
}

package external_fn_pkg {
 enum align_e {byte_aligned=1, short_aligned = 2, word_aligned=4};
 function bit[31:0] alloc_addr(bit[31:0] size, bit[3:0] align);
 buffer mem_seg_s {
 rand bit[31:0] size;
 bit[31:0] addr;
 align_e al;
 exec post_solve {
 addr = alloc_addr(size, (bit[3:0])al);
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
40

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
9. Components

Components serve as a mechanism to encapsulate and reuse elements of functionality in a portable stimulus
model. Typically, a model is broken down into parts that correspond to roles played by different actors
during test execution. Components often align with certain structural elements of the system and execution
environment, such as hardware engines, software packages, or test bench agents.

Components are structural entities, defined per type and instantiated under other components (see Syntax 21
or Syntax 22 and Syntax 23). Component instances constitute a hierarchy (tree structure), beginning with the
top or root component, called pss_top by default, which is implicitly instantiated. Components have
unique identities corresponding to their hierarchical path, and may also contain data-attributes, but not
constraints. Components may also encapsulate functions (see 20.4.1) and imported class instances (see
20.9).

9.1 DSL syntax

Syntax 21—DSL: component declaration

9.2 C++ syntax

The corresponding C++ syntax for Syntax 21 is shown in Syntax 22 and Syntax 23.

Components are declared using the component class (see Syntax 22).

component_declaration ::= component component_identifier [: component_super_spec]
 { { component_body_item } } [;]
component_super_spec ::= : type_identifier
component_body_item ::=
 overrides_declaration
 | component_field_declaration
 | action_declaration
 | object_bind_stmt
 | exec_block
 | package_body_item
 | attr_group
 | component_body_compile_if
Copyright © 2017 - 2018 Accellera. All rights reserved.
41

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 22—C++: component declaration

Components are instantiated using the comp_inst<> or comp_inst_vec<> class (see Syntax 23).

Syntax 23—C++: component instantiation

pss::component

Defined in pss/component.h (see C.11) .

class component;

Base class for declaring a component.

Member functions

component (const scope& name) : constructor
virtual void init() : in-line init exec block

pss::comp_inst

Defined in pss/comp_inst.h (see C.10).

template<class T>
comp_inst;

Instantiate a component.

Member functions

comp_inst const scope& name) : constructor
T* operator-> () : access fields of component instance
T& operator* () : access fields of component instance

pss::comp_inst_vec

Defined in pss/comp_inst.h (see C.10) .

template<class T> comp_inst_vec;

Instantiate an array of components.

Member functions

comp_inst<T>& operator[](const std::size_t index) : access element of
component array
std::size_t size() : returns number of components in array
Copyright © 2017 - 2018 Accellera. All rights reserved.
42

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
9.3 Examples

For examples of how to use a component, see Example 22 and Example 23.

Example 22—DSL: Component

The corresponding C++ example for Example 22 is shown in Example 23.

Example 23—C++: Component

9.4 Components as namespaces

Component types serve as a namespace for their nested types, i.e., action and struct types defined under
them. Actions, but not structs, may be thought of as non-static inner classes of the component, since each
action is associated with a specific component instance. The qualified name of action and object types is of
the form 'component-type::class-type'. Within a given component type, references can be left
unqualified. However, referencing a nested type from another component requires the component
namespace qualification. In a given namespace, identifiers shall be unique. Neither components nor
packages may be declared inside other components or packages. Therefore, any type qualification using the
:: operator only has one level and the right-hand side shall not be a component or package type.

For examples of how to use a component as a namespace, see Example 24 and Example 25.

Example 24—DSL: Namespace

The corresponding C++ example for Example 24 is shown in Example 25.

component uart_c { ... };

class uart_c : public component { … };

component usb_c {
 action write {…}
}
component uart_c {
 action write {…}
}
component pss_top {
 uart_c s1;
 usb_c s2;
 action entry {
 uart_c::write wr; //refers to the write action in uart_c
 …
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
43

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 25—C++: Namespace

9.5 Component instantiation

Components are instantiated under other components as their fields, much like data fields of structs.
Component fields may be of component and import-class type, as well as data fields, and may be arrays
thereof.

9.5.1 Semantics

a) Component fields are non-random; therefore, the rand modifier shall not be used. Component data
fields represent configuration data that is accessed by actions declared in the component. A compo-
nent type shall not be instantiated under its own sub-tree.

b) In any model, the component instance tree has a predefined root component, called pss_top by
default, but this may be user defined. There can only be one root component in any valid scenario.

c) Other components or actions are instantiated (directly or indirectly) under the root component. See
also Example 26 and Example 27.

d) Scalar (non-array) data fields (int, bit, chandle, bool, string, or enum) may be initialized using a
constant expression in their declaration. Any data field may be initialized via an exec init block,
which overrides the value set by an initialization declaration. Exec init blocks may only contain
assignment statements or imported calls. The component tree is elaborated to instantiate each com-
ponent and then the exec init blocks are evaluated bottom-up. See also Example 209 and
Example 210 (and 20.1).

e) Component data fields are considered immutable once construction of the component tree is com-
plete. Actions can read the value of these fields, but cannot modify their value. Component data
fields are accessed from actions relative to the comp field, which is a handle to the component con-
text in which the action is executing. See also Example 211 and Example 212 (and 20.1).

class usb_c : public component { ...
 class write : public action {...};
 type_decl<write> write_decl;
};
...

class uart_c : public component { ...
 class write : public action {...};
 type_decl<write> write_decl;
};
...

class pss_top : public component { ...
 comp_inst<uart_c> s1{"s1"};
 comp_inst<usb_c> s2{"s2"};
 class entry : public action { ...
 action_handle<uart_c::write> wr{"wr"};
 ...
 };
 type_decl<entry> entry_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
44

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
9.5.2 Examples

Example 26 and Example 27 depict a component tree definition. In total, there is one instance of
multimedia_ss_c (instantiated in pss_top), four instances of codec_c (from the array declared in
multimedia_ss_c), and eight instances of vid_pipe_c (two in each element of the codec_c array).

Example 26—DSL: Component instantiation

Example 27—C++: Component instantiation

9.6 Component references

Each action instance is associated with a specific component instance of its containing component type, the
component-type scope where the action is defined. The component instance is the "actor" or "agent" that
performs the action. Only actions defined in the scope of instantiated components can legally participate in a
scenario.

The component instance with which an action is associated is referenced via the built-in attribute comp. The
value of the comp attribute can be used for comparisons (in equality and inequality expressions). The static
type of the comp attribute of a given action is the type of the respective context component type.

component vid_pipe_c { ... };

component codec_c {
 vid_pipe_c pipeA, pipeB;
 action decode { ... };
};

component multimedia_ss_c {
 codec_c codecs[4];
};

component pss_top {
 multimedia_ss_c multimedia_ss;
};

class vid_pipe_c : public component { ... };
...
class codec_c : public component {...
 comp_inst<vid_pipe_c> pipeA{"pipeA"}, pipeB{"pipeB"};

 class decode : public action { ... };
 type_decl<decode> decode_decl;
};
...
class multimedia_ss_c : public component { ...
 comp_inst_vec<codec_c> codecs{ "codecs", 4};
};
...
class pss_top : public component { ...
 comp_inst<multimedia_ss_c> multimedia_ss{"multimedia_ss"};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
45

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Consequently, sub-components of the containing component may be referenced via the comp attribute using
relative paths.

9.6.1 Semantics

A compound action can only instantiate sub-actions that are defined in its containing component or defined
in component types that are instantiated in its containing component's instance sub-tree. In other words,
compound actions cannot instantiate actions that are defined in components outside their context component
hierarchy.

9.6.2 Examples

Example 28 and Example 29 demonstrate the use of the comp reference. The constraint within the decode
action forces the value of the action’s mode bit to be 0 for the codecs[0] instance, while the value of
mode is randomly selected for the other instances. The sub-action type program is available on both sub-
component instances, pipeA and pipeB, but in this case is assigned specifically to pipeA using the comp
reference.

See also 15.1.

Example 28—DSL: Constraining a comp attribute

component vid_pipe_c { /* ... */ };
component codec_c {
 vid_pipe_c pipeA, pipeB;
 bit mode1_enable;
 action decode {
 rand bit mode;
 constraint set_mode {
 comp.mode1_enable==0 -> mode == 0;
 }
 activity {
 do vid_pipe_c::program with { comp == this.comp.pipeA; };
 }
 };
};
component multimedia_ss_c {
 codec_c codecs[2];
 exec init {
 codecs[0].mode1_enable = 0;
 codecs[1].mode1_enable = 1;
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
46

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 29—C++: Constraining a comp attribute

class vid_pipe_c : public component {...};
...
class codec_c : public component { ...
 comp_inst<vid_pipe_c> pipeA{"pipeA"}, pipeB{"pipeB"};
 attr<bit> mode1_enable {"mode1_enable"};

 class decode : public action { ...
 rand_attr<modes_e> mode {"mode"};
 action_handle<codec_c::decode> codec_c_decode{"codec_c_decode"};

 action_handle<vid_pipe_c::program> pipe_prog_a{"pipe_prog_a"};

 activity act {
 pipe_prog_a.with(
 pipe_prog_a->comp() == comp<codec_c>()->pipeA
)
 };
 };
 type_decl<decode> decode_decl;
};
...
class multimedia_ss_c : public component { ...
 comp_inst_vec<codec_c> codecs{ "codecs", 2};
 exec e { exec::init,
 codecs[0]->mode1_enable = 0,
 codecs[1]->mode1_enable = 1,
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
47

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
10. Actions

Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose
definition can be reused in many different contexts. Along with their intrinsic properties, actions also
encapsulate the rules for their interaction with other actions and the ways to combine them in legal
scenarios. Atomic actions may be composed into higher-level actions, and, ultimately, to top-level test
actions, using activities (see Clause 11). The activity of a compound action specifies the intended schedule
of its sub-actions, their object binding, and any constraints. Activities are a partial specification of a
scenario: determining their abstract intent and leaving other details open.

Actions prescribe their possible interactions with other actions indirectly, by using flow (see Clause 12) and
resource (see Clause 13) objects. Flow object references specify the action’s inputs and outputs and resource
object references specify the action’s resource claims.

By declaring a reference to an object, an action determines its relation to other actions that reference the very
same object without presupposing anything specific about them. For example, one action may reference a
data-flow object of some type as its input, which another action references as its output. By referencing the
same object, the two actions necessarily agree on its properties without having to know about each other.
Each action may constrain the attributes of the object. In any consistent scenario, all constraints need to
hold; thus, the requirements of both actions are satisfied, as well as any constraints declared in the object
itself.

Actions may be atomic, in which case their implementation is supplied via an exec block (see 20.1) or they
may be compound, in which case they contain an activity (see Clause 11) that instantiates and schedules
other actions. A single action can have multiple implementations in different packages, so the actual
implementation of the action is determined by which package is used.

An action is declared using the action keyword and an action_identifier, as shown in Syntax 24. See also
Syntax 25.
Copyright © 2017 - 2018 Accellera. All rights reserved.
48

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
10.1 DSL syntax

Syntax 24—DSL: action declaration

An action declaration optionally specifies an action_super_spec, a previously defined action type from
which the new type inherits its members.

The following also apply.
a) The activity_declaration and exec_block_stmt action body items are mutually exclu-

sive. An atomic action may specify exec_block_stmt items; it shall not specify activity_
declaration items. A compound action, which contains instances of other actions and an
activity_declaration item, shall not specify exec_block_stmt items.

b) An abstract action may be declared as a template that defines a base set of field attributes and
behavior from which other actions may inherit. The extended actions may be instantiated like any
other action. Abstract actions shall not be instantiated directly.

10.2 C++ syntax

Actions are declared using the action class.

The corresponding C++ syntax for Syntax 24 is shown in Syntax 25.

action_declaration ::= [abstract] action action_identifier [action_super_spec]
 { { action_body_item } }[;]
action_super_spec ::= : type_identifier
action_body_item ::=
 activity_declaration
 | overrides_declaration
 | constraint_declaration
 | action_field_declaration
 | symbol_declaration
 | covergroup_declaration
 | exec_block_stmt
 | static_const_field_declaration
 | action_scheduling_constraint
 | attr_group
 | compile_assert_stmt
 | inline_covergroup
 | action_body_compile_if
Copyright © 2017 - 2018 Accellera. All rights reserved.
49

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 25—C++: action declaration

10.3 Examples

10.3.1 Atomic actions

Examples of an action declaration are shown in Example 30 and Example 31.

Example 30—DSL: atomic action

The corresponding C++ example for Example 30 is shown in Example 31.

Example 31—C++: atomic action

10.3.2 Compound actions

Compound actions instantiate other actions within them and use an activity statement (see Clause 11) to
define the relative scheduling of these sub-actions.

Examples of compound action usage are shown in Example 32 and Example 33.

pss::action

Defined in pss/action.h (see C.2).

class action;

Base class for declaring an action.

Member functions

action (const scope& name) : constructor
virtual void pre_solve() : in-line pre_solve exec block
virtual void post_solve() : in-line post_solve exec block
template <class T=component> detail::comp_ref<T> comp(); : refer to
action’s context component instance

action write {
 output data_buf data;
 rand int size;
 //implementation details
 …
};

class write : public action { ...
 output < data_buf> data {"data"};
 rand_attr<int> size {"size"};
 // implementation details
 ...
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
50

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 32—DSL: compound action

The corresponding C++ example for Example 32 is shown in Example 33.

Example 33—C++: compound action

action sub_a {...};

action compound_a {
 sub_a a1, a2;
 activity {
 a1;
 a2;
 }
}

class sub_a : public action { ... };
...
class compound_a : public action { ...
 action_handle<sub_a> a1{"a1"}, a2{"a2"};
 activity act {
 a1,
 a2
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
51

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11. Activities

When a compound action includes multiple operations, these behaviors are described within the action
using an activity. An activity specifies the set of actions to be executed and the scheduling relationship(s)
between them. A reference to an action within an activity is via an action handle, and the resulting action
traversal causes the referenced action to be evaluated and randomized (see 11.4.1).

An activity, on its own, does not introduce any scheduling dependencies for its containing action. However,
flow object or resource scheduling constraints of the sub-actions may introduce scheduling dependencies for
the containing action relative to other actions in the system.

11.1 Activity declarations

Because activities are explicitly specified as part of an action, and there may be at most one activity in a
given action, activities themselves do not have a separate name. Relative to the sub-actions referred to in the
activity, the action that contains the activity is referred to as the context action.

11.2 Activity evaluation with extension and inheritance

Compound actions support both type inheritance and type extension. When type extension is used to
contribute another activity to the target action type, the execution semantics are the same as if the base
activity were scheduled along with the contributed activities.

In Example 34, the target action entry traverses action type A. Extensions to action type entry include
activities that traverse action types B and C.

Example 34—DSL: Extended action traversal

component pss_top {
 action A { };
 action B { };
 action C { };

 action entry {
 activity {
 do A;
 }
 }

 extend action entry {
 activity {
 do B;
 }
 }

 extend action entry {
 activity {
 do C;
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
52

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The semantics of activity in the presence of type extension state that all three activity blocks will be
traversed under an implied schedule block. In other words, Example 34 is equivalent to the hand-coded
example shown in Example 35.

Example 35—DSL: Hand-coded action traversal

When a compound action inherits from another compound action, the activity declared in the inheriting
action overrides the activity declared in the base action. The super keyword can be used to traverse the
activity declared in the base action.

In Example 36, the action base declares an activity that traverse an action type A. The action ext1 inherits
from base and replaces the activity declared in base with an activity that traverses action type B. The
action ext2 inherits from base and replaces the activity declared in base with an activity that first
traverses the activity declared in base, the traverses action type C.

component pss_top {
 action A { };
 action B { };
 action C { };

 action entry {
 activity {
 schedule {
 do A;
 do B;
 do C;
 }
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
53

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 36—DSL: Inheritance and traversal

11.3 Activity constructs

Each node of an activity represents an action, with the activity specifying the temporal, control, and/or data
flow between them. These relationships are described via activity rules, which are explained herein. See also
Syntax 26 or Syntax 27.

component pss_top {
 action A { }
 action B { }
 action C { }

 action base {
 activity {
 do A;
 }
 }

 action ext1 : base {
 activity {
 do B;
 }
 }

 action ext2 : base {
 activity {
 super;
 do C;
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
54

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.3.1 DSL syntax

Syntax 26—DSL: activity statement

11.3.2 C++ syntax

In C++, an activity is declared by instantiating the activity class.

The corresponding C++ syntax for Syntax 26 is shown in Syntax 27.

Syntax 27—C++: activity statement

activity_declaration ::= activity { { [identifier :] activity_stmt } } [;]
activity_stmt ::=
 [identifier :] labeled_activity_stmt
 | activity_data_field
 | activity_bind_stmt
 | action_handle_declaration
 | activity_constraint_stmt
 | action_scheduling_constraint
labeled_activity_stmt::=
 activity_if_else_stmt
 | activity_repeat_stmt
 | activity_foreach_stmt
 | activity_action_traversal_stmt
 | activity_sequence_block_stmt
 | activity_select_stmt
 | activity_match_stmt
 | activity_parallel_stmt
 | activity_schedule_stmt
 | activity_super_stmt
 | function_symbol_call

pss::action::activity

Defined in pss/action.h (see C.2).

template <class... R> class activity;

Declare an activity.

Member functions

template <class... R>activity(R&&... /*detail::ActivityStmt*/ r) :
constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
55

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.4 Action scheduling statements

By default, statements in an activity specify sequential behaviors, subject to data flow constraints. In
addition, there are several statements that allow additional scheduling semantics to be specified. Statements
within an activity may be nested, so each element within an activity statement is referred to as a sub-activity.

11.4.1 Action traversal statement

An action traversal statement designates the point in the execution of an activity where an action is
randomized and evaluated (see Syntax 28 or Syntax 29). The action being traversed may be specified via an
action handle referring to an action field that was previously declared or the action being traversed may be
specified by type, in which case the action instance is anonymous.

11.4.1.1 DSL syntax

Syntax 28—DSL: Variable traversal statement

identifier names a unique action handle or variable in the context of the containing action type. The
alternative form is an anonymous action traversal, specified by the keyword do, followed by an action-type
specifier and an optional in-line constraint.

The following also apply.
a) The action variable is randomized and evaluated at the point in the flow where the statement occurs.

The variable may be of an action type or a data type declared in the context action with the action
modifier. In the latter case, it is randomized, but has no observed execution or duration.
1) An action handle is considered uninitialized until it is first traversed. The fields within the

action cannot be referenced in an exec block or conditional activity statement until after the
action is first traversed. The steps that occur as part of the action traversal are as follows.
i) The pre_solve block (if present) is executed.
ii) Random values are selected for rand fields.
iii) The post_solve block (if present) is executed.
iv) The body exec block (if present) is executed
v) The activity block (if present) is evaluated
vi) The validity of the constraint system is confirmed, given any changes by the post_solve or

body exec blocks.
2) Upon entry to an activity scope, all action handles traversed in that scope are reset to an unini-

tialized state.
b) The anonymous action traversal statement is semantically equivalent to an action traversal with the

exception that it does not create an action handle that may be referenced from elsewhere in the stim-
ulus model.

activity_action_traversal_stmt ::=
 identifier [inline_with_constraint]
 | do type_identifier [inline_with_constraint] ;
inline_with_constraint ::=
 with { { constraint_body_item } }
 | with constant_expression
Copyright © 2017 - 2018 Accellera. All rights reserved.
56

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
c) A named action handle may only be traversed once in the following scopes and nested scopes
thereof:
1) sequential activity scope (e.g. sequence or repeat)
2) parallel
3) schedule

d) Formally, a traverse statement is equivalent to the sub-activity of the specified action type, with the
optional addition of in-line constraints. The sub-activity is scheduled in accordance with the sched-
uling semantics of the containing activity or subactivity.

e) Other aspects that impact action-evaluation scheduling, are covered via binding inputs or outputs
(see Clause 12), resource claims (see Clause 13), or attribute value assignment (see Clause 10).

11.4.1.2 C++ syntax

The corresponding C++ syntax for Syntax 28 is shown in Syntax 29.

Syntax 29—C++: Variable traversal statement

11.4.1.3 Examples

Example 37 and Example 38 show an example of traversing an atomic action variable. Action A is an atomic
action that contains a 4-bit random field f1. Action B is a compound action encapsulating an activity
involving two invocations of action A. The default constraints for A apply to the evaluation of a1. An
additional constraint is applied to a2, specifying that f1 shall be less than 10. Execution of action B results
in two sequential evaluations of action A.

pss::action_handle

Defined in pss/action_handle.h (see C.4).

template<class T> action_handle;

Declare an action handle.

Member functions

action_handle(const scope& name) : constructor
template <class... R> action_handle<T> with (const R&... /*detail
::AlgebExpr*/ constraints)) : add constraint to action handle
T* operator->() : access underlying action type
T& operator*() : access underlying action type
Copyright © 2017 - 2018 Accellera. All rights reserved.
57

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 37—DSL: Action traversal

Example 38—C++: Action traversal

Example 39 shows an example of anonymous action traversal, including in-line constraints using DSL.

Example 39—DSL: Anonymous action traversal

Example 40 shows a C++ example of anonymous action traversal, however, there is no equivalent way of
adding in-line constraints to anonymous action traversal in C++.

action A {
 rand bit[3:0] f1;
 ...
}

action B {
 A a1, a2;

 activity {
 a1;
 a2 with {
 f1 < 10;
 };
 }
}

class A : public action { ...
 rand_attr<bit> f1 {"f1", width(3, 0) };
};
...
class B : public action { ...
 action_handle<A> a1{"a1"}, a2{"a2"};
 activity a {
 a1,
 a2.with(a2->f1 < 10)
 };
};
...

action A {
 rand bit[3:0] f1;
 ...
}

action B {
 activity {
 do A;
 do A with {f1 < 10;};
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
58

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 40—C++: Anonymous action traversal

Example 41 and Example 42 show an example of traversing a compound action as well as a random action
variable field. The activity for action C traverses the random action variable field max, then traverses the
action-type field b1. Evaluating this activity results in a random value being selected for max, then the sub-
activity of b1 being evaluated, with a1.f1 constrained to be less than or equal to max.

Example 41—DSL: Compound action traversal

class A : public action { ...
 rand_attr<bit> f1 {"f1", width(3, 0) };
 ...
};
...

class B : public action { ...
 activity a {
 sequence {
 action_handle<A>(),
 action_handle<A>().with(action_handle<A>()->f1 < 10)
 }
 };
};
...

action A {
 rand bit[3:0] f1;
 ...
}

action B {
 A a1, a2;

 activity {
 a1;
 a2 with {
 f1 < 10;
 };
 }
}

action C {
 action bit[3:0] max;
 B b1;

 activity {
 max;
 b1 with {
 a1.f1 <= max;
 };
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
59

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 42—C++: Compound action traversal

11.4.2 Sequential block

An activity sequence block statement specifies sequential scheduling between sub-activities (see Syntax 30
or Syntax 31).

11.4.2.1 DSL syntax

Syntax 30—DSL: Activity sequence block

The following also apply.

a) Statements in a sequential block execute in order so one sub-activity completes before the next one
starts.

b) Formally, a sequential block specifies sequential scheduling between the sets of action-executions
per the evaluation of activity_stmt1 .. activity_stmtn, keeping all scheduling dependencies within the
sets and introducing additional dependencies between them to obtain sequential scheduling (see
6.3.2).

c) Sequential scheduling does not rule out other inferred dependencies affecting the nodes in the
sequence block. In particular, there may be cases where additional action-executions need to be
scheduled in between sub-activities of subsequent statements.

class A : public action { ...
 rand_attr<bit> f1 {"f1", width(3, 0) };
};
...

class B : public action { ...
 action_handle<A> a1{"a1"}, a2{"a2"};

 activity a {
 a1,
 a2.with(a2->f1 < 10)
 };
};
...

class C : public action { ...
 action_attr<bit> max {"max", width(3, 0)};
 action_handle b1{"b1"};

 activity a {
 sequence {
 max,
 b1.with(b1->a12->f1 <= max)
 }
 };
};
...

activity_sequence_block_stmt ::= [sequence] { { activity_stmt } }
Copyright © 2017 - 2018 Accellera. All rights reserved.
60

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.4.2.2 C++ syntax

The corresponding C++ syntax for Syntax 30 is shown in Syntax 31.

Syntax 31—C++: Activity sequence block

11.4.2.3 Examples

Assume A and B are action types that have no rules or nested activity (see Example 43 and Example 44).

Action my_test specifies one execution of action A and one of action B with the scheduling dependency
(A) -> (B); the corresponding observed behavior is {start A, end A, start B, end B}.

Now assume action B has a state precondition which only action C can establish. C may execute before,
concurrently to, or after A, but it shall execute before B. In this case the scheduling dependency relation
would include (A) -> (B) and (C) -> (B) and multiple behaviors are possible, such as {start C,
start A, end A, end C, start B, end B}.

Finally, assume also C has a state precondition which only A can establish. Dependencies in this case are
(A) -> (B), (A) -> (C) and (C) -> (B) (note that the first pair can be reduced) and,
consequently, the only possible behavior is {start A, end A, start C, end C, start B,
end B}.

Example 43—DSL: Sequential block

pss::action::sequence

Defined in pss/action.h (see C.2).

template <class... R> class sequence;

Declare a sequence block.

Member functions

template<class... R> sequence(R&&... /*detail::ActivityStmt*/r) :
constructor

action my_test {
 A a;
 B b;
 activity {
 a;
 b;
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
61

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 44—C++: Sequential block

Example 45 and Example 46 show all variants of specifying sequential behaviors in an activity. By default,
statements in an activity execute sequentially. The sequence keyword is optional, so placing sub-activities
inside braces ({}) is the same as an explicit sequence statement, which includes sub-activities inside braces.
The examples show a total of six sequential actions: A, B, A, B, A, B.

Example 45—DSL: Variants of specifying sequential execution in activity

Example 46—C++: Variants of specifying sequential execution in activity

11.4.3 parallel

The parallel statement specifies sub-activities that execute concurrently (see Syntax 32 or Syntax 33).

class my_test : public action { ...
 action_handle<A> a{"a"};
 action_handle b{"b"};
 activity act {
 a,
 b
 };
};
...

action my_test {
 A a;
 B b;
 activity {
 a;
 b;
 {a; b;};
 sequence{a; b;};
 }
};

class my_test : public action {
 ...
 action_handle<A> a{"a"};
 action_handle b{"b"};
 activity act {
 a, b,
 {a, b},
 sequence {a, b}
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
62

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.4.3.1 DSL syntax

Syntax 32—DSL: Parallel statement

The following also apply.

a) Parallel activities are invoked in a synchronized way and then proceed without further synchroniza-
tion until their completion. Parallel scheduling guarantees the invocation of an action in one subac-
tivity branch does not wait for the completion of any action in another.

b) Formally, the parallel statement specifies parallel scheduling between the sets of action-executions
per the evaluation of activity_stmt1 .. activity_stmtn, keeping all scheduling dependencies within the
sets, ruling out scheduling dependencies across the sets, and introducing additional scheduling
dependencies to initial action-executions in each of the sets to obtain a synchronized start (see
6.3.2).

11.4.3.2 C++ syntax

The corresponding C++ syntax for Syntax 32 is shown in Syntax 33.

Syntax 33—C++: Parallel statement

11.4.3.3 Examples

Assume A, B, and C are action types that have no rules or nested activity (see Example 47 and Example 48).

The activity in action my_test specifies two dependencies (a) -> (b) and (b) -> (c). Since the
executions of both b and c have the exact same scheduling dependencies, their invocation is synchronized.

Now assume action type C inputs a buffer object and action type B outputs the same buffer object type, and
the input of c is bound to the output of b. According to buffer object exchange rules, the inputting action
needs to be scheduled after the outputting action. But this cannot satisfy the requirement of parallel
scheduling, according to which an action in one branch cannot wait for an action in another. Thus, in the
presence of a separate scheduling dependency between b and c, this activity shall be illegal.

activity_parallel_stmt ::= parallel { { activity_stmt } } [;]

pss::action::parallel

Defined in pss/action.h (see C.2).

template <class... R> class parallel;

Declare a parallel block.

Member functions

template<class... R> parallel (R&&... /*detail::ActivityStmt*/ r)
: constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
63

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 47—DSL: Parallel statement

Example 48—C++: Parallel statement

In Example 49 and Example 50, the semantics of the parallel construct require the sequences {A,B} and
{C,D} to start execution at the same time. The semantics of the sequential block require the execution of B
follows A and D follows C. It shall be illegal to have any scheduling dependencies between sub-activities in
a parallel statement, so neither A nor B may have any scheduling dependencies relative to either C or D.

In Example 49 and Example 50, even though actions A and D lock the same resource type from the same
pool, the pool contains a sufficient number of resource instances such that there are no scheduling
dependencies between the actions. If pool_R contained only a single instance, there would be a scheduling
dependency in that A and D could not overlap, which would violate the rules of the parallel statement.

action my_test {
 A a;
 B b;
 C c;
 activity {
 a;
 parallel {
 b;
 c;
 }
 }
};

class my_test : public action { ...
 action_handle<A> a{"a"};
 action_handle b{"b"};
 action_handle<C> c{"c"};
 activity act {
 a,
 parallel {
 b,
 c
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
64

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 49—DSL: Another parallel statement

Example 50—C++: Another parallel statement

11.4.4 schedule

The schedule statement specifies the PSS processing tool shall select a legal order in which to evaluate the
sub-activities, provided one exists. See Syntax 34 or Syntax 35.

resource R{...}
pool [4] R R_pool;
bind R_pool *;

action A { lock R r; }
action B {}
action C {}
action D { lock R r;}

action my_test {
activity {

parallel {
{do A; do B;}
{do C; do D;}

}
}

}

struct R : public resource { ... };
...

pool<R> R_pool {"R_pool", 4};
bind R_bind {R_pool};

class A : public action { ... lock<R> r{"r"}; };
class B : public action { ... };
class C : public action { ... };
class D : public action { ... lock<R> r{"r"}; };
...

class my_test : public action {...
 activity act {
 parallel {
 sequence {
 action_handle<A>(),
 action_handle()
 },
 sequence {
 action_handle<C>(),
 action_handle<D>()
 }
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
65

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.4.4.1 DSL syntax

Syntax 34—DSL: Schedule statement

The following also apply.
a) All activities inside the schedule block need to execute, but the PSS processing tool is free to exe-

cute them in any order that satisfies their other scheduling requirements.
b) Formally, the schedule statement specifies the scheduling of the combined sets of action-executions

per the evaluation of activity_stmt1 .. activity_stmtn, keeping all scheduling dependencies within the
sets and introducing (at least) the necessary scheduling dependencies across the sets to comply with
the rules of input-output binding of actions and resource assignments.

11.4.4.2 C++ syntax

The corresponding C++ syntax for Syntax 34 is shown in Syntax 35.

Syntax 35—C++: Schedule statement

11.4.4.3 Examples

Consider the code in Example 51 and Example 52, which are similar to Example 47 and Example 48, but
use a schedule block instead of a parallel block. In this case, valid execution is as follows.

a) The sequence of action nodes a, b, c.
b) The sequence of action nodes a, c, b.
c) The sequence of action node a, followed by b and c run in parallel.

activity_schedule_stmt ::= schedule { { activity_stmt } } [;]

pss::action::schedule

Defined in pss/action.h (see C.2).

template <class... R> class schedule;

Declare a schedule block.

Member functions

template<class... R> schedule(R&&... /*detail::ActivityStmt*/ r) :
constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
66

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 51—DSL: Schedule statement

Example 52—C++: Schedule statement

In contrast, consider the code in Example 53 and Example 54. In this case, any execution order in which B
comes after A and D comes after C is valid. In particular, the following executions are valid.

a) {A, B} followed by {C, D}.
b) {C, D} followed by {A, B}.
c) {A, B} in parallel with {C, D}.

If both A and D wrote to the same state variable, they would have to execute sequentially. This is in addition
to the sequencing of A and B and of C and D. In this case, the above execution of {A, B} in parallel with
{C, D} is illegal because of the scheduling dependency between the two parallel branches. Since the only
explicit scheduling constraints are that B follows A and D follows C, the following execution would also be
valid.

d) A, followed by B in parallel with C, followed by D.
e) A in parallel with C, followed by B in parallel with D.

action my_test {
 A a;
 B b;
 C c;
 activity {
 a;
 schedule {
 b;
 c;
 }
 }
};

class my_test : public action { ...
 action_handle<A> a{"a"};
 action_handle b{"b"};
 action_handle<C> c{"c"};

 activity act {
 a,
 schedule {
 b,
 c
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
67

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 53—DSL: Scheduling block with sequential sub-blocks

Example 54—C++: Scheduling block with sequential sub-blocks

11.5 Activity control-flow constructs

In addition to defining sequential and parallel blocks of action execution, repetition and branching
statements can be used inside the activity clause.

11.5.1 repeat (count)

The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.
This section describes the count-expression variant (see Syntax 36 or Syntax 37) and 11.5.2 describes the
while-expression variant.

action A {}
action B {}
action C {}
action D {}

action my_test {
activity {

schedule {
{do A; do B;}
{do C; do D;}

}
}

}

class A : public action { ... };
class B : public action { ... };
class C : public action { ... };
class D : public action { ... };
...

class my_test : public action { ...
 activity act {
 schedule {
 sequence {
 action_handle<A>(),
 action_handle()
 },
 sequence {
 action_handle<C>(),
 action_handle<D>()
 }
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
68

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.5.1.1 DSL syntax

Syntax 36—DSL: repeat-count statement

The following also apply.

a) expression shall be a numeric type (int or bit).

b) Intuitively, the repeated block is iterated the number of times specified in the expression. An
optional index-variable identifier can be specified that ranges between 0 and one less than the itera-
tion count.

c) Formally, the repeat-count statement specifies sequential scheduling between N sets of action-exe-
cutions per the evaluation of activity_sequence_block_stmt N times, where N is the number to which
expression evaluates (see 6.3.2).

d) Note also the choice of values to rand attributes figuring in the expression need to be such that it
yields legal execution scheduling.

11.5.1.2 C++ syntax

The corresponding C++ syntax for Syntax 36 is shown in Syntax 37.

Syntax 37—C++: repeat-count statement

11.5.1.3 Examples

In Example 55 and Example 56, the resulting execution is six sequential action executions, alternating A’s
and B’s, with five scheduling dependencies: (Ai0) -> (Bi0), (Bi0) -> (Ai1), (Ai1) -> (Bi1),
(Bi1) -> (Ai2), (Ai3) -> (Bi3).

activity_repeat_stmt ::= repeat ([identifier :] expression) activity_stmt

pss::action::repeat

Defined in pss/action.h (see C.2).

class repeat;

Declare a repeat statement.

Member functions

repeat (const detail::AlgebExpr& count, const detail::Activi-
tyStmt& activity) : declare an repeat (count) activity
repeat (const attr<int>& iter, const detail::AlgebExpr& count,
const detail::ActivityStmt& activity) : declare an repeat (count) activity with
iterator
Copyright © 2017 - 2018 Accellera. All rights reserved.
69

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 55—DSL: repeat statement

Example 56—C++: repeat statement

Example 57 and Example 58 show additional example of using repeat-count.

Example 57—DSL: Another repeat statement

action my_test {
 A a;
 B b;
 activity {
 repeat (3) {
 a;
 b;
 }
 }
};

class my_test : public action { ...
 action_handle<A> a{"a"};
 action_handle b{"b"};

 activity act {
 repeat { 3,
 sequence { a, b }
 }
 };
};
...

action my_test {
 my_action1 action1;
 my_action2 action2;
 activity {
 repeat (i : 10) {
 if ((i % 4) == 0) {
 action1;
 } else {
 action2;
 }
 }
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
70

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 58—C++: Another repeat statement

11.5.2 repeat while

In the repeat ... while and while forms, iteration continues while the expression evaluates to true (see
Syntax 38 or Syntax 39). See also Example 59 and Example 60.

11.5.2.1 DSL syntax

Syntax 38—DSL: repeat-while statement

The following also apply.
a) expression shall be of type bool.
b) Intuitively, the repeated block is iterated so long as the expression condition is true, as sampled

before the sequence block (in the while variant) or if after (in the repeat ... while variant).
c) Formally, the repeat-while statement specifies sequential scheduling between multiple sets of

action-executions per the iterative evaluation of activity_stmt. The evaluation of activity_stmt con-
tinues repeatedly so long as expression evaluates to true. expression is evaluated before the execu-
tion of each set in the while variant and after each set in the repeat ... while variant.

11.5.2.2 C++ syntax

The corresponding C++ syntax for Syntax 38 is shown in Syntax 39.

class my_test : public action { ...
 action_handle<my_action1> action1{"action1"};
 action_handle<my_action2> action2{"action2"};
 attr<int> i {"i"};

 activity act {
 repeat { i, 10,
 if_then_else {
 cond(i % 4), action1, action2
 }
 }
 };
};
...

activity_repeat_stmt ::=
 while (expression) activity_stmt
 | repeat ([identifier :] expression) activity_stmt
 | repeat activity_stmt [while (expression) ;]
Copyright © 2017 - 2018 Accellera. All rights reserved.
71

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 39—C++: repeat-while statement

class repeat_while;

Defined in pss/action.h (see C.2).

class repeat_while;

Declare a repeat while activity.

Member functions

repeat_while (const detail::AlgebExpr& cond, const
detail::ActivityStmt& activity) : constructor

pss::action::do_while

Defined in pss/action.h (see C.2).

class do_while;

Declare a do while activity.

Member functions

do_while(const detail::ActivityStmt& activity, const
detail::AlgebExpr& cond) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
72

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.5.2.3 Examples

Example 59—DSL: repeat while statement

component top {

function bit is_last_one();

action do_something {
bit last_one;

exec post_solve {
last_one = comp.is_last_one();

}

exec body C = """
printf("Do Something\n");

""";
}

action entry {
do_something s1;

activity {
repeat {

s1;
} while (s1.last_one !=0);

}
}

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
73

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 60—C++: repeat while statement

11.5.3 foreach

The foreach construct iterates across the elements of an array (see Syntax 40 or Syntax 41). See also
Example 61 and Example 62.

11.5.3.1 DSL syntax

Syntax 40—DSL: foreach statement

The following also apply.
a) expression shall be of an array type.
b) iterator_identifier specifies the name of an iterator variable of the array-element type. index_identi-

fier specifies the name of an index variable of a numeric type. Either one or the other shall be speci-
fied, but not both.

c) The body of the foreach statement is a sequential block that is evaluated once for each element in
the array.

d) Within activity_stmt, the iterator variable, when declared, is an alias to the array element of the cur-
rent iteration.

class top : public component { ...
 function<result<bit> ()> is_last_one {
 "is_last_one",
 result<bit>()
};

 class do_something : public action { ...
 attr<bit> last_one {"last_one"};
 exec pre_solve { exec::pre_solve,
 last_one = type_decl<top>()->is_last_one()
 };

 exec body { exec::body, "C",
 "printf(\"Do Something\n\");"
 };
 };
 type_decl<do_something> do_something_t;

 class entry : public action { ...
 action_handle<do_something> s1{"s1"};
 activity act {
 do_while { s1,
 s1->last_one != 0
 }
 };
 };
 type_decl<entry> entry_t;
};
...

activity_foreach_stmt ::=
foreach ([iterator_identifier :] expression [[index_identifier]]) activity_stmt
Copyright © 2017 - 2018 Accellera. All rights reserved.
74

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
e) Within activity_stmt the index variable, when declared, ranges between 0 and one less than the size
of the array, corresponding to the element index of the current iteration.

11.5.3.2 C++ syntax

The corresponding C++ syntax for Syntax 40 is shown in Syntax 41.

Syntax 41—C++: foreach statement

11.5.3.3 Examples

Example 61—DSL: foreach statement

pss::foreach

Defined in pss/detail/sharedExpr.h.

class foreach;

Iterate activity across array of non-rand and rand attributes.

Member functions

foreach (const attr& iter, const attr<vec>& array, const
detail::ActivityStmt& activity) : non-rand attributes
foreach (const attr& iter, const rand_attr<vec>& array, const
detail::ActivityStmt& activity) : rand attributes

action my_action1 {
 rand bit in [0..3] val;

 // ...
}

action my_test {
 rand bit [4] in [0..3] a[16];
 my_action1 action1;

 activity {
 foreach (a[j]) {
 action1 with { action1.val <= a[j]; };
 }
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
75

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 62—C++: foreach statement

11.5.4 select

The select statement specifies a branch point in the traversal of the activity (see Syntax 42 or Syntax 43).

11.5.4.1 DSL syntax

Syntax 42—DSL: select statement

The following also apply.

a) Intuitively, a select statement executes one out of a number of possible activities.

b) One or more of the activity_stmts may optionally have a guard condition specified in parentheses
(()). Guard condition expressions shall be of Boolean type. When the select statement is evaluated,
only those activity_stmts whose guard condition evaluates to true or those which do not have a
guard condition specified are considered enabled.

c) Formally, each evaluation of a select statement corresponds to the evaluation of just one of the activ-
ity_labled_stmts. All scheduling requirements shall hold for the selected activity statement.

d) Optionally, all activity_stmts may include a weight expression, which is a numeric expression that
evaluates to a positive integer (greater than or equal to 1). The probability of choosing an enabled
activity_stmt is the weight of the given statement divided by the sum of the weights of all enabled
statements.

e) If any activity_stmt has a weight expression, then any statement without an explicit weight expres-
sion associated with it shall have a weight of 1.

f) It shall be illegal if no activity statement is valid according to the active constraint and scheduling
requirements and the evaluation of the guard conditions.

class my_action1 : public action { ...
 rand_attr < bit > val {"val", width (0,3) };
};
...

class my_test : public action { ...
 rand_attr_vec<bit> a { "a", 16, width (0,3) };
 attr<bit> j {"j"};

 action_handle<my_action1> action1{"action1"};

 activity act {
 foreach {j, a,
 action1.with(action1->val < a[j])
 }
 };
};
...

activity_select_stmt ::= select { select_branch select_branch { select_branch } }
select_branch ::= [[(expression)][[expression]] :] activity_stmt
Copyright © 2017 - 2018 Accellera. All rights reserved.
76

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.5.4.2 C++ syntax

The corresponding C++ syntax for Syntax 42 is shown in Syntax 43.

Syntax 43—C++: select statement

11.5.4.3 Examples

In Example 63 and Example 64, the select statement causes the activity to select action1 or action2
during each execution of the activity.

pss::action::select

Defined in pss/action.h (see C.2).

template <class... R> class select;

Declare a select statement.

Member functions

template<class... R> select (R&&... /*detail::ActivityStmt*/ r) :
constructor

pss::action::branch

Defined in pss/action.h (see C.2).

class branch;

Specify a select branch.

Member functions

template<class... R> select (R&&... /*detail::ActivityStmt*/ r) :
constructor
template <class... R> branch(const guard &g, R&&...
/*detail::ActivityStmt*/ r) : constructor
template <class... R> branch(const guard &g, const weight &w,
R&&... /*detail::ActivityStmt*/ r) : constructor
template <class... R> branch(const weight &w, R&&...
/*detail::ActivityStmt/ r) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
77

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 63—DSL: Select statement

Example 64—C++: Select statement

In Example 65 and Example 66, the branch selected shall depend on the value of a when the select statement
is evaluated.

a) a==0 means all three branches could be chosen, according to their weights.
1) action1 is chosen with a probability of 20%.
2) action2 is chosen with a probability of 30%.
3) action3 is chosen with a probability of 50%.

b) a in [1..3] means my_action2 or my_action3 is traversed according to their weights.
1) action2 is chosen with a probability of 37.5%.
2) action3 is chosen with a probability of 62.5%.

c) a==4 means that only action3 is traversed.

action my_test {
 my_action1 action1;
 my_action2 action2;
 activity {
 select {
 action1;
 action2;
 }
 }
}

class my_test : public action { ...
 action_handle<my_action1> action1{"action1"};
 action_handle<my_action2> action2{"action2"};

 activity act {
 select {
 action1,
 action2
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
78

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 65—DSL: Select statement with guard conditions and weights

Example 66—C++: Select statement with guard conditions and weights

11.5.5 if-else

The if-else statement introduces a branch point in the traversal of the activity (see Syntax 44 or Syntax 45).

11.5.5.1 DSL syntax

Syntax 44—DSL: if-else statement

The following also apply.

a) expression shall be of type bool.

action my_test {
my_action1 action1;
my_action2 action2;
my_action3 action3;

 rand int in [0..4] a;
 activity {
 select {
 (a == 0)[20]: action1;
 (a in [0..3])[30]: action2;
 [50]: action3;
 }
 }
}

class top : public component { ...
 class my_action : public action { ... };
 type_decl<my_action> _my_action_t;

 class my_test : public action { ...
 action_handle<my_action> my_action1 {"my_action1"};
 action_handle<my_action> my_action2 {"my_action2"};
 action_handle<my_action> my_action3 {"my_action3"};
 rand_attr<int> a {"a", range(0,4)};

 activity act {
 select {
 branch {guard(a == 0), weight(20), my_action1},
 branch {guard(in(a, range(0,3))), weight(30), my_action2},
 branch {weight(50), my_action3}
 }
 };
 };
 type_decl<my_test> _my_test_t;
};
...

activity_if_else_stmt ::= if (expression) activity_stmt [else activity_stmt]
Copyright © 2017 - 2018 Accellera. All rights reserved.
79

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
b) Intuitively, an if-else statement executes some activity if a condition holds, and, otherwise (if speci-
fied), the alternative activity.

c) Formally, the if-else statement specifies the scheduling of the set of action-executions per the evalu-
ation of the first activity_stmt if expression evaluates to true or the second activity_stmt (following
else) if present and expression evaluates to false.

d) The scheduling relationships need only be met for one branch for each evaluation of the activity.
e) The choice of values to rand attributes figuring in the expression needs to be such that it yields

legal execution scheduling.

11.5.5.2 C++ syntax

The corresponding C++ syntax for Syntax 44 is shown in Syntax 45.

Syntax 45—C++: if-else statement

11.5.5.3 Examples

If the scheduling requirements for Example 67 and Example 68 required selection of the b branch, then the
value selected for x needs to be <= 5.

pss::if_then

Defined in pss/if_then.h (see C.27).

class if_then

Declare if-then activity statement.

Member functions

if_then (const detail::AlgebExpr& cond, const detail::Activi-
tyStmt& true_expr) : constructor

pss::if_then_else

Defined in pss/if_then.h (see C.27).

class if_then_else;

Declare if-then-else activity statement.

Member functions

if_then_else (const detail::AlgebExpr& cond, const detail::Activ-
ityStmt& true_expr, const detail::ActivityStmt& false_expr) : con-
structor
Copyright © 2017 - 2018 Accellera. All rights reserved.
80

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 67—DSL: if-else statement

Example 68—C++: if-else statement

11.5.6 match

The match statement specifies a multi-way decision point in the traversal of the activity that tests whether an
expression matches one of a number of other expressions and traverses (one of) the matching branch(es)
accordingly (see Syntax 46 or Syntax 47).

11.5.6.1 DSL syntax

Syntax 46—DSL: match statement

The following also apply.
a) When the match statement is evaluated, the expression inside the parentheses (the match_expres-

sion) is evaluated.
b) The default branch is optional. There may be at most one default branch in any given match state-

ment.
c) After the match_expression is evaluated, each of the match_choice_expressions shall be compared

to the match_expression.

action my_test {
 rand int in [1..10] x;
 A a;
 B b;
 activity {
 if (x > 5)
 a;
 else
 b;
 }
};

class my_test : public action { ...
 rand_attr<int> x { "x", range(1,10) };
 action_handle<A> a{"a"};
 action_handle b{"b"};

 activity act {
 if_then_else {
 cond(x > 5), a, b
 }
 };
};
...

activity_match_stmt ::= match (expression) { match_choice { match_choice } }
match_choice ::=
 [open_range_list] : activity_stmt
 | default : activity_stmt
Copyright © 2017 - 2018 Accellera. All rights reserved.
81

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
d) One and only one of the matching match_choices shall be traversed.
e) If more than one match_choice_expression matches the match_expression, one of the matching

match_choices shall be randomly traversed.
f) If none of the match_choice_expressions matches, then the default branch shall be traversed.
g) As with a select statement, it shall be a violation if no match_choice is valid according to the active

constraint and scheduling requirements and the evaluation of the match_expression against the
match_choice_expressions.

11.5.6.2 C++ syntax

The corresponding C++ syntax for Syntax 46 is shown in Syntax 47.

Syntax 47—C++: match statement

11.5.6.3 Examples

In Example 69 and Example 70, the match statement causes the activity to evaluate the data field
in_security_data.val and select a branch according to its value at each execution of the activity. If
the data field is equal to LEVEL2, action1 is traversed. If the data field is equal to LEVEL5, action2 is
traversed. If the data field is equal to LEVEL3 or LEVEL4, either action1 or action2 is traversed at
random. For any other value of the data field, action3 is traversed.

pss::match

Defined in pss/action.h (see C.2).

class match;

Declare a match statement.

Member functions

template<class... R>

match (const cond &expr,

 R&&… /* choice|choice_default */ stmts) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
82

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 69—DSL: match statement

Example 70—C++: match statement

11.6 Symbols

To assist in reuse and simplify the specification of repetitive behaviors in a single activity, a symbol may be
declared to represent a subset of activity functionality (see Syntax 48 or Syntax 49). The symbol may be
used as a node in the activity.

A symbol may activate another symbol, but symbols are not recursive and may not activate themselves.

action my_test {
 input security_data in_security_data;
 my_action1 action1;
 my_action2 action2;
 my_action3 action3;
 activity {
 match (in_security_data.val) {
 [LEVEL2..LEVEL4]:
 action1;
 [LEVEL3..LEVEL5]:
 action2;
 default:
 action3;
 }
}

class my_test : public action{…
 input<security_data> in_security_data {"in_security_data"};
 action_handle<my_action> action1 {"action1"};
 action_handle<my_action> action2 {"action2"};
 action_handle<my_action> action3 {"action3"};

 activity act {
 match {
 cond(in_security_data->val),
 choice {
 range(security_level_e::LEVEL2)
 (security_level_e::LEVEL4), action1
 },
 choice {
 range(security_level_e::LEVEL3)
 (security_level_e::LEVEL5, action2
 },
 default_choice { action3 }
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
83

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.6.1 DSL syntax

Syntax 48—DSL: symbol declaration

11.6.2 C++ syntax

In C++, a symbol is created using a function that returns the sub-activity expression.

The corresponding C++ syntax for Syntax 48 is shown in Syntax 49.

Syntax 49—C++: symbol declaration

11.6.3 Examples

Example 71 and Example 72 depict using a symbol. In this case, the desired activity is a sequence of choices
between aN and bN, followed by a sequence of cN actions. This statement could be specified in-line, but for
brevity of the top-level activity description, a symbol is declared for the sequence of aN and bN selections.
The symbol is then referenced in the top-level activity, which has the same effect as specifying the aN/bN
sequence of selects in-line.

symbol_declaration ::= symbol identifier [(symbol_paramlist)] { { activity_stmt } }
symbol_paramlist ::= [symbol_param { , symbol_param }]
symbol_param ::= data_type identifier

pss::symbol

Defined in pss/symbol.h (see C.43).

symbol symbolName(parameters...) { return (...); }

Function declaration to return sub-activity.
Copyright © 2017 - 2018 Accellera. All rights reserved.
84

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 71—DSL: Using a symbol

Example 72—C++: Using a symbol

Example 73 and Example 74 depict using a parameterized symbol.

component entity {
action a { }
action b { }
action c { }

action top {
 a a1, a2, a3;
 b b1, b2, b3;
 c c1, c2, c3;

 symbol a_or_b {
 select {a1; b1; }
 select {a2; b2; }
 select {a3; b3; }
 }

 activity {

a_or_b;
 c1;
 c2;
 c3;
 }

}
}

class A : public action { ... };
class B : public action { ... };
class C : public action { ... };

class top : public action { ...
 action_handle<A> a1{"a1"}, a2{"a2"}, a3{"a3"};
 action_handle b1{"b1"}, b2{"b2"}, b3{"b3"};
 action_handle<C> c1{"c1"}, c2{"c2"}, c3{"c3"};
 symbol a_or_b () {
 return (
 sequence {
 select {a1, b1},
 select {a2, b2},
 select {a3, b3}
 }
);
 }
 activity a { a_or_b(), c1, c2, c3 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
85

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 73—DSL: Using a parameterized symbol

Example 74—C++: Using a parameterized symbol

component entity {
 action a { }
 action b { }
 action c { }
 action top {
 a a1, a2, a3;
 b b1, b2, b3;
 c c1, c2, c3;
 symbol ab_or_ba (a aa, b bb) {
 select {
 { aa; bb; }
 { bb; aa; }
 }
 }
 activity {
 ab_or_ba(a1,b1);
 ab_or_ba(a2,b2);
 ab_or_ba(a3,b3);
 c1;
 c2;
 c3;
 }
 }
}

class A : public action { ... };
class B : public action { ... };
class C : public action { ... };

class top : public action {...
 action_handle<A> a1{"a1"}, a2{"a2"}, a3{"a3"};
 action_handle b1{"b1"}, b2{"b2"}, b3{"b3"};
 action_handle<C> c1{"c1"}, c2{"c2"}, c3{"c3"};

 symbol aa_or_bb (const action_handle<A> &aa,
 const action_handle &bb)
 {
 return (
 select {
 sequence {aa, bb},
 sequence {bb, aa},
 }
);
 }

 activity a {
 ab_or_ba(a1, b1),
 ab_or_ba(a2, b2),
 ab_or_ba(a3, b3),
 c1, c2, c3
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
86

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.7 Named sub-activities

Sub-activities are structured elements of an activity. Naming sub-activities is a way to specify a logical tree
structure of sub-activities within an activity. This tree serves for making hierarchical references, both to
action-handle variables declared in-line, as well as to the activity statements themselves. The hierarchical
paths thus exposed abstract from the concrete syntactic structure of the activity, since only explicitly labeled
statements constitute a new hierarchy level.

NOTE—Labeled activity statements are not supported in C++.

11.7.1 DSL syntax

A named sub-activity is declared by labeling an activity statement, see Syntax 26.

11.7.2 Scoping rules for named sub-activities

Activity-statement labels shall be unique in the context of the containing named sub-activity—the nearest
lexically-containing statement which is labeled. Unlabeled activity statements do not constitute a separate
naming scope for sub-activities.

In Example 75, some activity statements are labeled while others are not. The second occurrence of
label l2 is conflicting with the first because the if statement under which the first occurs is not labeled and
hence is not a separate naming scope for sub-activities.

Example 75—DSL: Scoping and named sub-activities

11.7.3 Hierarchical references using named sub-activity

Named sub-activities, introduced through labels, allow referencing action-handle variables using
hierarchical paths. References can be made to a variable from within the same activity, from the compound
action top-level scope, and from outside the action scope.

action A {};

action B {
 int x;
 activity {
 L1: parallel { // 'L1' is 1st level named sub-activity
 if (x > 10) {
 L2: { // 'L2' is 2nd level named sub-activity
 A a;
 a;
 }
 {
 A a; // OK - this is a separate naming scope for variables
 a;
 }
 }
 L2: { // Error - this 'L2' conflicts with 'L2' above
 A a;
 a;
 }
 }
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
87

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Only action-handles declared directly under a labeled activity statement can be accessed outside their direct
lexical scope. Action-handles declared in an unnamed activity scope cannot be accessed from outside that
scope.

Note that the top activity scope is unnamed. For an action-handle to be directly accessible in the top-level
action scope, or from outside the current scope, it needs to be declared at the top-level action scope.

In Example 76, action B declares action-handle variables in labeled activity statement scopes, thus
making them accessible from outside by using hierarchical paths. action C is using hierarchical paths to
constrain the sub-actions of its sub-actions b1 and b2.

Example 76—DSL: Hierarchical references and named sub-activities

11.8 Explicitly binding flow objects

Input and output fields of actions may be explicitly connected to actions using the bind statement (see
Syntax 50 or Syntax 51). It states that the fields of the respective actions reference the same object—the
output of one action is the input of another.

action A { rand int x; };

action B {
 A a;
 activity {
 a;
 my_seq: sequence {
 A a;
 a;
 parallel {
 my_rep: repeat (3) {
 A a;
 a;
 };
 sequence {
 A a; // this 'a' is declared in unnamed scope
 a; // can't be accessed from outside
 };
 };
 };
 };
};

action C {
 B b1, b2;
 constraint b1.a.x == 1;
 constraint b1.my_seq.a.x == 2;
 constraint b1.my_seq.my_rep.a.x == 3; // applies to all three iterations
 // of the loop
 activity {
 b1;
 b2 with { my_seq.my_rep.a.x == 4; }; // likewise
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
88

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
11.8.1 DSL syntax

Syntax 50—DSL: bind statement

The following also apply.
a) Reference fields that are bound shall be of the same object type.
b) Explicit binding shall conform to the scheduling and connectivity rules of the respective flow object

kind defined in 12.4.
c) Explicit binding can only associate reference fields that are statically bound to the same pool

instance (see 14.4).
d) The order in which the fields are listed does not matter.

11.8.2 C++ syntax

The corresponding C++ syntax for Syntax 50 is shown in Syntax 51.

Syntax 51—C++: bind statement

11.8.3 Examples

Examples of binding are shown in Example 77 and Example 78.

activity_bind_stmt ::= bind hierarchical_id activity_bind_item_or_list ;
activity_bind_item_or_list ::=
 hierarchical_id
 | { hierarchical_id { , hierarchical_id } }

pss::bind

Defined in pss/bind.h (see C.6).

class bind;

Explicit binding of action inputs and outputs.

Member functions

template <class... R> bind (const R& /* input|output|lock|share

*/ io_items) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
89

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 77—DSL: bind statement

Example 78—C++: bind statement

11.9 Hierarchical flow object binding

As discussed in 12.4, actions, including compound actions, may declare inputs and/or outputs of a given
flow object type. When a compound action has inputs and/or outputs of the same type and direction as its
sub-action and which are statically bound to the same pool (see Clause 14), the bind statement may be used
to associate the compound action’s input/output with the desired sub-action input/output. The compound
action’s input/output shall be the first argument to the bind statement.

The outermost compound action that declares the input/output determines its scheduling implications, even
if it binds the input/output to that of a sub-action. The binding to a corresponding input/output of a sub-
action simply delegates the object reference to the sub-action.

component top{
 buffer B {int a;};
 action P {
 output B out;
 };
 action C {
 input B inp;
 };
 action T {
 P p;
 C c;
 activity {
 p; c;
 bind p.out c.inp;
 };
 }
};

class B : public buffer { ... };
...
class P : public action { ...
 output out {"out"};
};
...
class C : public action { ...
 input in {"in"};
};
...
class T : public action { ...
 action_handle<P> p {"p"};
 action_handle<C> c {"c"};

 activity act {
 p, c
 bind b1 {p->out, c->in};
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
90

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
In the case of a buffer object input to the compound action, the action that produces the buffer object needs
to complete before the activity begins, regardless of where within the activity the sub-action to which the
input buffer is bound begins. Similarly, the activity needs to complete before the compound action’s output
buffer is available, regardless of where in the activity the sub-action that produces the buffer object executes.
The corollary to this statement is no other sub-action in the activity may have an input explicitly bound to
the compound action’s buffer output object.

For stream objects, the compound action’s activity shall execute in parallel with the action that produces the
input stream object to the compound action or consumes the stream object output by the compound action,
regardless of where within the activity the sub-action to which the stream object is bound actually executes.
The corollary to this statement is all sub-actions within the activity that are bound to a stream input/output of
the compound activity shall execute in parallel as the first statement in the activity.

For state object outputs of the compound action, the activity shall complete before any other action may
write to or read from the state object, regardless of where in the activity the sub-action executes within the
activity. Only one sub-action may be bound to the compound action’s state object output. Any number of
sub-actions may have input state objects bound to the compound action’s state object input.

The same hierarchical binding shown in Example 79 and Example 80 may be used for any type of data flow
object.

Example 79—DSL: Hierarchical flow binding

action sub_a {
 input data_buf din;
 output data_buf dout;
}

action compound_a {
 input data_buf data_in;
 output data_buf data_out;
 sub_a a1, a2;
 activity {
 a1;
 a2;
 bind a1.dout a2.din;
 bind data_in a1.din;
 bind data_out a2.dout;
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
91

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 80—C++: Hierarchical flow binding

11.10 Hierarchical resource object binding

As discussed in 13.2, actions, including compound actions, may claim a resource object of a given type.
When a compound action claims a resource of the same type as its sub-action(s) and where the compound
action and the sub-action are bound to the same pool, the bind statement may be used to associate the
compound action’s resource with the desired sub-action resource. The compound action’s resource shall be
the first argument to the bind statement.

The outermost compound action that claims the resource determines its scheduling implications. The
binding to a corresponding resource of a sub-action simply delegates the resource reference to the sub-
action.

The compound action’s claim on the resource determines the scheduling of the compound action relative to
other actions and that claim is valid for the duration of the activity. The sub-actions’ resource claim
determines the relative scheduling of the sub-actions in the context of the activity. In the absence of the
explicit resource binding, the compound action and its sub-action(s) claim resources from the pool to which
they are bound. Thus, it shall be illegal for a sub-action to lock the same resource instance that is locked by
the compound action.

A resource locked by the compound action may be bound to any resource(s) in the sub-action(s). Thus, only
one sub-action that locks the resource reference may execute in the activity at any given time and no sharing
sub-actions may execute at the same time. If the resource that is locked by the compound action is bound to
a shared resource(s) in the sub-action(s), there is no further scheduling dependency.

A resource shared by the compound action may only be bound to a shared resource(s) in the sub-action(s).
Since the compound action’s shared resource may also be claimed by another action, there is no way to
guarantee exclusive access to the resource by any sub-action; so, it shall be illegal to bind a shared resource
to a locking sub-action resource.

class sub_a : public action {...
 input<data_buf> din{"din"};
 output<data_buf> dout{"dout"};
};
...
class compound_a : public action {...
 input<data_buf> data_in{"data_in"};
 output<data_buf> data_out{"data_out"};
 action_handle<sub_a> a1{"a1"}, a2{"a2"};

 bind b1 {a1->dout, a2->din};
 bind b2 {data_in, a1->din};
 bind b3 {data_out, a2->dout};

 activity act{
 a1,
 a2
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
92

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
In Example 81 and Example 82, the compound action locks resources crlkA and crlkB, so no other
actions outside of compound_a may lock either resource for the duration of the activity. In the context of
the activity, the bound resource acts like a resource pool of the given type of size=1.

Example 81—DSL: Hierarchical resource binding

Example 82—C++: Hierarchical resource binding

action sub_a {
 lock reslk_r rlkA, rlkB;
 share resshr_r rshA, rshB;
}

action compound_a {
 lock reslk_r crlkA, crlkB;
 share resshr_r crshA, crshB;
 sub_a a1, a2;
 activity {
 schedule {
 a1;
 a2;
 }
 bind crlkA {a1.rlkA, a2.rlkA};
 bind crshA {a1.rshA, a2.rshA};
 bind crlkB {a1.rlkB, a2.rshB};
 bind crshB {a1.rshB, a2.rlkB}; //illegal
 }
}

class sub_a : public action {...
 lock <reslk_r> rlkA{"rlkA"}, rlkB{"rlkB"};
 share <resshr_r> rshA{"rshA"}, rshB{"rshB"};
};
...

class compound_a : public action {...
 lock <reslk_r> crlkA{"crlkA"}, crlkB{"crlkB"};
 share <resshr_r> crshA{"crshA"}, crshB{"crshB"};
 action_handle<sub_a> a1{"a1"}, a2{"a2"};

 activity act {
 schedule {
 a1,
 a2
 }

 bind b1 {crlkA, a1->rlkA, a2->rlkA};
 bind b2 {crshA, a1->rshA, a2->rshA};
 bind b3 {crlkB, a1->rlkB, a2->rshB};
 bind b4 {crshB, a1.->shB, a2->rlkB}; //illegal
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
93

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
12. Flow objects

A flow object represents incoming or outgoing data/control flow for actions, or their pre-condition and post-
condition. A flow object is one which can have two modes of reference by actions: input and output.

12.1 Buffer objects

Buffer objects represent data items in some persistent storage that can be written and read. Once their
writing is completed, they can be read as needed. Typically, buffer objects represent data or control buffers
in internal or external memories. See Syntax 52 or Syntax 53.

12.1.1 DSL syntax

Syntax 52—DSL: buffer declaration

The following also apply.

a) Note that the buffer type does not imply any specific layout in memory for the specific data being
stored.

b) Buffer types can inherit from previously defined unqualified structs or buffers.

c) Buffer object reference-fields can be declared under actions using the input or output modifier (see
12.4). Instance-fields of buffer type (such as struct type) can only be declared under higher-level
buffers types, as their data-attribute.

d) A buffer object shall be the output of exactly one action. A buffer object may be the input of any
number (zero or more) of actions.

e) Execution of a consuming action that inputs a buffer shall not begin until after the execution of the
producing action completes (see Figure 2).

12.1.2 C++ syntax

The corresponding C++ syntax for Syntax 52 is shown in Syntax 53.

Syntax 53—C++: buffer declaration

buffer identifier [: struct_super_spec] { { struct_body_item } } [;]

pss::buffer

Defined in pss/buffer.h (see C.8).

class buffer;

Base class for declaring a buffer flow object.

Member functions

buffer (const scope& name) : constructor
virtual void pre_solve() : in-line pre_solve exec block
virtual void post_solve() : in-line post_solve exec block
Copyright © 2017 - 2018 Accellera. All rights reserved.
94

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
12.1.3 Examples

Examples of buffer objects are show in Example 83 and Example 84.

Example 83—DSL: buffer object

Example 84—C++: buffer object

12.2 Stream objects

Stream objects represent transient data or control exchanged between actions during concurrent activity,
e.g., over a bus or network, or across interfaces. They represent data item flow or message/notification
exchange. See Syntax 54 or Syntax 55.

12.2.1 DSL syntax

Syntax 54—DSL: stream declaration

The following also apply.

a) Stream types can inherit from previously defined unqualified structs or streams.

b) Stream object reference-fields can be declared under actions using the input or output modifier (see
12.4). Instance-fields of stream type (such as struct type) can only be declared under higher-level
stream types, as their data-attribute.

c) A stream object shall be the output of exactly one action and the input of exactly one action.

d) The outputting and inputting actions shall begin their execution at the same time, after the same pre-
ceding action(s) completes. The outputting and inputting actions are said to run in parallel. The
semantics of parallel execution are discussed further in 11.4.3.

12.2.2 C++ syntax

The corresponding C++ syntax for Syntax 54 is shown in Syntax 55.

struct mem_segment_s {…};
buffer data_buff_s {
 rand mem_segment_s seg;
};

struct mem_segment_s : public structure { ... };
...
struct data_buff_s : public buffer {
 PSS_CTOR(data_buff_s, buffer);
 rand_attr<mem_segment_s> seg {"seg"};
};
type_decl<data_buff_s> data_buff_s_decl;

stream identifier [: struct_super_spec] { { struct_body_item } } [;]
Copyright © 2017 - 2018 Accellera. All rights reserved.
95

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 55—C++: stream declaration

12.2.3 Examples

Examples of stream objects are show in Example 85 and Example 86.

Example 85—DSL: stream object

Example 86—C++: stream object

12.3 State objects

State objects represent the state of some entity in the execution environment at a given time. See Syntax 56
or Syntax 57.

12.3.1 DSL syntax

Syntax 56—DSL: state declaration

The following also apply.

pss::stream

Defined in pss/stream.h (see C.41).

class stream;

Base class for declaring a stream flow object.

Member functions

stream (const scope& name) : constructor
virtual void pre_solve() : in-line pre_solve exec block
virtual void post_solve() : in-line post_solve exec block

struct mem_segment_s {…};
stream data_stream_s {
 rand mem_segment_s seg;

 };

struct mem_segment_s : public structure {...};
...
struct data_stream_s : public stream { ...
 PSS_CTOR(data_buff_s, stream);
 rand_attr<mem_segment_s> seg {"seg"};
};
type_decl<data_buff_s> data_buff_s_decl;

state identifier [: struct_super_spec] { { struct_body_item } } [;]
Copyright © 2017 - 2018 Accellera. All rights reserved.
96

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
a) The writing and reading of states in a scenario is deterministic. With respect to a pool of state
objects, writing shall not take place concurrently to either writing or reading.

b) The initial state of a given type is represented by the built-in Boolean initial attribute. See 14.6 for
more on state pools (and initial).

c) State object reference-fields can be declared under actions using the input or output modifier (see
12.4). Instance-fields of state type (such as struct type) can only be declared under higher-level state
types, as their data-attribute. It shall be illegal to access the built-in attributes initial and prev on an
instance field.

d) State types can inherit from previously defined unqualified structs or states.
e) An action that has an input or output of state-object type operates on a pool of the corresponding

state-object type to which its field is bound. Static pool bind directives are used to associate the
action with the appropriate state-object pool (see 14.4).

f) At any given time, a pool of state-object type contains a single state object. This object reflects the
last state specified by the output of an action bound to the pool. Prior to execution of the first action
that outputs to the pool, the object reflects the initial state specified by constraints involving the "ini-
tial" built-in field of state-object types.

g) The built-in variable prev is a reference from this state object to the previous one in the pool. prev
has the same type as this state object. The value of prev is unresolved in the context of the initial
state object. In the context of an action, prev may only be referenced relative to a state object output.
In all cases, only a single level of prev reference is supported, i.e., out_s.prev.prev.prev
shall be illegal.

h) An action that inputs a state object reads the current state object from the state-object pool to which
it is bound.

i) An action that outputs a state object writes to the state-object pool to which it is bound, updating the
state object in the pool.

j) Execution of an action that outputs a state object shall complete at any time before the execution of
any inputting action begins.

k) Execution of an action that outputs a state object to a pool shall not be concurrent with the execution
of any other action that either outputs or inputs a state object from that pool.

l) Execution of an action that inputs a state object from a pool may be concurrent with the execution of
any other action(s) that input a state object from the same pool, but shall not be concurrent with the
execution of any other action that outputs a state object to the same pool.

12.3.2 C++ syntax

The corresponding C++ syntax for Syntax 56 is shown in Syntax 57.
Copyright © 2017 - 2018 Accellera. All rights reserved.
97

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 57—C++: state declaration

12.3.3 Examples

Examples of state objects are show in Example 87 and Example 88.

Example 87—DSL: state object

Example 88—C++: state object

12.4 Using flow objects

Flow object references are specified by actions as inputs or outputs. These references are used to specify
rules for combining actions in legal scenarios. See Syntax 58 or Syntax 59 and Syntax 60.

12.4.1 DSL syntax

Syntax 58—DSL: Flow object reference

pss::state

Defined in pss/state.h (see C.40).

class state;

Base class for declaring a stream flow object.

Member functions

state (const scope& name) : constructor
rand_attr<bool> initial : true if in initial state
virtual void pre_solve() : in-line pre_solve exec block
virtual void post_solve() : in-line post_solve exec block

enum mode_e {…};
state config_s {
 rand mode_e mode;
 …
};

class mode_e : public enumeration {...};
...
struct config_s : public state { ...
 PSS_CTOR(confic_s, state);
 rand_attr<mode_e> mode {"mode"};
};
type_decl<config_s> config_s_decl;

input | output action_data_declaration
Copyright © 2017 - 2018 Accellera. All rights reserved.
98

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
12.4.2 C++ syntax

Action input and outputs are defined using the input (see Syntax 59) and output (see Syntax 59) classes
respectively.

The corresponding C++ syntax for Syntax 58 is shown in Syntax 59 and Syntax 60.

Syntax 59—C++: action input

Syntax 60—C++: action output

12.4.3 Examples

12.4.3.1 Using buffer objects

Examples of using buffer flow objects are shown in Example 89 and Example 90.

pss::input

Defined in pss/input.h (see C.30).

template<class T> class input;

Declare an action input.

Member functions

input (const scope& name) : constructor
T* operator->() : access underlying input type
T& operator*() : access underlying input type

pss::output

Defined in pss/output.h (see C.32).

template<class T> class output;

Declare an action input.

Member functions

output (const scope& name) : constructor
T* operator->() : access underlying output type
T& operator*() : access underlying output type
Copyright © 2017 - 2018 Accellera. All rights reserved.
99

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 89—DSL: buffer flow object

For a timing diagram showing the relative execution of two actions sharing a buffer object, see Figure 2.

The corresponding C++ example for Example 89 is shown in Example 90.

Example 90—C++: buffer flow object

12.4.3.2 Using stream objects

Examples of using stream flow objects are shown in Example 91 and Example 92.

Example 91—DSL: stream flow object

For a timing diagram showing the relative execution of two actions sharing a stream object, see Figure 3.

struct mem_segment_s {…};
buffer data_buff_s {
 rand mem_segment_s seg;

 };
action cons_mem_a {
 input data_buff_s in_data;
};
action prod_mem_a {
 output data_buff_s out_data;
};

struct mem_segment_s : public structure { ... };
...
struct data_buff_s : public buffer { ...
 rand_attr<mem_segment_s> seg {"seg"};
};
...
struct cons_mem_a : public action { ...
 input<data_buff_s> in_data {"in_data"};
};
...
struct prod_mem_a : public action { ...
 output<data_buff_s> out_data {"out_data"};
};
...

struct mem_segment_s {…};
stream data_stream_s {
 rand mem_segment_s seg;
};
action cons_mem_a {
 input data_stream_s in_data;
};
action prod_mem_a {
 output data_stream_s out_data;
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
100

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The corresponding C++ example for Example 91 is shown in Example 92.

Example 92—C++: stream flow object

struct mem_segment_s : public structure { ... };
...
struct data_stream_s : public stream { ...
 rand_attr<mem_segment_s> seg {"seg"};
};
...
struct cons_mem_a : public action { ...
 input<data_stream_s> in_data {"in_data"};
};
type_decl<cons_mem_a> cons_mem_a_decl;

struct prod_mem_a : public action { ...
 output<data_stream_s> out_data {"out_data"};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
101

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
13. Resource objects

Resource objects represent computational resources available in the execution environment that may be
assigned to actions for the duration of their execution.

13.1 Declaring resource objects

Resource struct types can inherit from previously defined unqualified structs or resource structs. See
Syntax 61 or Syntax 62. Resources reside in pools (see Clause 14) and may be claimed by specific actions.

13.1.1 DSL syntax

Syntax 61—DSL: resource declaration

The following also apply.

a) Resources have a built-in numeric non-negative attribute called instance_id (see 14.5). This attri-
bute represents the relative index of the resource instance in the pool. The value of instance_id
ranges from 0 to pool_size - 1. See also Clause 14.

b) There can only be one resource object per instance_id value for a given pool. Thus, actions ref-
erencing a resource object of some type with the same instance_id are necessarily referencing
the very same object and agreeing on all its properties.

c) Resource object reference-fields can be declared under actions using the input or output modifier
(see 12.4). Instance-fields of resource type (such as struct type) can only be declared under higher-
level resource types, as their data-attribute. It shall be illegal to access the built-in attributes initial
and prev on an instance field.

13.1.2 C++ syntax

The corresponding C++ syntax for Syntax 61 is shown in Syntax 62.

Syntax 62—C++: resource declaration

resource identifier [: struct_super_spec] { { struct_body_item } } [;]

pss::resource

Defined in pss/resource.h (see C.37).

class resource;

Base class for declaring a resource.

Member functions

resource (const scope& name) : constructor
virtual void pre_solve() : in-line pre_solve exec block
virtual void post_solve() : in-line post_solve exec block
rand_attr<bit> instance_id : get resource instance id
Copyright © 2017 - 2018 Accellera. All rights reserved.
102

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
13.1.3 Examples

For examples of how to declare a resource, see Example 93 and Example 94.

Example 93—DSL: Declaring a resource

The corresponding C++ example for Example 93 is shown in Example 94.

Example 94—C++: Declaring a resource

13.2 Claiming resource objects

Resource objects may be locked or shared by actions. This is expressed by declaring the resource reference
field of an action. See Syntax 63 or Syntax 64 and Syntax 65.

13.2.1 DSL syntax

Syntax 63—DSL: Resource reference

lock and share are modes of resource use by an action. They serve to declare resource requirements of the
action and restrict legal scheduling relative to other actions. Locking excludes the use of the resource
instance by another action throughout the execution of the locking action and sharing guarantees that the
resource is not locked by another action during its execution.

The following also apply.

In a PSS-generated test scenario, no two actions may be assigned the same resource instance if they
overlap in execution time and at least one is locking the resource. In other words, there is a strict
scheduling dependency between an action referencing a resource object in lock mode and all other
actions referencing the same resource object instance.

13.2.2 C++ syntax

The corresponding C++ syntax for Syntax 63 is shown in Syntax 64 and Syntax 65.

resource DMA_channel_s {
 rand bit[3:0] priority;
};

struct DMA_channel_s : public resource {
 PSS_CTOR(DMA_channel_s, resource);
 rand_attr<bit> priority {"priority", width{3,0}};
};
type_decl<DMA_channel_s> DMA_channel_s_decl;

lock | share action_data_declaration
Copyright © 2017 - 2018 Accellera. All rights reserved.
103

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 64—C++: Claim a locked resource

Syntax 65—C++: Share a locked resource

13.2.3 Examples

Example 95 and Example 96 demonstrate resource claims in lock and share mode. Action
two_DMA_chan_transfer claims exclusive access to two different DMA_channel_s instances. It
also claims one CPU_core_s instance in non-exclusive share mode. While two_chan_transfer
executes, no other action may claim either instance of the DMA_channel_s resource, nor may any other
action lock the CPU_core_s resource instance.

pss::lock

Defined in pss/lock.h (see C.31).

template < class T > class lock;

Claim a lock resource.

Member functions

lock (const scope& name) : constructor
T* operator->() : access underlying input type
T& operator*() : access underlying input type

pss::share

Defined in pss/share.h (see C.39).

template <class T> class share;

Share a lock resource.

Member functions

share (const scope& name) : constructor
T* operator->() : access underlying input type
T& operator*() : access underlying input type
Copyright © 2017 - 2018 Accellera. All rights reserved.
104

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 95—DSL: Resource object

Example 96—C++: Resource object

resource DMA_channel_s {
 rand bit[3:0] priority;
};
resource CPU_core_s {…};
action two_chan_transfer {
 lock DMA_channel_s chan_A;
 lock DMA_channel_s chan_B;
 share CPU_core_s ctrl_core;
…
};

struct DMA_channel_s : public resource { ...
 rand_attr<bit> priority {"priority", width{3,0}};
};
...
struct CPU_core_s : public resource { ... };
...
class two_chan_transfer : public action { ...
 lock<DMA_channel_s> chan_A {"chan_A"};
 lock<DMA_channel_s> chan_B {"chan_B"};
 share<CPU_core_s> ctrl_core {"core"};
 };
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
105

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
14. Pools

Pools are used to determine possible assignment of objects to actions, and, thus, shape the space of legal test
scenarios. Pools represent collections of resources, state variables, and connectivity for data-flow purposes.
Flow object exchange is always mediated by a pool. One action outputs an object to a pool and another
action inputs it from that same pool. Similarly, actions lock or share a resource object within some pool.

Pools are structural entities instantiated under components. They are used to determine the accessibility
actions (see Clause 10) have to flow and resource objects. This is done by binding object-reference fields of
action types to pools of the respective object types. Bind directives in the component scope associate
resource references with a specific resource pool, state references with a specific state pool (or state
variable), and buffer/stream object references with a specific data-object pool (see 14.4).

14.1 DSL syntax

Syntax 66—DSL: Pool instantiation

In Syntax 66, type_identifier refers to a flow/resource object type, i.e., a buffer, stream, state, or resource
struct-type.

The expression applies only to pools of resource type; it specifies the number of resource instances in the
pool. If omitted, the size of the resource pool defaults to 1.

The following also apply.

a) The execution semantics of a pool is determined by its object type.

b) A pool of state type can hold one object at any given time, a pool of resource type can hold up to
the given maximum number of unique resource objects throughout a scenario, and a pool of buffer
or stream type is not restricted in the number of objects at a given time or throughout the scenario.

14.2 C++ syntax

The corresponding C++ syntax for Syntax 66 is shown in Syntax 67.

Syntax 67—C++: Pool instantiation

component_pool_declaration ::= pool [[expression]] type_identifier identifier ;

pss::pool

Defined in pss/pool.h (see C.34).

template <class T> class pool;

Instantiation of a pool.

Member functions

pool (const scope& name, std::size_t count = 1) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
106

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
14.3 Examples

Example 97 and Example 98 demonstrate the how to use a pool.

Example 97—DSL: Pool declaration

The corresponding C++ example for Example 97 is shown in Example 98.

Example 98—C++: Pool declaration

14.4 Static pool binding directive

Every action executes in the context of a single component instance and every object resides in some pool.
Multiple actions may execute concurrently, or over time, in the context of the same component instance, and
multiple objects may reside concurrently, or over time, in the same pool. Actions of a specific component
instance output objects to or input objects from a specific pool. Actions of a specific component instance can
only be assigned a resource of a certain pool. Static bind directives determine which pools are accessible to
the actions’ object references under which component instances (see Syntax 68 or Syntax 69). Binding is
done relative to the component sub-tree of the component type in which the bind directive occurs.

buffer data_buff_s {
 rand mem_segment_s seg;

 };
resource channel_s {…};
component dmac_c {
 pool data_buff_s buff_p;
 …
 pool [4] channel_s chan_p;
}

struct data_buff_s : public buffer { ...
 rand_attr<mem_segment_s> seg {"seg"};
};
...
struct channels_s : public resource {...};
...
class dmac_c : public component { ...
 pool<data_buff_s> buff_p {"buff_p"};
 ...
 pool <channel_s> chan_p{"chan_p", 4};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
107

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
14.4.1 DSL syntax

Syntax 68—DSL: Static bind directives

Pool binding can take one of two forms.
— Explicit binding - associating a pool with a specific object-reference field (input/output/resource-

claim) of an action type under a component instance.
— Default binding - associating a pool generally with a component instance sub-tree, by object type.

The following also apply.
a) Components and pools are identified with a relative instance path expression. A specific object ref-

erence field is identified with the component instance path expression, followed by an action-type
name and field-name, separated by dots (.). The designated field shall agree with the pool in the
object-type.

b) Default binding can be specified for an entire sub-tree by using a wildcard instead of specific paths.
c) Explicit binding always takes precedence over default bindings.
d) Conflicting explicit bindings for the same object-reference field shall be illegal.
e) If multiple bindings apply to the same object-reference field, the bind directive in the context of the

top-most component instance takes precedence (i.e., the order of default binding resolution is top-
down).

f) Applying multiple default bindings to the same object-reference field(s) from the same component
shall be illegal.

14.4.2 C++ syntax

The corresponding C++ syntax for Syntax 68 is shown in Syntax 69.

object_bind_stmt ::= bind hierarchical_id object_bind_item_or_list ;
object_bind_item_or_list ::=
 component_path
 | { component_path { , component_path } }
component_path ::=
 component_identifier { . component_path_elem }

 | *
component_path_elem ::=
 component_action_identifier
 | *
Copyright © 2017 - 2018 Accellera. All rights reserved.
108

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 69—C++: Static bind directives

14.4.3 Examples

Example 99 and Example 100 illustrate default binding pools.

In these examples, the buff_p pool of data_buff_s objects is bound using the wildcard specifier
({*}). Because the bind statement occurs in the context of component dmac_c, the buff_p pool is bound
to all component instances and actions defined in dmac_c (i.e., component instances dmas1 and dmas2,
and action mem2mem_a). Thus, the in_data input and out_data output of the mem2mem_a action
share the same buff_p pool. The chan_p pool of channel_s resources is bound to the two instances.

Example 99—DSL: Static binding

The corresponding C++ example for Example 99 is shown in Example 100.

pss::bind

Defined in pss/bind.h (see C.6).

class bind;

Static bind of a type to multiple targets within the current scope.

Member functions

template <class R /* type */ , typename... T /* targets */ >

bind (const pool<R>& a_pool, const T&... targets) : constructor

struct mem_segment_s {…};
buffer data_buff_s {
 rand mem_segment_s seg;

 };
resource channel_s {…};
component dma_sub_c {
 …
}
component dmac_c {

 dma_sub_c dmas1, dmas2;
 pool data_buff_s buff_p;
 bind buff_p {*};
 pool [4] channel_s chan_p;
 bind chan_p {dmas1.*, dmas2.*};
 action mem2mem_a {
 input data_buff_s in_data;
 output data_buff_s out_data;
 …
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
109

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 100—C++: Static binding

Example 101 and Example 102 illustrate the two forms of binding:, explicit and default. Action
power_transition’s input and output are both associated with the context component’s
(graphics_c) state-object pool. However, action observe_same_power_state has two inputs,
each of which is explicitly associated with a different state-object pool, the respective sub-component state
variable. The channel_s resource pool is instantiated under the multimedia subsystem and is shared
between the two engines.

struct mem_segments_s : public structure {...};
...
struct data_buff_s : public buffer { ...
 rand_attr<mem_segment_s> seg {"seg"};
};
...
struct channel_s : public resource { ... };
...
class dma_sub_c : public component { ... };
...
class dma_c : public component { ...
 comp_inst <dma_sub_c> dmas1{"dmas1"}, dmas2{"dmas2"};
 pool <data_buff_s> buff_p { "buff_p" };
 bind b {buff_p};
 pool<channel_s> chan_p{"chan_p", 4};
 bind b2 { chan_p, dmas1, dmas2};
 class mem2mem_a : public action { ...
 input <data_buff_s> in_data {"in_data"};
 output <data_buff_s> out_data {"out_data"};
 ...
 };
 type_decl<mem2mem_a> mem2mem_a_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
110

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 101—DSL: Pool binding

state power_state_s { rand int in [0..4] level; }
resource channel_s {}
component graphics_c {
 pool power_state_s power_state_var;
 bind power_state_var *; // accessible to all actions under this
 // component (specifically power_transition's
 //input/output)
 action power_transition {
 input power_state_s curr; //current state
 output power_state_s next; //next state
 lock channel_s chan;
 }
}
component my_multimedia_ss_c {
 graphics_c gfx0;
 graphics_c gfx1;
 pool [4] channel_s channels;
 bind channels {gfx0.*,gfx1.*};// accessible by default to all
 // actions under these components sub-tree
 // (specifically power_transition's chan)
 action observe_same_power_state {
 input power_state_s gfx0_state;
 input power_state_s gfx1_state;
 constraint gfx0_state.level == gfx1_state.level;
 }
 // explicit binding of the two power state variables to the
 // respective inputs of action observe_same_power_state
 bind gfx0.power_state_var observe_same_power_state.gfx0_state;
 bind gfx1.power_state_var observe_same_power_state.gfx1_state;
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
111

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 102—C++: Pool binding

14.5 Resource pools and the instance_id attribute

Each object in a resource pool has a unique instance_id value, ranging from 0 to the pool’s size - 1.
Two actions that reference a resource object with the same instance_id value in the same pool are
referencing the same resource object. See also 15.1.

For example, in Example 103 and Example 104, action transfer is locking two kinds of resources:
channel_s and cpu_core_s. Because channel_s is defined under component dma_c, each dma_c
instance has its own pool of two channel objects. Within action par_dma_xfers, the two transfer actions
can be assigned the same channel instance_id because they are associated with different dma_c
instances. However, these same two actions need to be assigned a different cpu_core_s object, with a
different instance_id, because both dma_c instances are bound to the same resource pool of
cpu_core_s objects defined under pss_top and they are scheduled in parallel. The bind directive
designates the pool of cpu_core_s resources is to be utilized by both instances of the dma_c component.

struct power_state_s : public state { ...
 attr<int> level{"level", range(0,4) };
};
...
struct channel_s : public resource { ... };
...
class graphics_c : public component { ...
 pool<power_state_s> power_state_var {"power_state_var"};
 bind b1 {power_state_var}; // accessible to all actions under this component
 // (specifically power_transition’s input/output)
 class power_transition_a : public action { ...
 input <power_state_s> curr {"curr"};
 output <power_state_s> next {"next"};
 lock <channel_s> chan{"chan"};
 };
 type_decl<power_transtion_a> power_transition_a_decl;
};
...
class my_multimedia_ss_c : public component { ...
 comp_inst<graphics_c> gfx0 {"gfx0"};
 comp_inst<graphics_c> gfx1 {"gfx1"};
 pool <channel_s> channels {"channels", 4};
 bind b1 { channels, gfx0, gfx1}; // accessible by default to all actions
 // under these components sub-tree
 // (specifically power_transition’s chan)
 class observe_same_power_state_a : public action { ...
 input <power_state_s> gfx0_state {"gfx0_state"};
 input <power_state_s> gfx1_state {"gfx1_state"};
 constraint c1 { gfx0_state->level == gfx1_state->level };
 };
 type_decl<observe_same_power_state_a> observe_same_power_state_a_decl;
 // explicit binding of the two power state variables to the
 // respective inputs of action observe_same_power_state
 bind b2 {gfx0->power_state_var,
 observe_same_power_state_a_decl->gfx0_state};
 bind b3 {gfx1->power_state_var,
 observe_same_power_state_a_decl->gfx1_state};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
112

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 103—DSL: Resource object assignment

resource cpu_core_s {}
component dma_c {
 resource channel_s {}
 pool[2] channel_s channels;
 bind channels {*}; // accessible to all actions
 // under this component (and its sub-tree)
 action transfer {
 lock channel_s chan;
 lock cpu_core_s core;
 }
}
component pss_top {
 dma_c dma0,dma1;
 pool[4] cpu_core_s cpu;
 bind cpu {dma0.*, dma1.*};// accessible to all actions
 // under the two sub-components
 action par_dma_xfers {
 dma_c::transfer xfer_a;
 dma_c::transfer xfer_b;

 constraint xfer_a.comp != xfer_b.comp;
 constraint xfer_a.chan.instance_id == xfer_b.chan.instance_id;
 // OK
 constraint xfer_a.core.instance_id == xfer_b.core.instance_id;
 // conflict!
 activity {
 parallel {
 xfer_a;
 xfer_b;
 }
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
113

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 104—C++: Resource object assignment

14.6 Pool of states and the initial attribute

Each pool of a state struct-type contains exactly one state object at any given point in time throughout the
execution of the scenario. A state pool serves as a state-variable instantiated on the context component.
Actions outputting to a state pool can be viewed as transitions in a finite-state-machine. See also 15.1.

Prior to execution of an action that outputs a state object to the pool, the pool contains the initial object. The
initial flag is true for the initial object and false for all other objects subsequently residing in the pool.
The initial state object is overwritten by the first state object (if any) which is output to the pool. The initial
object is only input by actions that are scheduled before any action that outputs a state object to the same
pool.

struct cpu_core_s : public resource { ... };
...
class dma_c : public component { ...
 struct channel_s : public resource { ... };
 ...
 pool <channel_s> channels {"channels", 2};
 bind b1 {channels}; // accessible to all actions
 // under this component (and its sub-tree)
 class transfer : public action { ...
 lock <channel_s> chan {"chan"};
 lock <cpu_core_s> core {"core"};
 };
 type_decl<transfer> transfer_decl;
};
...
class pss_top : public component { ...
 comp_inst<dma_c> dma0{"dma0"}, dma1{"dma1"};
 pool <cpu_core_s> cpu {"cpu", 4};
 bind b2 {cpu, dma0, dma1}; // accessible to all actions
 // under the two sub-components
 class par_dma_xfers : public action { ...
 action_handle<dma_c::transfer> xfer_a {"xfer_a"};
 action_handle<dma_c::transfer> xfer_b {"xfer_b"};

 constraint c1 { xfer_a->comp() != xfer_b->comp() };
 constraint c2 { xfer_a->chan->instance_id == xfer_b->chan->
 instance_id }; // OK
 constraint c3 { xfer_a->core->instance_id == xfer_b->core->
 instance_id }; // conflict!

 activity act {
 parallel {
 xfer_a,
 xfer_b
 }
 };
 };
 type_decl<par_dma_xfers> par_dma_xfers_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
114

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Consider, for example, the code in Example 105 and Example 106. The action codec_c::configure
has an UNKNOWN mode as its configuration state precondition, due to the constraint on its input
prev_conf. Because it outputs a new state object with a different mode value, there can only be one such
action per codec component instance (unless another action, not shown here, sets the mode back to
UNKNOWN).

Example 105—DSL: State object binding

Example 106—C++: State object binding

enum codec_config_mode_e {UNKNOWN, A, B}
component codec_c {
 state configuration_s {
 rand codec_config_mode_e mode;
 constraint initial -> mode == UNKNOWN;
 }
 pool configuration_s config_var;
 bind config_var *;
 action configure {
 input configuration_s prev_conf;
 output configuration_s next_conf;
 constraint prev_conf.mode == UNKNOWN && next_conf.mode in [A, B];
 }
}

PSS_ENUM(codec_config_mode_e, UNKNOWN, A, B);
...
class codec_c : public component { ...
 struct configuration_s : public state { ...
 rand_attr<codec_config_mode_e> mode {"mode"};
 constraint c1 {
 if_then {
 cond(initial),
 mode == codec_config_mode_e::UNKNOWN
 }
 };
 };
 ...
 pool <configuration_s> config_var { "config_var"} ;
 bind b1 { config_var };

 class configure_a : public action { ...
 input <configuration_s> prev_conf { "prev_conf" };
 output <configuration_s> next_conf { "next_conf" };

 constraint c1 { prev_conf->mode == codec_config_mode_e::UNKNOWN &&
 in (next_conf->mode,
 range(codec_config_mode_e::A)
 (codec_config_mode_e::B))
 };
 };
 type_decl<configure_a> configure_a_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
115

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15. Randomization specification constructs

Scenario properties can be expressed in PSS declaratively, as algebraic constraints over attributes of
scenario entities.

a) There are several categories of struct and action fields.

1) Random attribute field - a field of a plain-data type (e.g., bit) that is qualified with the rand
keyword.

2) Non-random attribute field - a field of a plain-data type (e.g., int) that is not qualified with the
rand keyword.

3) Sub-action field - a field of an action type or a plain-data type that is qualified with the action
keyword.

4) Input/output flow-object reference field - a field of a flow-object type that is qualified with the
input or output keyword.

5) Resource-claim reference field - a field of a resource-object type that is qualified with the lock
or share keyword.

b) Constraints may shape every aspect of the scenario space. In particular:

1) Constraints are used to determine the legal value space for attribute fields of actions.

2) Constraints affect the legal assignment of resources to actions and, consequently, the schedul-
ing of actions.

3) Constraints may restrict the possible binding of actions’ inputs to actions’ outputs, and, thus,
possible action inferences from partially specified scenarios.

4) Constraints determine the association of actions with context component instances.

5) Constraints may be used to specify all of the above properties in a specific context of a higher
level activity encapsulated via a compound action.

6) Constraints may also be applied also to the operands of control flow statements—determining
loop count and conditional branch selection.

Constraints are typically satisfied by more than just one specific assignment. There is often room for
randomness or the application of other considerations in selecting values. The process of selecting values for
scenario variables is called constrained-randomization or simply randomization.

Randomized values of variables become available in the order in which they are used in the execution of a
scenario, as specified in activities. This provides a natural way to express and reason about the
randomization process. It also guarantees values sampled from the environment and fed back into the PSS
domain during the generation and/or execution have clear implications on subsequent evaluation. However,
this notion of ordering in variable randomization does not introduce ordering into the constraint system—the
solver is required to look ahead and accommodate for subsequent constraints.

15.1 Algebraic constraints

15.1.1 Member constraints

PSS supports two types of constraint blocks (see Syntax 70 or Syntax 71) as action/struct members: static
constraints that always hold and dynamic constraints that only hold when they are referenced by the user by
traversing them in an activity (see 15.4.9) or referencing them inside a constraint. Dynamic constraints
associate a name with a constraint that would typically be specified as an in-line constraint.
Copyright © 2017 - 2018 Accellera. All rights reserved.
116

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.1.1.1 DSL syntax

Syntax 70—DSL: Member constraint declaration

15.1.1.2 C++ syntax

The corresponding C++ syntax for Syntax 70 is shown in Syntax 71.

Syntax 71—C++: Member constraint declaration

constraint_declaration ::=
 [dynamic] constraint identifier { { constraint_body_item } }
 | constraint { { constraint_body_item } }
 | constraint single_stmt_constraint
constraint_body_item ::=
 expression_constraint_item
 | foreach_constraint_item
 | if_constraint_item
 | unique_constraint_item

pss::constraint

Defined in pss/constraint.h (see C.13).

class constraint;

Declare a member constraint.

Member functions

template <class... R> constraint(const R&&...
/*detail::AlgebExpr*/ expr) : declare a constraint
template <class... R> constraint(const std::string& name, const
R&&... /*detail::AlgebExpr*/ expr) : declare a named constraint

pss::dynamic_constraint

Defined in pss/constraint.h (see C.13).

class dynamic_constraint;

Declare a dynamic member constraint.

Member functions

template <class... R> dynamic_constraint(const R&&...
/*detail::AlgebExpr*/ expr) : declare a dynamic constraint
template <class... R> dynamic_constraint(const std::string& name,
const R&&... /*detail::AlgebExpr*/ expr) : declare a named dynamic constraint
Copyright © 2017 - 2018 Accellera. All rights reserved.
117

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.1.1.3 Examples

Example 107 and Example 108 declare a static constraint block, while Example 109 and Example 110
declare a dynamic constraint block. In the case of the static constraint, the name is optional.

Example 107—DSL: Declaring a static constraint

Example 108—C++: Declaring a static constraint

Example 109—DSL: Declaring a dynamic constraint

Example 110—C++: Declaring a dynamic constraint

action A {
 rand bit[31:0] addr;

 constraint addr_c {
 addr == 0x1000;
 }
}

class A : public action { ...
 rand_attr < bit > addr {"addr", width {31, 0} };

 constraint addr_c { "addr_c", addr == 0x1000 };
};
...

action B {
 action bit[31:0] addr;

 dynamic constraint dyn_addr1_c {
 addr in [0x1000..0x1FFF];
 }

 dynamic constraint dyn_addr2_c {
 addr in [0x2000..0x2FFF];
 }
}

class B : public action { ...
 action_attr< bit > addr {"addr", width {31, 0} };

 dynamic_constraint dyn_addr1_c { "dyn_addr1_c",
 in (addr, range (0x1000, 0x1fff))
 };

 dynamic_constraint dyn_addr2_c { "dyn_addr2_c",
 in (addr, range (0x2000, 0x2fff))
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
118

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 112 and Example 112 show a dynamic constraint inside a static constraint. In the examples, the
send_pkt action sends a packet of a random size. The static constraint pkt_sz_c ensures the packet is of
a legal size and the two dynamic constraints, small_pkt_c and jumbo_pkt_c, specialize the packet
size to be small or large, respectively. The static constraint interesting_sz_c restricts the size to be
either <=100 for small_pkt_c or >1500 for jumbo_pkt_c.

Example 111—DSL: Declaring a dynamic constraint inside a static constraint

Example 112—C++: Declaring a dynamic constraint inside a static constraint

 action send_pkt {
 rand bit[15:0] pkt_sz;

 constraint pkt_sz_c { pkt_sz > 0; }

 constraint interesting_sz_c { small_pkt_c || jumbo_pkt_c; }

 dynamic constraint small_pkt_c { pkt_sz >= 100; }

 dynamic constraint jumbo_pkt_c {pkt_sz > 1500; }
 }

 action scenario {
 activity {
 do send_pkt; // Send a packet with size in [1..100, 1500..65535]
 do send_pkt with {pkt_sz >= 100; }; // Send a small packet with
 // a directly-specified inline constraint
 do send_pkt with {small_pkt_c; }; // Send a small packet by
 // referencing a dynamic constraint
 }
 }

class send_pkt : public action {...
 rand_attr<bit> pkt_sz {"pkt_sz", width(16)};
 constraint pkt_sz_c {"pkt_sz_c", pkt_sz > 0};
 dynamic_constraint small_pkt_c {"small_pkt_c", pkt_sz <= 100};
 dynamic_constraint jumbo_pkt_c {"jumbo_pkt_c", pkt_sz > 1500};
};
...
class scenario : public action {...
 action_handle<send_pkt> p1 {"p1"};
 action_handle<send_pkt> p2 {"p2"};
 action_handle<send_pkt> p3 {"p3"};

 activity act {
 p1,
 p2.with(p1->pkt_sz <= 100),
 p3.with(p2->small_pkt_c)
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
119

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.1.2 Constraint inheritance

Constraints, like other action/struct-members, are inherited from the super-type. An action/struct subtype
has all of the constraints declared in the context of its super-type or inherited by it. A constraint
specification overrides a previous specification if the constraint name is identical. For a constraint override,
only the most specific property holds; any previously specified properties are ignored. Constraint
inheritance and override applies in the same way to static constraints and dynamic constraints. Unnamed
constraints shall not be overridden.

Example 113 and Example 114 illustrate a simple case of constraint inheritance and override. Instances of
struct corrupt_data_buff satisfy the unnamed constraint of data_buff based on which size is in
the range 1 to 1024. Additionally, size is greater than 256, as specified in the subtype. Finally, per
constraint size_align as specified in the subtype, size divided by 4 has a reminder of 1.

Example 113—DSL: Inheriting and overriding constraints

Example 114—C++: Inheriting and overriding constraints

15.1.3 Action-traversal in-line constraints

Constraints on sub-action data attributes can be in-lined directly in the context of an action-traversal-
statement in the activity clause (for syntax and other details, see 11.4.1).

In the context of in-line constraints, attribute field paths of the traversed sub-action can be accessed without
the sub-action field qualification. Fields of the traversed sub-action take precedence over fields of the
containing action. Other attribute field paths are evaluated in the context of the containing action. In cases
where the containing-action fields are shadowed by fields of the traversed sub-action, they can be explicitly

buffer data_buff {
rand int size;
constraint size in [1..1024];
constraint size_align { size%4 == 0; } // 4 byte aligned

}

buffer corrupt_data_buff : data_buff {
constraint size_align { size%4 == 1; }

//overrides alignment 1 byte off
constraint corrupt_data_size { size > 256; }

// additional constraint
}

struct data_buf : public buffer { ...
 rand_attr<int> size {"size"};
 constraint size_in { "size_in", in (size, range(1,1024)) };
 constraint size_align { "size_align", size % 4 == 0 };
};
...
struct corrupt_data_buf : public data_buf { ...
 constraint size_align { "size_align", size % 4 == 1 };
 // overrides alignment 1 byte off
 constraint corrupt_data_size { "corrupt_data_size", size > 256 };
 // additional constraint
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
120

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
accessed using built-in variable this. In particular, fields of the context component of the containing action
need to be accessed using the prefix path this.comp (see also Example 117 and Example 118).

If a sub-action field is traversed uniquely by a single traversal statement in the activity clause, in-lining a
constraint has the same effect as declaring the same member constraint on the sub-action field of the
containing action. In cases where the same sub-action field is traversed multiple times, in-line constraints
apply only to the specific traversal in which they occur.

Unlike member constraints, in-line constraint are evaluated in the specific scheduling context of the action-
traversal-statement. If attribute fields of sub-actions other than the one being traversed occur in the
constraint, these sub-action fields have already been traversed in the activity. In cases where a sub-action
field has been traversed multiple times, the most recently selected values are considered.

Example 115 and Example 116 illustrate the use of in-line constraints. The traversal of a3 is illegal, because
the path a4.f occurs in the in-line constraint, but a4 has not yet been traversed at that point. Constraint c2,
in contrast, equates a1.f with a4.f without having a specific scheduling context, and is, therefore, legal
and enforced.

Example 115—DSL: Action traversal in-line constraint

action A {
 rand bit[3:0] f;
};

action B {
 A a1, a2, a3, a4;

 constraint c1 { a1.f in [8..15]; };
 constraint c2 { a1.f == a4.f; };

 activity {
 a1;
 a2 with {
 f in [8..15]; // same effect as constraint c1 has on a1
 };
 a3 with {
 f == a4.f; // illegal - a4.f is unresolved at this point
 };
 a4;
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
121

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 116—C++: Action traversal in-line constraint

Example 117 and Example 118 illustrate different name resolutions within an in-line with clause.

Example 117—DSL: Variable resolution inside with constraint block

class A : public action { ...
 rand_attr< bit > f {"f", width(3, 0)};
};
...

class B : public action { ...
 action_handle<A> a1{"a1"}, a2{"a2"}, a3{"a3"}, a4{"a4"};
 constraint c1 { "c1", in (a1->f, range(8, 15)) };
 constraint c2 { "c2", a1->f == a4->f };
 activity a {
 a1,
 a2.with
 (in { a2->f, range(8,15) }),
 // same effect as constraint c1 has on a1
 a3.with
 (a3->f == a4->f),
 // illegal - a4.f is unresolved at this point
 a4
 };
};
...

component subc {
action A {

rand int f;
rand int g;

}
}

component top {
subc sub1, sub2;
action B {

rand int f;
rand int h;
subc::A a;

activity {
a with {

f < h; // sub-action's f and containing action's h
g == this.f; // sub-action's g and containing action's f
comp == this.comp.sub1; // sub-action's component is

// sub-component 'sub1' of the
// parent action's component

};
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
122

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 118—C++: Variable resolution inside with constraint block

15.1.4 Set membership expression

The in expression defines the value of the referenced attribute field to be a member of the specified set.
Syntax 72 or Syntax 73 shows the syntax for a set membership (in) expression.

15.1.4.1 DSL syntax

Syntax 72—DSL: Set membership expression

class MySubComponent : public component {...};
class MyComponent : public component { ...
 comp_inst<MySubComponent> sub1 {"sub1"};
 class A : public action { ...
 rand_attr<int> f {"f"};
 rand_attr<int> g {"g"};
 };
 type_decl<A> A_decl;

 class B : public action { ...
 rand_attr<int> f {"f"};
 rand_attr<int> h {"h"};
 action_handle<subc::A> a{"a"};

 activity act {
 a.with (
 (a->f < h)
 && (a->g == f)
 && (a->comp() == comp<MyComponent>()->sub1)
 // sub-action’s component is
 // sub-component ’sub1’ of the
 // parent action’s component
)
 };
 };
 type_decl B_decl;
};
...

logical_inequality_expr ::= binary_shift_expr {logical_inequality_rhs}
logical_inequality_rhs ::=
 inequality_expr_term
 | inside_expr_term
inequality_expr_term ::= logical_inequality_op binary_shift_expr
logical_inequality_op ::= < | <= | > | >=
inside_expr_term ::= in [open_range_list] }
open_range_list ::= open_range_value { , open_range_value }
open_range_value ::= expression [.. expression]
Copyright © 2017 - 2018 Accellera. All rights reserved.
123

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.1.4.2 C++ syntax

The corresponding C++ syntax for Syntax 72 is shown in Syntax 73.

Syntax 73—C++: Set membership expression

15.1.4.3 Examples

Example 119 and Example 120 constrain the addr attribute field to the range 0x0 to 0xFFFF.

Example 119—DSL: in constraint

Example 120—C++: in constraint

15.1.5 Implication constraint

Conditional constraints can be specified using the implication operator (->). Syntax 74 shows the syntax for
an implication constraint.

15.1.5.1 DSL syntax

Syntax 74—DSL: Implication constraint

pss::in

Defined in pss/in.h (see C.29).

template <class T> class in;

Constrain set membership.

Member functions

template<class T> in(const attr<T>& a_var, const range& a_range) :
attribute constructor for bit and int
template<class T> in(const rand_attr<T>& a_var, const range&
a_range) : random attribute constructor for bit and int

constraint addr_c {
 addr in [0x0000..0xFFFF];
 }

constraint addr_c { "addr_c",
 in (addr, range(0x0000, 0xFFFF))
};

expression_constraint_item ::=
 expression implicand_constraint_item
 | expression ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
124

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
expression can be any integral expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply.

a) The Boolean equivalent of the implication operator a -> b is (!a || b). This states that if the
expression is vacuously true, then the random values generated are constrained by the constraint (or
constraint set). Otherwise, the random values generated are unconstrained.

b) If the expression is true, all of the constraints in the constraint set shall also be satisfied.

c) The implication constraint is bidirectional.

15.1.5.2 C++ syntax

C++ uses the if_then construct to represent implication constraints.

The Boolean equivalent of if_then(a, b) is (!a || b).

15.1.5.3 Examples

Consider Example 121 and Example 122. Here, b is forced to have the value 1 whenever the value of the
variable a is greater than 5. However, since the constraint is bidirectional, if b has the value 1, then the
evaluation expression (!(a>5) || (b==1)) is true, so the value of a is unconstrained. Similarly, if b
has a value other than 1, a is <= 5.

Example 121—DSL: Implication constraint

Example 122—C++: Implication constraint

15.1.6 if-else constraint

Conditional constraints can be specified using the if and if-else constraint statements.

Syntax 75 or Syntax 76 shows the syntax for an if-else constraint.

struct impl_s {
 rand bit[7:0] a, b;

 constraint ab_c {
 (a > 5) -> b == 1;
 }
}

class impl_s : public structure { ...
 rand_attr<bit> a {"a", width(7,0)}, b {"b", width(7,0)};
 constraint ab_c {
 if_then {
 cond(a > 5),
 b == 1
 }
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
125

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.1.6.1 DSL syntax

Syntax 75—DSL: Conditional constraint

expression can be any integral expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply.
a) If the expression is true, all of the constraints in the first constraint_set shall be satisfied; other-

wise, all the constraints in the optional else constraint_set shall be satisfied.
b) Constraint sets may be used to group multiple constraints.
c) Just like implication (see 15.1.5), if-else style constraints are bidirectional.

15.1.6.2 C++ syntax

The corresponding C++ syntax for Syntax 75 is shown in Syntax 76.

Syntax 76—C++: Conditional constraint

15.1.6.3 Examples

In Example 123 and Example 124, the value of a constrains the value of b and the value of b constrains the
value of a.

if_constraint_item ::= if (expression) constraint_set [else constraint_set]

pss::if_then

Defined in pss/if_then.h (see C.27).

class if_then;

Declare if-then constraint statement.

Member functions

if_then (const detail::AlgebExpr& cond, const detail::AlgebExpr&
true_expr) : constructor

pss::if_then_else

Defined in pss/if_then.h (see C.27).

class if_then_else;

Declare if-then-else constraint statement.

Member functions

if_then_else (const detail::AlgebExpr& cond, const detail::Algeb-
Expr& true_expr, const detail::AlgebExpr& false_expr) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
126

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Attribute a cannot take the value 0 because both alternatives of the if-else constraint preclude it. The
maximum value for attribute b is 4, since in the if alternative it is 1 and in the else alternative it is less
than a, which itself is <= 5.

In evaluating the constraint, the if-clause evaluates to !(a>5) || (b==1). If a is in the range
{1,2,3,4,5}, then the !(a>5) expression is TRUE, so the (b==1) constraint is ignored. The else-
clause evaluates to !(a<=5), which is FALSE, so the constraint expression (b<a) is TRUE. Thus, b is in
the range {0..(a-1)}. If a is 2, then b is in the range {0,1}. If a > 5, then b is 1.

However, if b is 1, the (b==1) expression is TRUE, so the !(a>5) expression is ignored. At this point,
either !(a<=5) or a > 1, which means that a is in the range {2,3, … 255}.

Example 123—DSL: if constraint

Example 124—C++: if constraint

15.1.7 foreach constraint

Elements of arrays can be iteratively constrained using the foreach constraint.

Syntax 77 or Syntax 78 shows the syntax for a foreach constraint.

15.1.7.1 DSL syntax

Syntax 77—DSL: foreach constraint

struct if_else_s {
 rand bit[7:0] a, b;

 constraint ab_c {
 if (a > 5) {
 b == 1;
 } else {
 b < a;
 }
 }
}

struct if_else_s : public structure { ...
 rand_attr<bit> a{"a", width(7,0)} , b{"b", width(7,0)};

 constraint ab_c {
 if_then_else {
 cond(a > 5),
 b == 1,
 b < a
 }
 };
};
...

foreach_constraint_item ::=
foreach ([iterator_identifier :] expression [[index_identifier]]) constraint_set
Copyright © 2017 - 2018 Accellera. All rights reserved.
127

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
expression can be any integral expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply.
a) expression shall be of an array type.
b) iterator_identifier specifies the name of an iterator variable of the array-element type. index_identi-

fier specifies the name of an index variable of a numeric type. Either one or the other shall be speci-
fied, but not both.

c) All of the constraints in constraint_set shall be satisfied for each of the elements in the array speci-
fied by expression.

d) Within constraint_set, the iterator variable, when declared, is an alias to the array element of the cur-
rent iteration.

e) Within constraint_set the index variable, when declared, ranges between 0 and one less than the size
of the array, corresponding to the element index of the current iteration.

15.1.7.2 C++ syntax

The corresponding C++ syntax for Syntax 77 is shown in Syntax 78.

Syntax 78—C++: foreach constraint

15.1.7.3 Examples

Example 125 and Example 126 show an iterative constraint that ensures that the values of the elements of a
fixed-size array increment.

Example 125—DSL: foreach iterative constraint

pss::foreach

Defined in pss/foreach.h (see C.25).

class foreach;

Iterate constraint across array of non-rand and rand attributes.

Member functions

foreach (const attr& iter, const attr<vec>& array, const
detail::AlgebExpr& constraint) : non-rand attributes

struct foreach_s {
 rand bit[9:0] fixed_arr[10];

 constraint fill_arr_elem_c {
 foreach (fixed_arr[i]) {
 if (i > 0) {
 fixed_arr[i] > fixed_arr[i-1];
 }
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
128

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 126—C++: foreach iterative constraint

15.1.8 Unique constraint

The unique constraint causes unique values to be selected for each element in the specified set.

Syntax 79 or Syntax 80 shows the syntax for a unique constraint.

15.1.8.1 DSL syntax

Syntax 79—DSL: unique constraint

15.1.8.2 C++ syntax

The corresponding C++ syntax for Syntax 79 is shown in Syntax 80.

Syntax 80—C++: unique constraint

15.1.8.3 Examples

Example 127 and Example 128 force the solver to select unique values for the random attribute fields A, B,
and C. The unique constraint is equivalent to the following constraint statement: ((A != B) && (A
!= C) && (B != C)).

class foreach_s : public structure { ...
 rand_attr_vec<bit> fixed_arr {"fixed_arr", 10, width(9,0) };
 attr<int> i {"i"};
 constraint fill_arr_elem_c { "fill_arr_elem_c";,
 foreach { i, fixed_arr,
 if_then {
 cond(i > 0),
 fixed_arr[i] > fixed_arr[i-1]
 }
 }
 };
};
...

unique_constraint_item ::= unique { open_range_list } ;

pss::unique

Defined in pss/unique.h (see C.45).

class unique;

Declare of a unique constraint.

Member functions

template<class... R> unique(R&&... /*rand_attr<T>*/ r) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
129

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 127—DSL: Unique constraint

Example 128—C++: Unique constraint

15.2 Scheduling constraints

Scheduling constraints relate two or more actions or sub-activities from a scheduling point of view.
Scheduling constraints do not themselves introduce new action traversals. Rather, they affect actions
explicitly traversed in contexts that do not already dictate specific relative scheduling. Such contexts
necessarily involve actions directly or indirectly under a schedule statement (see 11.4.4). Similarly,
scheduling constraints can be applied to named sub-activities, see Syntax 81.

15.2.1 DSL syntax

Syntax 81—DSL: Scheduling constraint statement

The following also apply.
a) constraint sequence schedules the related actions so that each completes before the next one starts

(equivalent to a sequential activity block, see 11.4.2).
b) constraint parallel schedules the related actions such that they are invoked in a synchronized way

and then proceed without further synchronization until their completion (equivalent to a parallel
activity statement, see 11.4.3).

c) Scheduling constraints may not be applied to action-handles that are traversed multiple times. In
particular, they may not be applied to actions traversed inside an iterative statement: repeat, repeat
while, and foreach (see 11.5). However, the iterative statement itself, as a named sub-activity, can
be related in scheduling constraints.

d) Scheduling constraints involving action-handle variables that are not traversed at all, or are traversed
under branches not actually chosen from select or if statements (see 11.5), hold vacuously.

e) Scheduling constraints shall not undo or conflict with any scheduling requirements of the related
actions.

struct my_struct {
rand bit[4] in [0..15] A, B, C;
constraint unique_abc_c {

unique {A, B, C};
}

}

class my_struct : public structure { ...
 rand_attr<bit> A {"A", range(0,15) },
 B {"B", range(0,15) },
 C {"C", range(0,15) };
 constraint unique_abc_c {"unique_abc_c",
 unique {A, B, C};
 };
};
...

scheduling_constraint ::= constraint (parallel | sequence)
 { hierarchical_id, hierarchical_id { , hierarchical_id } } ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
130

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
15.2.2 Example

Example 129 demonstrates the use of a scheduling constraint. In it, compound action my_sub_flow
specifies an activity in which action a is executed, followed by the group b, c, and d, with an unspecified
scheduling relation between them. Action my_top_flow schedules two executions of my_sub_flow,
relating their sub-actions using scheduling constraints.

Example 129—DSL: Scheduling constraints

15.3 Sequencing constraints on state objects

A pool of state type stores exactly one state-object at any given time during the execution of a test scenario,
thus serving as a state-variable (see 14.4). Any action that outputs a state object to a pool is considered a
state transition with respect to that state-variable. Within the context of a state type, reference can be made to
attributes of the previous state, relating them in Boolean expressions to attributes values of this state. This is
done by using the built-in reference variable prev (see 12.3).

NOTE—Any constraint in which prev occurs is vacuously satisfied in the context of the initial state object.

In Example 130 and Example 131, the first constraint in power_state_s determines that the value of
domain_B may only decrement by 1, remain the same, or increment by 1 between consecutive states. The
second constraint determines that if a domain_C in any given state is 0, the subsequent state has a
domain_C of 0 or 1 and domain_B is 1. These rules apply equally to the output of the two actions
declared under component power_ctrl_c.

action my_sub_flow {
 A a; B b; C c; D d;

 activity {
 sequence {
 a;
 schedule {
 b; c; d;
 };
 };
 };
};

action my_top_flow {
 my_sub_flow sf1, sf2;

 activity {
 schedule {
 sf1;
 sf2;
 };
 };

 constraint sequence {sf1.a, sf2.b};
 constraint parallel {sf1.b, sf2.b, sf2.d};
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
131

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 130—DSL: Sequencing constraints

state power_state_s {
 rand int in [0..3] domain_A, domain_B, domain_C;

 constraint domain_B in { prev.domain_B - 1,
 prev.domain_B,
 prev.domain_B + 1};

 constraint prev.domain_C==0 -> domain_C in [0,1] || domain_B==0;
};
...
component power_ctrl_c {
 pool power_state_s psvar;
 bind psvar *;

 action power_trans1 {
 output power_state_s next_state;
 };

 action power_trans2 {
 output power_state_s next_state;
 constraint next_state.domain_C == 0;
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
132

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 131—C++: Sequencing constraints

15.4 Randomization process

PSS supports randomization of plain data models associated with scenario elements, as well as
randomization of different relations between scenario elements, such as scheduling, resource allocation, and
data flow. Moreover, the language supports specifying the order of random value selection, coupled with the
flow of execution, in a compound action’s sub-activity, the activity clause. Activity-based random value
selection is performed with specific rules to simplify activity composition and reuse and minimize
complexity for the user.

Random attribute fields of struct type are randomized as a unit. Traversal of a sub-action field triggers
randomization of random attribute fields of the action and the resolution of its flow/resource object
references. This is followed by evaluation of the action’s activity if the action is compound.

15.4.1 Random attribute fields

This section describes the rules that govern whether an element is considered randomizable.

15.4.1.1 Semantics

a) Struct attribute fields qualified with the rand keyword are randomized if a field of that struct type is
also qualified with the rand keyword.

struct power_state_s : public state { ...
 rand_attr<int> domain_A { "domain_A", range(0,3) };
 rand_attr<int> domain_B { "domain_B", range(0,3) };
 rand_attr<int> domain_C { "domain_C", range(0,3) };
 constraint c1 { in(domain_B,
 range(prev(this)->domain_B-1)
 (prev(this)->domain_B)
 (prev(this)->domain_B+1))
 };
 constraint c2 { if_then {
 cond (prev(this)->domain_C == 0),
 in(domain_C, range(0,1)) || domain_B == 0 } };
};
...
class power_ctrl_c : public component { ...
 pool <power_state_s> psvar {"psvar"};
 bind psvar_bind {psvar};

 class power_trans : public action { ...
 output <power_state_s> next_state {"next_state"};
 };
 type_decl<power_trans> power_trans_decl;

 class power_trans2 : public action { ...
 output <power_state_s> next_state {"next_state"};
 constraint c { next_state->domain_C == 0 };
 };
 type_decl<power_trans2> power_trans2_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
133

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
b) Action attribute fields qualified with the rand keyword are randomized at the beginning of action
execution. In the case of compound actions, rand attribute fields are randomized prior to the execu-
tion of the activity and, in all cases, prior to the execution of the action’s exec blocks (except
pre_solve, see 15.4.10).

NOTE—It is often helpful to directly traverse attribute fields within an activity. This is equivalent to creating an inter-
mediate action with a random attribute field of the plain-data type.

15.4.1.2 Examples

In Example 132 and Example 133, struct S1 contains two attribute fields. Attribute field a is qualified with
the rand keyword, while b is not. Struct S2 creates two attribute fields of type S1. Attribute field s1_1 is
also qualified with the rand keyword. s1_1.a will be randomized, while s1_1.b will not. Attribute field
s1_2 is not qualified with the rand keyword, so neither s1_2.a nor s1_2.b will be randomized.

Example 132—DSL: Struct rand and non-rand fields

Example 133—C++: Struct rand and non-rand fields

Example 134 and Example 135 show two actions, each containing a rand-qualified data field (A::a and
B::b). Action B also contains two fields of action type A (a_1 and a_2). When action B is executed, a
value is assigned to the random attribute field b. Next, the activity body is executed. This involves
assigning a value to a_1.a and subsequently to a_2.a.

struct S1 {
 rand bit[3:0] a;
 bit[3:0] b;
}

struct S2 {
 rand S1 s1_1;
 S1 s1_2;
}

class S1 : public structure { ...
 rand_attr<bit> a { "a", width(3,0) };
 attr<bit> b { "b", width (3,0) };
};
...

class S2 : public structure { ...
 rand_attr<S1> s1_1 {"s1_1"};
 attr<S1> s1_2 {"s1_2"};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
134

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 134—DSL: Action rand-qualified fields

Example 135—C++: Action rand-qualified fields

Example 136 and Example 137 show an action-qualified field in action B named a_bit. The PSS
processing tool assigns a value to a_bit when it is traversed in the activity body. The semantics are
identical to assigning a value to the rand-qualified action field A::a.

Example 136—DSL: Action-qualified data fields

action A {
 rand bit[3:0] a;
 }

 action B {
 A a_1, a_2;
 rand bit[3:0] b;

 activity {
 a_1;
 a_2;
 }
 }

class A : public action { ...
 rand_attr<bit> a {"a", width(3,0) };
};
...

class B : public action { ...
 action_handle<A> a_1 { "a_1"}, a_2 {"a_2"};
 rand_attr<bit> b { "b", width (3, 0) };

 activity act {
 a_1,
 a_2
 };
};
...

action A {
 rand bit[3:0] a;
 }

 action B {
 action bit[3:0] a_bit;
 A a_1;

 activity {
 a_bit;
 a_1;
 }
 }
Copyright © 2017 - 2018 Accellera. All rights reserved.
135

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 137—C++: Action-qualified fields

15.4.2 Randomization of flow objects

When an action is randomized, its input and output fields are assigned a reference to a flow object of
the respective type. On entry to any of the action’s exec blocks (except pre_solve, see 20.7), as well as its
activity clause, values for all rand data-attributes accessible through its inputs and outputs fields are
resolved. The values accessible in these contexts satisfy all constraints. Constraints can be placed on
attribute fields from the immediate type context, from a containing struct or action at any level or via the
input/output fields of actions.

The same flow object may be referenced by an action outputting it and one or more actions inputting it. The
binding of inputs to outputs may be explicitly specified in an activity clause or may be left unspecified. In
cases where binding is left unspecified, the counterpart action of a flow object’s input/output may already be
one explicitly traversed in an activity or it may be introduced implicitly by the PSS processing tool to satisfy
the binding rules (see Clause 16). In all of these cases, value selection for the data-attributes of a flow object
need to satisfy all constraints coming from the action that outputs it and actions that input it.

Consider the model in Example 138 and Example 139. Assume a scenario is generated starting from action
test. Action wr of type write1 is scheduled, followed by action rd of type read. When rd is
randomized, its input in_obj needs to be resolved. Every buffer object shall be the output of some action.
The activity does not explicitly specify the binding of rd’s input to any action’s output, but it needs to be
resolved regardless. Action wr outputs a mem_obj whose dat is in the range 1 to 5, due to a constraint in
action write1. But, dat of the mem_obj instance rd inputs need to be in the range 8 to 12. So
rd.in_obj cannot be bound to wr.out_obj without violating a constraint. The PSS processing tool
needs to schedule another action of type write2 at some point prior to rd, whose mem_obj is bound to
rd’s input. In selecting the value of rd.input.dat, the PSS processing tool needs to consider the
following.

— dat is an even integer, due to the constraint in mem_obj.

— dat is in the range 6 to 10, due to a constraint in write2.

— dat is in the range 8 to 12, due to a constraint in read.

This restricts the legal values of rd.in_obj.dat to either 8 or 10.

class A : public action { ...
 rand_attr<bit> a {"a", width(3,0) };
};
...

class B : public action { ...
 action_attr<bit> a_bit { "a_bit", width (3, 0) };
 action_handle<A> a_1 { "a_1"};

 activity act {
 a_bit,
 a_1
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
136

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 138—DSL: Randomizing flow object attributes

component top {
buffer mem_obj {
rand int dat;
constraint dat%2 == 0; // dat must be even
}

action write1 {
output mem_obj out_obj;
constraint out_obj.dat in [1..5];

}

action write2 {
output mem_obj out_obj;
constraint out_obj.dat in [6..10];

}

action read {
input mem_obj in_obj;
constraint in_obj.dat in [8..12];

}

action test {
activity {

do write1;
do read;

}
}

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
137

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 139—C++: Randomizing flow object attributes

15.4.3 Randomization of resource objects

When an action is randomized, its resource-claim fields (of resource type declared with lock / share
modifiers, see 13.1) are assigned a reference to a resource object of the respective type. On entry to any of
the action’s exec blocks (except pre_solve, see 20.7) or its activity clause, values for all random attribute
fields accessible through its resource fields are resolved. The same resource object may be referenced by any
number of actions, given that no two concurrent actions lock it (see 13.2). Value selection for random
attribute fields of a resource object satisfy constraints coming from all actions to which it was assigned,
either in lock or share mode.

Consider the model in Example 140 and Example 141. Assume a scenario is generated starting from action
test. In this scenario, three actions are scheduled to execute in parallel: a1, a2, and a3. Action a3 of
type do_something_else shall be exclusively assigned one of the two instances of resource type
rsrc_obj, since do_something_else claims it in lock mode. Therefore, the other two actions, of
type do_something, necessarily share the other instance. When selecting the value of attribute kind for
that instance, the PSS processing tool needs to consider the following constraints.

— kind is an enumeration whose domain has the values A, B, C, and D.
— kind is not A, due to a constraint in do_something.

class top : public component { ...
 class mem_obj : public buffer { ...
 rand_attr<int> dat {"dat"};
 constraint c { dat%2 == 0 // dat must be even };
 };
...

 class write1 : public action { ...
 output<mem_obj> out_obj {"out_obj"};
 constraint c {in (out_obj->dat, range(1,5)}
 };
 type_decl<write1> write1_decl;

 class write2 : public action { ...
 output<mem_obj> out_obj {"out_obj"};
 constraint c {in (out_obj->dat, range(6,10)}
 };
 type_decl<write2> write2_decl;

 class read : public action { ...
 input<mem_obj> in_obj {"in_obj"};
 constraint c {in (out_obj->dat, range(8,12)}
 };
 type_decl<read> read_decl;

 class test : public action { ...
 activity _activity {
 action_handle<write1>(),
 action_handle<read>()
 };
 };
 type_decl<test> test_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
138

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
— a1.my_rsrc_inst is referencing the same rsrc_obj instance as a2.my_rsrc_inst, as
there would be a resource conflict otherwise between one of these actions and a3.

— kind is not B, due to an in-line constraint on a1.
— kind is not C, due to an in-line constraint on a2.

D is the only legal value for a1.my_rsrc_inst.kind and a2.my_rsrc_inst.kind.

Example 140—DSL: Randomizing resource object attributes

component top {
enum rsrc_kind_e {A, B, C, D};

resource rsrc_obj {
rand rsrc_kind_e kind;

}

pool[2] rsrc_obj rsrc_pool;
bind rsrc_pool *;

action do_something {
share rsrc_obj my_rsrc_inst;
constraint my_rsrc_inst.kind != A;

}

action do_something_else {
lock rsrc_obj my_rsrc_inst;

}

action test {

activity {
parallel {

do do_something with { my_rsrc_inst.kind != B; };
 do do_something with { my_rsrc_inst.kind != C; };
 do do_something_else;

}
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
139

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 141—C++: Randomizing resource object attributes

15.4.4 Randomization of component assignment

When an action is randomized, its association with a component instance is determined. The built-in
attribute comp is assigned a reference to the selected component instance. The assignment needs to satisfy
constraints where comp attributes occur (see 9.6). Furthermore, the assignment of an action’s comp
attribute corresponds to the pools in which its inputs, outputs, and resources reside. If action a is assigned
resource instance r, r is taken out the pool bound to a’s resource reference field in the context of the
component instance assigned to a. If action a outputs a flow object which action b inputs, both output and
input reference fields shall be bound to the same pool under a’s component and b’s component respectively.
See Clause 14 for more on pool binding.

15.4.5 Random value selection order

A PSS processing tool conceptually assigns values to sub-action fields of the action in the order they are
encountered in the activity. On entry into an activity, the value of plain-data fields qualified with action
and rand sub-fields of action-type fields are considered to be undefined.

class top : public component { ...
 PSS_ENUM(rsrc_kind_e, A, B, C, D);
 ...
 class rsrc_obj : public resource { ...
 rand_attr<rsrc_kind_e> kind {"kind"};
 };
 ...
 pool<rsrc_obj> rsrc_pool {"rsrc_pool", 2};
 bind b1 {rsrc_pool};

 class do_something : public action { ...
 share<rsrc_obj> my_rsrc_inst {"my_rsrc_inst"};
 constraint c { my_rsrc_inst->kind != rsrc_kind_e::A };
 };
 type_decl<do_something> do_something_decl;

 class do_something_else : public action { ...
 lock<rsrc_obj> my_rsrc_inst {"my_rsrc_inst"};
 };
 type_decl<do_something_else> do_something_else_decl;

 class test : public action { ...
 action_handle<do_something> a1{"a1"}, a2{"a2"};
 action_handle<do_something_else> a3{"a3"};

 activity act {
 parallel {
 a1.with (a1->my_rsrc_inst->kind != rsrc_kind_e::B),
 a2.with (a2->my_rsrc_inst->kind != rsrc_kind_e::C),
 a3
 }
 };
 };
 type_decl<test> test_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
140

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 142 and Example 143 show a simple activity with three action-type fields (a, b, c). A PSS
processing tool might assign a.val=2, b.val=4, and c.val=7 on a given execution.

Example 142—DSL: Activity with random fields

Example 143—C++: Activity with random fields

15.4.6 Evaluation of expressions with action-handles

Upon entry to an activity, all action-handles (fields of action type) are considered uninitialized.
Additionally, action-handles previously traversed in an activity are reset to their uninitialized state upon
entry to an activity block in which they are traversed again (an action-handle may be traversed only once in
any given activity scope and its nested scopes (see 11.3)). This applies equally to traversals of an action
handle in a loop and to multiple occurrences of the same action-handle in different activity blocks.

action A {
 rand bit[3:0] val;
}

action my_action {
 A a, b, c;

 constraint abc_c {
 a.val < b.val;
 b.val < c.val;
 }
 activity {
 a;
 b;
 c;
 }
}

class A : public action { ...
 rand_attr<bit> val {"val", width(3,0)};
};
...

class my_action : public action { ...
 action_handle<A> a {"a"}, b {"b"}, c {"c"};

 constraint abc_c { "abc_c",
 a->val < b->val,
 b->val < c->val
 };
 activity act {
 a,
 b,
 c
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
141

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The value of all attributes reachable through uninitialized action handles, including direct attributes of the
sub-actions and attributes of objects referenced by them, are unresolved. Only when all action-handles in an
expression are initialized, and all accessed attributes assume definite value, can the expression be evaluated.

Constraints accessing attributes through action-handles are never violated. However, they are considered
vacuously satisfied so long as these action-handles are uninitialized. The Boolean expressions only need to
evaluate to true at the point(s) in an activity when all action-handles used in a constraint have been
traversed.

Expressions in activity statements accessing attributes through action-handles shall be illegal if they are
evaluated at a point in which any of the action-handles are uninitialized. Similarly, expressions in solve-exec
statements of compound action accessing attributes of sub-actions shall be illegal, since these are evaluated
prior to the activity (see 15.4.10), and all action-handles are uninitialized at that point. This applies equally
to right-value and left-value expressions.

Example 144 shows a root action (my_action) with sub-action fields and an activity containing a
loop. A value for a.x is selected, then two sets of values for b.x, and c.x are selected.

Example 144—DSL: Value selection of multiple traversals

The following breakout shows valid values that could be selected here.

Note that a.x of the second iteration does not have to be less than b.x of the first iteration since action-
handle b is uninitialized on entry to the second iteration. Note also that similar behavior would be observed
if the repeat would be unrolled, i.e., if the activity contained instead two blocks of b, c in sequence.

Example 145 demonstrates two cases of illegal access of action-handle attributes. In these cases, accessing
sub-action attributes through uninitialized action-handles shall be flagged as errors.

Repetition a.x b.x c.x
1 3 5 6
2 3 9 13

action A {
 rand bit[3:0] x;
}

action my_action {
 A a, b, c;
 constraint abc_c {
 a.x < b.x;
 b.x < c.x;
 }
 activity {
 a;
 repeat (2) {
 b;
 c; // at this point constraint 'abc_c' must hold non-vacuously
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
142

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 145—DSL: Illegal accesses to sub-action attributes

15.4.7 Relationship lookahead

Values for random fields in an activity are selected and assigned as the fields are traversed. When selecting
a value for a random field, a PSS processing tool shall take into account both the explicit constraints on the
field and the implied constraints introduced by constraints on those fields traversed during the remainder of
the activity traversal (including those introduced by inferred actions, binding, and scheduling). This rule is
illustrated by Example 146 and Example 147.

15.4.7.1 Example 1

Example 146 and Example 147 show a simple struct with three random attribute fields and constraints
between the fields. When an instance of this struct is randomized, values for all the random attribute fields
are selected at the same time.

Example 146—DSL: Struct with random fields

action A {
 rand bit[3:0] x;
 int y;
}

action my_action {
 A a, b, c;

 exec post_solve {
 a.y = b.x; // ERROR – cannot access uninitialized action-handle

attributes
 }

 activity {
 a;
 if (a.x > 0) { // OK – 'a' is resolved
 b;
 c;
 }
 {
 if (c.y == a.x) { // ERROR – cannot access attributes of
 // uninitialized action-handle 'c.y'
 b;
 }
 c;
 }
 }
}

struct abc_s {
rand bit[4] in [0..15] a_val, b_val, c_val;

constraint {
a_val < b_val;
b_val < c_val;

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
143

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 147—C++: Struct with random fields

15.4.7.2 Example 2

Example 148 and Example 149 show a root action (my_action) with three sub-action fields and an
activity that traverses these sub-action fields. It is important that the random-value selection behavior of this
activity and the struct shown in Example 146 and Example 147 are the same. If a value for a.val is
selected without knowing the relationship between a.val and b.val, the tool could select a.val=15.
When a.val=15, there is no legal value for b.val, since b.val needs to be greater than a.val.

a) When selecting a value for a.val, a PSS processing tool needs to consider the following.

1) a.val is in the range 0 to 15, due to its domain.
2) b.val is in the range 0 to 15, due to its domain.
3) c.val is in the range 0 to 15, due to its domain.
4) a.val < b.val.
5) b.val < c.val.
This restricts the legal values of a.val to 0 to 13.

b) When selecting a value for b.val, a PSS processing tool needs to consider the following:
1) The value selected for a.val.
2) b.val is in the range 0 to 15, due to its domain.
3) c.val is in the range 0 to 15 due to its domain.
4) a.val < b.val.
5) b.val < c.val.

class abc_s : public structure { ...
 rand_attr<bit> a_val{"a_val", range(0,15)},
 b_val{"b_val", range(0,15)},
 c_val{"c_val", range(0,15)};

 constraint c {
 a_val < b_val,
 b_val < c_val
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
144

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 148—DSL: Activity with random fields

Example 149—C++: Activity with random fields

15.4.8 Lookahead and sub-actions

Lookahead shall be performed across traversal of sub-action fields and needs to comprehend the
relationships between action attribute fields.

Example 150 and Example 151 show an action named sub that has three sub-action fields of type A, with
constraint relationships between those field values. A top-level action has a sub-action field of type A and
type sub, with a constraint between these two action-type fields. When selecting a value for the
top_action.v.val random attribute field, a PSS processing tool needs to consider the following:
— top_action.s1.a.val == top_action.v.val

— top_action.s1.a.val < top_action.s1.b.val

action A {
 rand bit[3:0] val;
}

action my_action {
 A a, b, c;

 constraint abc_c {
 a.val < b.val;
 b.val < c.val;
 }
 activity {
 a;
 b;
 c;
 }
}

class A : public action { ...
 rand_attr<bit> val {"val", width(3,0)};
};
...

class my_action : public action { ...
 action_handle<A> a {"a"}, b {"b"}, c {"c"};

 constraint abc_c { "abc_c",
 a->val < b->val,
 b->val < c->val
 };

 activity act {
 a,
 b,
 c
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
145

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
This implies top.v.val needs to be less than 14 to satisfy the top_action.s1.a.val <
top_action.s1.b.val constraint.

Example 150—DSL: Sub-activity traversal

component top {
action A {

rand bit[3:0] val;
}

action sub {
A a, b, c;

constraint abc_c {
a.val < b.val;
b.val < c.val;

}

activity {
a;
b;
c;

}
}

action top_action {
A v;
sub s1;

constraint c {
s1.a.val == v.val;

}

activity {
v;
s1;

}
}

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
146

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 151—C++: Sub-activity traversal

15.4.9 Lookahead and dynamic constraints

Dynamic constraints introduce traversal-dependent constraints. A PSS processing tool needs to account for
these additional constraints when making random attribute field value selections. A dynamic constraint shall
hold for the entire activity branch on which it is referenced, as well to the remainder of the activity.

Example 152 and Example 153 show an activity with two dynamic constraints which are mutually
exclusive. If the first branch is selected, b.val <= 5 and b.val < a.val. If the second branch is
selected, b.val <= 7and b.val > a.val. A PSS processing tool needs to select a value for a.val
such that a legal value for b.val also exists (presuming this is possible).

Given the dynamic constraints, legal value ranges for a.val are 1 to 15 for the first branch and 0 to 6 for
the second branch.

class top : public component { ...
 class A : public action { ...
 rand_attr<bit> val {"val", width(3,0)};
 };
 type_decl<A> A_decl;

 class sub : public action { ...
 action_handle<A> a {"a"}, b {"b"}, c {"c"};

 constraint abc_c { "abc_c",
 a->val < b->val,
 b->val < c->val
 };

 activity act {
 a,
 b,
 c
 };
 };
 type_decl<sub> sub_decl;

 class top_action : public action { ...
 action_handle<A> v;
 action_handle<sub> s1;

 constraint c { "c", s1->a->val == v->val };
 activity act {
 v,
 s1
 };
 };
 type_decl<top_action> top_action_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
147

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 152—DSL: Activity with dynamic constraints

action A {
 rand bit[3:0] val;
}

action dyn {
 A a, b;

 dynamic constraint d1 {
 b.val < a.val;
 b.val <= 5;
 }

 dynamic constraint d2 {
 b.val > a.val;
 b.val <= 7;
 }

 activity {
 a;
 select {
 d1;
 d2;
 }
 b;
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
148

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 153—C++: Activity with dynamic constraints

15.4.10 pre_solve and post_solve exec blocks

The pre_solve and post_solve exec blocks enable external code to participate in the solve process.
pre_solve and post_solve exec blocks may appear in struct and action type declarations. Statements
in pre_solve blocks are used to set non-random attribute fields that are subsequently read by the solver
during the solve process. Statements in pre_solve blocks can read the values of non-random attribute
fields and their non-random children. Statements in pre_solve blocks cannot read values of random
fields or their children, since their values have not yet been set. Statements in post_solve blocks are
evaluated after the solver has resolved values for random attribute fields and are used to set the values for
non-random attribute fields based on randomly-selected values.

The execution order of pre_solve and post_solve exec blocks, respectively, corresponds to the order
random attribute fields are assigned by the solver. The ordering rules are as follows.

a) Order within a compound activity is top-down—both the pre_solve and post_solve exec
blocks, respectively, of a containing action are executed before any of its sub-actions are traversed,
and, hence, before the pre_solve and post_solve, respectively, of its sub-actions.

b) Order between actions follows their relative scheduling in the scenario: if action a1 is scheduled
before a2, a1’s pre_solve and post_solve blocks, if any, are called before the corresponding
block of a2.

c) Order for flow objects (instances of struct types declared with a buffer, stream, or state mod-
ifier) follows the order of their flow in the scenario: a flow object’s pre_solve or post_solve
exec block is called after the corresponding exec block of its outputting action and before that of its
inputting action(s).

class A : public action { ...
 rand_attr<bit> val {"val", width(3,0)};
};
...

class dyn : public action { ...
 action_handle<A> a {"a"}, b {"b"};

 dynamic_constraint d1 { "d1",
 b->val < a->val,
 b->val <= 5
 };

 dynamic_constraint d2 { "d2",
 b->val > a->val,
 b->val <= 7
 };

 activity act {
 a,
 select {
 d1,
 d2
 },
 b
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
149

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
d) A resource object’s pre_solve or post_solve exec block is called before the corresponding
exec block of all actions referencing it, regardless of their use mode (lock or shared).

e) Order within a compound data type (nested struct and array fields) is top-down —the exec block of
the containing instance is executed before that of the contained.

PSS does not specify the execution order in other cases. In particular, any relative order of execution for
sibling random struct attributes is legitimate and so is any order for actions scheduled in parallel where
no flow-objects are exchanged between them.

See 20.1 for more information on the exec block construct.

15.4.10.1 Example 1

Example 154 and Example 155 show a top-level struct S2 that has rand and non-rand scalar fields, as well
as two fields of struct type S1. When an instance of S2 is randomized, the exec block of S2 is evaluated
first, but the execution for the two S1 instances can be in any order. The following is one such possible
order.
a) S2.pre_solve

b) S2.s1_2.pre_solve

c) S2.s1_1.pre_solve

d) assignment of attribute values
e) S2.post_solve

f) S2.s1_1.post_solve

g) S2.s1_2.post_solve
Copyright © 2017 - 2018 Accellera. All rights reserved.
150

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 154—DSL: pre_solve/post_solve

function bit[5:0] get_init_val();
function bit[5:0] get_exp_val(bit[5:0] stim_val);

struct S1 {
bit[5:0] init_val;
rand bit[5:0] rand_val;
bit[5:0] exp_val;

exec pre_solve {
init_val = get_init_val();

}

constraint rand_val_c {
rand_val <= init_val+10;

}

exec post_solve {
exp_val = get_exp_val(rand_val);

}
}

struct S2 {
bit[5:0] init_val;
rand bit[5:0] rand_val;
bit[5:0] exp_val;

rand S1 s1_1, s1_2;

exec pre_solve {
init_val = get_init_val();

}

constraint rand_val_c {
rand_val > init_val;

}

exec post_solve {
exp_val = get_exp_val(rand_val);

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
151

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 155—C++: pre_solve/post_solve

15.4.10.2 Example 2

Example 156 and Example 157 illustrate the relative order of execution for post_solve exec blocks of a
containing action test, two sub-actions: read and write, and a buffer object exchanged between them.

function<result<bit> () > get_init_val {
"get_init_val",
 result<bit>(width(5,0))
}

function<result<bit> (in_arg<bit>) > get_exp_val {
"get_exp_val",
 result<bit>(width(5,0)),
 in_arg<bit>("stim_val", width(5,0))
};

class S1 : public structure { ...
 attr<bit> init_val {"init_val", width(5,0)};
 rand_attr<bit> rand_val {"rand_val", width(5,0)};
 attr<bit> exp_val {"exp_val", width(5,0)};

 exec pre_solve {
 exec::pre_solve,
 init_val = get_init_val()
 };

 constraint rand_val_c { rand_val <= init_val+10 };

 exec post_solve {
 exec::post_solve,
 exp_val = get_exp_val(rand_val)
 };
};
...

class S2 : public structure { ...
 attr<bit> init_val {"init_val", width(5,0)};
 rand_attr<bit> rand_val {"rand_val", width(5,0)};
 attr<bit> exp_val {"exp_val", width(5,0)};
 rand_attr<S1> s1_1 {"s1_1"}, s1_2 {"s1_2"};

 exec pre_solve {
 exec::pre_solve,
 init_val = get_init_val()
 };

 constraint rand_val_c { rand_val > init_val };

 exec post_solve {
 exec::post_solve,
 exp_val = get_exp_val(rand_val)
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
152

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The calls therein are executed as follows.
a) test.post_solve

b) write.post_solve

c) mem_obj.post_solve

d) read.post_solve

Example 156—DSL: post_solve ordering between action and flow-objects

buffer mem_obj {
 exec post_solve { ... }
};

action write {
 output mem_obj out_obj;
 exec post_solve { ... }
};

action read {
 input mem_obj in_obj;
 exec post_solve { ... }
};

action test {
 write wr;
 read rd;

 activity {
 wr;
 rd;
 bind wr.out_obj rd.in_obj;
 }
 exec post_solve { ... }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
153

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 157—C++: post_solve ordering between action and flow-objects

15.4.11 Body blocks and sampling external data

exec body blocks can assign values to non-rand attribute fields. exec body blocks are executed at the end of
a leaf action execution. The impact of any field values modified by an exec body blocks is evaluated after
the entire exec body block has completed.

Example 158 and Example 159 show an exec body block that assigns two non-rand attribute fields. The
impact of the new values applied to y1 and y2 are evaluated against the constraint system after the exec
body block completes execution. It shall be illegal if the new values of y1 and y2 conflict with other
attribute field values and constraints. Backtracking is not performed.

class mem_obj : public buffer { ...
 exec post_solve { ... };
};

class write : public action { ...
 output<mem_obj> out_obj {"out_obj"};
 exec post_solve { ... };
};
...
class read : public action { ...
 input<mem_obj> in_obj {"in_obj"};
 exec post_solve { ... };
};
...
class test : public action { ...
 action_handle<write> wr{"wr"};
 action_handle<read> rd {"rd"};

 activity act {
 wr,
 rd
 bind b1 { wr->out_obj, rd->in_obj};
 };
 exec post_solve { ... };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
154

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 158—DSL: exec body block sampling external data

function bit[3:0] compute_val1(bit[3:0] v);
function bit[3:0] compute_val2(bit[3:0] v);
component pss_top {

 action A {
 rand bit[3:0] x;
 bit[3:0] y1, y2;

 constraint assume_y_c {
 y1 >= x && y1 <= x+2;
 y2 >= x && y2 <= x+3;

 y1 <= y2;
 }

 exec body {
 y1 = compute_val1(x);
 y2 = compute_val2(x);
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
155

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 159—C++: exec body block sampling external data

function<result<bit> (in_arg<bit>)> compute_val1 {
"compute_val1",
 result<bit>(width(3,0)),
 in_arg<bit>("v", width(3,0))
};

function<result<bit> (in_arg<bit>)> compute_val2 {
"compute_val2",
 result<bit>(width(3,0)),
 in_arg<bit>("v", width(3,0))
};

class pss_top : public component { ...
 class A : public action { ...
 rand_attr<bit> x {"x", width(3,0)};
 attr<bit> y1{"y1", width(3,0)}, y2{"y2", width(3,0)};

 constraint assume_y_c {
 y1 >= x && y1 <= x+2,
 y2 >= x && y2 <= x+3,
 y1 <= y2
 };

 exec body {
 exec::body,
 y1 = compute_val1(x),
 y2 = compute_val2(x)
 };
 };
 type_decl<A> A_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
156

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
16. Action inferencing

Perhaps the most powerful feature of PSS is the ability to focus purely on the user’s verification intent, while
delegating the means to achieve that intent. Previous clauses have introduced the semantic concepts to
define such abstract specifications of intent. The modeling constructs and semantic rules thus defined for a
portable stimulus model allow a tool to generate a number of scenarios from a single (partial) specification
to implement the desired intent.

Beginning with a root action, which may contain an activity, a number of actions and their relative
scheduling constraints is used to specify the verification intent for a given model. The other elements of the
model, including flow objects, resources and their binding, as well as algebraic constraints throughout,
define a set of rules that need to be followed to generate a valid scenario matching the specified intent. It is
possible to fully specify a verification intent model, in which only a single valid scenario of actions may be
generated. The randomization of data fields in the actions and their respective flow and resource objects
would render this scenario as what is generally referred to as a "directed random" test, in which the actions
are fully defined, but the data applied through the actions is randomized. The data values themselves may
also be constrained so that there is only one scenario that may be generated, including fully-specified values
for all data fields, in which case the scenario would be a "directed" test.

There are a number of ways to specify the scheduling relationship between actions in a portable stimulus
model. The first, which allows explicit specification of verification intent, is via an activity. As discussed in
Clause 11, an activity may define explicit scheduling dependencies between actions, which may include
statements, such as schedule, select, if-else and others, to allow multiple scenarios to be generated even for
a fully-specified intent model. Consider Example 160 and Example 161.

Example 160—DSL: Generating multiple scenarios

component pss_top {
 buffer data_buff_s {
 rand int val;};
 pool data_buff_s data_mem;
 bind data_mem *;

 action A_a {output data_buff_s dout;};
 action B_a {output data_buff_s dout;};
 action C_a {input data_buff_s din;};
 action D_a {input data_buff_s din;};

 action root_a {
 A_a a;
 B_a b;
 C_a c;
 D_a d;
 activity {
 select {a; b;}
 select {c; d;}
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
157

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 161—C++: Generating multiple scenarios

While an activity may be used to fully express the intent of a given model, it is more often used to define the
critical actions that need to occur to meet the verification intent while leaving the details of how the actions
may interact unspecified. In this case, the rules defined by the rest of the model, including flow object
requirements, resource limitations and algebraic constraints, permit a tool to infer the instantiation of
additional actions as defined by the model to ensure the generation of a valid scenario that meets the critical
intent as defined by the activity.

The evaluation ordering rules for pre_solve and post_solve exec blocks of actions, objects, and structs, as
specified in section 15.4.10, apply regardless of whether the actions are explicitly traversed or inferred, and
whether objects are explicitly or implicitly bound. In particular, the order conforms to the scheduling
relations between actions, such that if an action is scheduled before another, its solve execs are evaluated
before the other’s. Backtracking is not performed across exec blocks. Assignments in exec blocks to
attributes that figure in constraints may therefore lead to unsatisfied constraint errors. This applies to
inferred parts of the scenarios in the same way as to parts that are explicitly specified in activities.

class pss_top : public component { ...
 struct data_buff_s : public buffer { ...
 rand_addr<int> val{"val"};
 };

 pool <data__buff_s> data_mem{"data_mem"};
 bind b1 {data_mem};

 class A_a : public action {...
 output <data_buff_s> dout{"dout"};
 }; type_decl<A_a> A_a_decl;

 class B_a : public action {...
 output <data_buff_s> dout{"dout"};
 }; type_decl<B_a> B_a_decl;

 class C_a : public action {...
 input <data_buff_s> din{"din"};
 }; type_decl<C_a> C_a_decl;

 class D_a : public action {...
 input <data_buff_s> din{"din"};
 }; type_decl<D_a> D_a_decl;

 class root_a : public action { ...
 action_handle<A_a> a{"a"};
 action_handle<B_a> b{"b"};
 action_handle<C_a> c{"c"};
 action_handle<D_a> d{"d"};
 activity act {
 select {a, b},
 select {c, d}
 };
 };
 type_decl<root_a> root_a_decl;
...
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
158

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
16.1 Implicit binding and action inferences

In a scenario description, the explicit binding of outputs to inputs may be left unspecified. In these cases, an
implementation shall execute a scenario that reflects a valid completion of the given partial specification in a
way that conforms to pool binding rules. If no valid scenario exists, the tool shall report an error.
Completing a partial specification may involve decisions on output-to-input binding of flow objects in
actions that are explicitly traversed. It may also involve introducing the traversal of additional actions,
beyond those explicitly traversed, to serve as the counterpart of a flow object exchange. The introduction of
an action in the execution of a scenario to complete a partially specified flow is called action inferencing.

Action inferences are necessary to make a scenario execution legal if the following conditions hold.

a) An input of any kind is not explicitly bound to an output or an output of stream kind is not explicitly
bound to an input.

b) There is no explicitly traversed action available to legally bind its output/input to the unbound input/
output, i.e.,

1) There is no action that is or may be scheduled before the inputting action in the case of buffer
or state objects.

2) There is no action that is or may be scheduled in parallel to the inputting/outputting action in
the case of stream objects.

The inferencing of actions may be based on random or policy-driven (which may include specified coverage
goals) decisions of a processing tool. Actions may only be inferred so as to complete a partially-specified
flow. If all required input-to-output bindings are specified by explicit bindings to the traversed actions in the
activity, an implementation may not introduce additional actions in the execution. See Annex E for more
details on inference rules.

Consider the model in Example 162 and Example 163.

If action send_data is designated as the root action, this is clearly a case of partial scenario description,
since action send_data has an input and an output, each of which is not explicitly bound. The buffer input
src_data is bound to the data_mem object pool, so there needs to be a corresponding output object also
bound to the same pool to provide the buffer object. The only action type outputting an object of the required
type that is bound to the same object pool is load_data. Thus, an implementation shall infer the prior
execution of load_data before executing send_data.

Similarly, load_data has a state input that is bound to the config_var pool. Since the output objects
of action types setup_A and setup_B are also bound to the same pool, load_data.curr_cfg can be
bound to the output of either setup_A or setup_B, but cannot be the initial state. In the absence of other
constraints, the choice of whether to infer setup_A or setup_B may be randomized and the chosen
action traversal shall occur before the traversal of load_data.

Moreover, send_data has a stream output out_data, which shall be bound to the corresponding input
of another action that is also bound to the data_bus pool. So, an implementation shall infer the scheduling
of an action of type receive_data in parallel to send_data.
Copyright © 2017 - 2018 Accellera. All rights reserved.
159

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 162—DSL: Action inferences for partially-specified flows

component pss_top {
 state config_s {};
 pool config_s config_var;
 bind config_var *;

 buffer data_buff_s {};
 pool data_buff_s data_mem;
 bind data_mem *;

 stream data_stream_s {};
 pool data_stream_s data_bus;
 bind data_bus *;

 action setup_A {
 output config_s new_cfg;
 };

 action setup_B {
 output config_s new_cfg;
 };

 action load_data {
 input config_s curr_cfg;
 constraint !curr_cfg.initial;
 output data_buff_s out_data;
 };

 action send_data {
 input data_buff_s src_data;
 output data_stream_s out_data;
 };

 action receive_data {
 input data_stream_s in_data;
 };
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
160

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 163—C++: Action inferences for partially-specified flows

Note that action inferences may be more than one level deep. The scenario executed by an implementation
shall be a transitive closure of the specified scenario per the flow-object dependency relations. Consider
adding another action within the pss_top component in Example 162 and Example 163, e.g.,

action xfer_data {
 input data_buff_s src_data;
 output data_buff_s out_data;
 };

 class xfer_data : public action {...
 input <data_buff_s> src_data{"src_data"};
 output <data_buff_s> out_data{"out_data"};
 };

class pss_top : public component { ...
 struct config_s : public state {...};

 pool <config_s> config_var{" config_var"};
 bind b1 {config_var};

 struct data_buff_s : public buffer {...};

 pool <data__buff_s> data_mem{"data_mem"};
 bind b2 {config_var};

 struct data_stream_s : public stream {...};

 pool <data_stream_s> data_bus{"data_bus"};
 bind b3 {data_bus};

 class setup_A : public action {...
 output <config_s> new_cfg{"new_cfg");
 }; type_decl<setup_A> setup_A_decl;

 class setup_B : public action {...
 output <config_s> new_cfg{"new_cfg");
 }; type_decl<setup_B> setup_B_decl;

 class load_data : public action {...
 input <config_s> curr_cfg{"curr_cfg"};

 constraint c1 {!curr_cfg->initial};
 output <data_buff_s> out_data{"out_data"};
 }; type_decl<load_data> load_data_decl;

 class send_data : public action {...
 input <data_buff_s> src_data{"src_data"};
 output <data_stream_s> out_data{"out_data"};
 }; type_decl<send_data> send_data_decl;

 class receive_data : public action {...
 input <data_stream_s> in_data{"in_data"};
 }; type_decl<receive_data> receive_data_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
161

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
In this case, the xfer_data action could also be inferred, along with setup_A or setup_B to provide
the data_buff_s input to send_data.src_data. If xfer_data were inferred, then its src_data
input would require the additional inference of another instance of setup_A, setup_B, or xfer_data
to provide the data_buff_s. This "inference chain" would continue until either an instance of
'setup_A or setup_B is inferred, which would require no further inferencing, or the inference limit of the
tool is reached, in which case an error would be reported.

Since the type of the inferred action is randomly selected from all available compatible action types, a tool
may ensure that either setup_A or setup_B gets inferred before the inferencing limit is reached.

16.2 Object pools and action inferences

Action traversals may be inferred to support the flow object requirements of actions that are explicitly
traversed or have been previously inferred. The set of actions from which a traversal may be inferred is
determined by object pool bindings.

In Example 164 and Example 165, there are two object pools of type data_buff_s, each of which is
bound to a different set of object field references. The select statement in the activity of root_a will
randomly choose either c or d, each of which has a data_buff_s buffer input type that requires a
corresponding action be inferred to supply the buffer object. Since C_a is bound to the same pool as A_a, if
the generated scenario chooses c, then an instance of A_a shall be inferred to supply the c.din buffer
input. Similarly, if d is chosen, then an instance of B_a shall be inferred to supply the d.din buffer input.

Example 164—DSL: Object pools affect inferencing

component pss_top {
 buffer data_buff_s {...};
 pool data_buff_s data_mem1, data_mem2;
 bind data_mem1 {A_a.dout, C_a.din};
 bind data_mem2 {B_a.dout, D_a.din};

 action A_a {output data_buff_s dout;};
 action B_a {output data_buff_s dout;};
 action C_a {input data_buff_s din;};
 action D_a {input data_buff_s din;};

 action root_a {
 C_a c;
 D_a d;
 activity {
 select {c; d;}
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
162

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 165—C++: Object pools affect inferencing

16.3 Data constraints and action inferences

As mentioned in Clause 15, introducing data constraints on flow objects or other elements of the design may
affect the inferencing of actions. Consider a slightly modified version of Example 160 and Example 161, as
shown in Example 166 and Example 167.

Since the explicit traversal of c does not constrain the val field of its input, it may be bound to the output of
either explicitly traversed action a or b; thus, there are two legal scenarios to be generated with the second
select statement evaluated to traverse action c. However, since the data constraint on the traversal of
action d is incompatible with the in-line data constraints on the explicitly-traversed actions a or b, another
instance of either A_a or B_a shall be inferred whose output shall be bound to d.din. Since there is no
requirement for the buffer output of either a or b to be bound, one of these actions shall be traversed from
the first select statement, but no other action shall be inferred.

class pss_top : public component { ...
 struct data_buff_s : public buffer {... };
 pool <data__buff_s> data_mem1{"data_mem1"}, data_mem2{"data_mem2");
 bind b1 {data_mem1, A_a.dout, C_a.din};
 bind b2 {data_mem2, B_a.dout, D_a.din};

 class A_a : public action {...
 output <data_buff_s> dout{"dout");
 }; type_decl<A_a> A_a_decl;

 class B_a : public action {...
 output <data_buff_s> dout{"dout");
 }; type_decl<B_a> B_a_decl;

 class C_a : public action {...
 input <data_buff_s> din{"din");
 }; type_decl<C_a> C_a_decl;

 class D_a : public action {...
 input <data_buff_s> din{"din");
 }; type_decl<D_a> D_a_decl;

 action root_a {
 action_handle<C_a> c{"c"};
 action_handle<D_a> d{"d"};

 activity act {
 select {c, d}
 };
 };
 type_decl<root_a> root_a_decl;
 ...
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
163

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 166—DSL: In-line data constraints affect action inferencing

component pss_top {
 buffer data_buff_s {
 rand int val;};
 pool data_buff_s data_mem;
 bind data_mem *;

 action A_a {output data_buff_s dout;};
 action B_a {output data_buff_s dout;};
 action C_a {input data_buff_s din;};
 action D_a {input data_buff_s din;};

 action root_a {
 A_a a;
 B_a b;
 C_a c;
 D_a d;
 activity {
 select {a with{dout.val<5;}; b with {dout.val<5;};}
 select {c; d with {din.val>5;};}
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
164

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 167—C++: In-line data constraints affect action inferencing

Consider, instead, if the in-line data constraints were declared in the action types, as shown in Example 168
and Example 169.

In this case, there is no valid action type available to provide the d.din input that satisfies its constraint as
defined in the D_a action declaration, since the only actions that may provide the data_buff_s type,
actions A_a and B_a, have constraints that contradict the input constraint in D_a. Therefore, the only legal
action to traverse in the second select statement is c. In fact, it would be illegal to traverse action D_a under
any circumstances for this model, given the contradictory data constraints on the flow objects.

class pss_top : public component {
 struct data_buff_s : public buffer {...
 rand_attr<int> val{"val"};
 };
...

 pool <data_buff_s> data_mem{"data_mem"};
 bind b1 {data_mem};

 class A_a : public action {...
 output <data_buff_s> dout{"dout");
 }; type_decl<A_a> A_a_decl;

 class B_a : public action {...
 output <data_buff_s> dout{"dout");
 }; type_decl<B_a> B_a_decl;

 class C_a : public action {...
 input <data_buff_s> din{"din");
 }; type_decl<C_a> C_a_decl;

 class D_a : public action {...
 input <data_buff_s> din{"din");
 }; type_decl<D_a> D_a_decl;

 class root_a : public action {...
 action_handle<A_a> a{"a"};
 action_handle<B_a> b{"b"};
 action_handle<C_a> c{"c"};
 action_handle<D_a> d{"d"};

 activity act {
 select {a.with(a->dout->val()<5), b.with(b->dout->val()<5)},
 select {c, d.with(d->din->val()>5)}
 };
 }; type_decl<root_a> root_a_decl;
 ...
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
165

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 168—DSL: Data constraints affect action inferencing

component pss_top {
 buffer data_buff_s {
 rand int val;};
 pool data_buff_s data_mem;
 bind data_mem *;

 action A_a {
 output data_buff_s dout;
 constraint {dout.val<5;}
 };
 action B_a {
 output data_buff_s dout;
 constraint {dout.val<5;}
 };
 action C_a {input data_buff_s din;};
 action D_a {
 input data_buff_s din;
 constraint {din.val > 5;}
 };

 action root_a {
 A_a a;
 B_a b;
 C_a c;
 D_a d;
 activity {
 select {a; b;}
 select {c; d;}
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
166

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 169—C++: Data constraints affect action inferencing

class pss_top : public component {...
 struct data_buff_s : public buffer {...
 rand_attr<int> val{"val"};
 };
...

 pool <data_buff_s> data_mem{"data_mem"};
 bind b1 {data_mem};

 class A_a : public action {...
 output <data_buff_s> dout{"dout");
 constraint c {dout->val < 5};
 }; type_decl<A_a> A_a_decl;

 class B_a : public action {...
 output <data_buff_s> dout{"dout");
 constraint c {dout->val < 5};
 }; type_decl<B_a> B_a_decl;

 class C_a : public action {...
 input <data_buff_s> din{"din");
 }; type_decl<C_a> C_a_decl;

 class D_a : public action {...
 input <data_buff_s> din{"din");
 constraint c {din->val > 5};
 }; type_decl<D_a> D_a_decl;

 class root_a : public action {...
 action_handle<A_a> a{"a"};
 action_handle<B_a> b{"b"};
 action_handle<C_a> c{"c"};
 action_handle<D_a> d{"d"};

 activity act {
 select {a, b},
 select {c, d}
 };
 }; type_decl<root_a> root_a_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
167

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
17. Coverage specification constructs

The legal state space for all non-trivial verification problems is very large. Coverage goals identify key
value ranges and value combinations that need to occur in order to exercise key functionality. The
covergroup construct is used to specify these targets.

The coverage targets specified by the covergroup construct are more directly related to the test scenario
being created. As a consequence, in many cases the coverage targets would be considered coverage targets
on the "generation" side of stimulus. PSS also allows data to be sampled by calling external methods.
Coverage targets specified on data fields set by external methods can be related to the system state.

17.1 Defining the coverage mode: covergroup

The covergroup construct encapsulates the specification of a coverage model. Each covergroup
specification can include the following elements.

— A set of coverage points

— Cross coverage between coverage points

— Optional formal arguments

— Coverage options

The covergroup construct is a user-defined type. There are two forms of the covergroup construct. The first
form allows an explicit type definition to be written once and instantiated multiple times in different
contexts. The second form allows an in-line specification of an anonymous covergroup type and a single
instance.

a) An explicit covergroup type can be defined in a package (see Clause 17), component (see
Clause 9), action (see Clause 10), or struct (see 8.6). In order to be reusable, an explicit cover-
group type shall specify a list of formal parameters and shall not reference fields in the scope in
which it is declared. An instance of an explicit covergroup type can be created in an action or
struct. Syntax 82 and Syntax 83 define an explicit covergroup type.

b) An in-line covergroup can be defined in an action or struct scope. An in-line covergroup can refer-
ence fields in the scope in which it is defined. 17.2 contains more information on in-line covergroup.

17.1.1 DSL syntax

The syntax for covergroups is shown in Syntax 82.

Syntax 82—DSL: covergroup declaration

covergroup_declaration ::=
 covergroup covergroup_identifier (covergroup_port {, covergroup_port })
 { {covergroup_body_item} } [;]
covergroup_port ::= data_type identifier
covergroup_body_item ::=
 covergroup_option
 | covergroup_coverpoint
 | covergroup_cross
covergroup_option ::= option . identifier = constant_expression ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
168

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The following also apply.
a) The identifier associated with the covergroup declaration defines the name of the coverage model

type.
b) A covergroup can contain one or more coverage points. A coverage point can cover a variable or an

expression.
c) Each coverage point includes a set of bins associated with its sampled value. The bins can be user-

defined or automatically created by a tool. Coverage points are detailed in 17.3.
d) A covergroup can specify cross coverage between two or more coverage points or variables. Any

combination of more than two variables or previously declared coverage points is allowed. See also
Example 172 and Example 173.

e) A covergroup can also specify one or more options to control and regulate how coverage data are
structured and collected. Coverage options can be specified for the covergroup as a whole or for
specific items within the covergroup, i.e., any of its coverage points or crosses. In general, a cover-
age option specified at the covergroup level applies to all of its items unless overridden by them.
Coverage options are described in 17.6.

17.1.2 C++ syntax

The corresponding C++ syntax for Syntax 82 is shown in Syntax 83.

Syntax 83—C++: covergroup declaration

17.1.3 Examples

Example 170 and Example 171 define an in-line covergroup cs1 with a single coverage point associated
with struct field color. The value of the variable color is sampled at the default sampling point: the end
of the action’s traversal in which it is randomized. Sampling is discussed in more detail in 17.7.

Because the coverage point does not explicitly define any bins, the tool automatically creates three bins, one
for each possible value of the enumerated type. Automatic bins are described in 17.3.6.

pss:covergroup

Defined in pss/covergroup.h (see C.14).

class covergroup;

Base class for declaring a covergroup.

Member functions

covergroup (const scope & name) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
169

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 170—DSL: Single coverage point

Example 171—C++: Single coverage point

Example 172 and Example 173 creates an in-line covergroup cs2 that includes two coverage points and two
cross coverage items. Explicit coverage points labeled Offset and Hue are defined for variables
pixel_offset and pixel_hue. PSS implicitly declares coverage points for variables color and
pixel_adr to track their cross coverage. Implicitly declared coverage points are described in 17.4.

Example 172—DSL: Two coverage points and cross coverage items

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup {
c : coverpoint color;

} cs1;

}

PSS_ENUM(color_e, red, blue, green);

class s : public structure {...
rand_attr<color_e> color {"color"};

coverpoint c { "c", color };
}
};

};
...

enum color_e {red, green, blue};

struct s {
 rand color_e color;
 rand bit[3:0] pixel_adr, pixel_offset, pixel_hue;

 covergroup {
 Hue : coverpoint pixel_hue;
 Offset : coverpoint pixel_offset;
 AxC: cross color, pixel_adr;
 all : cross color, Hue, Offset;
 } cs2;
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
170

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 173—C++: Two coverage points and cross coverage items

17.2 covergroup instantiation

A covergroup type can be instantiated in struct and action contexts. If the covergroup declared formal
parameters, these shall be bound to variables visible in the instantiation context. Instance-specific coverage
options (see 17.6) may be specified as part of instantiation. In many cases, a covergroup is specific to the
containing type and will not be instantiated independently multiple times. In these cases, it is possible to
declare a covergroup instance in-line. In this case, the covergroup type is anonymous.

17.2.1 DSL syntax

Syntax 84 specifies how a covergroup is instantiated and how an in-line covergroup instance is declared.

Syntax 84—DSL: covergroup instantiation

17.2.2 C++ syntax

The corresponding C++ syntax for Syntax 84 is shown in Syntax 85 and Syntax 86.

PSS_ENUM(color_e, red, blue, green);

class s : public structure { ...

rand_attr<color_e> color {"color"};
rand_attr<bit> pixel_adr {"pixel_adr", width(4)};
rand_attr<bit> pixel_offset {"pixel_offset", width(4)};
rand_attr<bit> pixel_hue {"pixel_hue", width(4)};

covergroup_inst<> cs2 { "cs2", [&]() {
coverpoint Hue {"Hue", pixel_hue};
coverpoint Offset {"Hue", pixel_offset};
cross AxC {"AxC", color, pixel_adr};
cross all {"all", color, Hue, Offset};

}
};

};
...

inline_covergroup ::= covergroup { {covergroup_body_item} } identifier ;
data_declaration ::= data_type data_instantiation {, data_instantiation} ;
data_instantiation ::=
 covergroup_instantiation
 | plain_data_instantiation
covergroup_instantiation ::=
covergroup_identifier [(covergroup_portmap_list)] [with { {covergroup_option} }]
plain_data_instantiation ::= identifier [array_dim] [= constant_expression]
Copyright © 2017 - 2018 Accellera. All rights reserved.
171

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 85—C++: User-defined covergroup instantiation

Syntax 86—C++: In-line covergroup instantiation

17.2.3 Examples

Example 174 and Example 175 create a covergroup instance with a formal parameter list.

pss:covergroup_inst

Defined in pss/covergroup_inst.h (see C.19).

template <class T> class covergroup_inst;

Class for instantiating a user-defined covergroup type.

Member functions

covergroup (const std::string &name, const options &opts)
: constructor
template <class... R> covergroup (

 const std::string &name,

 const options &opts,

 const R&... ports) : constructor
template <class... R> covergroup (

 const std::string &name,

 const R&... ports) : constructor

pss:covergroup_inst<covergroup>

Defined in pss/covergroup_inst.h (see C.19).

template <> class covergroup_inst<covergroup>;

Class for instantiating an in-line covergroup instance.

Member functions

covergroup (const std::string &name, const options &opts)
: constructor
template <class... R> covergroup (

 const std::string &name,

 std::function<void(void)> body) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
172

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 174—DSL: Creating a covergroup instance with a formal parameter list

Example 175—C++: Creating a covergroup instance with a formal parameter list

Example 176 and Example 177 create a covergroup instance and specifying instance options.

Example 176—DSL: Creating a covergroup instance with instance options

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup cs1(color_e c) {
c : coverpoint c;

}

cs1 cs1_inst(color);
}

PSS_ENUM(color_e, red, blue, green);

class s : public structure { ...
rand_attr<color_e> color {"color"};

class cs1 : public covergroup {...
attr<color_e> c {"c"};

coverpoint cp_c { "c", c};
};
type_decl<cs1> _cs1_t;

covergroup_inst<cs1> cs1_inst {"cs1_inst", color};

};
...

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup cs1 {
c : coverpoint color;

}

cs1 cs1_inst with {
option.at_least = 2;

};
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
173

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 177—C++: Creating a covergroup instance with instance options

Example 178 and Example 179 create an in-line covergroup instance.

Example 178—DSL: Creating an in-line covergroup instance

Example 179—C++: Creating an in-line covergroup instance

17.3 Defining coverage points

A covergroup can contain one or more coverage points. A coverage point specifies an integral expression
that is to be covered. Each coverage point includes a set of bins associated with the sampled values of the
covered expression. The bins can be explicitly defined by the user or automatically created by the PSS

PSS_ENUM(color_e, red, blue, green);

class s : public structure { ...
rand_attr<color_e> color {"color"};

class cs1 : public covergroup { ...
coverpoint c { "c", color };

};
type_decl<cs1> _cs1_t;

covergroup_inst<cs1> cs1_inst {"cs1_inst",
options {

at_least(2)
}

};
};
...

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup {
option.at_least = 2;
c : coverpoint color;

} cs1_inst;
}

class s : public structure { ...
rand_attr<color_e> color {"color"};

covergroup_inst<> cs_inst { "cs_inst",
options {

at_least(2)
},
coverpoint{ "c", color }

};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
174

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
processing tool. The syntax for specifying coverage points is given in Syntax 87 and Syntax 88, Syntax 89,
and Syntax 90.

Evaluation of the coverage point expression (and of its enabling iff condition, if any) takes place when the
covergroup is sampled (see 17.1.1).

17.3.1 DSL syntax

The syntax for coverpoints is shown in Syntax 87.

Syntax 87—DSL: coverpoint declaration

The following also apply.

a) A coverpoint coverage point creates a hierarchical scope and can be optionally labeled. If the label
is specified, it designates the name of the coverage point. This name can be used to add this cover-
age point to a cross coverage specification. If the label is omitted and the coverage point is associ-
ated with a single variable, the variable name becomes the name of the coverage point. A coverage
point on an expression is required to specify a label.

b) A data type for the coverpoint may be specified explicitly or implicitly by specifying or omitting
data_type. In both cases, a data type needs to be specified for the coverpoint. The data type shall be
an integral type. If a data type is specified, then a coverpoint_identifier shall also be specified.

c) If a data type is specified, the coverpoint expression shall be assignment compatible with the data
type. Values for the coverpoint shall be of the specified data type and shall be determined as though
the coverpoint expression were assigned to a variable of the specified type.

d) If no data type is specified, the inferred type for the coverpoint shall be the self-determined type of
the coverpoint expression.

e) The expression within the iff construct specifies an optional condition that disables coverage sam-
pling for that coverpoint. If the iff expression evaluates to false at a sampling point, the coverage
point is not sampled.

f) A coverage point bin associates a name and a count with a set of values. The count is incremented
every time the coverage point matches one of the values in the set. The bins for a coverage point can
automatically be created by the PSS processing tool or explicitly defined using the bins construct to
name each bin. If the bins are not explicitly defined, they are automatically created by the PSS pro-
cessing tool. The number of automatically created bins can be controlled using the auto_bin_max.
coverage option. Coverage options are described in Table 4.

g) The default specification defines a bin that is associated with none of the defined value bins. The
default bin catches the values of the coverage point that do not lie within any of the defined bins.
However, the coverage calculation for a coverage point shall not take into account the coverage cap-
tured by the default bin. The default bin is also excluded from cross coverage. The default is useful

covergroup_coverpoint ::= [[data_type] coverpoint_identifier :] coverpoint
 expression [iff (expression)] bins_or_empty
bins_or_empty ::=
 { { covergroup_coverpoint_body_item } }[;]
 | ;
covergroup_coverpoint_body_item ::=
 covergroup_option
 | covergroup_coverpoint_binspec
Copyright © 2017 - 2018 Accellera. All rights reserved.
175

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
for catching unplanned or invalid values. A default bin specification cannot be explicitly ignored. It
shall be an error for bins designated as ignore_bins to also specify default.

17.3.2 C++ syntax

The corresponding C++ syntax for Syntax 87 is shown in Syntax 88, Syntax 89, and Syntax 90.

Syntax 88—C++: coverpoint declaration

pss:coverpoint

Defined in pss/covergroup_coverpoint.h (see C.16).

class coverpoint;

Class for declaring a coverpoint.

Member functions

template <class... T> coverpoint(

 const std::string &name,

 const detail::AlgebExpr &target,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
template <class... T> coverpoint(

 const std::string &name,

 const detail::AlgebExpr &target,

 const iff &cp_iff,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
template <class... T> coverpoint(

 const std::string &name,

 const detail::AlgebExpr &target,

 const options &cp_options,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
template <class... T> coverpoint(

 const std::string &name,

 const detail::AlgebExpr &target,

 const iff &cp_iff,

 const options &cp_options,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
176

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 89—C++: constructors for unnamed coverpoints declaration

Syntax 90—C++: Specifying an iff condition on a coverpoint

pss:coverpoint

Defined in pss/covergroup_coverpoint.h (see C.16).

class coverpoint;

Class for declaring a coverpoint.

Constructors for unnamed coverpoints.

Member functions

template <class... T> coverpoint(

 const detail::AlgebExpr &target,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
template <class... T> coverpoint(

 const detail::AlgebExpr &target,

 const iff &cp_iff,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
template <class... T> coverpoint(

 const detail::AlgebExpr &target,

 const options &cp_options,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor
template <class... T> coverpoint(

 const detail::AlgebExpr &target,

 const iff &cp_iff,

 const options &cp_options,

 const T&... /* bins|ignore_bins|illegal_bins */ bin_items)
 : constructor

pss:iff

Defined in pss/covergroup_iff.h (see C.18).

class iff;

Class for specifying an iff condition on a coverpoint.

Member functions

iff(const detail::AlgebExpr &expr) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
177

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
17.3.3 Examples

In Example 180 and Example 181, coverage point s0 is covered only if is_s0_enabled is true.

Example 180—DSL: Specifying an iff condition

Example 181—C++: Specifying an iff condition

17.3.4 Specifying bins

The bins construct creates a separate bin for each value in the given range list or a single bin for the entire
range of values. The syntax for defining bins is shown in Syntax 91 and Syntax 92 and Syntax 93.

17.3.4.1 DSL syntax

The syntax for bins is shown in Syntax 91.

struct s {
rand bit[3:0] s0;
rand bit is_s0_enabled;

covergroup {
coverpoint s0 iff (is_s0_enabled);

} cs4;
}

class s : public structure {...
rand_attr<bit> s0 {"s0", width(4)};
rand_attr<bit> is_s0_enabled {"is_s0_enabled"};

covergroup_inst<> cs4 { "cs4", [&]() {
coverpoint s0 {s0, iff(is_s0_enabled)};

}
};

};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
178

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 91—C++: bins declaration

The following also apply.

a) To create a separate bin for each value (an array of bins), add square brackets ([]) after the bin
name.

1) To create a fixed number of bins for a set of values, a single positive integral expression can be
specified inside the square brackets.

2) The bin name and optional square brackets followed by a covergroup_range_list that specifies
the set of values associated with the bin.

3) It shall be legal to use the range value form expression.. and ..expression to denote
a range that extends to the upper or lower value (respectively) of the coverpoint data type.

b) If a fixed number of bins is specified and that number is smaller than the specified number of values,
the possible bin values are uniformly distributed among the specified bins.

1) The first N specified values (where N = int(number of values / number of bins)) are assigned to
the first bin, the next N specified values are assigned to the next bin, etc.

2) Duplicate values are retained; thus, the same value can be assigned to multiple bins.

3) If the number of values is not evenly divisible by the number of bins, then the last bin will
include the remaining items, e.g., for

bins fixed [4] = [1..10, 1, 4, 7];

The 13 possible value are distributed as follows: <123>, <4,5,6>, <7,8,9>,
<10,1,4,7>.

c) A covergroup_expression is an expression. In the case of a with covergroup_expression, the expres-
sion can involve constant terms and the coverpoint variable (see 17.3.5).

17.3.4.2 C++ syntax

The corresponding C++ syntax for Syntax 91 is shown in Syntax 92 and Syntax 93. Classes with the same
C++ API are also defined for illegal_bins and ignore_bins. See also C.15.

covergroup_coverpoint_binspec ::= bins_keyword identifier
 [[constant_expression]] = coverpoint_bins
coverpoint_bins ::=
 [covergroup_range_list] [with (covergroup_expression)] ;
 | coverpoint_identifier with (covergroup_expression) ;
 | default ;
covergroup_range_list ::= covergroup_value_range {, covergroup_value_range}
covergroup_value_range ::=
 expression
 | expression .. [expression]
 | [expression] .. expression
bins_keyword ::= bins | illegal_bins | ignore_bins
Copyright © 2017 - 2018 Accellera. All rights reserved.
179

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 92—C++: coverpoint bins with template parameter of bit or int

pss:bins

Defined in pss/covergroup_bins.h (see C.15).

template <class T> bins;

Class for capturing coverpoint bins with template parameter of bit or int.

Member functions

bins(const std::string &name) : constructor for default bins
bins(

 const std::string &name,

 const range<T> &ranges) : constructor for specified ranges
bins(

 const std::string &name,

 const coverpoint &cp) : constructor for coverpoint-bounded bins
 const bins<T> &with(const detail::AlgebExpr &expr)
 : apply with expression
Copyright © 2017 - 2018 Accellera. All rights reserved.
180

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 93—C++: coverpoint bins with template parameter of vec<bit> or vec<int>

17.3.4.3 Examples

In Example 182 and Example 183, the first bins construct associates bin a with the values of v_a,
between 0 and 63 and the value 65. The second bins construct creates a set of 65 bins b[127], b[128],
… b[191]. Likewise, the third bins construct creates 3 bins: c[200], c[201], and c[202]. The
fourth bins construct associates bin d with the values between 1000 and 1023 (the trailing .. represents
the maximum value of v_a). Every value that does not match bins 1, b[], c[], or d is added into its own
distinct bin.

pss:bins

Defined in pss/covergroup_bins.h (see C.15).

template <class T> bins;

Class for capturing coverpoint bins with template parameter of vec<bit> or vec<int>.

Member functions

bins(const std::string &name) : constructor for default bins
bins(

 const std::string &name,

 uint32_tsize) : constructor for specified count default bins
bins(

 const std::string &name,

 uint32_t size,

 const range<int> &ranges) : constructor for specified count bins
bins(

 const std::string &name,

 uint32_t size,

 const coverpoint &cp) : constructor for specified count on coverpoint
bins(

 const std::string &name,

 const range<int> &ranges) : constructor for unbounded count ranges
bins(

 const std::string &name,

 const coverpoint &cp) : constructor for unbounded count on coverpoint
 const bins<T> &with(const detail::AlgebExpr &expr)
 : apply with expression
Copyright © 2017 - 2018 Accellera. All rights reserved.
181

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 182—DSL: Specifying bins

Example 183—C++: Specifying bins

17.3.5 coverpoint bin with covergroup expressions

The with clause specifies only those values in the covergroup_range_list that satisfy the given expression
(i.e., for which the expression evaluates to true) are included in the bin. In the expression, the name of the
coverpoint shall be used to represent the candidate value. The candidate value is of the same type as the
coverpoint.

The name of the coverpoint itself may be used in place of the covergroup_range_list to denote all values of
the coverpoint. Only the name of the coverpoint containing the bin being defined shall be allowed.

The with clause behaves as if the expression were evaluated for every value in the covergroup_range_list at
the time the covergroup instance is created. The with covergroup_expression is applied to the set of values
in the covergroup_range_list prior to distribution of values to the bins. The result of applying a with
covergroup_expression shall preserve multiple, equivalent bin items as well as the bin order. The intent of
these rules is to allow the use of non-simulation analysis techniques to calculate the bin (e.g., formal
symbolic analysis) or for caching of previously calculated results.

Examples

struct s {
rand bit[10] v_a;

covergroup cs {
coverpoint v_a {

bins a = [0..63, 65];
bins b[] = [127..150, 148..191];
bins c[] = [200, 201, 202];
bins d = [1000..];
bins others[] = default;

}
}

}

class s : public structure { ...
rand_attr<bit> v_a {"v_a", width(10)};

covergroup_inst<> cs { "cs", [&]() {
coverpoint v_a { v_a,

bins<bit> {"a", range(0,63)(65)},
bins<vec<bit>> {"b", range(127,150)(148,191)},
bins<vec<bit>> {"c", range(127,150)(148,191)},
bins<bit> {"d", range(1000, unbounded())},
bins<vec<bit>> {"others"} // TODO: How to specify default?

};
}
};

};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
182

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Consider Example 184 and Example 185, where the bin definition selects all values from 0 to 255 that are
evenly divisible by 3.

Example 184—DSL: Select all values from 0 to 255

Example 185—C++: Select all values from 0 to 255

In Example 186 and Example 187, notice the use of coverpoint name a to denote the with
covergroup_expression will be applied to all values of the coverpoint.

Example 186—DSL: Using with in a coverpoint

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

bins mod3[] = [0..255] with (item % 3 == 0);
}

} cs;
}

class s : public structure { ...
rand_attr<bit> x {"x", width(8)};

covergroup_inst<> cs { "cs", [&]() {
coverpoint a { "a", x,

bins<vec<bit>> {"mod3", range(0,255)}.with((x % 3) == 0)
};

}
};

};
...

struct s {
rand bit[8] x;

covergroup cs {
a: coverpoint x {

bins mod3[] = a with ((a % 3) == 0);
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
183

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 187—C++: Using with in a coverpoint

17.3.6 Automatic bin creation for coverage points

If a coverage point does not define any bins, PSS automatically creates bins. This provides an easy-to-use
mechanism for binning different values of a coverage point. Users can either let the tool automatically create
bins for coverage points or explicitly define named bins for each coverage point.

When the automatic bin creation mechanism is used, PSS creates N bins to collect the sampled values of a
coverage point. The value N is determined as follows.

— For an enum coverage point, N is the cardinality of the enumeration.

— For any other numeric coverage point, N is the minimum of 2M and the value of the auto_bin_max
option (see Table 4), where M is the number of bits needed to represent the coverage point.

If the number of automatic bins is smaller than the number of possible values N < 2M), the 2M values are
uniformly distributed in the N bins. If the number of values, 2M, is not divisible by N, then the last bin will
include the additional remaining items. For example, if M is 3 and N is 3, the eight possible values are
distributed as follows: <0..1>, <2..3>, <4..7>.

PSS implementations can impose a limit on the number of automatic bins. See Table 4 for the default value
of auto_bin_max.

Each automatically created bin will have a name of the form auto[value], where value is either a
single coverage point value or the range of coverage point values included in the bin (in the form
low..high). For enumerated types, value is the name constant associated with the particular
enumerated value.

17.3.7 Excluding coverage point values

A set of values associated with a coverage point can be explicitly excluded from coverage by specifying
them as ignore_bins. See Example 188 and Example 189.

All values associated with ignored bins are excluded from coverage. Each ignored value is removed from
the set of values associated with any coverage bin. The removal of ignored values shall occur after
distribution of values to the specified bins.

Examples

class s : public structure {...
rand_attr<bit> x {"x", width(8)};

covergroup_inst<> cs { "cs", [&]() {
coverpoint a { "a", x,
 bins<vec<bit>> {"mod3", a}.with((detail::AlgebExpr(a) % 3)

== 0)
};

}
};

};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
184

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 188 and Example 189 may result in a bin that is associated with no values or sequences. Such
empty bins are excluded from coverage.

Example 188—DSL: Excluding coverage point values

Example 189—C++: Excluding coverage point values

17.3.8 Specifying illegal coverage point values

A set of values associated with a coverage point can be marked as illegal by specifying them as illegal_bins.
See Example 190 and Example 191.

All values associated with illegal bins are excluded from coverage. Each illegal value is removed from the
set of values associated with any coverage bin. The removal of illegal values shall occur after the
distribution of values to the specified bins. If an illegal value occurs, a run-time error shall be issued. Illegal
bins take precedence over any other bins, i.e., they result in a run-time error even if they are also included in
another bin.

Examples

Example 190 and Example 191 may result in a bin that is associated with no values or sequences. Such
empty bins are excluded from coverage.

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

bins mod3[] = a with (item % 3 == 0);
}

} cs;
}

class s : public structure {...
rand_attr<bit> a {"a", width(4)};

covergroup_inst<> cs23 { "cs23", [&]() {
coverpoint a_cp { a,

ignore_bins<bit> {"ignore_vals", range(7)(8)}
};

}
};

};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
185

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 190—DSL: Specifying illegal coverage point values

Example 191—C++: Specifying illegal coverage point values

17.3.9 Value resolution

A coverpoint expression, the expressions in a bins construct, and the coverpoint type, if present, are all
involved in comparison operations in order to determine into which bins a particular value falls. Let e be the
coverpoint expression and b be an expression in a bins covergroup_range_list. The following rules shall
apply when evaluating e and b.

a) If there is no coverpoint type, the effective type of e shall be self-determined. In the presence of a
coverpoint type, the effective type of e shall be the coverpoint type.

b) b shall be statically cast to the effective type of e. Enumeration values in expressions b and e shall
first be treated as being in an expression context. This implies the type of an enumeration value is
the base type of the enumeration and not the enumeration type itself. An implementation shall issue
a warning under the following conditions.
1) If the effective type of e is unsigned and b is signed with a negative value.
2) If assigning b to a variable of the effective type of e would yield a value that is not equal to b

under normal comparison rules for ==.

If a warning is issued for a bins element, the following rules shall apply.
c) If an element of a bins covergroup_range_list is a singleton value b, that element shall not appear in

the bins values.
d) If an element of a bins covergroup_range_list is a range b1 .. b2 and there exists at least one

value in the range for which a warning would not be issued, the range shall be treated as containing
the intersection of the values in the range and the values expressible by the effective type of e.

Examples

Example 192 leads to the following.

struct s {
rand bit[4] a;

covergroup {
coverpoint a {

illegal_bins illegal_vals = [7, 8];
}

} cs23;
}

class s : public structure {...
rand_attr<bit> a {"a", width(4)};

covergroup_inst<> cs23 { "cs23", [&]() {
coverpoint a_cp { a,

ignore_bins<bit> {"ignore_vals", range(7)(8)}
};

}
};

};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
186

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
— For b1, a warning is issued for the range 6..10. b1 is treated as though it had the specification {1,
2..5, 6..7}

— For b2, a warning is issued for the range 1..10 and for the values -1 and 15. b2 is treated as
though it had the specification {1..7}.

— For b3, a warning is issued for the ranges 2..5 and 6..10. b3 is treated as though it had the spec-
ification {1, 2..3}

— For b4, a warning is issued for the range 1..10 and for the value 15. b4 is treated as though it had the
specification {-1, 1..3}

Example 192—DSL: Value resolution

17.4 Defining cross coverage

A covergroup can specify cross coverage between two or more coverage points or variables. Cross
coverage is specified using the cross construct (see Syntax 94 and Syntax 95). When a variable V is part of a
cross coverage, the PSS processing tool implicitly creates a coverage point for the variable, as if it had been
created by the statement coverpoint V;. Thus, a cross involves only coverage points. Expressions
cannot be used directly in a cross; a coverage point needs to be explicitly defined first.

17.4.1 DSL syntax

Syntax 94 declares a cross.

struct s {
rand bit[3] p1;
int [3] p2;

covergroup c1 {
coverpoint p1 {

bins b1 = [1, 2..5, 6..10];
bins b2 = [-1, 1..10, 15];

}
coverpoint p2 {

bins b3 = [1, 2..5, 6..10];
bins b4 = [-1, 1..10, 15];

}
}

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
187

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 94—DSL: cross declaration

The following also apply.
a) The label is required for a cross. The expression within the optional iff provides a conditional sam-

pling guard for the cross coverage. If the condition evaluates to false at any sampling point, the cross
coverage is not sampled.

b) Cross coverage of a set of N coverage points is defined as the coverage of all combinations of all
bins associated with the N coverage points, i.e., the Cartesian product of the N sets of coverage point
bins. See also Example 193 and Example 194.

17.4.2 C++ syntax

The corresponding C++ syntax for Syntax 94 is shown in Syntax 95.

covergroup_cross ::= covercross_identifier : cross
 coverpoint_identifier { , coverpoint_identifier }
 [iff (expression)] cross_item_or_null
cross_item_or_null ::=
 { { covergroup_cross_body_item } } [;]
 | ;
covergroup_cross_body_item ::=
 covergroup_option
 | covergroup_cross_binspec
covergroup_cross_binspec ::=
 bins_keyword identifier = covercross_identifier with (covergroup_expression) ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
188

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 95—C++: cross declaration

17.4.3 Examples

The covergroup cov in Example 193 and Example 194 specifies the cross coverage of two 4-bit variables, a
and b. The PSS processing tool implicitly creates a coverage point for each variable. Each coverage point
has 16 bins, specifically auto[0]..auto[15]. The cross of a and b (labeled aXb), therefore, has 256
cross products and each cross product is a bin of aXb.

Example 193—DSL: Specifying a cross

pss:cross

Defined in pss/covergroup_cross.h (see C.17).

class cross;

Class for capturing a coverpoint cross. In all variadic-template constructors, fields of coverpoint, attr,
rand_attr, bins, ignore_bins, and illegal_bins may be specified.

Member functions

template <class... T> cross(

 const std::string &name,

 const T&... items) : constructor
template <class... T> cross(

 const std::string &name,

 const iff &cp_iff,

 const T&... items) : constructor
template <class... T> cross(

 const std::string &name,

 const options &cp_options,

 const T&... items) : constructor
template <class... T> cross(

 const std::string &name,

 const iff &cp_iff,

 const options &cp_options,

 const T&... items) : constructor

struct s {
rand bit[4] a, b;

covergroup {
aXb : cross a, b;

} cov;
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
189

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 194—C++: Specifying a cross

17.5 Defining cross bins

In addition to specifying the coverage points that are crossed, PSS allows the definition of cross coverage
bins. Cross coverage bins are specified to group together a set of cross products. A cross coverage bin
associates a name and a count with a set of cross products. The count of the bin is incremented any time any
of the cross products match; i.e.,, every coverage point in the cross matches its corresponding bin in the
cross product.

User-defined bins for cross coverage are defined using bin with expressions. The names of the coverpoints
used as elements of the cross coverage are used in the with expressions. User-defined cross bins and
automatically generated bins can coexist in the same cross. Automatically generated bins are retained for
those cross products that do not intersect cross products specified by any user-defined cross bin.

Examples

Consider Example 195 and Example 196, where two coverpoints are declared on fields a and b. A cross
coverage is specified between these to coverpoints. The small_a_b bin collects those bins where both a
and b <= 10.

Example 195—DSL: Specifying cross bins

class s : public structure {...
rand_attr<bit> a {"a", width(4)};
rand_attr<bit> b {"b", width(4)};

covergroup_inst<> cov { "cov", [&]() {
cross aXb { "aXb", a, b};

}
};

};
...

struct s {
rand bit[4] a, b;

covergroup {
coverpoint a {

bins low[] = [0..127];
bins high = [128..255];

}
coverpoint b {

bins two[] = b with (b%2 == 0);
}

X : cross a, b {
bins small_a_b = X with (a <= 10 && b<=10);

}
} cov;

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
190

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 196—C++: Specifying cross bins

17.6 Specifying coverage options

Options control the behavior of the covergroup, coverpoint, and cross elements. There are two types of
options: those that are specific to an instance of a covergroup and those that specify an option for the
covergroup type as a whole. Instance-specific options can be specified when creating an instance of a
reusable covergroup. Both type and instance-specific options can be specified when defining an in-line
covergroup instance.

Specifying a value for the same option more than once within the same covergroup definition shall be an
error. Specifying a value for the option more than once when creating a covergroup instance shall be an
error.

Table 4 lists the instance-specific covergroup options and their description. Each instance of a reusable
covergroup type can initialize an instance-specific option to a different value.

Table 4—Instance-specific covergroup options

Option name Default Description

weight=number 1 If set at the covergroup syntactic level, it specifies the
weight of this covergroup instance for computing the over-
all instance coverage. If set at the coverpoint (or cross) syn-
tactic level, it specifies the weight of a coverpoint (or cross)
for computing the instance coverage of the enclosing cover-
group. The specified weight shall be a non-negative integral
value.

goal=number 100 Specifies the target goal for a covergroup instance or for a
coverpoint or cross..

name=string unique name Specifies a name for the covergroup instance. If unspeci-
fied, a unique name for each instance is automatically gener-
ated by the tool.

class s : public structure {...
rand_attr<bit> a {"a", width(4)};
rand_attr<bit> b {"b", width(4)};

covergroup_inst<> cov { "cov", [&]() {
coverpoint cp_a { "a", a,

bins<vec<bit>> {"low", range(0,127)},
bins<bit> {"high", range(128,255)}

};
coverpoint cp_b { "b", b,

bins<vec<bit>> {"two", b}.with((b%2) == 0)
};

cross X { "X", cp_a, cp_b,
bins<bit>{"small_a_b", X}.with(a<=10 && b<=10)

};
}
};

};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
191

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Instance options can only be specified at the covergroup level. Except for the weight, goal, comment, and
per_instance options (see Table 4), all other options set at the covergroup syntactic level act as a default
value for the corresponding option of all coverpoints and crosses in the covergroup. Individual
coverpoints and crosses can overwrite these defaults. When set at the covergroup level, the weight, goal,
comment, and per_instance options do not act as default values to the lower syntactic levels.

The identifier type_option is used to specify type options when declaring a covergroup:

type_option.member_name = constant_expression ;

17.6.1 C++ syntax

Syntax 96, Syntax 97, Syntax 98, Syntax 99, Syntax 100, Syntax 101, Syntax 102, Syntax 103, and
Syntax 104 show how to define the C++ options and option values.

comment=string "" A comment that appears with the covergroup instance or
with a coverpoint or cross of a covergroup instance. The
comment is saved in the coverage database and included in
the coverage report.

at_least=number 1 Minimum number of hits for each bin. A bit with a hit count
that is less than number is not considered covered.

detect_overlap=boolean false When true, a warning is issued if there is an overlap between
the range list of two bins of a coverpoint.

auto_bin_max=number 64 Maximum number of automatically created bins when no
bins are explicitly defined for a coverpoint.

per_instance=boolean false Each instance contributes to the overall coverage informa-
tion for the covergroup type. When true, coverage informa-
tion for this covergroup instance shall be saved in the
coverage database and included in the coverage report.
When false, implementations are not required to save
instance-specific information.

Table 4—Instance-specific covergroup options (Continued)

Option name Default Description
Copyright © 2017 - 2018 Accellera. All rights reserved.
192

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 96—C++: options declaration

Syntax 97—C++: weight option

pss:options

Defined in pss/covergroup_options.h (see C.20).

class options;

Class for capturing coverpoint, cross, and covergroup options.

Member functions

template <class... O> options(

 const O&... /*

 weight

 | goal

 | name

 | comment

 | detect_overlap

 | at_least

 | auto_bin_max

 | per_instance */ options) : constructor

pss:weight

Defined in pss/covergroup_options.h (see C.20).

class weight;

Class for capturing the weight coverage option.

Member functions

weight(uint32_t w) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
193

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 98—C++: goal option

Syntax 99—C++: name option

Syntax 100—C++: comment option

pss:goal

Defined in pss/covergroup_options.h (see C.20).

class goal;

Class for capturing the goal coverage option.

Member functions

goal(uint32_t w) : constructor

pss:name

Defined in pss/covergroup_options.h (see C.20).

class name;

Class for capturing the name coverage option.

Member functions

name(const std::string &name) : constructor

pss:comment

Defined in pss/covergroup_options.h (see C.20).

class comment;

Class for capturing the comment coverage option.

Member functions

comment(const std::string &c) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
194

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 101—C++: detect_overlap option

Syntax 102—C++: at_least option

Syntax 103—C++: auto_bin_max option

pss:detect_overlap

Defined in pss/covergroup_options.h (see C.20).

class detect_overlap;

Class for capturing the detect_overlap coverage option.

Member functions

detect_overlap(bool detect) : constructor

pss:at_least

Defined in pss/covergroup_options.h (see C.20).

class at_least;

Class for capturing the at_least coverage option.

Member functions

at_least(uint32_t l) : constructor

pss:auto_bin_max

Defined in pss/covergroup_options.h (see C.20).

class auto_bin_max;

Class for capturing the auto_bin_max coverage option.

Member functions

auto_bin_max(uint32_t l) : constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
195

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 104—C++: per_instance option

17.6.2 Examples

The instance-specific options mentioned in Table 4 can be set in the covergroup definition. Example 197
and Example 198 show this, and how coverage options can be set on a specific coverpoint.

Example 197—DSL: Setting options

pss:per_instance

Defined in pss/covergroup_options.h (see C.20).

class per_instance;

Class for capturing the per_instance coverage option.

Member functions

per_instance(bool v) : constructor

covergroup cs1 (bit[64] a_var, bit[64] b_var) {
option.per_instance = 1;
option.comment = "This is CS1";

a : coverpoint a_var {
option.auto_bin_max = 128;

}

b : coverpoint b_var {
option.weight = 10;

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
196

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 198—C++: Setting options

17.7 covergroup sampling

Coverage credit can be taken once execution of the action containing covergroup instance(s) is complete.
Thus, by default, all covergroup instances that are created as a result of a given action’s traversal are
sampled when that action’s execution completes. Table 5 summarizes when covergroups are sampled,
based on the context in which they are instantiated.

17.8 Per-type and per-instance coverage collection

By default, covergroups collect coverage on a per-type basis. This means that all coverage values sampled
by instances of a given covergroup type, where per_instance is false, are merged into a single
collection.

Table 5—covergroups sampling

Instantiation context Sampling point

Flow objects Sampled when the outputting action completes traversal.

Resource objects Sampled before the first action referencing them begins traversal.

Action Sampled when the instantiating action completes traversal.

Data structures Sampled along with the context in which the data structure is instantiated, e.g., if a
data structure is instantiated in an action, the covergroup instantiated in the data
structure is sampled when the action completes traversal.

Memory segments Sampled along with the context in which the memory segment is instantiated, e.g., if
a memory segment is instantiated in an action, the covergroup instantiated in the
memory segment is sampled when the action completes traversal.

class cs1 : public covergroup {...
attr<bit> a_var {"a_var", width(64)};
attr<bit> b_var {"b_var", width(64)};

options opts {
per_instance(1),
comment("This is CS1")

};

coverpoint a { "a", a_var,
options {

auto_bin_max(64)
}

};

coverpoint b { "b", b_var,
options {

weight(10)
}

};
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
197

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Per-instance coverage is collected when per_instance is true for a given covergroup instance and
when a contiguous path of named handles exists from the root component or root action to where new
instances of the containing type are created. If one of these conditions is not satisfied, per-type coverage is
collected for the covergroup instance.

17.8.1 Per-instance coverage of flow objects

Per-instance coverage of flow objects (buffer (see 12.1), stream (see 12.2), state (see 12.3), resource (see
13.1)) is collected for each pool of that type.

In Example 199, there is one pool (pss_top.b1_p) of buffer type b1. When the PSS model runs,
coverage from all 10 executions of P_a and C_a are placed in the same coverage collection that is
associated with the pool through which P_a and C_a exchange the buffer object b1.

Example 199—DSL: Per-instance coverage of flow objects

17.8.2 Per-instance coverage in actions

Per-instance coverage for actions is enabled when per_instance is true for a covergroup instance and
when a contiguous path of named handles exists from the root action to the location where the covergroup
is instantiated.

enum mode_e { M0, M1, M2 }

buffer b1 {
rand mode_e mode;

covergroup {
option.per_instance = true;

coverpoint mode;
} cs;

}

component pss_top {
pool b1 b1_p;
bind b1_p *;

action P_a {
output b1 b1_out;

}

action C_a {
input b1 b1_in;

}

action entry {
activity {

repeat (10) {
do C_a;

}
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
198

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
In Example 200, a contiguous path of named handles exists from the root action to the covergroup instance
inside a1 (entry.a1.cg). Coverage data collected during traversals of action A shall be collected in a
coverage collection unique to this named path. Plus, four samples are placed in the coverage collection
associated with the instance path entry.a1.cg because the named action handle a1 is traversed four
times.

Also in Example 200, a contiguous path of named handles does not exist from the root action to the
covergroup instance inside the action traversal by type (do A). In this case, coverage data collect during the
10 traversals of action A by type (do A) are placed in the per-type coverage collection associated with
covergroup type A::cg.

Example 200—DSL: Per-instance coverage in actions

enum mode_e { M0, M1, M2 }

component pss_top {

action A {
rand mode_e mode;

covergroup {
option.per_instance = true;

coverpoint mode;
} cg;

}

action entry {
A a1;
activity {

repeat (4) {
a1;

}
repeat (10) {

do A;
}

}
}

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
199

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
18. Type extension

Type extensions in PSS enable the decomposition of model code so as to maximize reuse and portability.
Model entities, actions, objects, components, and data-types, may have a number of properties, or aspects,
which are logically independent. Moreover, distinct concerns with respect to the same entities often need to
be developed independently. Later, the relevant definitions need to be integrated, or woven into one model,
for the purpose of generating tests.

Some typical examples of concerns that cut across multiple model entities are as follows.

— Implementation of actions and objects for, or in the context of, some specific target platform/lan-
guage.

— Model configuration of generic definitions for a specific device under test (DUT) / environment con-
figuration, affecting components and data types that are declared and instantiated elsewhere.

— Definition of functional element of a system that introduce new properties to common objects, which
define their inputs and outputs.

Such crosscutting concerns can be decoupled from one another by using type extensions and then
encapsulated as packages (see Clause 19).

18.1 Specifying type extensions

Composite and enumerated types in PSS are extensible. They are declared once, along with their initial
definition, and may later be extended any number of times, with new body items being introduced into their
scope. Items introduced in extensions may be of the same kinds and effect as those introduced in the initial
definition. The overall definition of any given type in a model is the sum-total of its definition statements—
the initial one along with any active extension. The semantics of extensions is that of weaving all those
statements into a single definition.

An extension statement explicitly specifies the kind of type being extended, which needs to agree with the
type reference (see Syntax 105 or Syntax 106). See also 19.1.

18.1.1 DSL syntax

Syntax 105—DSL: type extension

extend_stmt ::= extend type_category type_identifier { { action_body_item } } [;]
type_category ::=
 action
 | component
 | buffer
 | stream
 | state
 | buffer
 | resource
 | struct
 | component
 | enum
Copyright © 2017 - 2018 Accellera. All rights reserved.
200

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
18.1.2 C++ syntax

In C++, extension classes derives from a base class as normal, and then the extension is registered via the
appropriate extend_xxx<> template class:

The corresponding C++ syntax for Syntax 105 is shown in Syntax 106.

Syntax 106—C++: type extension

18.1.3 Examples

Examples of type extension are shown in Example 201 and Example 202.

pss::extend_structure

Defined in pss/extend.h (see C.24).

template < class Foundation, class Extension >
class extend_structure

Extend a structure.

pss::extend_action

Defined in pss/extend.h (see C.24).

template < class Foundation, class Extension >
class extend_action

Extend an action.

pss::extend_component

Defined in pss/extend.h (see C.24).

template < class Foundation, class Extension >
class extend_component

Extend a component.

pss::extend_enum

Defined in pss/extend.h (see C.24).

template < class Foundation, class Extension >
class extend_enum

Extend an enum.
Copyright © 2017 - 2018 Accellera. All rights reserved.
201

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 201—DSL: Type extension

Example 202—C++: Type extension

18.1.4 Compound type extensions

Any kind of member declared in the context of the initial definition of a compound type can be declared in
the context of an extension, as per its entity category (action, component, buffer, stream, state, resource,
struct, or enum).

Named type members of any kind, fields in particular, may be introduced in the context of a type extension.
Names of fields introduced in an extension cannot conflict with those declared in the initial definition of the
type. They shall also be unique in the scope of their type within the package in which they are declared.
However, field names do not have to be unique across extensions of the same type in different packages.

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};

component uart_c {
action configure {

rand config_modes_e mode;
 constraint {mode != UNKNOWN;}

}
}

package additional_config_pkg {
extend enum config_modes_e {MODE_C=30, MODE_D=50}

extend action uart_c::configure {
constraint {mode != MODE_D;}

}
}

PSS_ENUM(config_modes_e, UNKNOWN, MODE_A=10, MODE_B=20);
...
class uart_c : public component { ...
 class configure : public action { ...
 rand_attr<config_modes_e> mode{"mode"};
 constraint mode_c {mode != config_modes_e::UNKNOWN};
 };
 type_decl<configure> configure_decl;
};

namespace additional_config_pkg {
 PSS_EXTEND_ENUM(config_modes_ext_e, config_modes_e, MODE_C=30, MODE_D=50);
 ...
 // declare action extension for base type configure
 class configure_ext : public uart_c::configure { ...
 constraint mode_c_ext {"mode_c_ext", mode != config_modes_ext_e::MODE_D};
 };
 // register action extension
 extend_action<uart_c::configure, configure_ext>
 extend_action_configure_ext;
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
202

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Fields are always accessible within the scope of the package in which they are declared, shadowing fields
with same name declared in other packages. Members declared in a different package are accessible if the
declaring action is imported into the scope of the accessing package or component, given that the reference
is unique.

In Example 203 and Example 204, an action type is initially defined in the context of a component and
later extended in a separate package. Ultimately the action type is used in a compound action of a
parent component. The component explicitly imports the package with the extension and can
therefore constrain the attribute introduced in the extension.

Example 203—DSL: Action type extension

component mem_ops_c {
enum mem_block_tag_e {SYS_MEM, A_MEM, B_MEM, DDR};

buffer mem_buff_s {
rand mem_block_tag_e mem_block;

}

pool mem_buff_s mem;
bind mem *;

action memcpy {
input mem_buff_s src_buff;
output mem_buff_s dst_buff;

}
}

package soc_config_pkg {
extend action mem_ops_c::memcpy {

rand int in [1, 2, 4, 8] ta_width; // introducing new attribute

constraint { // layering additional constraint
src_buff.mem_block in [SYS_MEM, A_MEM, DDR];
dst_buff.mem_block in [SYS_MEM, A_MEM, DDR];
ta_width < 4 -> dst_buff.mem_block != A_MEM;

}
}

}

component pss_top {
import soc_config_pkg::*;// explicitly importing the package grants

// access to types and type-members
mem_ops_c mem_ops;

action test {
mem_ops_c::memcpy cpy1, cpy2;
constraint cpy1.ta_width == cpy2.ta_width;// constraining an

// attribute introduced in an extension
activity {

repeat (3) {
parallel { cpy1; cpy2; };

}
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
203

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 204—C++: Action type extension

class mem_ops_c : public component { ...
 PSS_ENUM(mem_block_tag_e, SYS_MEM, A_MEM, B_MEM, DDR);
 ...
 struct mem_buff_s : public buffer { ...
 rand_attr<mem_block_tag_e> mem_block {"mem_block"};
 };
 pool <mem_buff_s> mem{"mem"};
 bind b1 {mem};

 class memcpy : public action { ...
 input<mem_buff_s> src_buff {"src_buff"};
 output<mem_buff_s> dst_buff {"dst_buff"};
 };
 type_decl<memcpy> memcpy_decl;
};
...

namespace soc_config_pkg {
 class memcpy_ext : public mem_ops_c::memcpy { ...
 using mem_block_tag_e = mem_ops_c::mem_block_tag_e;
 // introducing new attribute
 rand_attr<int> ta_width {"ta_width", range(1)(2)(4)(8)};
 constraint c { // layering additional constraint
 in { src_buff->mem_block,
 range<mem_block_tag_e>(mem_block_tag_e::SYS_MEM)
 (mem_block_tag_e::A_MEM)
 (mem_block_tag_e::DDR) },
 in { dst_buff->mem_block,
 range<mem_block_tag_e>(mem_block_tag_e::SYS_MEM)
 (mem_block_tag_e::A_MEM)
 (mem_block_tag_e::DDR) },
 if_then { cond(ta_width < 4),
 dst_buff->mem_block != mem_block_tag_e::A_MEM
 }
 };
 };
 extend_action<memcpy_ext, mem_ops_c::memcpy> memcpy_ext_decl;
};

class pss_top : public component { ...
 comp_inst<mem_ops_c> mem_ops {"mem_ops"};
 class test : public action { ...
 action_handle<soc_config_pkg::memcpy_ext> cpy1 {"cpy1"},
 cpy2 {"cpy2"};
 // note - handles are declared with action extension class
 // in order to access attributes introduced in the extension
 constraint c { cpy1->ta_width == cpy2->ta_width };
 activity a {
 repeat { 3,
 parallel { cpy1, cpy2 }
 };
 };
 };
 type_decl<test> test_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
204

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
18.1.5 Enum type extensions

Enumerated types can be extended in one or more package contexts, introducing new items to the domain of
all variables of that type. Each item in an enum type shall be associated with a numeric value that is unique
across the initial definition and all the extensions of the type. Item values are assigned according to the same
rules they would be if the items occurred all in the initial definition scope, according to the order of package
evaluations. An explicit conflicting value assignment shall be illegal.

Any enum item can be referenced within the package or component in which it was introduced. Outside
that scope, enum items can be references if the context package or component imports the respective scope.

In Example 205 and Example 206, an enum type is initially declared empty and later extended in two
independent packages. Ultimately items are referenced from a component that imports both
packages.

Example 205—DSL: Enum type extensions

package mem_defs_pkg { // reusable definitions
enum mem_block_tag_e {}; // initially empty

buffer mem_buff_s {
rand mem_block_tag_e mem_block;

}
}
package AB_subsystem_pkg {

import mem_defs_pkg ::*;

extend enum mem_block_tag_e {A_MEM, B_MEM};
}
package soc_config_pkg {

import mem_defs_pkg ::*;

extend enum mem_block_tag_e {SYS_MEM, DDR};
}
component dma_c {
 import mem_defs_pkg::*;
 action mem2mem_xfer {
 input mem_buff_s src_buff;
 output mem_buff_s dst_buff;
 }
}
extend component dma_c {

import AB_subsystem_pkg::*;
// explicitly importing the package grants

import soc_config_pkg::*; // access to enum items

action dma_test {

activity {
do dma_c::mem2mem_xfer with {

src_buff.mem_block == A_MEM;
dst_buff.mem_block == DDR;

};
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
205

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 206—C++: Enum type extensions

18.1.6 Ordering of type extensions

Multiple type extensions of the same type can be coded independently, and be integrated and weaved into a
single stimulus model, without interfering with or affecting the operation of one another. Methodology
should encourage making no assumptions on their relative order.

From a semantics point of view, order would be visible in the following cases.
— Invocation order of exec blocks of the same kind.
— Constraint override between constraint declarations with identical name.

namespace mem_defs_pkg { // reusable definitions
 PSS_ENUM(mem_block_tag_e, enumeration); // initially empty
 ...
 class mem_buff_s : public buffer { ...
 rand_attr<mem_block_tag_e> mem_block {"mem_block"};
 };
 ...
};

class dma_c : public component { ...
 class mem2mem_xfer : public action { ...
 rand_attr<mem_defs_pkg::mem_buff_s> src_buff { "src_buff" };
 rand_attr<mem_defs_pkg::mem_buff_s> dst_buff { "dst_buff" };
 };
 type_decl<mem2mem_xfer> mem2mem_xfer_decl;
};
...

namespace AB_subsystem_pkg {
 PSS_EXTEND_ENUM(mem_block_tag_e_ext,
 mem_defs_pkg::mem_block_tag_e, A_MEM, B_MEM);
 };
 type_decl<AB_subsystem_pkg> AB_subsystem_pkg_decl;

namespace soc_config_pkg {
 PSS_EXTEND_ENUM(mem_block_tag_e_ext,
 mem_defs_pkg::mem_block_tag_e, SYS_MEM, DDR);
};

class dma_c_ext : public dma_c { ...
 class dma_test : public action { ...
 action_handle<dma_c::mem2mem_xfer> xfer;

 activity a {
 xfer.with (
 xfer->src_buff->mem_block==AB_subsystem_pkg::
 mem_block_tag_e_ext::A_MEM
 && xfer->dst_buff->mem_block==soc_config_pkg::
 mem_block_tag_e_ext::DDR)
 };
 };
 type_decl<dma_test> dma_test_decl;
};
extend_component<dma_c, dma_c_ext> dma_c_ext_decl;
Copyright © 2017 - 2018 Accellera. All rights reserved.
206

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
— Numeric values associated with enum items that do not explicitly have a value assignment.

The initial definition always comes first in ordering of members. The order of extensions conforms to the
order in which packages are processed by a PSS implementation.

NOTE—This standard does not define specific ways in which a user can control the package-processing order.

18.2 Overriding types

The override block (see Syntax 107 or Syntax 108) allows type- and instance-specific replacement of the
declared type of a field with some specified sub-type.

Overrides apply to action-fields, struct-attribute-fields, and component-instance-fields. In the presence of
override blocks in the model, the actual type that is instantiated under a field is determined according to the
following rules.

a) Walking from the field up the hierarchy from the contained entity to the containing entity, the appli-
cable override directive is the one highest up in the containment tree.

b) Within the same container, instance override takes precedence over type override.
c) For the same container and kind, an override introduced later in the code takes precedence.

Overrides do not apply to reference fields, namely fields with the modifiers input, output, lock, and
share. Component-type overrides under actions as well as action-type overrides under components are not
applicable to any fields; this shall be an error.

18.2.1 DSL syntax

Syntax 107—DSL: override declaration

18.2.2 C++ syntax

The corresponding C++ syntax for Syntax 107 is shown in Syntax 108.

Syntax 108—C++: override declaration

overrides_declaration ::= override { { override_stmt } }
override_stmt ::=
 type_override
 | instance_override
type_override ::= type type_identifier with type_identifier ;
instance_override ::= instance hierarchical_id with type_identifier ;

pss::override_type

Defined in pss/override.h (see C.33).

template < class Foundation, class Override >
class override_type;

Override declaration.
Copyright © 2017 - 2018 Accellera. All rights reserved.
207

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
18.2.3 Examples

Example 207 and Example 208 combine type- and instance-specific overrides with type inheritance. Action
reg2axi_top specifies all axi_write_action instances need to be instances of
axi_write_action_x. The specific instance xlator.axi_action shall be an instance of
axi_write_action_x2. Action reg2axi_top_x specifies all instances of axi_write_action
need to be instances of axi_write_action_x4, which supersedes the override in reg2axi_top. In
addition, action reg2axi_top_x specifies the specific instance xlator.axi_action shall be an
instance of axi_write_action_x3.

Example 207—DSL: Type inheritance and overrides

action axi_write_action { ... };

action xlator_action {
 axi_write_action axi_action;
 axi_write_action other_axi_action;
 activity {
 axi_action; // overridden by instance
 other_axi_action; // overridden by type
 }
};

action axi_write_action_x : axi_write_action_x { ... };

action axi_write_action_x2 : axi_write_action_x { ... };

action axi_write_action_x3 : axi_write_action_x { ... };

action reg2axi_top {
 override {
 type axi_write_action with axi_write_action_x;
 instance xlator.axi_action with axi_write_action_x2;
 }

 xlator_action xlator;
 activity {
 repeat (10) {
 xlator; // override applies equally to all 10 traversals
 }
 }
};
action reg2axi_top_x : reg2axi_top {
 override {
 instance xlator.axi_action with axi_write_action_x3;
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
208

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 208—C++: Type inheritance and overrides

class axi_write_action : public action { ... };
...
class xlator_action : public action { ...
 action_handle<axi_write_action> axi_action {"axi_action"};
 action_handle<axi_write_action> other_axi_action
 {"other_axi_action"};

 activity a {
 axi_action, // overridden by instance
 other_axi_action // overridden by type
 };
};
...
class axi_write_action_x : public axi_write_action { ... };
class axi_write_action_x2 : public axi_write_action_x { ... };
class axi_write_action_x3 : public axi_write_action_x { ... };

class reg2axi_top : public action { ...
 override_type<axi_write_action,
 axi_write_action_x> override_type_decl;
 override_instance<axi_write_action_x2>
 _override_inst_1{xlator->axi_action};

 action_handle<xlator_action> xlator {"xlator"};

 activity a {
 repeat { 10,
 xlator // override applies equally to all 10 traversals
 }
 };
};
...

class reg2axi_top_x : public reg2axi_top { ...
 override_instance<axi_write_action_x3>
 _override_inst_2{xlator->axi_action};
};
type_decl<reg2axi_top_x> reg2axi_top_x_decl;
Copyright © 2017 - 2018 Accellera. All rights reserved.
209

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
19. Packages

Packages are a way to group, encapsulate, and identify sets of related definitions, namely type declarations
and type extensions. In a verification project, some definitions may be required for the purpose of generating
certain tests, while others need to be used for different tests. Moreover, extensions to the same types may be
inconsistent with one another, e.g., by introducing contradicting constraints or specifying different mappings
to the target platform. By enclosing these definitions in packages, they may coexist and be managed more
easily.

Packages also constitute namespaces for the types declared in their scope. Dependencies between sets of
definitions, type declarations, and type extensions are declared in terms of packages using the import
statement (see Syntax 109). From a namespace point of view, packages and components have the same
meaning and use (see also 9.4). Note that both components and packages are top-level scopes and cannot
be further enclosed in other components and packages. However, in contrast to components, packages
cannot be instantiated, and cannot contain attributes, sub-component instances, or concrete action
definitions.

Definitions statements that do not occur inside the lexical scope of a package or component declaration are
implicitly associated with the unnamed global package. The unnamed global package is imported by all
user-defined packages without the need for an explicit import statement. To explicitly refer to a type
declared in the unnamed global package, prefix the type name with ::".

NOTE—Tools may provide means to control and query which packages are active in the generation of a given test.
Tools may also provide ways to locate source files of a given package in the file system. However, these means are not
covered herein.

19.1 Package declaration

Type declarations and type extensions (of actions, structs, and enumerated types) are associated with
exactly one package. This association is explicitly expressed by enclosing these definitions in a package
statement (see Syntax 109), either directly or indirectly when they occur in the lexical scope of a component
definition.
Copyright © 2017 - 2018 Accellera. All rights reserved.
210

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
19.1.1 DSL syntax

Syntax 109—DSL: package declaration

The following also apply.
a) Types whose declaration does not occur in the scope of a package statement are implicitly associ-

ated with the unnamed global package.
b) const_field_declaration only applies to the package scope.
c) static_const_field_declaration only applies to the component scope.
d) Multiple package statements can apply to the same package name. The package contains the mem-

bers declared in all package scopes with the same name.

19.1.2 Examples

For examples of package usage, see 20.4.7.

19.2 Namespaces and name resolution

PSS types shall have unique names in the context of their package or component, but types can have the
same name if declared under different namespaces. Types need to be referenced in different contexts, such

package_declaration ::= package package_identifier { { package_body_item } } [;]
package_body_item ::=
 abstract_action_declaration
 | struct_declaration
 | enum_declaration
 | covergroup_declaration
 | function_decl
 | import_class_decl
 | function_qualifiers
 | export_action
 | typedef_declaration
 | import_stmt
 | extend_stmt
 | const_field_declaration
 | static_const_field_declaration
 | compile_assert_stmt
 | package_body_compile_if
import_stmt ::= import package_import_pattern ;
package_import_pattern ::= type_identifier [:: *]
const_field_declaration ::= const const_data_declaration
const_data_declaration::= scalar_data_type const_data_instantiation {, const_data_instantiation}
;
const_data_instantiation::= identifier = constant_expression
static_const_field_declaration ::= static const const_data_declaration
Copyright © 2017 - 2018 Accellera. All rights reserved.
211

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
as declaring a variable, extending a type, or inheriting from a type. In all cases, a qualified name of the type
can be used, using the scope operator ::.

Unqualified type names can be used in the following cases.
— When referencing a type that was declared in the same context (package, component, or global).
— When referencing a type that was declared in a namespace imported by the context package or com-

ponent.

In the case of name/namespace ambiguity, precedence is given to the current namespace scope; otherwise,
explicit qualification is required.

19.3 Import statement

import statements declare a dependency between the context package and other packages. If package B
imports package A, it guarantees that the definitions of package A are available and in effect when the code
of B is loaded or activated. It also allows unqualified references from B to types declared in A in those cases
where the resolution is unambiguous. import statements need to come first in the package’s definitions. See
also import_stmt in 19.1.

19.4 Naming rules for members across extensions

Names of type members introduced in a type extension shall be unique in the context of the specific
extension. In the case of multiple extensions of the same type in the scope of the same package, the names
shall be unique across the entire package. Members are always accessible in the declaring package, taking
precedence over members with the same name declared in other packages. Members declared in a different
package are accessible if the declaring action is imported in that package and given that the reference is
unique. See also 18.1.
Copyright © 2017 - 2018 Accellera. All rights reserved.
212

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20. Test realization

A PSS model interacts with external foreign-language code for two reasons. First, external code, such as
reference models and checkers, is used to help compute stimulus values or expected results during stimulus
generation. Second, code, such as application programming interfaces (APIs) of the SUT or utility libraries,
corresponds to the behavior represented by of leaf-level actions.

Code used to help compute stimulus values is provided via the procedural interface (PI). Code used to
implement the functionality of leaf-level actions can be provided via the PI or as target-template code blocks
that are embedded in action or struct declarations within the PSS model. In either case, the construct for
specifying the mapping of a PSS entity to its foreign-language implementation is called an exec block.

20.1 exec blocks

exec blocks provide a mechanism for declaring specific functionality associated with a component or action
(see Syntax 110 or Syntax 111). As discussed in 9.5, init exec blocks allow component data fields to be
assigned a value as the component tree is being elaborated. There are a number of additional exec block
kinds that are used to specify the mapping of PSS scenario entities to their non-PSS implementation.

— body exec blocks specify the actual runtime implementation of atomic actions.
— pre_solve and post_solve exec blocks of actions and structs are a way to involve arbitrary computa-

tion as part of the scenario solving.
— Other exec kinds serve more specific purposes in the context of pre-generated test code and auxiliary

files.

20.1.1 DSL syntax

Syntax 110—DSL: exec block declaration

The following also apply.

exec_block_stmt ::=
 exec_block
 | target_code_exec_block
 | target_file_exec_block
exec_block ::= exec exec_kind_identifier { { exec_body_stmt } } [;]
exec_kind_identifier ::=

 pre_solve
 | post_solve
 | body
 | header
 | declaration
 | run_start
 | run_end

 | init
exec_body_stmt ::= expression [assign_op expression] ;
assign_op ::= = | += | -= | <<= | >>= | |= | &=
target_code_exec_block ::= exec exec_kind_identifier language_identifier = string ;
target_file_exec_block ::= exec file filename_string = string ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
213

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
a) exec block content is given in one of two forms: as a sequence of PI calls or a text segment of target
code parameterized with PSS attributes.

b) In either case, a single exec block is always mapped to implementation in one language.
c) In the case of a target-template block, the target language shall be explicitly declared; however,

when using a PI, the corresponding language may vary.

20.1.2 C++ syntax

The corresponding C++ syntax for Syntax 110 is shown in Syntax 111.

Syntax 111—C++: exec block declaration

20.1.3 Examples

In Example 209 and Example 210, the init exec blocks are evaluated in the following order.
a) pss_top.s1.init

b) pss_top.s2.init

pss::exec

Defined in pss/exec.h (see C.22).

class exec;
/// Types of exec blocks
enum ExecKind {
run_start,
header,
declaration,
init,
pre_solve,
post_solve,
body,
run_end,
file
};

Declare an exec block.

Member functions

exec (ExecKind kind, const std::initializer_list <detail::Attr-
Common>& write_vars) : declare in-line exec
exec (ExecKind kind, const std::string& language_or_file, const
std::string& target_template) : declare target template exec
template <class... R> class exec(ExecKind kind, R&&...
/*detail::ExecStmt8/ r) : declare native exec
exec (ExecKind kind, std::function<void()> genfunc) : declare proce-
dural-interface exec
exec (ExecKind kind, const std::string& language_or_file,
std::function<void(std::ostream& code_stream)>genfunc) : declare gener-
ative target-template exec
Copyright © 2017 - 2018 Accellera. All rights reserved.
214

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
c) pss_top.init

This results in the component fields having the following values.
s1.base_addr=0x2000 (pss_top::init overwrote the value set by
 sub_c::init)

s2.base_addr=0x1000 (value set by sub_c::init)

Example 209—DSL: Data initialization in a component

Example 210—C++: Data initialization in a component

In Example 211 and Example 212, component pss_top contains two instances of component sub_c,
named s1 and s2. Component sub_c contains a data field named base_addr that controls offset addr
when action A is traversed.

During construction of the component tree, component pss_top sets s1.base_addr=0x1000 and
s2.base_addr=0x2000.

Action top_c::entry traverses action sub_c::A twice. Depending on which component instance
sub_c::A is associated with during traversal, it will cause sub_c::A to be associated with a different
base_addr.

component sub_c {
 int base_addr;

 exec init {
 base_addr = 0x1000;
 }
};

component pss_top {
 sub_c s1, s2;

 exec init {
 s1.base_addr = 0x2000;
 }
}

class sub_c : public component { ...
 attr<int> base_addr {"base_addr"};
 exec e { exec::init,
 base_addr = 0x1000
 };
};
...

class pss_top : public component { ...
 comp_inst<sub_c> s1{"s1"}, s2{"s2"};
 exec e {exec::init,
 s1->base_addr = 0x2000
 };
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
215

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
— If sub_c::A executes in the context of pss_top.s1, sub_c::A uses 0x1000.
— If sub_c::A executes in the context of pss_top.s2, sub_c::A uses 0x2000.

Example 211—DSL: Accessing component data field from an action

component sub_c {
bit[31:0] base_addr = 0x1000;
action A {

exec body {
// reference base_addr in context component
activate(comp.base_addr + 0x16);

// activate() is an imported function
}

}
}

component pss_top {
sub_c s1, s2;
exec init {

s1.base_addr = 0x1000;
s2.base_addr = 0x2000;

}
action entry {

sub_c::A a;
activity {

repeat (2) {
a; // Runs sub_c::A with 0x1000 as base_addr when

// associated with s1
// Runs sub_c::A with 0x2000 as base_addr when
// associated with s2;

}
}

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
216

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 212—C++: Accessing component data field from an action

For additional examples of exec block usage, see 20.7.

20.2 Exec block evaluation with extension and inheritance

Both inheritance and type extension can impact the behavior of exec blocks. exec blocks are considered to be
virtual, in that a type can override the behavior of an exec block defined by its base type. By default, a type
that defines an exec block completely replaces the behavior of a same-kind exec block (e.g., body) specified
by its base type. See also 11.2.

20.2.1 Inheritance and overriding

In Example 213, action B inherits from action A and overrides the pre_solve and body exec blocks
defined by action A.

class sub_c : public component { ...
 attr<bit> base_addr {"base_addr", width (32), 0x1000};

 class A : public action { ...
 exec e {exec::body,
 activate(comp<sub_c>()->base_addr + 0x16)
 };
 };
 type_decl<A> A_decl;
};
...

class pss_top : public component { ...
 comp_inst<sub_c> s1{"s1"}, s2{"s2"};

 exec e {exec::init,
 s1->base_addr = 0x1000,
 s2->base_addr = 0x2000
 };

 class entry : public action { ...
 action_handle<sub_c::A> a {"a"};

 activity g {
 repeat { 2,
 a // Runs sub_c::A with 0x1000 as base_addr when associated
 // with s1
 // Runs sub_c::A with 0x2000 as base_addr when associated
 // with s2;
 }
 };
 };
 type_decl<entry> entry_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
217

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 213—DSL: Inheritance and overriding

When an instance of action B is evaluated, the following is displayed:

Hello from B 2

20.2.2 Using super

Specifying super as a statement executes the behavior of the exec block from the base type, allowing a
type to prepend or append behavior.

In Example 214, both A1 and A2 inherit from action A. A1 invokes the body behavior of A, then displays an
additional statement. A2 displays an additional statement, then invokes the body behavior of A.

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 print("Hello from A %d", a);
 }
}

action B : A {

 exec pre_solve {
 a=2;
 }
 exec body {
 print("Hello from B %d", a);
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
218

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 214—DSL: Using super

When an instance of A1 is evaluated, the following is produced:

Hello from A 1
Hello from A1 1

When an instance of A2 is evaluated, the following is produced:

Hello from A2 1
Hello from A 1

20.2.3 Type extension

Type extension enables additional features to be contributed to action, component, and struct types. Type
extension is additive and all exec blocks contributed via type extension are evaluated, along with exec blocks
specified within the target type’s inheritance hierarchy. First, the target type exec blocks (if any) are
evaluated. Next, the exec blocks (if any) contributed via type extension are evaluated, in the order that they
are processed by the PSS processing tool.

In Example 215, a type extension contributes an exec block to action A1.

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 print("Hello from A %d", a);
 }
}

action A1 : A {
 exec body {
 super;
 print("Hello from A1 %d", a);
 }
}
action A2 : A {
 exec body {
 print("Hello from A2 %d", a);
 super;
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
219

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 215—DSL: Type extension contributes an exec block

When an instance of A1 is evaluated, the following is displayed:

Hello from A 1
Hello from A1 1
Hello from A1 extension 1

In Example 216, exec blocks are added to action A1 via extension.

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 print("Hello from A %d", a);
 }
}

action A1 : A {
 exec body {
 super;
 print("Hello from A1 %d", a);
 }
}

extend A1 {
 exec body {
 print("Hello from A1 extension %d", a);
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
220

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 216—DSL: exec blocks added via extension

If the PSS processing tool processes the first extension followed by the second extension, then the following
is produced:

Hello from A 1
Hello from A1 1
Hello from A1(1) extension 1
Hello from A1(2) extension 1

If the PSS processing tool processes the second extension followed by the first extension, then the following
is produced:

Hello from A 1
Hello from A1 1
Hello from A1(2) extension 1
Hello from A1(1) extension 1

20.3 Referencing PSS fields in target-template exec blocks

Implementing test intent requires using data from the PSS Model in the code created from target-template
exec blocks. PSS variables are referenced using mustache notation: {{expression}}. A reference is to
an expression involving variables declared in the scope in which the exec block is declared. Only scalar
(numeric/enumerated/Boolean) and string variables can be referenced in a target-template exec block.

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 print("Hello from A %d", a);
 }
}

action A1 : A {
 exec body {
 super;
 print("Hello from A1 %d", a);
 }
}

extend A1 {
 exec body {
 print("Hello from A1(1) extension %d", a);
 }
}

extend A1 {
 exec body {
 print("Hello from A1(2) extension %d", a);
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
221

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.3.1 Examples

Example 217 shows referencing PSS variables inside a target-template exec block using mustache notation.

Example 217—DSL: Referencing PSS variables using mustache notation

A variable reference can be used in any position in the generated code. Example 218 shows a variable
reference used to select the function being called.

Example 218—DSL: Variable reference used to select the function

One implication of this is a mustache reference cannot be used to assign a value to a PSS variable.

Example 218 also declares a random func_id variable that identifies a C function to call. When a PSS tool
processes this description, the following output shall result, assuming func_id==1 and a==4:

func_1(4);

Example 219 shows how a procedural-interface pre_solve exec block is used along with a target-template
declaration exec block to allow programmatic declaration of a target variable declaration.

component top {
struct S {

rand int b;
}
action A {

rand int a;
rand S s1;
exec body C = """
 printf("a={{a}} s1.b={{s1.b}} a+b={{a+s1.b}}\n");
""";

}
}

component top {
action A {

rand bit[1:0] func_id;
rand bit[3:0] a;
exec body C = """
 func_{{func_id}}({{a}});
""";

}
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
222

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 219—DSL: Allowing programmatic declaration of a target variable declaration

Assume the solver selects my_int16 as the value of the obj_type field and the
get_unique_obj_name() method returns field__0. In this case, the PSS processing tool shall
generate the following content in the declaration section:

static my_int16 field__0;

20.3.2 Formatting

When a variable reference is converted to a string, the result is formatted as follows:

— int - signed decimal (%d)

— bit - unsigned decimal (%ud)

— bool - "true" | "false"

— string - string (%s)

— chandle - pointer (%p)

20.4 Implementation using a procedural interface (PI)

The PSS PI defines a mechanism by which the PSS model can interact with a foreign programming
language, such as C/C++ and/or SystemVerilog. The PI is motivated by the need to reuse existing procedural
descriptions, such as reference models, target SUT APIs, and utility libraries.

The PI can be used to reference external foreign-language functions via import functions (see 20.4.1). The
PI can also be used to reference external foreign-language classes via import classes (see 20.9).

The PI consists of two layers: the PSS layer (declaration) and a foreign-language (definition) layer. Both
layers are fully independent. This means a PSS description containing PI methods can be analyzed
independent of the foreign language and the foreign-language implementation of a PI method can be
analyzed independent of the PSS description.

enum obj_type_e {my_int8,my_int16,my_int32,my_int64};
function string get_unique_obj_name();
import solve function get_unique_obj_name;

buffer mem_buff_s {
 rand obj_type_e obj_type;
 string obj_name;

 exec post_solve {
 obj_name = get_unique_obj_name();
 }

 // declare an object in global space
 exec declaration C = """
 static {{obj_type}} {{obj_name}};
 """;
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
223

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.4.1 Function declaration

A PI function prototype is declared in a package scope within a PSS description. The PI function prototype
specifies the function name, return type, and function parameters. See also Syntax 112 or Syntax 113.

20.4.2 DSL syntax

Syntax 112—DSL: PI method declaration

20.4.3 C++ syntax

The corresponding C++ syntax for Syntax 112 is shown in Syntax 113.

function_decl ::= function method_prototype ;
method_prototype ::= method_return_type method_identifier method_parameter_list_prototype
method_return_type ::=
 void
 | data_type
method_parameter_list_prototype ::= ([method_parameter { , method_parameter }])
method_parameter ::= [method_parameter_dir] data_type identifier
method_parameter_dir ::=
 input
 | output
 | inout
method_parameter_list ::= ([expression { , expression }])
Copyright © 2017 - 2018 Accellera. All rights reserved.
224

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 113—C++: PI method declaration

20.4.4 Examples

For examples of using functions, see 20.4.7.

20.4.5 Method result

A PI method shall explicitly specify a data type or void as the return type of the method. Method return
types are restricted to small scalar and string types. The following PSS data types are allowed for PI method
return types.
— void

— string

— chandle

— bool

— enum

— bit and int, provided the domain of the type is <=64 bits.

20.4.6 Method parameters

PI methods allow scalar, string, struct, and array data types to be passed and/or returned as parameters. The
following PSS data types are allowed as method parameters:
— string

— chandle

— bool

— enum

pss::function

Defined in pss/function.h (see C.26).

template <class T> class in_arg;
template <class T> class out_arg;
template <class T> class inout_arg;
template <class T> class result;
enum kind { solve, target };
template<typename T> class function;
template<typename R, typename... Args> class function<R(Args...)>;// 1
template<typename... Args> class function<result<void>(Args...)>; // 2

1) Declare a function object
2) Declare a function object with no (void) return argument

Member functions

function (const scope &name, R result, Args... args) : constructor with
result
function (const scope &name, const kind a_kind) : constructor with void
result
operator()(const T&... /*detail::AlgebExpr*/ params) : operator
Copyright © 2017 - 2018 Accellera. All rights reserved.
225

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
— bit and int, provided the domain of the type is <=64 bits.
— struct

— array

20.4.7 Parameter direction

By default, method parameters are input to the method. If the value of an input parameter is modified by
the foreign-language implementation, the updated value is not reflected back to the PSS model.

An output parameter sets the value of a PSS model variable. The foreign-language implementation shall
consider the value of an output parameter to be unknown on entry; it needs to specify a value for an output
parameter.

An inout parameter takes an initial value from a variable in the PSS model and reflects the value specified
by the foreign-language implementation back to the PSS model.

Example 220 and Example 221 declare a PI method in a package scope. In this case, the PI method
compute_value returns an int, accepts an input value (val), and returns an output value via the
out_val parameter.

Example 220—DSL: PI method

Example 221—C++: PI method

20.5 PI PSS layer

The PSS side of the PI is completely independent of the foreign language in which the PI method is
implemented, i.e., the semantics of a PSS PI function are independent of the foreign language in which it is
implemented.

The foreign-language side of the PI specifies how PSS data types map to native data types, parameters are
passed, and the return value of non-void methods is specified.

20.6 PI function qualifiers

Additional qualifiers are added to PI functions to provide more information to the tool about the way the
function is implemented and/or in what phases of the test-creation process the function is available. PI

package generic_methods {
 function int compute_value(

int val,
output int out_val);

}

namespace generic_methods {

 function<result<int>(in_arg<int>, out_arg<int>) compute_value {
 "compute_value", result<int>(), in_arg<int>("val"),
 out_arg<int>("out_val")
 };
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
226

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
function qualifiers are specified separately from the function declaration for modularity (see Syntax 114 or
Syntax 115). In typical use, qualifiers are specified in an environment-specific package (e.g., a UVM
environment-specific package or C-Test-specific package).

20.6.1 DSL syntax

Syntax 114—DSL: PI function qualifiers

20.6.2 C++ syntax

The corresponding C++ syntax for Syntax 114 is shown in Syntax 115.

Syntax 115—C++: PI function qualifiers

20.6.3 Specifying function availability

In some environments, test generation and execution are separate activities. In those environments, some
functions may only be available during test generation, while others are only available during test execution.

function_qualifiers ::= import import_function_qualifiers function type_identifier ;
import_function_qualifiers ::=
 method_qualifiers [language_identifier]
 | language_identifier
method_qualifiers ::=
 target
 | solve

pss::import_func

Defined in pss/function.h (see C.26).

enum kind { solve, target };
template<typename T> class import_func;
template<typename R, typename... Args>
 class import_func<function<R(Args...)>; // 1
template<typename R, typename... Args>
 class import_func<function<result<void>(Args...)>; // 2

1) PI import function availability with result
2) PI import function availability with no (void) result

Member functions

import_func (const scope &name, const kind a_kind) : constructor
import_func (const scope &name, const std::string &language) :
declare import function language
import_func (const scope &name, const kind a_kind, const
std::string &language) : import function language and availability
operator()(const T&... /*detail::AlgebExpr*/ params) : operator
Copyright © 2017 - 2018 Accellera. All rights reserved.
227

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
For example, reference model functions may only be available during test generation while the utility
functions that program intellectual properties (IPs) may only be available during test execution.

An unqualified PI function is assumed to be available during all phases of test generation and execution.
Qualifiers are specified to restrict a function’s availability. PSS processing tools can use this information to
ensure usage of PI functions match the restrictions of the target environment.

Example 222 and Example 223 specify function availability. Two PI functions are declared in the
external_functions_pkg package. The alloc_addr function allocates a block of memory, while
the transfer_mem function causes data to be transferred. Both of these functions are present in all phases
of test execution in a system where solving is done on-the-fly as the test executes.

In a system where a pre-generated test is to be compiled and run on an embedded processor, memory
allocation may be pre-computed. Data transfer shall be performed when the test executes. The
pregen_tests_pkg package specifies these restrictions: alloc_addr is only available during the
solving phase of stimulus generation, while transfer_mem is only available during the execution phase
of stimulus generation. PSS processing uses this specification to ensure the way PI functions are used aligns
with the restrictions of the target environment. Notice the use of decltype specifier in the Example 223 in
the declaration of import_func and transfer_mem in the pregen_tests_pkg package.

Example 222—DSL: Function availability

package external_functions_pkg {

 function bit[31:0] alloc_addr(bit[31:0] size);

 function void transfer_mem(
 bit[31:0] src, bit[31:0] dst, bit[31:0] size
);
}

package pregen_tests_pkg {

 import solve function external_functions_pkg::alloc_addr;

 import target function external_functions_pkg::transfer_mem;

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
228

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 223—C++: Function availability

When C++ based PSS input is used, if the solve-time function is also implemented in C++, it is not
necessary to explicitly import the function before it can be used in pre_solve and post_solve. For an
example of calling C++ functions natively, see Example 234.

20.6.4 Specifying an implementation language

The implementation language for a PSS PI function can be specified implicitly or explicitly. In many cases,
the implementation language need not be explicitly specified because the PSS processing tool can use
sensible defaults (e.g., all PI methods are implemented in C++). Explicitly specifying the implementation
language using a separate statement allows different PI functions to be implemented in different languages,
however (e.g., reference model functions are implemented in C++, while functions to drive stimulus are
implemented in SystemVerilog).

Example 224 and Example 225 show explicit specification of the foreign language in which the PI function
is implemented. In this case, the method is implemented in C. Notice only the name of the PI function is
specified and not the full function signature.

Example 224—DSL: Explicit specification of the implementation language

namespace external_functions_pkg {
 function<result<bit>(in_arg<int>)> alloc_addr {
 "alloc_addr",
 result<bit>(width(31,0)),
 in_arg<int>("size", width(31,0))
 };
 function<result<void>(in_arg<bit>, in_arg<bit>, in_arg<bit>)>

transfer_mem {
 "transfer_mem",
 in_arg<bit>("src", width(31,0)),
 in_arg<bit>("dst", width(31,0)),
 in_arg<bit>("size", width(31,0))
 };
};

namespace pregen_tests_pkg {
 import_func<decltype(external_functions_pkg_decl::alloc_addr)>
 alloc_addr {"external_functions_pkg::alloc_addr", solve};
 import_func<decltype(external_functions_pkg_decl::transfer_mem)>
 transfer_mem { "external_functions_pkg::transfer_mem", target};
};

package known_c_methods {

import C function generic_methods::compute_expected_value;

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
229

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 225—C++: Explicit specification of the implementation language

20.7 Calling PI methods

PI methods are called from exec blocks. exec blocks allow a sequence of PI function calls to be specified,
along with (optional) assignments to PSS variables (see exec_body_stmt in 20.1).

PI functions and methods can be called from the following exec block types.

a) pre_solve—valid in action and struct types. The pre_solve block is processed prior to solving of
random-variable relationships in the PSS model. pre_solve exec blocks are used to initialize non-
random variables that the solve process uses.

b) post_solve—valid in action and struct types. The post_solve block is processed after random-vari-
able relationships have been solved. The post_solve exec block is used to compute values of non-
random fields based on the solved values of random fields.

c) body—valid in action types. The body block is responsible for implementing the target implemen-
tation of an action.

d) run_start—valid in action and struct types. Procedural non-time-consuming code block to be exe-
cuted before any body block of the scenario is invoked. Used typically for one-time test bring-up
and configuration required by the context action or object. exec run_start is restricted to pre-
generation flow (see Table 7).

e) run_end—valid in action and struct types. Procedural non-time-consuming code block to be exe-
cuted after all body blocks of the scenario are completed. Used typically for test bring-down and
post-run checks associated with the context action or object. exec run_end is restricted to pre-
generation flow (see Table 7).

f) init—valid in component types. The init block is used to assign values to component attributes and
initialize foreign-language objects. Component’s init blocks are called before the scenario’s top-
action’s pre_solve is invoked in a depth-first search (DFS) post-order, i.e., bottom-up along the
instance tree.

Non-rand fields can be assigned the result of a function call or an expression that does not involve a
function call.

Example 226 and Example 227 demonstrate calling various PI functions. In this example, the
mem_segment_s captures information about a memory buffer with a random size. The specific address in
an instance of the mem_segment_s object is computed using the PI alloc_addr function.
alloc_addr is called after the solver has selected random values for the rand fields (specifically, size in
the case) to select a specific address for the addr field.

namespace known_c_methods {
 import_func<function<result<void>()>> compute_expected_value {
 "generic_methods::compute_expected_value", "C"
 };
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
230

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 226—DSL: Calling PI functions

package external_functions_pkg {

 function bit[31:0] alloc_addr(bit[31:0] size);

 function void transfer_mem(
 bit[31:0] src, bit[31:0] dst, bit[31:0] size
);

 buffer mem_segment_s {
 rand bit[31:0] size;
 bit[31:0] addr;

 constraint size in [8..4096];

 exec post_solve {
 addr = alloc_addr(size);
 }
 }
}

component mem_xfer {
 import external_functions_pkg::*;

 action xfer_a {
 input mem_segment_s in_buff;
 output mem_segment_s out_buff;

 constraint in_buff.size == out_buff.size;

 exec body {
 transfer_mem(in_buff.addr, out_buff.addr, in_buff.size);
 }
 }
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
231

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 227—C++: Calling PI functions

Example 228 and Example 229 demonstrate an activity with reactive control-flow based on values returned
from a target function called in an exec-body block.

namespace external_functions_pkg {
 function<result<bit>(in_arg<bit>)> alloc_addr {
 "alloc_addr",
 result<bit>(width(31,0)), in_arg<bit>("size", width(31,0))
 };

 function<result<void>(in_arg<bit>, in_arg<bit>, in_arg<bit>)>
 transfer_mem {
 "transfer_mem",
 in_arg<bit>("src", width(31,0)),
 in_arg<bit>("dst", width(31,0)),
 in_arg<bit>("size",width(31,0))
 };
 function<result<void>()> void_void_fn {"void_void_fn"};

 class mem_segment_s : public buffer { ...
 rand_attr<bit> size { "size", width(31,0) };
 attr<bit> addr { "addr", width(31,0) };

 constraint c { in (size, range(8, 4096)) };
 };
 type_decl<mem_segment_s> mem_segment_s_decl;
};

class mem_xfer : public component { ...
 using mem_segment_s = external_functions_pkg::mem_segment_s;

 class xfer_a : public action { ...
 input <mem_segment_s> in_buff {"in_buff"};
 output <mem_segment_s> out_buff {"out_buff"};

 constraint c { in_buff->size == out_buff->size };

 exec body { exec::body, external_functions_pkg_decl::transfer_mem
 (in_buff->addr, out_buff->addr, in_buff->size)
 };
 };
 type_decl<xfer_a> xfer_a_decl;
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
232

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 228—DSL: Reactive control flow

component my_ip_c {
 function int sample_DUT_state();
 import target C function sample_DUT_state;
 // specify mapping to target C function by that same name

 action check_state {
 int curr_val;
 exec body {
 curr_val = comp.sample_DUT_state();
 // value only known during execution on target platform
 }
 };

 action A { };

 action B { };

 action my_test {
 check_state cs;
 activity {
 repeat {
 cs;
 if (cs.curr_val % 2 == 0) {
 do A;
 } else {
 do B;
 }
 } while (cs.curr_val < 10);
 }
 };
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
233

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 229—C++: Reactive control flow

20.8 Target-template implementation for functions

By default, functions are assumed to be implemented by foreign-language methods. When integrating with
languages that are not functional in nature, such as assembly language, the implementation for functions can
be provided by target-template code strings.

The target-template form of PI functions (see Syntax 116 or Syntax 117) allow non-functional languages,
such as assembly, to be targeted in an efficient manner. The target-template form of PI functions are always
target implementations. Variable references may only be used in expression positions. Function return
values shall not be provided, i.e., only functions that return void are supported.

See also 20.3.

class my_ip_c : public component { ...
 function<result<int>()> sample_DUT_state
 {"sample_DUT_state",result<int>()};
 import_func<function<result<int>()>> impl_decl
 {"sample_DUT_state", target, "C"};

 class check_state : public action { ...
 attr<int> curr_val {"curr_val"};

 exec body { exec::body,
 curr_val = comp<my_ip_c>()->sample_DUT_state()
 };
 };
 type_decl<check_state> check_state_decl;

 class A : public action {...};
 class B : public action {...};

 class my_test : public action { ...
 action_handle<check_state> cs {"cs"};

 activity actv {
 do_while {
 sequence {
 cs,
 if_then_else { cond (cs->curr_val % 2 == 0),
 action_handle<A>(),
 action_handle()
 }
 }
 ,cs->curr_val < 10
 }
 };
 };
 type_decl<my_test> my_test_decl;
};
...
Copyright © 2017 - 2018 Accellera. All rights reserved.
234

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.8.1 DSL syntax

Syntax 116—DSL: Target-template function implementation

20.8.2 C++ syntax

The corresponding C++ syntax for Syntax 116 is shown in Syntax 117.

Syntax 117—C++: Target-template function implementation

20.8.3 Examples

Example 230 and Example 231 provide an assembly-language target-template code block implementation
for the do_stw function. Function parameters are referenced using mustache notation ({{variable}}).

Example 230—DSL: Target-template function implementation

import_method_target_template ::= target language_identifier
 function method_prototype = string ;

pss:function

Defined in pss/function.h (see C.26).

template<typename T> class function;
template<typename R, typename... Args> class function<R(Args...)>;// 1
template<typename... Args> class function<result<void>(Args...)>; // 2

1) Declare a target template with result
2) Declare a target template with no (void) result

Member functions

function (const scope &name, const std::string &language, R
result, Args... args, const std::string &target_template) : declare
target-template function with result
function (const scope &name, const std::string &language, Args...
args, const std::string &target_template) : declare target-template function
without result
operator()(const T&... /*detail::AlgebExpr*/ params) : operator

package thread_ops_pkg {
 function void do_stw(bit[31:0] val, bit[31:0] vaddr);
}

package thread_ops_asm_pkg {
 target ASM function void do_stw(bit[31:0] val, bit[31:0] vaddr) = """
 loadi RA {{val}}
 store RA {{vaddr}}
 """;
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
235

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 231—C++: Target-template function implementation

20.9 Import classes

In addition to interfacing with external foreign-language functions, the PSS description can interface with
foreign-language classes. See also Syntax 118 or Syntax 119.

20.9.1 DSL syntax

Syntax 118—DSL: Import class declaration

The following also apply.
a) import class methods support the same return and parameter types as import functions. import

class declarations also support capturing the class hierarchy of the foreign-language classes.
b) Fields of import class type can be instantiated in package and component scopes. An import class

field in a package scope is a global instance. A unique instance of an import class field in a compo-
nent exists for each component instance.

c) import class methods are called from an exec block just as import functions are.

20.9.2 C++ syntax

The corresponding C++ syntax for Syntax 118 is shown in Syntax 119.

namespace thread_ops_pkg {
 function<result<void>(in_arg<bit>, in_arg<bit>)> do_stw { "do_stw",
 in_arg<bit>("val"),
 in_arg<bit>("vaddr") };
};

namespace thread_ops_asm_pkg {
 function<result<void>(in_arg<bit>, in_arg<bit>)> do_stw { "do_stw",
 "C",
 in_arg<bit>("val"),
 in_arg<bit>("vaddr"),
 R"(
 loadi RA {{val}}
 store RA {{vaddr}}
)"
 };
};

import_class_decl ::= import class import_class_identifier [import_class_extends]
 { { import_class_method_decl } } [;]
import_class_extends ::= : type_identifier { , type_identifier }
import_class_method_decl ::= method_prototype ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
236

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 119—C++: Import class declaration

20.9.3 Examples

Example 232 and Example 233 declare two import classes. Import class base declares a method
base_method, while import class ext extends from import class base and adds a method named
ext_method.

Example 232—DSL: Import class

Example 233—C++: Import class

20.10 Implementation using target-template code blocks

A target language implementation may be specified using target-template code blocks: text templates
containing code templates with embedded references to fields in the PSS description. These templates are
specified as a specific form of exec blocks inside action or struct definitions.

See also 20.3.

pss::import_class

Defined in pss/import_class.h (see C.28).

class import_class;

Declare an import class.

Member functions

import_class (const scope &name) : constructor

import class base {
 void base_method();
}

import class ext : base {
 void ext_method();
}

class base : public import_class { ...
 function<result<void>()> base_method { "base_method", {} };
};
type_decl<base> base_decl;

class ext : public base { ...
 function<result<void>()> ext_method { "ext_method", {} };
};
type_decl<ext> ext_decl;
Copyright © 2017 - 2018 Accellera. All rights reserved.
237

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.10.1 Target-template code exec block kinds

There are several kinds of target template code exec blocks.
a) body - the direct implementation of an action is a procedural code block in the target language, as

specified by exec body. The body block of each action is invoked in its respective order during
the execution of a scenario—after the body block of all predecessor actions complete. Execution of
an action’s body may be logically time-consuming and concurrent with that of other actions. In par-
ticular, the invocation of exec blocks of actions with the same set of scheduling dependencies logi-
cally takes place at the same time. Implementation of the standard should guarantee that exec blocks
of same-time actions take place as close as possible.
Each body block is restricted to one target language in the context of a specific generated test. How-
ever, the same action may have body blocks in different languages under different packages, given
that these packages are not used for the very same test.

b) header - specifies top-level statements for header declarations presupposed by subsequent code
blocks of the context action or object. Examples are '#include' directives in C, or forward func-
tion or class declarations.

c) declaration - specifies declarative statements used to define entities that are used by subsequent
code blocks. Examples are the definition of global variables or functions.

d) run_start - procedural non-time-consuming code block to be executed before any body block of the
scenario is invoked. Used typically for one-time test bring-up and configuration required by the con-
text action or object.

e) run_end - procedural non-time-consuming code block to be executed after all body blocks of the
scenario are completed. Used typically for test bring-down and post-run checks associated with the
context action or object.

Multiple exec body constructs of the same kind are allowed for a given action or object. They are (logically)
concatenated in the target file, as if they were all concatenated in the PSS source.

20.10.2 Target language

A general identifier serves to specify the intended target programming language of the code block. Clearly,
a tool supporting PSS needs to be aware of the target language to implement the runtime semantics. PSS
does not enforce any specific target language support, but recommends implementations reserve the
identifiers C, CPP, and SV to denote the languages C, C++, and SystemVerilog respectively. Other target
languages may be supported by tools, given that the abstract runtime semantics is kept. PSS does not define
any specific behavior if an unrecognized language_identifier is encountered.

20.10.3 exec file

Not all the artifacts needed for the implementation of tests are coded in a programming language that tools
are expected to support as such. Tests may require scripts, command files, make files, data files, and files in
other formats. The exec file construct (see 20.1) specifies text to be generated out to a given file. exec file
constructs of different actions/objects with the same target are concatenated in the target file in their
respective scenario flow order.

20.11 C++ in-line solve exec implementation

When C++-based PSS input is used, the overhead in user code (and possibly performance) of solve-time
interaction with non-PSS behavior can be reduced. This is applicable in cases where the PSS/C++ user code
can be invoked by the PSS implementation during the solve phase and computations can be performed
natively in C++, not through the PSS PI.
Copyright © 2017 - 2018 Accellera. All rights reserved.
238

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
In-line exec blocks (see Syntax 111) are simply pre-defined virtual member functions of the library classes
(action and structure), the different flow/resource object classes (pre_solve and post_solve),
and component (init). In these functions, arbitrary procedural C++ code can be used: statements,
variables, and function calls, which are compiled, linked, and executed as regular C++. Using an in-line exec
is similar in execution semantics to calling a foreign C/C++ function from the corresponding PSS-native
exec.

In-line execs need to be declared in the context in which they are used with a class exec; if any PSS
attribute is assigned in the exec’s context, it needs to be declared through an exec constructor parameter.

NOTE—In-line solve execs are not supported in PSS DSL.

Example 234 depicts an in-line post_solve exec. In it, a reference model for a decoder is used to
compute attribute values. Notice the functions that are called here are not PSS import functions but rather
natively declared in C++.

Example 234—C++: in-line exec

20.12 C++ generative target exec implementation

When C++-based PSS input is used, the generative mode for target exec blocks can be used. Computation
can be performed in native C++ for purpose of constructing the description of PI execs or target-template-
code execs. This is applicable in cases where the C++ user code can be invoked by the PSS implementation
during the solve or execution phase. Specifying an exec in generative mode has the same semantics as the
corresponding exec in declarative code. However, the behavior exercised by the PSS implementation is the
result of the computation performed in the context of the user PSS/C++ executable.

Specifying execs in generative mode is done by passing a function object as a lambda expression to the exec
constructor—a generative function. The function gets called by the PSS implementation after solving the
context entity, either before or during test execution, which may vary between deployment flows. For
example, in pre-generation flow generative functions are called as part of the solving phase. However, in on-
line-generation flow, the generative function for exec body may be called at runtime, as the actual
invocation of the action’s exec body, and, in turn, invoke the corresponding PI directly as it executes.
Native C++ functions can be called from generative functions, but should not have side-effects since the
time of their call may vary.

// C++ reference model functions
int predict_mode(int mode, int size){ return 0;}
int predict_size(int mode, int size){ return 0;}

class mem_buf : public buffer { ...
 attr<int> mode {"mode"};
 attr<int> size {"size"};
};

class decode_mem : public action { ...
 input<mem_buf> in {"in"};
 output<mem_buf> out {"out"};

 exec e { exec::post_solve, { out->mode, out->size } };
 void post_solve() {
 out->mode.val() = predict_mode(in->mode.val(), in->size.val());
 out->size.val() = predict_size(in->mode.val(), in->size.val());
 }
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
239

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
A lambda capture list can be used to make scope variables available to the generative function. Typically
simple by-reference capture ('[&]') should be used to access PSS fields of the context entity. However,
other forms of capture can also occur.

NOTE—Generative target execs are not supported in PSS DSL.

20.12.1 Generative PI execs

Target PI execs (body, run_start, and run_end) can be specified in generative mode (see
Syntax 120). However, run_start and run_end are restricted to pre-generation flow (see Table 7).

20.12.1.1 C++ syntax

Syntax 120—C++: generative PI exec definitions

The behavioral description of PI execs is a sequence of PI function calls and assignment statements. In
generative specification mode, the same C++ syntax is used as in the declarative mode, through variables
references, operator=, and imp_func::operator(). PSS implementation may define these
operators differently for different deployment flows.

a) Pre-generation flow—The generative function call is earlier than the runtime invocation of the
respective exec block. As the generative function runs, the PSS implementation needs to record PI
function calls and assignments to attributes, along with the right-value and left-value expressions, to
be evaluated at the right time on the target platform.

b) Online-generation flow—The generative function call may coincide with the runtime invocation of
the respective exec block. In this case, the PSS implementation needs to directly evaluate the right-
value and left-value expressions, and perform any PSS function calls and PSS attribute assignments.

20.12.1.2 Examples

Example 235 depicts a generative PI exec defining an action’s body. In this exec block, action attributes
appear in the right-value and left-value expressions. Also, a function call occurs in the context of a native
C++ loop, thereby generating a sequence of the respective calls as the loop unrolls.

pss::exec

Defined in pss/exec.h (see C.22).

class exec;

Declare a generative procedural-interface exec.

 Member functions

exec(ExecKind kind, std::function<void()> genfunc) :
Copyright © 2017 - 2018 Accellera. All rights reserved.
240

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 235—C++: generative PI exec

Example 236 illustrates the possible code generated for write_multi_words().

Example 236—C++: Possible code generated for write_multi_words()

20.12.2 Generative target-template execs

Target-template-code execs (body, run_start, run_end, header, declaration, and file) can
be specified in generative mode (see Syntax 121); however, their use is restricted to pre-generation flow (see
Table 7).

class my_comp : public component { ...
 class write_multi_words : public action { ...
 rand_attr<int> num_of_words { "num_of_words", range(2,8) };
 attr<bit> base_addr { "base_addr", width(63,0) };

 // exec specification in generative mode
 exec body {
 exec::body, [&](){ // capturing action variables
 base_addr = mem_ops_pkg_decl->alloc_mem(num_of_words*4);
 // in pre-gen unroll the loop,
 // evaluating num_of_words on solve platfrom
 for (int i=0; i < num_of_words.val(); i++) {
 mem_ops_pkg_decl->write_word(base_addr + i*4, 0xA);
 }
 }
 };
 };
 type_decl<write_multi_words> write_multi_words_decl;
};

void main(void) {
 ...
 uint64_t pstool_addr;
 pstool_addr = target_alloc_mem(16);
 (uint32_t)pstool_addr + 0 = 0xA;
 (uint32_t)pstool_addr + 4 = 0xA;
 (uint32_t)pstool_addr + 8 = 0xA;
 (uint32_t)pstool_addr + 12 = 0xA;
 ...
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
241

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.12.2.1 C++ syntax

Syntax 121—C++: generative target-template exec definitions

The behavioral description with target-template-code execs is given as a string literal to be inserted verbatim
in the generated target language, with expression value substitution (see 20.8). In generative specification
mode, a string representation with the same semantics is computed using a generative function. The
generative function takes std::ostream as a parameter and should insert the string representation to it.
As with the declarative mode, the target language-id needs to be provided.

20.12.2.2 Examples

Example 237 depicts a generative target-template-code exec defining an action’s body. In this function,
strings inserted to the C++ ostream object are treated as C code-templates. Notice a code line is inserted
inside a native C++ loop here, thereby generating a sequence of the respective target code lines.

Example 237—C++: generative target-template exec

pss::exec

Defined in pss/exec.h (see C.22).

class exec;

Declare a generative target-template exec.

Member functions

exec(ExecKind kind, std::string&& language_or_file, std::func-
tion<void(std::ostream&)> genfunc) : generative target-template

class my_comp : public component { ...
 class write_multi_words : public action { ...
 rand_attr<int> num_of_words { "num_of_words", range(2,8) };
 attr<int> num_of_bytes {"num_of_bytes"};

 void post_solve () {
 num_of_bytes.val() = num_of_words.val()*4;
 }
 // exec specification in target code generative mode
 exec body { exec::body, "C",
 [&](std::ostream& code){
 code<< " uint64_t pstool_addr;\n";
 code<< " pstool_addr = target_alloc_mem({{num_of_bytes}});\n";

 // unroll the loop,
 for (int i=0; i < num_of_words.val(); i++) {
 code<< " *(uint32_t*)pstool_addr + " << i*4 << "= 0xA;\n";
 }
 }
 };
 };
 type_decl<write_multi_words> write_multi_words_decl;
};
Copyright © 2017 - 2018 Accellera. All rights reserved.
242

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The possible code generated for write_multi_words() is shown in Example 236.

20.13 Comparison between mapping mechanisms

Previous sections describe three mechanisms for mapping PSS entities to external (non-PSS) definitions:
functions that directly map to foreign API (see 20.4), functions that map to foreign-language procedural
code using target code templates (see 20.8), and exec blocks where arbitrary target code templates are in-
lined (see 20.10). These mechanisms differ in certain respects and are applicable in different flows and
situations. This section summarizes their differences.

PSS tests may need to be realized in different ways in different flows:

— by directly exercising separately-existing environment APIs via procedural linking/binding;

— by generating code once for a given model, corresponding to entity types, and using it to execute sce-
narios; or

— by generating dedicated target code for a given scenario instance.

Table 6 shows how these relate to the mapping constructs.

Not all mapping forms can be used for every exec kind. Solving/generation-related code needs to have direct
procedural binding since it is executed prior to possible code generation. exec blocks that expand
declarations and auxiliary files shall be specified as target-templates since they expand non-procedural code.
The run_start exec block is procedural in nature, but involves up-front commitment to the behavior that is
expected to run.

Table 7 summarizes these rules.

The possible use of action and struct attributes differs between mapping constructs. Explicitly declared
signatures of functions enable the type-aware exchange of values of all data types. On the other hand, free
parameterization of un-interpreted target code provides a way to use attribute values as target-language
meta-level parameters, such as types, variables, functions, and even preprocessor constants.

Table 8 summarizes the parameter passing rules for the different constructs.

Table 6—Flows supported for mapping mechanisms

No target code
generation

Per-model
target code
generation

Per-test target
code generation

Non-procedural
binding

Direct-mapped
functions

X X X

Target-template
functions

X X

Target-template
exec-blocks

X X
Copyright © 2017 - 2018 Accellera. All rights reserved.
243

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.14 Exported actions

Import functions and classes specify functions and classes external to the PSS description that can be called
from the PSS description. Exported actions specify actions that can be called from a foreign language. See
also Syntax 122 or Syntax 123.

20.14.1 DSL syntax

Syntax 122—DSL: Export action declaration

The export statement for an action specifies the action to export and the parameters of the action to make
available to the foreign language, where the parameters of the exported action are associated by name with
the action being exported. The export statement also optionally specifies in which phases of test generation
and execution the exported action will be available.

The following also apply.
a) As with import functions (see 20.4.1), the exported action is assumed to always be available if the

method availability is not specified.
b) Each call into an export action infers an independent tree of actions, components, and resources.
c) Constraints and resource allocation are considered within the inferred action tree and are not consid-

ered across import function / export action call chains.

Table 7—Exec block kinds supported for mapping mechanisms

Action runtime
behavior exec blocks

body

Non-procedural exec
blocks header,
declaration, file

Global test exec
blocks run_start,

run_end

Solve exec blocks
pre_solve,
post_solve

Direct-mapped
functions

X X (only in pre-
generation)

X

Target-template
functions

X X (only in pre-
generation)

Target-template
exec-blocks

X X X

Table 8—Data passing supported for mapping mechanisms

Back assignment to PSS
attributes

Passing user-defined and
compound data-types

Using PSS attributes in
non-expression positions

Direct-mapped
functions

X X

Target-template
functions

X

Target-template
exec-blocks

X

export_action ::= export [method_qualifiers] action_type_identifier
 method_parameter_list_prototype ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
244

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
20.14.2 C++ syntax

The corresponding C++ syntax for Syntax 122 is shown in Syntax 123.

Syntax 123—C++: Export action declaration

20.14.3 Examples

Example 238 and Example 239 show an exported action. In this case, the action comp::A1 is exported.
The foreign-language invocation of the exported action supplies the value for the mode field of action A1.
The PSS processing tool is responsible for selecting a value for the val field. Note that comp::A1 is
exported to the target, indicating the target code can invoke it.

Example 238—DSL: Export action

pss::export_action

Defined in pss/export_action.h (see C.23).

enum kind { solve, target };
template <class T=int> class export_action;

Declare an export action.

Member functions

export_action (const std::vector<detail::ExportActionParam>
¶ms) : constructor
export_action (kind,const std::vector<detail::ExportActionParam>
¶ms) : constructor

component comp {

 action A1 {
 rand bit mode;
 rand bit[31:0] val;

 constraint {
 if (mode!=0) {
 val in [0..10];
 } else {
 val in [10..100];
 }
 }
 }

}

package pkg {
 // Export A1, providing a mapping to field 'mode'
 export target comp::A1(bit mode);
}

Copyright © 2017 - 2018 Accellera. All rights reserved.
245

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 239—C++: Export action

20.14.4 Export action foreign-language binding

An exported action is exposed as a method in the target foreign language (see Example 240). The
component namespace is reflected using a language-specific mechanism: C++ namespaces, SystemVerilog
packages. Parameters to the exported action are implemented as parameters to the foreign-language method.

Example 240—DSL: Export action foreign-language implementation

NOTE—Foreign-language binding is the same for DSL and C++.

class comp : public component { ...
 class A1 : public action { ...
 rand_attr<bit> mode {"mode"};
 rand_attr<bit> val { "val", width(32) };

 constraint c {
 if_then_else { cond(mode!=0),
 in (val, range(0,10)),
 in (val, range(10,100))
 }
 };
 };
 type_decl<A1> A1_decl;
};

namespace pkg {
 // Export A1, providing a mapping to field ’mode’
 export_action<comp::A1> comp_A1 {

 };
};
type_decl<pkg> pkg_decl;

namespace comp {
void A1(unsigned char mode);

}

Copyright © 2017 - 2018 Accellera. All rights reserved.
246

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
21. Conditional code processing

It is often useful to conditionally process portions of a PSS model based on some configuration parameters.
This clause details a compile if construct that can be evaluated as part of the elaboration process.

NOTE—Conditional code processing is not supported in C++.

21.1 Overview

This section covers general considerations for using compile statements.

21.1.1 Statically-evaluated statements

A statically-evaluated statement marks content that may or may not be elaborated. The description within a
statically-evaluated statement shall be syntactically correct, but need not be semantically correct when the
static scope is disabled for evaluation.

A statically-evaluated statement may specify a block of statements. However, this does not introduce a new
scope in the resulting description.

21.1.2 Elaboration procedure

Compile statements shall be processed as a single pass. Tools may process top-level language elements (e.g.,
packages) in any order. Source code processing shall follow these steps.

a) Syntactic code analysis is performed.
b) Static const initializers are applied.
c) Static const value overrides are applied (e.g., from the processing-tool command-line).
d) compile if statements (see 21.2) are evaluated based on visible types, visible static-const fields, and

static-const values.
e) Globally-visible content and the content of enabled compile-if branches is elaborated.

21.1.3 Constant expressions

Compile statements (e.g, compile if) are required to be semantically correct; specifically, the value of any
variable references made by these statements needs to be able to be determined at compile time.

21.2 compile if

21.2.1 Scope

compile if statements have the following scopes.
— Global/Package
— Action
— Component
— Struct

21.2.2 DSL syntax

Syntax 124 shows the grammar for a compile if statement.
Copyright © 2017 - 2018 Accellera. All rights reserved.
247

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Syntax 124—DSL: compile if declaration

21.2.3 Examples

Example 241 shows an example of conditional processing is PSS were to use C pre-processor directives. If
the PROTOCOL_VER_1_2 directive is defined, then action new_flow is evaluated. Otherwise, action
old_flow is processed.

NOTE—Example 241 is only shown here to illustrate the functionality of C pre-processor directives in a familiar for-
mat. It is not part of PSS.

Example 241—Conditional processing (C pre-processor)

Example 242 shows a DSL version of Example 241 using a compile if statement instead.

package_body_compile_if ::= compile if (constant_expression) package_body_compile_if_item
 [else package_body_compile_if_item]
package_body_compile_if_item ::=
 package_body_item
 | { {package_body_item} }
action_body_compile_if ::= compile if (constant_expression) action_body_compile_if_item
 [else action_body_compile_if_item]
action_body_compile_if_item ::=
 action_body_item
 | { {action_body_item} }
component_body_compile_if ::= compile if (constant_expression)
 component_body_compile_if_item [else component_body_compile_if_item]
component_body_compile_if_item ::=
 component_body_item
 | { {component_body_item} }
struct_body_compile_if ::= compile if (constant_expression) struct_body_compile_if_item
 [else struct_body_compile_if_item]
struct_body_compile_if_item ::=
 struct_body_item
 | { {struct_body_item} }

#ifdef PROTOCOL_VER_1_2
action new_flow {
 activity { ... }
}
#else
action old_flow {
 activity { ... }
} #endif
Copyright © 2017 - 2018 Accellera. All rights reserved.
248

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 242—DSL: Conditional processing (static if)

When the true case is triggered, the code in Example 242 is equivalent to:

action new_flow {

 activity { ... }

 }

When the false case is triggered, the code in Example 242 is equivalent to:

action old_flow {

 activity { ... }

 }

21.3 compile has

compile has allows conditional elaboration to reason about the existence of types and static fields. The
compile has expression is evaluated to true if a type or static field has been previously encountered by the
PSS processing tool; otherwise, it evaluates to false. The processing of PSS code is linear top-to-bottom
within the same source file.

NOTE—This standard does not specify the processing order between different source files.

21.3.1 DSL syntax

Syntax 125 shows the grammar for a compile has expression.

Syntax 125—DSL: compile has declaration

21.3.2 Examples

Example 243 checks whether the config_pkg::PROTOCOL_VER_1_2 field exists and tests its value if
it does. In this example, old_flow will be used because config_pkg::PROTOCOL_VER_1_2 does
not exist.

package config_pkg {
 const bool PROTOCOL_VER_1_2 = false;
}
compile if (config_pkg::PROTOCOL_VER_1_2) {
 action new_flow {
 activity { ... }
 }
} else {
 action old_flow {
 activity { ... }
 }
}

compile_has_expr ::= compile has (constant_expression)
Copyright © 2017 - 2018 Accellera. All rights reserved.
249

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 243—DSL: compile has

Example 244 shows an example of circular references across compile has expressions. In this case, neither
FIELD1 nor FIELD2 will be present in the elaborated description.

Example 244—DSL: Circular dependency

21.4 compile assert

compile assert assists in flagging errors when the source is incorrectly configured. This construct is
evaluated during elaboration. A tool shall report a failure if constant_expression does not evaluate to true,
and report the user-provided message, if specified.

21.4.1 DSL syntax

Syntax 126 shows the grammar for a compile assert statement.

Syntax 126—DSL: compile assert declaration

21.4.2 Examples

Example 245 shows a compile assert example.

package config_pkg {

}
compile if (
compile has(config_pkg::PROTOCOL_VER_1_2) &&
config_pkg::PROTOCOL_VER_1_2) {
 action new_flow {
 activity { ... }
 }
} else {
 action old_flow {
 activity { ... }
 }

compile if (compile has(FIELD2)) {
 static const int FIELD1 = 1;
}
compile if (compile has(FIELD1)) {
 static const int FIELD2 = 2;
}

compile_assert_stmt ::= compile assert (constant_expression [, string]) ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
250

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Example 245—DSL: compile assert

compile if (compile has(FIELD2)) {
 static const FIELD1 = 1;
}

compile if (compile has(FIELD1)) {
 static const FIELD2 = 2;
}
compile assert(compile has(FIELD1), "FIELD1 not found");
Copyright © 2017 - 2018 Accellera. All rights reserved.
251

Copyright © 2017 - 2018 Accellera. All rights reserved.
252

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Annex B

(normative)

Formal syntax

The PSS formal syntax is described using Backus-Naur Form (BNF). The syntax of the PSS source is
derived from the starting symbol Model. If there is a conflict between a grammar element shown anywhere
in this Standard and the material in this annex, the material shown in this annex shall take precedence.

Model ::= { portable_stimulus_description }

portable_stimulus_description ::=
 package_body_item
 | package_declaration
 | component_declaration

B.1 Package declarations

package_declaration ::= package package_identifier { { package_body_item } }
[;]

package_body_item ::=
 abstract_action_declaration
 | struct_declaration
 | enum_declaration
 | covergroup_declaration
 | function_decl
 | import_class_decl
 | function_qualifiers
 | export_action
 | typedef_declaration
 | import_stmt
 | extend_stmt
 | const_field_declaration // In package scope only
 | static_const_field_declaration // In component scope only
 | compile_assert_stmt
 | package_body_compile_if

import_stmt ::= import package_import_pattern ;

package_import_pattern ::= type_identifier [:: *]

extend_stmt ::=
 extend action type_identifier { { action_body_item } } [;]
 | extend component type_identifier { { component_body_item } } [;]
 | extend struct_kind type_identifier { { struct_body_item } } [;]
 | extend enum type_identifier { [enum_item { , enum_item }] } [;]

const_field_declaration ::= const const_data_declaration

const_data_declaration::= scalar_data_type const_data_instantiation
{, const_data_instantiation} ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
253

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
const_data_instantiation::= identifier = constant_expression

static_const_field_declaration ::= static const const_data_declaration

B.2 Action declarations

action_declaration ::= action action_identifier [action_super_spec]
{ { action_body_item } } [;]

abstract_action_declaration ::= abstract action action_identifier
[action_super_spec] { { action_body_item } } [;]

action_super_spec ::= : type_identifier

action_body_item ::=
 activity_declaration
 | overrides_declaration
 | constraint_declaration
 | action_field_declaration
 | symbol_declaration
 | covergroup_declaration
 | exec_block_stmt
 | static_const_field_declaration
 | action_scheduling_constraint
 | attr_group
 | compile_assert_stmt
 | inline_covergroup
 | action_body_compile_if

activity_declaration ::= activity { { [identifier :] activity_stmt } } [;]

action_field_declaration ::=
 object_ref_field
 | attr_field
 | attr_group
 | action_handle_declaration
 | activity_data_field

object_ref_field ::=
 flow_ref_field
 | resource_ref_field

flow_ref_field ::= (input | output) flow_object_type identifier {, identifier
} ;

resource_ref_field ::= (lock | share) resource_object_type identifier {,
identifier } ;

flow_object_type ::= type_identifier

resource_object_type ::= type_identifier

attr_field ::= [access_modifier] [rand] data_declaration

access_modifier ::= public | protected | private
Copyright © 2017 - 2018 Accellera. All rights reserved.
254

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
attr_group ::= access_modifier :

action_handle_declaration ::= action_type identifier [array_dim] ;

activity_data_field ::= action data_declaration

action_scheduling_constraint ::= constraint (parallel | sequence)
 { hierarchical_id { , hierarchical_id } } ;

Exec blocks

exec_block_stmt ::=
 exec_block
 | target_code_exec_block
 | target_file_exec_block

exec_block ::= exec exec_kind_identifier { { exec_body_stmt } } [;]

exec_kind_identifier ::=
 pre_solve
 | post_solve
 | body
 | header
 | declaration
 | run_start
 | run_end
 | init

exec_body_stmt ::= expression [assign_op expression] ;

assign_op ::= = | += | -= | <<= | >>= | |= | &=

target_code_exec_block ::= exec exec_kind_identifier
language_identifier = string ;

target_file_exec_block ::= exec file filename_string = string ;

B.3 Struct declarations

struct_declaration ::= struct_kind identifier
[: type_identifier] { { struct_body_item } } [;]

struct_kind ::=
 struct
 | object_kind

object_kind ::=
 buffer
 | stream
 | state
 | resource

struct_body_item ::=
 constraint_declaration
Copyright © 2017 - 2018 Accellera. All rights reserved.
255

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 | attr_field
 | typedef_declaration
 | covergroup_declaration
 | exec_block_stmt
 | static_const_field_declaration
 | attr_group
 | compile_assert_stmt
 | inline_covergroup
 | struct_body_compile_if

B.4 Procedural interface (PI)

function_decl ::= function method_prototype ;

method_prototype ::= method_return_type method_identifier
method_parameter_list_prototype

method_return_type ::=
 void
 | data_type

method_parameter_list_prototype ::= ([method_parameter
{ , method_parameter }])

method_parameter ::= [method_parameter_dir] data_type identifier

method_parameter_dir ::=
 input
 | output
 | inout

function_qualifiers ::= import import_function_qualifiers
function type_identifier ;

import_function_qualifiers ::=
 method_qualifiers [language_identifier]
 | language_identifier

method_qualifiers ::=
 target
 | solve

import_method_target_template ::= target language_identifier
function method_prototype = string ;

method_parameter_list ::= ([expression { , expression }])

B.4.1 Import class declaration

import_class_decl ::= import class import_class_identifier
[import_class_extends] { { import_class_method_decl } } [;]

import_class_extends ::= : type_identifier { , type_identifier }
Copyright © 2017 - 2018 Accellera. All rights reserved.
256

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
import_class_method_decl ::= method_prototype ;

B.4.2 Export action

export_action ::= export [method_qualifiers] action_type_identifier
method_parameter_list_prototype ;

B.5 Component declarations

component_declaration ::= component component_identifier
[: component_super_spec] { { component_body_item } } [;]

component_super_spec ::= : type_identifier

component_body_item ::=
 overrides_declaration
 | component_field_declaration
 | action_declaration
 | object_bind_stmt
 | exec_block
 | package_body_item
 | attr_group
 | component_body_compile_if

component_field_declaration ::=
 component_data_declaration
 | component_pool_declaration

component_data_declaration ::= [static const] data_declaration

component_pool_declaration ::= pool [[expression]] type_identifier
identifier ;

object_bind_stmt ::= bind hierarchical_id object_bind_item_or_list ;

object_bind_item_or_list ::=
 component_path
 | { component_path { , component_path } }

component_path ::=
 component_identifier { . component_path_elem }
 | *

component_path_elem ::=
 component_action_identifier
 | *

B.6 Activity statements

activity_stmt ::=
 [identifier :] labeled_activity_stmt
 | activity_data_field
 | activity_bind_stmt
Copyright © 2017 - 2018 Accellera. All rights reserved.
257

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 | action_handle_declaration
 | activity_constraint_stmt
 | action_scheduling_constraint

labeled_activity_stmt::=
 activity_if_else_stmt
 | activity_repeat_stmt
 | activity_foreach_stmt
 | activity_action_traversal_stmt
 | activity_sequence_block_stmt
 | activity_select_stmt
 | activity_match_stmt
 | activity_parallel_stmt
 | activity_schedule_stmt
 | activity_super_stmt
 | function_symbol_call

activity_if_else_stmt ::= if (expression) activity_stmt [else activity_stmt]

activity_repeat_stmt ::=
 while (expression) activity_stmt
 | repeat ([identifier :] expression) activity_stmt
 | repeat activity_stmt [while (expression) ;]

activity_sequence_block_stmt ::= [sequence] { { activity_stmt } }

activity_constraint_stmt ::=
 constraint { { constraint_body_item } }
 | constraint single_stmt_constraint

activity_foreach_stmt ::= foreach ([iterator_identifier :] expression
[[index_identifier]]) activity_stmt

activity_action_traversal_stmt ::=
identifier [inline_with_constraint]

 | do type_identifier [inline_with_constraint] ;

inline_with_constraint ::=
 with { { constraint_body_item } }
 | with single_stmt_constraint

activity_select_stmt ::= select { select_branch select_branch { select_branch } }

select_branch ::= [[(expression)][[expression]] :] activity_stmt

activity_match_stmt ::= match (expression) { match_choice { match_choice } }

match_choice ::=
 [open_range_list] : activity_stmt
 | default : activity_stmt

activity_parallel_stmt ::= parallel { { activity_stmt } } [;]

activity_schedule_stmt ::= schedule { { activity_stmt } } [;]

activity_bind_stmt ::= bind hierarchical_id activity_bind_item_or_list ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
258

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
activity_bind_item_or_list ::=
 hierarchical_id
 | { hierarchical_id { , hierarchical_id } }

symbol_declaration ::= symbol identifier [(symbol_paramlist)]
{ { activity_stmt } }

symbol_paramlist ::= [symbol_param { , symbol_param }]

symbol_param ::= data_type identifier

activity_super_stmt ::= super ;

B.7 Overrides

overrides_declaration ::= override { { override_stmt } }

override_stmt ::=
 type_override
 | instance_override

type_override ::= type type_identifier with type_identifier ;

instance_override ::= instance hierarchical_id with type_identifier ;

B.8 Data declarations

data_declaration ::= data_type data_instantiation { , data_instantiation } ;

data_instantiation ::=
 covergroup_instantiation
 | plain_data_instantiation

covergroup_portmap_list ::= [
 covergroup_portmap { , covergroup_portmap }
 | hierarchical_id { , hierarchical_id }]

covergroup_portmap ::= . identifier (hierarchical_id)

array_dim ::= [constant_expression]

B.9 Data types

data_type ::=
scalar_data_type

 | user_defined_datatype

action_data_type ::=
scalar_data_type

 | user_defined_datatype
 | action_type
Copyright © 2017 - 2018 Accellera. All rights reserved.
259

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
scalar_data_type ::=
 chandle_type
 | integer_type
 | string_type
 | bool_type

chandle_type ::= chandle

integer_type ::= integer_atom_type
 [[expression [: expression]]]
 [in [domain_open_range_list]]

integer_atom_type ::=
 int
 | bit

domain_open_range_list ::= domain_open_range_value { , domain_open_range_value
}

domain_open_range_value ::=
 expression [.. expression]
 | expression ..
 | .. expression
 | expression

string_type ::= string [in [DOUBLE_QUOTED_STRING { , DOUBLE_QUOTED_STRING }]]

bool_type ::= bool

user_defined_datatype ::= type_identifier

action_type ::= type_identifier

enum_declaration ::= enum enum_identifier { [enum_item { , enum_item }] } [;]

enum_item ::= identifier [= constant_expression]

enum_type ::= enum_type_identifier [in [open_range_list]]

enum_type_identifier ::= type_identifier

typedef_declaration ::= typedef data_type identifier ;

B.10 Constraint

constraint_declaration ::=
 [dynamic] constraint identifier { { constraint_body_item } }
 | constraint { { constraint_body_item } }
 | constraint single_stmt_constraint

constraint_body_item ::=
 expression_constraint_item
 | foreach_constraint_item
 | if_constraint_item
 | unique_constraint_item
Copyright © 2017 - 2018 Accellera. All rights reserved.
260

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
expression_constraint_item ::=
 expression implicand_constraint_item
 | expression ;

implicand_constraint_item ::= -> constraint_set

constraint_set ::=
 constraint_body_item
 | constraint_block

constraint_block ::= { { constraint_body_item } }

foreach_constraint_item ::= foreach ([iterator_identifier :] expression
[[index_identifier]]) constraint_set

if_constraint_item ::= if (expression) constraint_set [else constraint_set]

unique_constraint_item ::= unique { open_range_list } ;

single_stmt_constraint ::=
 expression_constraint_item
 | unique_constraint_item

B.11 Coverage specification

covergroup_declaration ::= covergroup covergroup_identifier
(covergroup_port {, covergroup_port }) { { covergroup_body_item } } [;]

covergroup_port ::= data_type identifier

covergroup_body_item ::=
 covergroup_option
 | covergroup_coverpoint
 | covergroup_cross

covergroup_option ::= option . identifier = constant_expression ;

inline_covergroup ::= covergroup { { covergroup_body_item } } identifier ;

data_declaration ::= data_type data_instantiation { , data_instantiation } ;

covergroup_instantiation ::= covergroup_identifier
[(covergroup_portmap_list)] [with { { covergroup_option } }]

plain_data_instantiation ::= identifier [array_dim]
[= constant_expression]

covergroup_coverpoint ::= [[data_type] coverpoint_identifier :] coverpoint
 expression [iff (expression)] bins_or_empty

bins_or_empty ::=
 { { covergroup_coverpoint_body_item } }[;]
 | ;
Copyright © 2017 - 2018 Accellera. All rights reserved.
261

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
covergroup_coverpoint_body_item ::=
 covergroup_option
 | covergroup_coverpoint_binspec

covergroup_coverpoint_binspec ::= bins_keyword identifier
[[constant_expression]] = coverpoint_bins

coverpoint_bins ::=
 [covergroup_range_list] [with (covergroup_expression)] ;
 | coverpoint_identifier with (covergroup_expression) ;
 | default ;

covergroup_range_list ::=
covergroup_value_range { , covergroup_value_range }

covergroup_value_range ::=
 expression
 | expression .. [expression]
 | [expression] .. expression

bins_keyword ::= bins | illegal_bins | ignore_bins

covergroup_cross ::= covercross_identifier : cross
 coverpoint_identifier { , coverpoint_identifier }
 [iff (expression)] cross_item_or_null

cross_item_or_null ::=
 { { covergroup_cross_body_item } } [;]
 | ;

covergroup_cross_body_item ::=
 covergroup_option
 | covergroup_cross_binspec

covergroup_cross_binspec ::= bins_keyword identifier = covercross_identifier
with (covergroup_expression) ;

B.12 Conditional-compile

package_body_compile_if ::= compile if (constant_expression)
package_body_compile_if_item [else package_body_compile_if_item]

package_body_compile_if_item ::=
 package_body_item
 | { {package_body_item} }

action_body_compile_if ::= compile if (constant_expression)
action_body_compile_if_item [else action_body_compile_if_item]

action_body_compile_if_item ::=
 action_body_item
 | { {action_body_item} }

component_body_compile_if ::= compile if (constant_expression)
component_body_compile_if_item [else component_body_compile_if_item]
Copyright © 2017 - 2018 Accellera. All rights reserved.
262

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
component_body_compile_if_item ::=
 component_body_item
 | { {component_body_item} }

struct_body_compile_if ::= compile if (constant_expression)
struct_body_compile_if_item [else struct_body_compile_if_item]

struct_body_compile_if_item ::=
 struct_body_item
 | { {struct_body_item} }

compile_has_expr ::= compile has (constant_expression)

compile_assert_stmt ::= compile assert (constant_expression [, string]) ;

B.13 Expression

constant_expression ::= expression

expression ::= condition_expr

condition_expr ::= logical_or_expr { ? logical_or_expr : logical_or_expr }

logical_or_expr ::= logical_and_expr { || logical_and_expr }

logical_and_expr ::= binary_or_expr { && binary_or_expr }

binary_or_expr ::= binary_xor_expr { | binary_xor_expr }

binary_xor_expr ::= binary_and_expr { ^ binary_and_expr }

binary_and_expr ::= logical_equality_expr { & logical_equality_expr }

logical_equality_expr ::= logical_inequality_expr { eq_neq_op
logical_inequality_expr }

logical_inequality_expr ::= binary_shift_expr {logical_inequality_rhs}

logical_inequality_rhs ::=
 inequality_expr_term
 | inside_expr_term

inequality_expr_term ::= logical_inequality_op binary_shift_expr

logical_inequality_op ::=
 < | <= | > | >=

inside_expr_term ::=
 in [open_range_list] }

open_range_list ::= open_range_value { , open_range_value }

open_range_value ::= expression [.. expression]

binary_shift_expr ::= binary_add_sub_expr { shift_op binary_add_sub_expr }
Copyright © 2017 - 2018 Accellera. All rights reserved.
263

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
binary_add_sub_expr ::= binary_mul_div_mod_expr { add_sub_op
binary_mul_div_mod_expr }

binary_mul_div_mod_expr ::= binary_exp_expr { mul_div_mod_op binary_exp_expr }

binary_exp_expr ::= unary_expr { ** unary_expr }

unary_expr ::= [unary_op] primary

unary_op ::= + | - | ! | ~ | & | | | ^

primary ::=
 number
 | bool_literal
 | paren_expr
 | string
 | variable_ref_path
 | method_function_symbol_call
 | static_ref_path
 | super
 | compile_has_expr

paren_expr ::= (expression)

variable_ref_path ::= variable_ref { .variable_ref }

variable_ref ::= identifier [[expression [: expression]]]

method_function_symbol_call ::=
 method_call
 | function_symbol_call

method_call ::= hierarchical_id method_parameter_list ;

function_symbol_call::= function_symbol_id method_parameter_list ;

function_symbol_id::=
 function_id
 | symbol_identifier

function_id::= identifier {:: identifier}

static_ref_path ::= identifier :: identifier { :: identifier }

mul_div_mod_op ::= * | / | %

add_sub_op ::= + | -

shift_op ::= << | >>

eq_neq_op ::= == | !=
Copyright © 2017 - 2018 Accellera. All rights reserved.
264

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
B.14 Identifiers and literals

constant ::=
 number
 | identifier

identifier ::=
 ID
 | ESCAPED_ID

hierarchical_id ::= identifier { . identifier }

action_type_identifier ::= type_identifier

type_identifier ::= [::] ID { :: ID }

package_identifier ::= hierarchical_id

coverpoint_target_identifier ::= hierarchical_id

action_identifier ::= identifier

struct_identifier ::= identifier

component_identifier ::= identifier

component_action_identifier ::= identifier

coverpoint_identifier ::= identifier

enum_identifier ::= identifier

import_class_identifier ::= identifier

language_identifier ::= identifier

method_identifier ::= identifier

symbol_identifier ::= identifier

variable_identifier ::= identifier

iterator_identifier ::= identifier

index_identifier ::= identifier

buffer_type_identifier ::= type_identifier

resource_type_identifier ::= type_identifier

state_type_identifier ::= type_identifier

stream_type_identifier ::= type_identifier

filename_string ::= DOUBLE_QUOTED_STRING
Copyright © 2017 - 2018 Accellera. All rights reserved.
265

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
bool_literal ::=
 true
 | false

B.15 Numbers

number::=
 based_hex_number
 | based_dec_number
 | based_bin_number
 | based_oct_number
 | dec_number

 | oct_number
 | hex_number

based_hex_number ::= [DEC_LITERAL] BASED_HEX_LITERAL

DEC_LITERAL ::= [1-9] {[0-9]|_}

BASED_HEX_LITERAL ::= ' [s|S] h|H [0-9]|[a-f]|[A-F] {[0-9]|[a-f]|[A-F]|_}

based_dec_number ::= [DEC_LITERAL] BASED_DEC_LITERAL

BASED_DEC_LITERAL ::= ' [s|S] d|D [0-9] {[0-9]|_}

based_bin_number ::= [DEC_LITERAL] BASED_BIN_LITERAL

BASED_BIN_LITERAL ::= ' [s|S] b|B [0-1] {[0-1]|_}

based_oct_number ::= [DEC_LITERAL] BASED_OCT_LITERAL

BASED_OCT_LITERAL ::= ' [s|S] o|O [0-7] {[0-7]|_}

dec_number ::= DEC_LITERAL

oct_number ::= OCT_LITERAL

OCT_LITERAL ::= 0 {[0-7]|_}

hex_number ::= HEX_LITERAL

HEX_LITERAL ::= 0x [0-9]|[a-f]|[A-F] {[0-9]|[a-f]|[A-F]|_}

B.16 Additional lexical conventions

SL_COMMENT ::= //{any_ASCII_character_except_newline}\n

ML_COMMENT ::= /*{any_ASCII_character}*/

string ::=
 DOUBLE_QUOTED_STRING
 | TRIPLE_DOUBLE_QUOTED_STRING
Copyright © 2017 - 2018 Accellera. All rights reserved.
266

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
DOUBLE_QUOTED_STRING ::= " { unescaped_character | escaped_character } "

unescaped_character ::= Any_Printable_ASCII_Character

escaped_character ::= \('|"|?|\|a|b|f|n|r|t|v|[0-7][0-7][0-7])

TRIPLE_DOUBLE_QUOTED_STRING ::= """{any_ASCII_character}"""

ID ::= [a-z]|[A-Z]|_ {[a-z]|[A-Z]|_|[0-9]}

ESCAPED_ID ::= \{any_ASCII_character_except_whitespace} whitespace
Copyright © 2017 - 2018 Accellera. All rights reserved.
267

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Annex C

(normative)

C++ header files

This annex contains the header files for the C++ input. If there is a conflict between a C++ class declaration
shown anywhere in this Standard and the material in this annex, the material shown in this annex shall take
precedence.

C.1 File pss.h

#pragma once
#include "pss/scope.h"
#include "pss/type_decl.h"
#include "pss/bit.h"
#include "pss/cond.h"
#include "pss/vec.h"
#include "pss/enumeration.h"
#include "pss/chandle.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/attr.h"
#include "pss/rand_attr.h"
#include "pss/component.h"
#include "pss/comp_inst.h"
#include "pss/covergroup.h"
#include "pss/covergroup_bins.h"
#include "pss/covergroup_coverpoint.h"
#include "pss/covergroup_cross.h"
#include "pss/covergroup_iff.h"
#include "pss/covergroup_inst.h"
#include "pss/covergroup_options.h"
#include "pss/structure.h"
#include "pss/buffer.h"
#include "pss/stream.h"
#include "pss/state.h"
#include "pss/resource.h"
#include "pss/lock.h"
#include "pss/share.h"
#include "pss/symbol.h"
#include "pss/action.h"
#include "pss/input.h"
#include "pss/output.h"
#include "pss/constraint.h"
#include "pss/in.h"
#include "pss/unique.h"
#include "pss/action_handle.h"
#include "pss/action_attr.h"
#include "pss/pool.h"
#include "pss/bind.h"
#include "pss/exec.h"
#include "pss/foreach.h"
#include "pss/if_then.h"
#include "pss/function.h"
Copyright © 2017 - 2018 Accellera. All rights reserved.
268

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
#include "pss/import_class.h"
#include "pss/export_action.h"
#include "pss/extend.h"
#include "pss/override.h"

C.2 File pss/action.h

#pragma once
#include <vector>
#include "pss/detail/actionBase.h"
#include "pss/detail/algebExpr.h"
#include "pss/detail/activityBase.h"
#include "pss/detail/activityStmt.h"
#include "pss/detail/sharedExpr.h"
#include "pss/detail/comp_ref.h"
namespace pss {
 class component; // forward declaration
 /// Declare an action
 class action : public detail::ActionBase {
 protected:
 /// Constructor
 action (const scope& s);
 /// Destructor
 ~action();
 public:
 template <class T=component> detail::comp_ref<T> comp();
 /// In-line exec block
 virtual void pre_solve();
 /// In-line exec block
 virtual void post_solve();
 /// Declare an activity
 class activity : public detail::ActivityBase {
 public:
 // Constructor
 template < class... R >
 activity(R&&... /* detail::ActivityStmt */ r);
 // Destructor
 ~activity();
 };
 // Specifies the guard condition for a select branch
 class guard {
 public:
 guard(const detail::AlgebExpr &cond);
 };
 // Specifies the weight for a select branch
 class weight {
 public:
 weight(const detail::AlgebExpr &w);
 };
 class branch {
 public:
 // Specifies a select-branch statement with no guard
 // condition and no weight
 template <class... R> branch(
 R&&... /* detail::ActivityStmt */ r);
 // Specifies a select-branch statement with a guard
 // condition and no weight
Copyright © 2017 - 2018 Accellera. All rights reserved.
269

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 template <class... R> branch(const guard &g,
 R&&... /* detail::ActivityStmt */ r);
 // Specifies a select-branch statement with both a
 // guard condition and a weight
 template <class... R> branch(
 const guard &g,
 const weight &w,
 R&&... /* detail::ActivityStmt */ r);
 // Specifies a select-branch statement with a weight and
 // no guard condition
 template <class... R> branch(
 const weight &w,
 R&&... /* detail::ActivityStmt */ r);
 };
 class choice {
 public:
 // Specifies a case-branch statement
 template <class... R>
 choice(const range &range,
 R&&... /*detail::ActivityStmt*/ stmts);
 };
 class default_choice {
 public:
 template <class... R>
 default_choice(R&&... /*detail::ActivityStmt*/ stmts);
 };
 class match : public detail::ActivityStmt {
 public:
 template <class... R>
 match(const cond &c,
 R&&... /* choice|choice_default */ stmts);
 };
 // select() must be inside action declaration to disambiguate
 // from built in select()
 /// Declare a select statement
 class select : public detail::ActivityStmt {
 public:
 template < class... R >
 select(R&&... /* detail::ActivityStmt|branch */ r);
 };
 /// Declare a sequence block
 class sequence : public detail::ActivityStmt {
 public:
 // Constructor
 template < class... R >
 sequence(R&&... /* detail::ActivityStmt */ r);
 };
 /// Declare a schedule block
 class schedule : public detail::ActivityStmt {
 public:
 // Constructor
 template < class... R >
 schedule(R&&... /* detail::ActivityStmt */ r);
 };
 /// Declare a parallel block
 class parallel : public detail::ActivityStmt {
 public:
 // Constructor
 template < class... R >
Copyright © 2017 - 2018 Accellera. All rights reserved.
270

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 parallel(R&&... /* detail::ActivityStmt */ r);
 };
 /// Declare a repeat statement
 class repeat : public detail::ActivityStmt {
 public:
 /// Declare a repeat statement
 repeat(const detail::AlgebExpr& count,
 const detail::ActivityStmt& activity
);
 /// Declare a repeat statement
 repeat(const attr<int>& iter,
 const detail::AlgebExpr& count,
 const detail::ActivityStmt& activity
);
 };
 /// Declare a repeat while statement
 class repeat_while : public detail::ActivityStmt {
 public:
 /// Declare a repeat while statement
 repeat_while(const cond& a_cond,
 const detail::ActivityStmt& activity
);
 };
 /// Declare a do while statement
 class do_while : public detail::ActivityStmt {
 public:
 /// Declare a repeat while statement
 do_while(const detail::ActivityStmt& activity,
 const cond& a_cond
);
 };
 }; // class action
}; // namespace pss
#include "pss/timpl/action.t"

C.3 File pss/action_attr.h

#pragma once
#include "pss/rand_attr.h"
namespace pss {
 template < class T >
 class action_attr : public rand_attr<T> {
 public:
 /// Constructor
 action_attr (const scope& name);
 /// Constructor defining width
 action_attr (const scope& name, const width& a_width);
 /// Constructor defining range
 action_attr (const scope& name, const range& a_range);
 /// Constructor defining width and range
 action_attr (const scope& name, const width& a_width,
 const range& a_range);
 };
}; // namespace pss
#include "pss/timpl/action_attr.t"
Copyright © 2017 - 2018 Accellera. All rights reserved.
271

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
C.4 File pss/action_handle.h

#pragma once
#include "pss/detail/actionHandleBase.h"
#include "pss/detail/algebExpr.h"
namespace pss {
 /// Declare an action handle
 template<class T>
 class action_handle : public detail::ActionHandleBase {
 public:
 action_handle();
 action_handle(const scope& name);
 action_handle(const action_handle<T>& a_action_handle);
 template <class... R> action_handle<T> with (
 const R&... /* detail::AlgebExpr */ constraints);
 T* operator-> ();
 T& operator* ();
 };
}; // namespace pss
#include "pss/timpl/action_handle.t"

C.5 File pss/attr.h

#pragma once
#include <string>
#include <memory>
#include <list>
#include "pss/bit.h"
#include "pss/vec.h"
#include "pss/scope.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/structure.h"
#include "pss/component.h"
#include "pss/detail/attrTBase.h"
#include "pss/detail/attrIntBase.h"
#include "pss/detail/attrBitBase.h"
#include "pss/detail/attrStringBase.h"
#include "pss/detail/attrBoolBase.h"
#include "pss/detail/attrCompBase.h"
#include "pss/detail/attrVecTBase.h"
#include "pss/detail/attrVecIntBase.h"
#include "pss/detail/attrVecBitBase.h"
#include "pss/detail/algebExpr.h"
#include "pss/detail/execStmt.h"
namespace pss {
 template <class T>
 class rand_attr; // forward reference
 /// Primary template for enums and structs
 template < class T>
 class attr : public detail::AttrTBase {
 public:
 /// Constructor
 attr (const scope& s);
 /// Constructor with initial value
 attr (const scope& s, const T& init_val);
 /// Copy constructor
Copyright © 2017 - 2018 Accellera. All rights reserved.
272

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 attr(const attr<T>& other);
 /// Struct access
 T* operator-> ();
 /// Struct access
 T& operator* ();
 /// Enumerator access
 T& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar int
 template <>
 class attr<int> : public detail::AttrIntBase {
 public:
 /// Constructor
 attr (const scope& s);
 /// Constructor with initial value
 attr (const scope& s, const int& init_val);
 /// Constructor defining width
 attr (const scope& s, const width& a_width);
 /// Constructor defining width and initial value
 attr (const scope& s, const width& a_width, const int& init_val);
 /// Constructor defining range
 attr (const scope& s, const range& a_range)
 /// Constructor defining range and initial value
 attr (const scope& s, const range& a_range,
 const int& init_val);
 /// Constructor defining width and range
 attr (const scope& s, const width& a_width,
 const range& a_range);
 /// Constructor defining width and range and initial value
 attr (const scope& s, const width& a_width,
 const range& a_range,
 const int& init_val);
 /// Copy constructor
 attr(const attr<int>& other);
 /// Access to underlying data
 int& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 detail::ExecStmt operator+= (const detail::AlgebExpr& value);
 detail::ExecStmt operator-= (const detail::AlgebExpr& value);
 detail::ExecStmt operator<<= (const detail::AlgebExpr& value);
 detail::ExecStmt operator>>= (const detail::AlgebExpr& value);
 detail::ExecStmt operator&= (const detail::AlgebExpr& value);
 detail::ExecStmt operator|= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar bit
 template <>
 class attr<bit> : public detail::AttrBitBase {
 public:
 /// Constructor
 attr (const scope& s);
 /// Constructor with initial value
 attr (const scope& s, const bit& init_val);
 /// Constructor defining width
 attr (const scope& s, const width& a_width);
 /// Constructor defining width and initial value
 attr (const scope& s, const width& a_width, const bit& init_val);
Copyright © 2017 - 2018 Accellera. All rights reserved.
273

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Constructor defining range
 attr (const scope& s, const range& a_range);
 /// Constructor defining range and initial value
 attr (const scope& s, const range& a_range,
 const bit& init_val);
 /// Constructor defining width and range
 attr (const scope& s, const width& a_width,
 const range a_range);
 /// Constructor defining width and range and initial value
 attr (const scope& s, const width& a_width,
 const range& a_range,
 const bit& init_val);
 /// Copy constructor
 attr(const attr<bit>& other);
 /// Access to underlying data
 bit& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 detail::ExecStmt operator+= (const detail::AlgebExpr& value);
 detail::ExecStmt operator-= (const detail::AlgebExpr& value);
 detail::ExecStmt operator<<= (const detail::AlgebExpr& value);
 detail::ExecStmt operator>>= (const detail::AlgebExpr& value);
 detail::ExecStmt operator&= (const detail::AlgebExpr& value);
 detail::ExecStmt operator|= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar string
 template <>
 class attr<std::string> : public detail::AttrStringBase {
 public:
 /// Constructor
 attr (const scope& s);
 /// Constructor and initial value
 attr (const scope& s, const std::string& init_val);
 /// Copy constructor
 attr(const attr<std::string>& other);
 /// Access to underlying data
 std::string& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar bool
 template <>
 class attr<bool> : public detail::AttrBoolBase {
 public:
 /// Constructor
 attr (const scope& s);
 /// Constructor and initial value
 attr (const scope& s, const bool init_val);
 /// Copy constructor
 attr(const attr<bool>& other);
 /// Access to underlying data
 bool& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 detail::ExecStmt operator+= (const detail::AlgebExpr& value);
 detail::ExecStmt operator-= (const detail::AlgebExpr& value);
 detail::ExecStmt operator&= (const detail::AlgebExpr& value);
 detail::ExecStmt operator|= (const detail::AlgebExpr& value);
 };
Copyright © 2017 - 2018 Accellera. All rights reserved.
274

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Template specialization for scalar component*
 template <>
 class attr<component*> : public detail::AttrCompBase {
 public:
 /// Copy constructor
 attr(const attr<component*>& other);
 /// Access to underlying data
 component* val();
 };
 /// Template specialization for array of ints
 template <>
 class attr<vec<int>> : public detail::AttrVecIntBase {
 public:
 /// Constructor defining array size
 attr(const scope& name, const std::size_t count);
 /// Constructor defining array size and element width
 attr(const scope& name, const std::size_t count,
 const width& a_width);
 /// Constructor defining array size and element range
 attr(const scope& name, const std::size_t count,
 const range& a_range);
 /// Constructor defining array size and element width and range
 attr(const scope& name, const std::size_t count,
 const width& a_width, const range& a_range);
 /// Access to specific element
 attr<int>& operator[](const std::size_t idx);
 /// Constraint on randomized index
 detail::AlgebExpr operator[](const detail::AlgebExpr& idx);
 /// Get size of array
 std::size_t size() const;
 /// Constraint on sum of array
 detail::AlgebExpr sum() const;
 };
 /// Template specialization for array of bits
 template <>
 class attr<vec<bit>> : public detail::AttrVecBitBase {
 public:
 /// Constructor defining array size
 attr(const scope& name, const std::size_t count);
 /// Constructor defining array size and element width
 attr(const scope& name, const std::size_t count,
 const width& a_width);
 /// Constructor defining array size and element range
 attr(const scope& name, const std::size_t count,
 const range& a_range);
 /// Constructor defining array size and element width and range
 attr(const scope& name, const std::size_t count,
 const width& a_width, const range& a_range);
 /// Access to specific element
 attr<bit>& operator[](const std::size_t idx);
 /// Constraint on randomized index
 detail::AlgebExpr operator[](const detail::AlgebExpr& idx);
 /// Get size of array
 std::size_t size() const;
 /// Constraint on sum of array
 detail::AlgebExpr sum() const;
 };
 /// Template specialization for arrays of enums and arrays of structs
 template <class T>
Copyright © 2017 - 2018 Accellera. All rights reserved.
275

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 class attr<vec<T>> : public detail::AttrVecTBase {
 public:
 attr(const scope& name, const std::size_t count);
 attr<T>& operator[](const std::size_t idx);
 detail::AlgebExpr operator[](const detail::AlgebExpr& idx);
 std::size_t size() const;
 };
 template < class T >
 using attr_vec = attr< vec <T> >;
}; // namespace pss
#include "pss/timpl/attr.t"

C.6 File pss/bind.h

#pragma once
#include "pss/pool.h"
#include "pss/detail/bindBase.h"
#include "pss/detail/ioBase.h"
namespace pss {
 /// Declare a bind
 class bind : public detail::BindBase {
 public:
 /// Bind a type to multiple targets
 template <class R /*type*/, typename... T /*targets*/ >
 bind (const pool<R>& a_pool, const T&... targets);
 /// Explicit binding of action inputs and outputs
 template <class... R>
 bind (const R&... /* input|output|lock|share */ io_items);
 /// Destructor
 ~bind();
 };
}; // namespace pss
#include "pss/timpl/bind.t"

C.7 File pss/bit.h

#pragma once
namespace pss {
 using bit = unsigned int;
}; // namespace pss

C.8 File pss/buffer.h

#pragma once
#include "pss/detail/bufferBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare a buffer object
 class buffer : public detail::BufferBase {
 protected:
 /// Constructor
 buffer (const scope& s);
 /// Destructor
 ~buffer();
Copyright © 2017 - 2018 Accellera. All rights reserved.
276

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 public:
 /// In-line exec block
 virtual void pre_solve();
 /// In-line exec block
 virtual void post_solve();
 };
}; // namespace pss

C.9 File pss/chandle.h

#pragma once
#include "pss/detail/algebExpr.h"
#include "pss/detail/chandleBase.h"
namespace pss {
 class chandle : public detail::ChandleBase {
 public:
 chandle& operator= (detail::AlgebExpr val);
 };
};

C.10 File pss/comp_inst.h

#pragma once
#include "pss/detail/compInstBase.h"
#include "pss/detail/compInstVecBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare a component instance
 template<class T>
 class comp_inst : public detail::CompInstBase {
 public:
 /// Constructor
 comp_inst (const scope& s);
 /// Copy Constructor
 comp_inst (const comp_inst& other);
 /// Destructor
 ~comp_inst();
 /// Access content
 T* operator-> ();
 /// Access content
 T& operator* ();
 };
 /// Template specialization for array of components
 template<class T>
 class comp_inst<vec<T> > : public detail::CompInstVecBase {
 public:
 comp_inst(const scope& name, const std::size_t count);
 comp_inst<T>& operator[](const std::size_t idx);
 std::size_t size() const;
 };
 template < class T >
 using comp_inst_vec = comp_inst< vec <T> >;
}; // namespace pss
#include "pss/timpl/comp_inst.t"
Copyright © 2017 - 2018 Accellera. All rights reserved.
277

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
C.11 File pss/component.h

#pragma once
#include "pss/detail/componentBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare a component
 class component : public detail::ComponentBase {
 protected:
 /// Constructor
 component (const scope& s);
 /// Copy Constructor
 component (const component& other);
 /// Destructor
 ~component();
 public:
 /// In-line exec block
 virtual void init();
 };
}; // namespace pss

C.12 File pss/cond.h

#pragma once
namespace pss {
namespace detail {

class AlgebExpr;
}
class cond {
public:

cond(const detail::AlgebExpr &c);
};
}

C.13 File pss/constraint.h

#pragma once
#include <vector>
#include "pss/detail/constraintBase.h"
namespace pss {
 namespace detail {
 class AlgebExpr; // forward reference
 }
 /// Declare a member constraint
 class constraint : public detail::ConstraintBase {
 public:
 /// Declare an unnamed member constraint
 template <class... R> constraint (
 const R&&... /*detail::AlgebExpr*/ expr
);
 /// Declare a named member constraint
 template <class... R> constraint (
 const std::string& name,
 const R&&... /*detail::AlgebExpr*/ expr
);
Copyright © 2017 - 2018 Accellera. All rights reserved.
278

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 };
 /// Declare a dynamic member constraint
 class dynamic_constraint : public detail::DynamicConstraintBase {
 public:
 /// Declare an unnamed dynamic member constraint
 template <class... R> dynamic_constraint (
 const R&&... /*detail::AlgebExpr*/ expr
);
 /// Declare a named dynamic member constraint
 template <class... R> dynamic_constraint (
 const std::string& name,
 const R&&... /*detail::AlgebExpr*/ expr
);
 };
}; // namespace pss
#include "pss/timpl/constraint.t"

C.14 File pss/covergroup.h

#pragma once
#include <stdint.h>
#include <string>
#include "pss/scope.h"
namespace pss {
class covergroup {
public:

covergroup(const scope &s);
virtual ~covergroup();

};
}

C.15 File pss/covergroup_bins.h

#pragma once
#include <string>
#include "pss/covergroup.h"
#include "pss/range.h"
#include "pss/covergroup_coverpoint.h"
namespace pss {
namespace detail {
 class AlgebExpr;
}
template <class T> class bins {
public:
};
template <> class bins<int> {
public:
 // default bins
 bins(const std::string &name);
 bins(
 const std::string &name,
 const range &ranges);
 bins(
 const std::string &name,
 const coverpoint &cp);
 const bins<int> &with(const detail::AlgebExpr &expr);
Copyright © 2017 - 2018 Accellera. All rights reserved.
279

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
};
template <> class bins<bit> {
public:
 // default bins
 bins(const std::string &name);
 bins(
 const std::string &name,
 const range &ranges);
 bins(
 const std::string &name,
 const coverpoint &cp);
 bins(
 const std::string &name,
 const rand_attr<bit> &var);
 bins(
 const std::string &name,
 const attr<bit> &var);
 const bins<bit> &with(const detail::AlgebExpr &expr);
};
template <> class bins<vec<int>> {
public:
 // default bins
 bins(
 const std::string &name,
 uint32_t size);
 bins(
 const std::string &name,
 uint32_t size,
 const range &ranges);
 bins(
 const std::string &name,
 uint32_t size,
 const coverpoint &cp);
 bins(
 const std::string &name,
 const range &ranges);
 bins(
 const std::string &name,
 const coverpoint &cp);
 bins(
 const std::string &name,
 const rand_attr<int> &var);
 bins(
 const std::string &name,
 const attr<int> &var);
 const bins<vec<int>> &with(const detail::AlgebExpr &expr);
};
template <> class bins<vec<bit>> {
public:
 // default bins
 bins(
 const std::string &name);
 bins(
 const std::string &name,
 const range &ranges);
 bins(
 const std::string &name,
 const coverpoint &cp);
Copyright © 2017 - 2018 Accellera. All rights reserved.
280

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 bins(
 const std::string &name,
 uint32_t size,
 const range &ranges);
 bins(
 const std::string &name,
 const rand_attr<bit> &var);
 bins(
 const std::string &name,
 const attr<bit> &var);
 bins(
 const std::string &name,
 uint32_t size,
 const coverpoint &cp);
 const bins<vec<bit>> &with(const detail::AlgebExpr &expr);
};
template <class T> class ignore_bins {
public:
};
template <> class ignore_bins<int> {
public:
 // default bins
 ignore_bins(const std::string &name);
 ignore_bins(
 const std::string &name,
 const range &ranges);
 ignore_bins(
 const std::string &name,
 const coverpoint &cp);
 const ignore_bins<int> &with(const detail::AlgebExpr &expr);
};
template <> class ignore_bins<bit> {
public:
 // default bins
 ignore_bins(const std::string &name);
 ignore_bins(
 const std::string &name,
 const range &ranges);
 ignore_bins(
 const std::string &name,
 const coverpoint &cp);
 const ignore_bins<bit> &with(const detail::AlgebExpr &expr);
};
template <> class ignore_bins<vec<int>> {
public:
 ignore_bins(const std::string &name);
 ignore_bins(
 const std::string &name,
 const range &ranges);
 ignore_bins(
 const std::string &name,
 const coverpoint &cp);
 ignore_bins(
 const std::string &name,
 uint32_t size,
 const range &ranges);
 ignore_bins(
 const std::string &name,
 uint32_t size,
Copyright © 2017 - 2018 Accellera. All rights reserved.
281

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 const coverpoint &cp);
 const ignore_bins<vec<int>> &with(const detail::AlgebExpr &expr);
};
template <> class ignore_bins<vec<bit>> {
public:
 // default bins
 ignore_bins(const std::string &name);
 ignore_bins(
 const std::string &name,
 const range &ranges);
 ignore_bins(
 const std::string &name,
 const coverpoint &cp);
 ignore_bins(
 const std::string &name,
 uint32_t size,
 const range &ranges);
 ignore_bins(
 const std::string &name,
 uint32_t size,
 const coverpoint &cp);
 const ignore_bins<vec<bit>> &with(const detail::AlgebExpr &expr);
};
template <class T> class illegal_bins {
public:
};
template <> class illegal_bins<int> {
public:
 // Default bins
 illegal_bins(const std::string &name);
 illegal_bins(
 const std::string &name,
 const range &ranges);
 illegal_bins(
 const std::string &name,
 const coverpoint &cp);
 const illegal_bins<int> &with(const detail::AlgebExpr &expr);
};
template <> class illegal_bins<bit> {
public:
 // Default bins
 illegal_bins(const std::string &name);
 illegal_bins(
 const std::string &name,
 const range &ranges);
 illegal_bins(
 const std::string &name,
 const coverpoint &cp);
 const illegal_bins<bit> &with(const detail::AlgebExpr &expr);
};
template <> class illegal_bins<vec<int>> {
public:
 // Default bins
 illegal_bins(const std::string &name);
 illegal_bins(
 const std::string &name,
 const range &ranges);
 illegal_bins(
 const std::string &name,
Copyright © 2017 - 2018 Accellera. All rights reserved.
282

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 const coverpoint &cp);
 illegal_bins(
 const std::string &name,
 uint32_t size,
 const range &ranges);
 illegal_bins(
 const std::string &name,
 uint32_t size,
 const coverpoint &cp);
 const illegal_bins<vec<int>> &with(const detail::AlgebExpr &expr);
};
template <> class illegal_bins<vec<bit>> {
public:
 // Default bins
 illegal_bins(const std::string &name);
 illegal_bins(
 const std::string &name,
 const range &ranges);
 illegal_bins(
 const std::string &name,
 const coverpoint &cp);
 illegal_bins(
 const std::string &name,
 uint32_t size,
 const range &ranges);
 illegal_bins(
 const std::string &name,
 uint32_t size,
 const coverpoint &cp);
 const illegal_bins<vec<bit>> &with(const detail::AlgebExpr &expr);
};
}

C.16 File pss/covergroup_coverpoint.h

#pragma once
#include "pss/covergroup.h"
#include "pss/covergroup_options.h"
#include "pss/covergroup_iff.h"
#include "pss/detail/algebExpr.h"
namespace pss {
namespace detail {

class AlgebExpr;
}
class coverpoint {
public:

template <class... T> coverpoint(
const std::string&name,
const detail::AlgebExpr&target,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const std::string&name,
const detail::AlgebExpr&target,
const iff &cp_iff,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const std::string&name,
Copyright © 2017 - 2018 Accellera. All rights reserved.
283

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
const detail::AlgebExpr&target,
const options&cp_options,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const std::string&name,
const detail::AlgebExpr&target,
const iff &cp_iff,
const options&cp_options,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const detail::AlgebExpr&target,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const detail::AlgebExpr&target,
const iff &cp_iff,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const detail::AlgebExpr&target,
const options&cp_options,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

template <class... T> coverpoint(
const detail::AlgebExpr&target,
const iff &cp_iff,
const options&cp_options,
const T&... /*iff|bins|ignore_bins|illegal_bins */ bin_items);

};
}

C.17 File pss/covergroup_cross.h

#pragma once
#include "pss/covergroup.h"
#include "pss/covergroup_options.h"
#include "pss/covergroup_iff.h"
#include "pss/covergroup_coverpoint.h"
namespace pss {
class cross : public coverpoint {
public:

template <class... T> cross(
const std::string&name,
const T&...

/*coverpoint|attr|rand_attr|bins|ignore_bins|illegal_bins */ items);
template <class... T> cross(

const std::string&name,
const iff &cp_iff,
const T&...

/*coverpoint|attr|rand_attr|bins|ignore_bins|illegal_bins */ items);
template <class... T> cross(

const std::string&name,
const options&cp_options,
const T&...

/*coverpoint|attr|rand_attr|bins|ignore_bins|illegal_bins */ items);
template <class... T> cross(

const std::string&name,
const iff &cp_iff,
const options&cp_options,
Copyright © 2017 - 2018 Accellera. All rights reserved.
284

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
const T&...
/*coverpoint|attr|rand_attr|bins|ignore_bins|illegal_bins */ items);

};
}

C.18 File pss/covergroup_iff.h

#pragma once
#include "pss/detail/algebExpr.h"
namespace pss {
class iff {
public:

iff(const detail::AlgebExpr &expr);
};
}

C.19 File pss/covergroup_inst.h

#pragma once
#include "covergroup.h"
#include "covergroup_options.h"
#include <functional>
namespace pss {
template <class T=covergroup> class covergroup_inst {
public:

covergroup_inst(
const std::string&name,
const options&opts);

template <class... R> covergroup_inst(
const std::string&name,
const options&opts,
const R&... ports);

template <class... R> covergroup_inst(
const std::string&name,
const R&... ports);

};
template <> class covergroup_inst<covergroup> {
public:

template <class... R> covergroup_inst(
const std::string&name,
std::function<void(void)>body);

};
}

C.20 File pss/covergroup_options.h

#pragma once
#include "covergroup.h"
namespace pss {
class weight {
public:

weight(uint32_t w);
};
class goal {
Copyright © 2017 - 2018 Accellera. All rights reserved.
285

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
public:
goal(uint32_t w);

};
class name {
public:

name(const std::string &name);
};
class comment {
public:

comment(const std::string &name);
};
class detect_overlap {
public:

detect_overlap(bool l);
};
class at_least {
public:

at_least(uint32_t w);
};
class auto_bin_max {
public:

auto_bin_max(uint32_t m);
};
class per_instance {
public:

per_instance(bool is_per_instance);
};
class options {
public:

template <class... O> options(
const O&... /*

weight
| goal
| name
| comment
| detect_overlap
| at_least
| auto_bin_max
| per_instance */ options);

};
class type_options {
public:

template <class... O> type_options(
const O&... /*

weight
| goal
| comment */ options);

};
}

C.21 File pss/enumeration.h

#pragma once
#include "pss/detail/enumerationBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare an enumeration
Copyright © 2017 - 2018 Accellera. All rights reserved.
286

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 class enumeration : public detail::EnumerationBase {
 public:
 /// Constructor
 enumeration (const scope& s);
 /// Default Constructor
 enumeration ();
 /// Destructor
 ~enumeration ();
 protected:
 class __pss_enum_values {
 public:
 __pss_enum_values (enumeration* context, const std::string& s);
 };
 template <class T>
 enumeration& operator=(const T& t);
 };
}; // namespace pss
#define PSS_ENUM(class_name, ...) \
class class_name : public enumeration { \
public: \
 class_name (const scope& s) : enumeration (this){} \
 \
 enum __pss_##class_name { \
 __VA_ARGS__ \
 }; \
 \
 __pss_enum_values __pss_enum_values_ {this, #__VA_ARGS__}; \
 \
 class_name() {} \
 class_name (const __pss_##class_name e) { \
 enumeration::operator=(e); \
 } \
 \
 class_name& operator=(const __pss_##class_name e){ \
 enumeration::operator=(e); \
 return *this; \
 } \
}
#define PSS_EXTEND_ENUM(ext_name, base_name, ...) \
class ext_name : public base_name { \
public: \
 ext_name (const scope& s) : base_name (this){} \
 \
 enum __pss_##ext_name { \
 __VA_ARGS__ \
 }; \
 \
 __pss_enum_values __pss_enum_values_ {this, #__VA_ARGS__}; \
 \
 ext_name() {} \
 ext_name (const __pss_##ext_name e) { \
 enumeration::operator=(e); \
 } \
 \
 ext_name& operator=(const __pss_##ext_name e){ \
 enumeration::operator=(e); \
 return *this; \
 } \
}; \
Copyright © 2017 - 2018 Accellera. All rights reserved.
287

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
extend_enum<base_name, ext_name> __pss_##ext_name
#include "pss/timpl/enumeration.t"

C.22 File pss/exec.h

#pragma once
#include <functional>
#include "pss/detail/execBase.h"
#include "pss/detail/attrCommon.h"
namespace pss {
 /// Declare an exec block
 class exec : public detail::ExecBase {
 public:
 /// Types of exec blocks
 enum ExecKind {
 run_start,
 header,
 declaration,
 init,
 pre_solve,
 post_solve,
 body,
 run_end,
 file
 };
 /// Declare inline exec
 exec(
 ExecKind kind,
 std::initializer_list<detail::AttrCommon>&& write_vars
);
 /// Declare target template exec
 exec(
 ExecKind kind,
 const char* language_or_file,
 const char* target_template);
 exec(
 ExecKind kind,
 std::string&& language_or_file,
 std::string&& target_template);
 /// Declare native exec
 template < class... R >
 exec(
 ExecKind kind,
 R&&... /* detail::ExecStmt */ r
);
 /// Declare generative procedural-interface exec
 exec(
 ExecKind kind,
 std::function<void()> genfunc // shadowed by variadic template c’tor
 // handle at construction time
);
 /// Declare generative target-template exec
 exec(
 ExecKind kind,
 std::string&& language_or_file,
 std::function<void(std::ostream&)> genfunc
 // shadowed by variadic template c’tor
Copyright © 2017 - 2018 Accellera. All rights reserved.
288

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 // handle at construction time
);
 };
}; // namespace pss
#include "pss/timpl/exec.t"

C.23 File pss/export_action.h

#pragma once
#include <vector>
#include "pss/scope.h"
#include "pss/bit.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/detail/exportActionParam.h"
namespace pss {
 class export_action_base {
 public:
 // Export action kinds
 enum kind { solve, target };
 template <class T> class in : public detail::ExportActionParam {
 public:
 };
 };
 /// Declare an export action
 template <class T=int> class export_action
 : public export_action_base {
 public:
 using export_action_base::in;
 export_action(
 const std::vector<detail::ExportActionParam> ¶ms) {};
 export_action(
 kind,
 const std::vector<detail::ExportActionParam> ¶ms) {};
 };
 template <> class export_action_base::in<bit>
 : public detail::ExportActionParam {
 public:
 in(const scope &name) {};
 in(const scope &name, const width &w) {};
 in(const scope &name, const width &w, const range &rng) {};
 };
 template <> class export_action_base::in<int>
 : public detail::ExportActionParam {
 public:
 in(const scope &name) {};
 in(const scope &name, const width &w) {};
 in(const scope &name, const width &w, const range &rng) {};
 };
}

C.24 File pss/extend.h

#pragma once
namespace pss {
 /// Extend a structure
Copyright © 2017 - 2018 Accellera. All rights reserved.
289

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 template < class Foundation, class Extension>
 class extend_structure {
 public:
 extend_structure();
 };
 /// Extend an action
 template < class Foundation, class Extension>
 class extend_action {
 public:
 extend_action();
 };
 /// Extend a component
 template < class Foundation, class Extension>
 class extend_component {
 public:
 extend_component();
 };
 /// Extend an enum
 template < class Foundation, class Extension>
 class extend_enum {
 public:
 extend_enum();
 };
}; // namespace pss
#include "pss/timpl/extend.t"

C.25 File pss/foreach.h

#pragma once
#include "pss/bit.h"
#include "pss/vec.h"
#include "pss/detail/sharedExpr.h"
namespace pss {
 template <class T> class attr; // forward declaration
 template <class T> class rand_attr; // forward declaration
 namespace detail {
 class AlgebExpr; // forward reference
 class ActivityStmt; // forward reference
 };
 /// Declare a foreach statement
 class foreach : public detail::SharedExpr {
 public:
 /// Declare a foreach activity statement
 foreach(const attr<int>& iter,
 const rand_attr<vec<int>>& array,
 const detail::ActivityStmt& activity
);
 /// Declare a foreach activity statement
 foreach(const attr<int>& iter,
 const rand_attr<vec<bit>>& array,
 const detail::ActivityStmt& activity
);
 /// Declare a foreach activity statement
 template < class T >
 foreach(const attr<int>& iter,
 const rand_attr<vec<T>>& array,
 const detail::ActivityStmt& activity
Copyright © 2017 - 2018 Accellera. All rights reserved.
290

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
);
 /// Declare a foreach activity statement
 foreach(const attr<int>& iter,
 const attr<vec<int>>& array,
 const detail::ActivityStmt& activity
);
 /// Declare a foreach activity statement
 foreach(const attr<int>& iter,
 const attr<vec<bit>>& array,
 const detail::ActivityStmt& activity
);
 /// Declare a foreach activity statement
 template < class T >
 foreach(const attr<int>& iter,
 const attr<vec<T>>& array,
 const detail::ActivityStmt& activity
);
 /// Declare a foreach constraint statement
 foreach(const attr<int>& iter,
 const rand_attr<vec<int>>& array,
 const detail::AlgebExpr& constraint
);
 /// Declare a foreach constraint statement
 foreach(const attr<int>& iter,
 const rand_attr<vec<bit>>& array,
 const detail::AlgebExpr& constraint
);
 /// Declare a foreach constraint statement
 template < class T >
 foreach(const attr<int>& iter,
 const rand_attr<vec<T>>& array,
 const detail::AlgebExpr& constraint
);
 /// Declare a foreach constraint statement
 foreach(const attr<int>& iter,
 const attr<vec<int>>& array,
 const detail::AlgebExpr& constraint
);
 /// Declare a foreach constraint statement
 foreach(const attr<int>& iter,
 const attr<vec<bit>>& array,
 const detail::AlgebExpr& constraint
);
 /// Declare a foreach constraint statement
 template < class T >
 foreach(const attr<int>& iter,
 const attr<vec<T>>& array,
 const detail::AlgebExpr& constraint
);
 /// Disambiguate a foreach sharedExpr statement
 foreach(const attr<int>& iter,
 const rand_attr<vec<int>>& array,
 const detail::SharedExpr& sharedExpr
);
 /// Disambiguate a foreach sharedExpr statement
 foreach(const attr<int>& iter,
 const rand_attr<vec<bit>>& array,
 const detail::SharedExpr& sharedExpr
);
Copyright © 2017 - 2018 Accellera. All rights reserved.
291

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Disambiguate a foreach sharedExpr statement
 template < class T >
 foreach(const attr<int>& iter,
 const rand_attr<vec<T>>& array,
 const detail::SharedExpr& sharedExpr
);
 /// Disambiguate a foreach sharedExpr statement
 foreach(const attr<int>& iter,
 const attr<vec<int>>& array,
 const detail::SharedExpr& sharedExpr
);
 /// Disambiguate a foreach sharedExpr statement
 foreach(const attr<int>& iter,
 const attr<vec<bit>>& array,
 const detail::SharedExpr& sharedExpr
);
 /// Disambiguate a foreach sharedExpr statement
 template < class T >
 foreach(const attr<int>& iter,
 const attr<vec<T>>& array,
 const detail::SharedExpr& sharedExpr
);
 };
}; // namespace pss
#include "pss/timpl/foreach.t"

C.26 File pss/function.h

#pragma once
#include "pss/scope.h"
#include "pss/bit.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/detail/FunctionParam.h"
#include "pss/detail/FunctionResult.h"
namespace pss {
 template <class T> class in_arg;
 template <class T> class out_arg;
 template <class T> class inout_arg;
 template <class T> class result;
 /// Import function availability
 enum kind { solve, target };
 template<typename T> class function;
 template<typename R, typename... Args>
 class function<R(Args...)> {
 public:
 // CTOR for the case with no procedural specification
 function(const scope &name
 , R result
 , Args... args
);
 template <class... T> R operator() (
 const T&... /* detail::AlgebExpr */ params);
 /// Declare target-template function
 function(const scope &name
 , const std::string &language
 , R result
Copyright © 2017 - 2018 Accellera. All rights reserved.
292

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 , Args... args
 , const std::string &target_template
);
 };
 template<typename T> class import_func;
 template<typename R, typename... Args>
 class import_func<function<R(Args...)>> {
 public:
 /// Declare import function availability
 import_func(const scope &name
 , const kind a_kind
);
 /// Declare import function language
 import_func(const scope &name
 , const std::string &language
);
 /// Declare import function language and availability
 import_func(const scope &name
 , const kind a_kind
 , const std::string &language
);
 template <class... T> R operator() (
 const T&... /* detail::AlgebExpr */ params);
 };
 // Some simplifications when R = result<void>
 template<typename... Args>
 class function<result<void>(Args...)> {
 public:
 // CTOR for the case with no procedural specification
 function(const scope &name
 , Args... args
);
 template <class... T> result<void> operator() (
 const T&... /* detail::AlgebExpr */ params);
 /// Declare target-template function
 function(const scope &name
 , const std::string &language
 , Args... args
 , const std::string &target_template
);
 };
 template<typename... Args>
 class import_func<function<result<void>(Args...)>> {
 public:
 /// Declare import function availability
 import_func(const scope &name
 , const kind a_kind
);
 /// Declare import function language
 import_func(const scope &name
 , const std::string &language
);
 /// Declare import function language and availability
 import_func(const scope &name
 , const kind a_kind
 , const std::string &language
);
 template <class... T> result<void> operator() (
 const T&... /* detail::AlgebExpr */ params);
Copyright © 2017 - 2018 Accellera. All rights reserved.
293

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 };
 /// Template specialization for inputs
 template <> class in_arg<bit> : public detail::FunctionParam {
 public:
 in_arg(const scope &name);
 in_arg(const scope &name, const width &w);
 in_arg(const scope &name, const width &w, const range &rng);
 };
 template <> class in_arg<int> : public detail::FunctionParam {
 public:
 in_arg(const scope &name);
 in_arg(const scope &name, const width &w);
 in_arg(const scope &name, const width &w, const range &rng);
 };
 /// Template specialization for outputs
 template <> class out_arg<bit> : public detail::FunctionParam {
 public:
 out_arg(const scope &name);
 out_arg(const scope &name, const width &w);
 out_arg(const scope &name, const width &w, const range &rng);
 };
 template <> class out_arg<int> : public detail::FunctionParam {
 public:
 out_arg(const scope &name);
 out_arg(const scope &name, const width &w);
 out_arg(const scope &name, const width &w, const range &rng);
 };
 /// Template specialization for inout_args
 template <> class inout_arg<bit> : public detail::FunctionParam {
 public:
 inout_arg(const scope &name);
 inout_arg(const scope &name, const width &w);
 inout_arg(const scope &name, const width &w, const range &rng);
 };
 template <> class inout_arg<int> : public detail::FunctionParam {
 public:
 inout_arg(const scope &name);
 inout_arg(const scope &name, const width &w);
 inout_arg(const scope &name, const width &w, const range &rng);
 };
 /// Template specialization for results
 template <> class result<bit> : public detail::FunctionResult {
 public:
 result();
 result(const width &w);
 result(const width &w, const range &rng);
 };
 template <> class result<int> : public detail::FunctionResult {
 public:
 result();
 result(const width &w);
 result(const width &w, const range &rng);
 };
 template <> class result<void> : public detail::FunctionResult {
 public:
 result();
 };
}
#include "pss/timpl/function.t"
Copyright © 2017 - 2018 Accellera. All rights reserved.
294

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
C.27 File pss/if_then.h

#pragma once
#include "pss/detail/sharedExpr.h"
namespace pss {
 namespace detail {
 class AlgebExpr; // forward reference
 class ActivityStmt; // forward reference
 };
 /// Declare if-then statement
 class if_then : public detail::SharedExpr {
 public:
 /// Declare if-then activity statement
 if_then (const cond& a_cond,
 const detail::ActivityStmt& true_expr
);
 /// Declare if-then constraint statement
 if_then (const cond& a_cond,
 const detail::AlgebExpr& true_expr
);
 /// Disambiguate if-then sharedExpr statement
 if_then (const cond& a_cond,
 const detail::SharedExpr& true_expr
);
 };
 /// Declare if-then-else statement
 class if_then_else : public detail::SharedExpr {
 public:
 /// Declare if-then-else activity statement
 if_then_else (const cond& a_cond,
 const detail::ActivityStmt& true_expr,
 const detail::ActivityStmt& false_expr
);
 /// Declare if-then-else constraint statement
 if_then_else (const cond& a_cond,
 const detail::AlgebExpr& true_expr,
 const detail::AlgebExpr& false_expr
);
 /// Disambiguate if-then-else sharedExpr activity statement
 if_then_else (const cond& a_cond,
 const detail::SharedExpr& true_expr,
 const detail::ActivityStmt& false_expr
);
 /// Disambiguate if-then-else sharedExpr activity statement
 if_then_else (const cond& a_cond,
 const detail::ActivityStmt& true_expr,
 const detail::SharedExpr& false_expr
);
 /// Disambiguate if-then-else sharedExpr constraint statement
 if_then_else (const cond& a_cond,
 const detail::SharedExpr& true_expr,
 const detail::AlgebExpr& false_expr
);
 /// Disambiguate if-then-else sharedExpr constraint statement
 if_then_else (const cond& a_cond,
 const detail::AlgebExpr& true_expr,
 const detail::SharedExpr& false_expr
);
Copyright © 2017 - 2018 Accellera. All rights reserved.
295

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Disambiguate if-then-else sharedExpr statement
 if_then_else (const cond& a_cond,
 const detail::SharedExpr& true_expr,
 const detail::SharedExpr& false_expr
);
 };
}; // namespace pss

C.28 File pss/import_class.h

#pragma once
#include "pss/scope.h"
#include "pss/detail/importClassBase.h"
namespace pss {
 /// Declare an import class
 class import_class : public detail::ImportClassBase {
 public:
 /// Constructor
 import_class(const scope &name);
 /// Destructor
 ~import_class();
 };
}

C.29 File pss/in.h

#pragma once
#include "pss/range.h"
#include "pss/attr.h"
#include "pss/rand_attr.h"
namespace pss {
 /// Declare a set membership
 class in : public detail::AlgebExpr {
 public:
 in (const attr<int>& a_var,
 const range& a_range
);
 in (const attr<bit>& a_var,
 const range& a_range
);
 in (const rand_attr<int>& a_var,
 const range& a_range
);
 in (const rand_attr<bit>& a_var,
 const range& a_range
);
 template < class T>
 in (const rand_attr<T>& a_var,
 const range& a_range
);
 };
}; // namespace pss
Copyright © 2017 - 2018 Accellera. All rights reserved.
296

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
C.30 File pss/input.h

#pragma once
#include "pss/detail/inputBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare an action input
 template<class T>
 class input : public detail::InputBase {
 public:
 /// Constructor
 input (const scope& s);
 /// Destructor
 ~input();
 /// Access content
 T* operator-> ();
 /// Access content
 T& operator* ();
 };
}; // namespace pss
#include "pss/timpl/input.t"

C.31 File pss/lock.h

#pragma once
#include "pss/detail/lockBase.h"
namespace pss {
 /// Claim a locked resource
 template<class T>
 class lock : public detail::LockBase {
 public:
 /// Constructor
 lock(const scope& name);
 /// Destructor
 ~lock();
 /// Access content
 T* operator-> ();
 /// Access content
 T& operator* ();
 };
}; // namespace pss
#include "pss/timpl/lock.t"

C.32 File pss/output.h

#pragma once
#include "pss/detail/outputBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare an action output
 template<class T>
 class output : public detail::OutputBase {
 public:
 /// Constructor
 output (const scope& s);
Copyright © 2017 - 2018 Accellera. All rights reserved.
297

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Destructor
 ~output();
 /// Access content
 T* operator-> ();
 /// Access content
 T& operator* ();
 };
}; // namespace pss
#include "pss/timpl/output.t"

C.33 File pss/override.h

#pragma once
namespace pss {
 /// Override a type
 template < class Foundation, class Override>
 class override_type {
 public:
 override_type();
 };
 /// Override an instance
 template < class Override >
 class override_instance {
 public:
 /// Override an instance of a structure
 template <class T>
 override_instance (const attr<T>& inst);
 /// Override an instance of a rand structure
 template <class T>
 override_instance (const rand_attr<T>& inst);
 /// Override an instance of a component instance
 template <class T>
 override_instance (const comp_inst<T>& inst);
 /// Override an action instance
 template <class T>
 override_instance (const action_handle<T>& inst);
 };
}; // namespace pss
#include "pss/timpl/override.t"

C.34 File pss/pool.h

#pragma once
#include <string>
#include "pss/detail/poolBase.h"
namespace pss {
 /// Declare a pool
 template <class T>
 class pool : public detail::PoolBase {
 public:
 /// Constructor
 pool (const scope& name, std::size_t count = 1);
 /// Destructor
 ~pool();
 };
}; // namespace pss
Copyright © 2017 - 2018 Accellera. All rights reserved.
298

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
#include "pss/timpl/pool.t"

C.35 File pss/rand_attr.h

#pragma once
#include <string>
#include <memory>
#include <list>
#include "pss/bit.h"
#include "pss/vec.h"
#include "pss/scope.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/structure.h"
#include "pss/detail/randAttrTBase.h"
#include "pss/detail/randAttrIntBase.h"
#include "pss/detail/randAttrBitBase.h"
#include "pss/detail/randAttrStringBase.h"
#include "pss/detail/randAttrBoolBase.h"
#include "pss/detail/randAttrCompBase.h"
#include "pss/detail/randAttrVecTBase.h"
#include "pss/detail/randAttrVecIntBase.h"
#include "pss/detail/randAttrVecBitBase.h"
#include "pss/detail/algebExpr.h"
#include "pss/detail/execStmt.h"
namespace pss {
 template <class T>
 class attr; // forward reference
 /// Primary template for enums and structs
 template <class T>
 class rand_attr : public detail::RandAttrTBase {
 public:
 /// Constructor
 rand_attr (const scope& name);
 /// Copy constructor
 rand_attr(const rand_attr<T>& other);
 /// Struct access
 T* operator-> ();
 /// Struct access
 T& operator* ();
 /// Enumerator access
 T& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar rand int
 template <>
 class rand_attr<int> : public detail::RandAttrIntBase {
 public:
 /// Constructor
 rand_attr (const scope& name);
 /// Constructor defining width
 rand_attr (const scope& name, const width& a_width);
 /// Constructor defining range
 rand_attr (const scope& name, const range& a_range);
 /// Constructor defining width and range
 rand_attr (const scope& name, const width& a_width, const range& a_range);
Copyright © 2017 - 2018 Accellera. All rights reserved.
299

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Copy constructor
 rand_attr(const rand_attr<int>& other);
 /// Access to underlying data
 int& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 detail::ExecStmt operator+= (const detail::AlgebExpr& value);
 detail::ExecStmt operator-= (const detail::AlgebExpr& value);
 detail::ExecStmt operator<<= (const detail::AlgebExpr& value);
 detail::ExecStmt operator>>= (const detail::AlgebExpr& value);
 detail::ExecStmt operator&= (const detail::AlgebExpr& value);
 detail::ExecStmt operator|= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar rand bit
 template <>
 class rand_attr<bit> : public detail::RandAttrBitBase {
 public:
 /// Constructor
 rand_attr (const scope& name);
 /// Constructor defining width
 rand_attr (const scope& name, const width& a_width);
 /// Constructor defining range
 rand_attr (const scope& name, const range& a_range);
 /// Constructor defining width and range
 rand_attr (const scope& name, const width& a_width, const range& a_range);
 /// Copy constructor
 rand_attr(const rand_attr<bit>& other);
 /// Access to underlying data
 bit& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 detail::ExecStmt operator+= (const detail::AlgebExpr& value);
 detail::ExecStmt operator-= (const detail::AlgebExpr& value);
 detail::ExecStmt operator<<= (const detail::AlgebExpr& value);
 detail::ExecStmt operator>>= (const detail::AlgebExpr& value);
 detail::ExecStmt operator&= (const detail::AlgebExpr& value);
 detail::ExecStmt operator|= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar rand string
 template <>
 class rand_attr<std::string> : public detail::RandAttrStringBase {
 public:
 /// Constructor
 rand_attr (const scope& name);
 /// Copy constructor
 rand_attr(const rand_attr<std::string>& other);
 /// Access to underlying data
 std::string& val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 };
 /// Template specialization for scalar rand bool
 template <>
 class rand_attr<bool> : public detail::RandAttrBoolBase {
 public:
 /// Constructor
 rand_attr (const scope& name);
 /// Copy constructor
 rand_attr(const rand_attr<bool>& other);
Copyright © 2017 - 2018 Accellera. All rights reserved.
300

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Access to underlying data
 bool val();
 /// Exec statement assignment
 detail::ExecStmt operator= (const detail::AlgebExpr& value);
 detail::ExecStmt operator+= (const detail::AlgebExpr& value);
 detail::ExecStmt operator-= (const detail::AlgebExpr& value);
 detail::ExecStmt operator&= (const detail::AlgebExpr& value);
 detail::ExecStmt operator|= (const detail::AlgebExpr& value);
 };
 /// Template specialization for array of rand ints
 template <>
 class rand_attr<vec<int>> : public detail::RandAttrVecIntBase {
 public:
 /// Constructor defining array size
 rand_attr(const scope& name, const std::size_t count);
 /// Constructor defining array size and element width
 rand_attr(const scope& name, const std::size_t count,
 const width& a_width);
 /// Constructor defining array size and element range
 rand_attr(const scope& name, const std::size_t count,
 const range& a_range);
 /// Constructor defining array size and element width and range
 rand_attr(const scope& name, const std::size_t count,
 const width& a_width, const range& a_range);
 /// Access to specific element
 rand_attr<int>& operator[](const std::size_t idx);
 /// Constraint on randomized index
 detail::AlgebExpr operator[](const detail::AlgebExpr& idx);
 /// Get size of array
 std::size_t size() const;
 /// Constraint on sum of array
 detail::AlgebExpr sum() const;
 };
 /// Template specialization for array of rand bits
 template <>
 class rand_attr<vec<bit>> : public detail::RandAttrVecBitBase {
 public:
 /// Constructor defining array size
 rand_attr(const scope& name, const std::size_t count);
 /// Constructor defining array size and element width
 rand_attr(const scope& name, const std::size_t count,
 const width& a_width);
 /// Constructor defining array size and element range
 rand_attr(const scope& name, const std::size_t count,
 const range& a_range);
 /// Constructor defining array size and element width and range
 rand_attr(const scope& name, const std::size_t count,
 const width& a_width, const range& a_range);
 /// Access to specific element
 rand_attr<bit>& operator[](const std::size_t idx);
 /// Constraint on randomized index
 detail::AlgebExpr operator[](const detail::AlgebExpr& idx);
 /// Get size of array
 std::size_t size() const;
 /// Constraint on sum of array
 detail::AlgebExpr sum() const;
 };
 // Template specialization for arrays of rand enums and arrays of rand structs
 template <class T>
Copyright © 2017 - 2018 Accellera. All rights reserved.
301

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 class rand_attr<vec<T>> : public detail::RandAttrVecTBase {
 public:
 rand_attr(const scope& name, const std::size_t count);
 rand_attr<T>& operator[](const std::size_t idx);
 detail::AlgebExpr operator[](const detail::AlgebExpr& idx);
 std::size_t size() const;
 };
 template < class T >
 using rand_attr_vec = rand_attr< vec <T> >;
}; // namespace pss
#include "pss/timpl/rand_attr.t"

C.36 File pss/range.h

#pragma once
#include <vector>
#include "pss/detail/rangeBase.h"
namespace pss {
 class Lower {
 public:
 };
 // Used to specify a range that is bounded
 // by the domain minimum
 Lower lower;
 class Upper {
 public:
 };
 // Used to specify a range that is bounded
 // by the domain maximum
 Upper upper;
 /// Declare domain of a numeric scalar attribute
 class range : public detail::RangeBase {
 public:
 /// Declare a range of values
 range (const detail::AlgebExpr& lhs, const detail::AlgebExpr& rhs);
 range (const Lower& lhs, const detail::AlgebExpr& rhs);
 range (const detail::AlgebExpr& lhs, const Upper& rhs);
 /// Declare a single value
 range (const detail::AlgebExpr& value);
 /// Copy constructor
 range (const range& a_range);
 /// Function chaining to declare another range of values
 range& operator() (const detail::AlgebExpr& lhs, const detail::AlgebExpr&

rhs);
 /// Function chaining to declare another single value
 range& operator() (const detail::AlgebExpr& value);
 }; // class range
}; // namespace pss

C.37 File pss/resource.h

#pragma once
#include "pss/detail/resourceBase.h"
#include "pss/scope.h"
#include "pss/rand_attr.h"
namespace pss {
Copyright © 2017 - 2018 Accellera. All rights reserved.
302

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Declare a resource object
 class resource : public detail::ResourceBase {
 protected:
 /// Constructor
 resource (const scope& s);
 /// Destructor
 ~resource();
 public:
 /// Get the instance id of this resource
 rand_attr<bit> instance_id;
 /// In-line exec block
 virtual void pre_solve();
 /// In-line exec block
 virtual void post_solve();
 };
}; // namespace pss

C.38 File pss/scope.h

#pragma once
#include <string>
#include "pss/detail/scopeBase.h"
namespace pss {
 /// Class to manage PSS object hierarchy introspection
 class scope : public detail::ScopeBase {
 public:
 /// Constructor
 scope (const char* name);
 /// Constructor
 scope (const std::string& name);
 /// Constructor
 template < class T > scope (T* s);
 /// Destructor
 ~scope();
 };
}; // namespace pss
/*! Convenience macro for PSS constructors */
#define PSS_CTOR(C,P) public: C (const scope& p) : P (this) {}
#include "pss/timpl/scope.t"

C.39 File pss/share.h

#pragma once
#include "pss/detail/shareBase.h"
namespace pss {
 /// Claim a shared resource
 template<class T>
 class share : public detail::ShareBase {
 public:
 /// Constructor
 share(const scope& name);
 /// Destructor
 ~share();
 /// Access content
 T* operator-> ();
 /// Access content
Copyright © 2017 - 2018 Accellera. All rights reserved.
303

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 T& operator* ();
 };
}; // namespace pss
#include "pss/timpl/share.t"

C.40 File pss/state.h

#pragma once
#include "pss/detail/stateBase.h"
#include "pss/scope.h"
#include "pss/rand_attr.h"
namespace pss {
 /// Declare a state object
 class state : public detail::StateBase {
 protected:
 /// Constructor
 state (const scope& s);
 /// Destructor
 ~state();
 public:
 /// Test if this is the initial state
 rand_attr<bool> initial;
 /// In-line exec block
 virtual void pre_solve();
 /// In-line exec block
 virtual void post_solve();
 };
 /// Return previous state of a state object
 template <class T>
 T* prev(T* this_);
}; // namespace pss
#include "pss/timpl/state.t"

C.41 File pss/stream.h

#pragma once
#include "pss/detail/streamBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare a stream object
 class stream : public detail::StreamBase {
 protected:
 /// Constructor
 stream (const scope& s);
 /// Destructor
 ~stream();
 public:
 /// In-line exec block
 virtual void pre_solve();
 /// In-line exec block
 virtual void post_solve();
 };
}; // namespace pss
Copyright © 2017 - 2018 Accellera. All rights reserved.
304

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
C.42 File pss/structure.h

#pragma once
#include "pss/detail/structureBase.h"
#include "pss/scope.h"
namespace pss {
 /// Declare a structure
 class structure : public detail::StructureBase {
 protected:
 /// Constructor
 structure (const scope& s);
 /// Destructor
 ~structure();
 public:
 /// In-line exec block
 virtual void pre_solve();
 /// In-line exec block
 virtual void post_solve();
 };
}; // namespace pss

C.43 File pss/symbol.h

namespace pss {
 namespace detail {
 class ActivityStmt; // forward reference
 };
 using symbol = detail::ActivityStmt;
};

C.44 File pss/type_decl.h

#pragma once
#include "pss/detail/typeDeclBase.h"
namespace pss {
 template<class T>
 class type_decl : public detail::TypeDeclBase {
 public:
 type_decl();
 T* operator-> ();
 T& operator* ();
 };
}; // namespace pss
#include "pss/timpl/type_decl.t"

C.45 File pss/unique.h

#pragma once
#include <iostream>
#include <vector>
#include <cassert>
#include "pss/range.h"
#include "pss/vec.h"
Copyright © 2017 - 2018 Accellera. All rights reserved.
305

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
#include "pss/detail/algebExpr.h"
namespace pss {
 /// Declare an unique constraint
 class unique : public detail::AlgebExpr {
 public:
 /// Declare unique constraint
 template < class ... R >
 unique (R&&... /* rand_attr<T> */ r);
 };
}; // namespace pss
#include "pss/timpl/unique.t"

C.46 File pss/vec.h

#pragma once
#include <vector>
namespace pss {
 template < class T>
 using vec = std::vector <T>;
};

C.47 File pss/width.h

#pragma once
#include "pss/detail/widthBase.h"
namespace pss {
 /// Declare width of a numeric scalar attribute
 class width : public detail::WidthBase {
 public:
 /// Declare width as a range of bits
 width (const std::size_t& lhs, const std::size_t& rhs);
 /// Declare width in bits
 width (const std::size_t& size);
 /// copy constructor
 width (const width& a_width);
 };
}; // namespace pss

C.48 File pss/detail/activityStmt.h

#pragma once
#include<vector>
#include "pss/action_handle.h"
#include "pss/action_attr.h"
#include "pss/constraint.h"
#include "algebExpr.h"
#include "sharedExpr.h"
namespace pss {
 class bind;
 namespace detail {
 class ActivityStmt
 {
 public:
 /// Recognize action_handle<>
Copyright © 2017 - 2018 Accellera. All rights reserved.
306

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 template<class T>
 ActivityStmt(const action_handle<T>& value);
 /// Recognize action_attr<>
 template<class T>
 ActivityStmt(const action_attr<T>& value);
 /// Recognize dynamic_constraint
 ActivityStmt(const dynamic_constraint& value);
 /// Recognize shared constructs
 ActivityStmt(const SharedExpr& other);
 /// Recognize bind as an activity statement
 ActivityStmt(const bind& b);
 // Default Constructor
 ActivityStmt();
 };
 }; // namespace detail
}; // namespace pss
#include "activityStmt.t"

C.49 File pss/detail/algebExpr.h

#pragma once
#include <iostream>
#include <vector>
#include <cassert>
#include "pss/range.h"
#include "pss/vec.h"
#include "pss/comp_inst.h"
#include "pss/component.h"
#include "pss/detail/exprBase.h"
#include "pss/detail/sharedExpr.h"
namespace pss {
 template <class T> class attr; // forward declaration
 template <class T> class rand_attr; // forward declaration
 class coverpoint; // forward declaration
 class dynamic_constraint; // forward declaration
 template <class T> class result; // forward declaration
 class coverpoint; // forward declaration
 namespace detail {
 template <class T> class comp_ref; // forward declaration
 /// Construction of algebraic expressions
 class AlgebExpr : public ExprBase {
 public:
 /// Default constructor
 AlgebExpr();
 AlgebExpr(const coverpoint &cp);
 /// Recognize a rand_attr<>
 template < class T >
 AlgebExpr(const rand_attr<T>& value);
 /// Recognize an attr<>
 template < class T >
 AlgebExpr(const attr<T>& value);
 /// Recognize a range() for in()
 AlgebExpr(const range& value);
 /// Recognize a comp_inst<>
 template < class T >
 AlgebExpr(const comp_inst<T>& value);
 /// Recognize a comp_ref<>
Copyright © 2017 - 2018 Accellera. All rights reserved.
307

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 template <class T>
 AlgebExpr(const comp_ref<T> &value);
 /// Recognize a CompInstBase
 AlgebExpr(const CompInstBase& value);
 // Allow dynamic constraints to be referenced
 // in constraint expressions
 AlgebExpr(const dynamic_constraint &c);
 // /// Capture other values
 // template < class T >
 // AlgebExpr(const T& value);
 /// Recognize integers
 AlgebExpr(const int& value);
 /// Recognize strings
 AlgebExpr(const char* value);
 AlgebExpr(const std::string& value);
 /// Recognize shared constructs
 AlgebExpr(const SharedExpr& value);
 /// Recognize function return values
 template < class T >
 AlgebExpr(const result<T>& value);
 };
 /// Logical Or Operator
 const AlgebExpr operator|| (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Logical And Operator
 const AlgebExpr operator&& (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Bitwise Or Operator
 const AlgebExpr operator| (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Bitwise And Operator
 const AlgebExpr operator& (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Xor Operator
 const AlgebExpr operator^ (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Less Than Operator
 const AlgebExpr operator< (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Less than or Equal Operator
 const AlgebExpr operator<= (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Greater Than Operator
 const AlgebExpr operator> (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Greater than or Equal Operator
 const AlgebExpr operator>= (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Right Shift Operator
 const AlgebExpr operator>> (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Left Shift Operator
 const AlgebExpr operator<< (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Multiply Operator
 const AlgebExpr operator* (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Divide Operator
 const AlgebExpr operator/ (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Modulus Operator
 const AlgebExpr operator% (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Add Operator
 const AlgebExpr operator+ (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Subtract Operator
 const AlgebExpr operator- (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Equal Operator
 const AlgebExpr operator== (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Not Equal Operator
 const AlgebExpr operator!= (const AlgebExpr& lhs, const AlgebExpr& rhs);
 /// Unary bang Operator
 const AlgebExpr operator!(const AlgebExpr &e);
Copyright © 2017 - 2018 Accellera. All rights reserved.
308

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
 /// Unary minus Operator

 const AlgebExpr operator-(const AlgebExpr &e);

 /// Unary plus Operator

 const AlgebExpr operator+(const AlgebExpr &e);

 /// Unary tilde Operator

 const AlgebExpr operator~(const AlgebExpr &e);

 AlgebExpr pow(const AlgebExpr& base, const AlgebExpr &exp);

 }; // namespace detail

}; // namespace pss

#include "algebExpr.t"

C.50 File pss/detail/comp_ref.h

#pragma once

namespace pss {

namespace detail {

template <class T> class comp_ref {

public:

T* operator -> ();

};

}

}

C.51 File pss/detail/FunctionParam.h

#pragma once

namespace pss {

 namespace detail {

 class FunctionParam {

 };

 }; // namespace detail

}; // namespace pss

C.52 File pss/detail/FunctionResult.h

#pragma once

namespace pss {

 namespace detail {

 class FunctionResult {

 };

 }; // namespace detail

}; // namespace pss
Copyright © 2017 - 2018 Accellera. All rights reserved.
309

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Annex D

(normative)

Foreign-language data type bindings

PSS specifies data type bindings to C/C++ and SystemVerilog.

D.1 C primitive types

The mapping between the PSS primitive types and C types used for method parameters is specified in
Table D1.

The mapping for return types matches the first two columns in Table D1.

D.2 C++ composite and user-defined types

C++ is seen by the PSS standard as a primary language in the PSS domain. The PSS standard covers the
projection of PSS arrays, enumerated types, strings, and struct types to their native C++ counterparts and
requires that the naming of entities is kept identical between the two languages. This provides a consistent
logical view of the data model across PSS and C++ code. PSS language can be used in conjunction with C++
code without tool-specific dependencies.

Table D1—Mapping PSS primitive types and C types

PSS type C type
Input

C type
Output / Inout

string const char * char **

bool unsigned int unsigned int *

chandle void * void **

bit (1-8-bit domain) unsigned char unsigned char *

bit (9-16-bit domain) unsigned short unsigned short *

bit (17-32-bit domain) unsigned int unsigned int *

bit (33-64-bit domain) unsigned long long unsigned long long *

int (1-8-bit domain) char char *

int (9-16-bit domain) short short *

int (17-32-bit domain) int int *

int (33-64-bit domain) long long long long *
Copyright © 2017 - 2018 Accellera. All rights reserved.
310

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
D.2.1 Built-in types

a) C++ type mapping for primitive numeric types is the same as that for ANSI C.
b) A PSS bool is a C++ bool and the values: false, true are mapped respectively from PSS to their

C++ equivalents.
c) C++ mapping of a PSS string is std::string (typedef-ed by the standard template library (STL)

to std::basic_string<char> with default template parameters).
d) C++ mapping of a PSS array is std::vector of the C++ mapping of the respective element type

(using the default allocator class).

D.2.2 User-defined types

In PSS, the user can define data-types of two categories: enumerated types and struct types (including flow/
resource objects). These types require mapping to C++ types if they are used as parameters in C++ import
function calls.

Tools may automatically generate C++ definitions for the required types, given PSS source code. However,
regardless of whether these definitions are automatically generated or obtained in another way, PSS test
generation tools may assume these exact definitions are operative in the compilation of the C++ user
implementation of the imported functions. In other words, the C++ functions are called by the PSS tool
during test generation, with the actual parameter values in the C++ memory layout of the corresponding
data-types. Since actual binary layout is compiler dependent, PSS tool flows may involve compilation of
some C++ glue code in the context of the user environment.

D.2.2.1 Naming and namespaces

Generally, PSS user-defined types correspond to C++ types with identical names. In PSS, packages and
components constitute namespaces for types declared in their scope. The C++ type definition corresponding
to a PSS type declared in a package or component scope shall be inside the namespace statement scope
having the same name as the PSS component/package. Consequently, both the unqualified and qualified
name of the C++ mapped type is the same as that in PSS.

D.2.2.2 Enumerated types

PSS enumerated types are mapped to C++ enumerated types, with the same set of items in the same order
and identical names. When specified, explicit numeric constant values for an enumerated item correspond to
the same value in the C++ definition.

For example, the PSS definition:

enum color_e {red = 0x10, green = 0x20, blue = 0x30};

is mapped to the C++ type as defined by this very same code.

In PSS, as in C++, enumerated item identifiers shall be unique in the context of the enclosing namespace
(package/component).

D.2.2.3 Struct types

PSS struct types are mapped to C++ structs, along with their field structure and inherited base-type, if
specified.
Copyright © 2017 - 2018 Accellera. All rights reserved.
311

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
The base-type declaration of the struct, if any, is mapped to the (public) base-struct-type declaration in C++
and entails the mapping of its base-type (recursively).

Each PSS field is mapped to a corresponding (public, non-static) field in C++ of the corresponding type and
in the same order. If the field type is itself a user-defined type (struct or enum), the mapping of the field
entails the corresponding mapping of the type (recursively).

For example, given the following PI declarations:

import void foo(derived_s d);
import solve CPP foo;

with the corresponding PSS definitions:

struct base_s {
 int[0..99] f1;
};
struct sub_s {
 string f2;
};
struct derived_s : base_s {
 sub_s f3;
 bit[15:0] f4[4];
};

mapping type derived_s to C++ involves the following definitions:

struct base_s {
 int f1;
};
struct sub_s {
 std::string f2;
};
struct derived_s : base_s {
 sub_s f3;
 std::vector<unsigned short> f4;
};

Nested structs in PSS are instantiated directly under the containing struct, that is, they have value semantics.
Mapped struct types have no member functions and, in particular, are confined to the default constructor and
implicit copy constructor.

Mapping a struct-type does not entail the mapping of any of its subtypes. However, struct instances are
passed according to the type of the actual parameter expression used in an import function call.
Therefore, the ultimate set of C++ mapped types for a given PSS model depends on its function calls, not
just the function signatures.

D.2.3 Parameter passing semantics

When C++ import functions are called, primitive data types are passed by value for input parameters and
otherwise by pointer, as in the ANSI C case. In contrast, compound data-type values, including strings,
arrays, structs, and actions, are passed as C++ references. Input parameters of compound data-types are
passed as const references, while output and inout parameters are passed as non-const references. In the
case of output and inout compound parameters, if a different memory representation is used for the PSS
Copyright © 2017 - 2018 Accellera. All rights reserved.
312

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
tool vs. C++, the inner state needs to be copied in upon calling it and any change shall be copied back out
onto the PSS entity upon return.

For example, the following import declaration:

import void foo(my_struct s, output int arr[]);

corresponds to the following C++ declaration:

extern "C" void foo(const my_struct& s, std::vector<int>& arr);

Statically sized arrays in PSS are mapped to the corresponding STL vector class, just like arrays of an
unspecified size. However, if modified, they are resized to their original size upon return, filling the default
values of the respective element type as needed.

D.3 SystemVerilog

Table D2 specifies the type mapping between PSS types and SystemVerilog types for both the parameter
and return types.

A struct type used in a PI method call is directly reflected to SystemVerilog as a class hierarchy.

Table D2—Mapping PSS primitive types and SystemVerilog types

PSS type SystemVerilog type

string string

bool boolean

chandle chandle

bit (1-8-bit domain) byte unsigned

bit (9-16-bit domain) shortint unsigned

bit (17-32-bit domain) int unsigned

bit (33-64-bit domain) longint unsigned

int (1-8-bit domain) byte

int (9-16-bit domain) shortint

int (17-32-bit domain) int

int (33-64-bit domain) longint
Copyright © 2017 - 2018 Accellera. All rights reserved.
313

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
Annex E

(informative)

Solution space

Once a PSS model has been specified, the elements of the model need to be processed in some way to ensure
that resulting scenarios accurately reflect the specified behavior(s). This annex describes the steps a
processing tool may take to analyze a portable stimulus description and create a (set of) scenario(s).

a) Identify root action:
1) Specified by the user.
2) Unless otherwise specified, the designated root action shall be located in the root component.

By default, the root component shall be pss_top.
3) If the specified root action is an atomic action, consider it to be the initial action traversed in an

implicit activity statement.
4) If the specified root action is a compound action:

i) Identify all bind statements in the activity and bind the associated object(s) accordingly.
Identify all resulting scheduling dependencies between bound actions.

i) For every compound action traversed in the activity, expand its activity to include each
sub-action traversal in the overall activity to be analyzed.

ii) Identify scheduling dependencies among all action traversals declared in the activity and
add to the scheduling dependency list identified in a.4.i.

b) For each action traversed in the activity:
1) For each resource locked or shared (i.e., claimed) by the action:

i) Identify the resource pool of the appropriate type to which the resource reference may be
bound.

ii) Identify all other action(s) claiming a resource of the same type that is bound to the same
pool.

iii) Each resource object instance in the resource pool has an built-in instance_id field that is
unique for that pool.

iv) The algebraic constraints for evaluating field(s) of the resource object are the union of the
constraints defined in the resource object type and the constraints in all actions ultimately
connected to the resource object.

v) Identify scheduling dependencies enforced by the claimed resource and add these to the
set of dependencies identified in a.4.i.
1.If an action locks a resource instance, no other action claiming that same resource

instance may be scheduled in parallel.
2.If actions scheduled in parallel attempt to lock more resource instances than are avail-

able in the pool, an error shall be generated.
3.If the resource instance is not locked, there are no scheduling implications of sharing a

resource instance.
2) For each flow object declared in the action that is not already bound:

i) If the flow object is not explicitly bound to a corresponding flow object, identify the object
pool(s) of the appropriate type to which the flow object may be bound.

ii) The algebraic constraints for evaluating field(s) of the flow object are the union of the
constraints defined in flow object type and the constraints in all actions ultimately con-
nected to the flow object.
Copyright © 2017 - 2018 Accellera. All rights reserved.
314

Portable Test and Stimulus 1.0 Language Reference Manual — June 2018
iii) Identify all other explicitly-traversed actions bound to the same pool that:
1.Declare a matching object type with consistent data constraints,
2.Meet the scheduling constraints from b.1.v, and
3.Are scheduled consistent with the scheduling constraints implied by the type of the flow

object.
iv) The set of explicitly-traversed actions from b.2.iii shall comprise the inferencing candi-

date list (ICL).
v) If no explicitly traversed action appears in the ICL, then an anonymous instance of each

action type bound to the pool from b.2.i shall be added to the ICL.
vi) If the ICL is empty, an error shall be generated.
vii) For each element in the ICL, perform step b.2 until no actions in the ICL have any

unbound flow object references or the tool’s inferencing limit is reached (see c).
c) If the tool reaches the maximum inferencing depth, it shall infer a terminating action if one is avail-

able. Given the set of actions, flow and resource objects, scheduling and data constraints, and associ-
ated ICLs, pick an instance from the ICL and a value for each data field in the flow object that
satisfies the constraints and bind the flow object reference from the action to the corresponding
instance from the ICL.
See also Clause 16.
Copyright © 2017 - 2018 Accellera. All rights reserved.
315

	1. Overview
	1.1 Purpose
	1.2 Language design considerations
	1.3 Modeling basics
	1.4 Test realization
	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational conventions
	1.5.3 Examples

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. References
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Lexical conventions
	4.1 Comments
	4.2 Identifiers
	4.3 Escaped identifiers
	4.4 Keywords

	5. Modeling concepts
	5.1 Modeling data flow
	5.1.1 Buffers
	5.1.2 Streams
	5.1.3 States
	5.1.4 Data object pools

	5.2 Modeling system resources
	5.2.1 Resource objects
	5.2.2 Resource pools

	5.3 Basic building blocks
	5.3.1 Components and binding
	5.3.2 Evaluation and inference

	5.4 Constraints and inferencing
	5.5 Summary

	6. Execution semantic concepts
	6.1 Overview
	6.2 Assumptions of abstract scheduling
	6.2.1 Starting and ending action executions
	6.2.2 Concurrency
	6.2.3 Synchronized invocation

	6.3 Scheduling concepts
	6.3.1 Preliminary definitions
	6.3.2 Sequential scheduling
	6.3.3 Parallel scheduling

	7. C++ specifics
	8. Data types
	8.1 Scalars
	8.1.1 DSL syntax
	8.1.2 C++ syntax
	8.1.3 Examples

	8.2 Booleans
	8.3 enums
	8.3.1 DSL syntax
	8.3.2 C++ syntax
	8.3.3 Examples

	8.4 Strings
	8.4.1 DSL syntax
	8.4.2 C++ syntax
	8.4.3 Examples

	8.5 chandles
	8.5.1 C++ syntax
	8.5.2 Examples

	8.6 Structs
	8.6.1 DSL syntax
	8.6.2 C++ syntax
	8.6.3 Examples

	8.7 User-defined data types
	8.7.1 DSL syntax
	8.7.2 C++ syntax
	8.7.3 Examples

	8.8 Arrays
	8.8.1 C++ syntax
	8.8.2 Examples
	8.8.3 Properties

	8.9 Access protection
	8.10 Data type conversion
	8.10.1 DSL syntax
	8.10.2 Examples

	9. Components
	9.1 DSL syntax
	9.2 C++ syntax
	9.3 Examples
	9.4 Components as namespaces
	9.5 Component instantiation
	9.5.1 Semantics
	9.5.2 Examples

	9.6 Component references
	9.6.1 Semantics
	9.6.2 Examples

	10. Actions
	10.1 DSL syntax
	10.2 C++ syntax
	10.3 Examples
	10.3.1 Atomic actions
	10.3.2 Compound actions

	11. Activities
	11.1 Activity declarations
	11.2 Activity evaluation with extension and inheritance
	11.3 Activity constructs
	11.3.1 DSL syntax
	11.3.2 C++ syntax

	11.4 Action scheduling statements
	11.4.1 Action traversal statement
	11.4.2 Sequential block
	11.4.3 parallel
	11.4.4 schedule

	11.5 Activity control-flow constructs
	11.5.1 repeat (count)
	11.5.2 repeat while
	11.5.3 foreach
	11.5.4 select
	11.5.5 if-else
	11.5.6 match

	11.6 Symbols
	11.6.1 DSL syntax
	11.6.2 C++ syntax
	11.6.3 Examples

	11.7 Named sub-activities
	11.7.1 DSL syntax
	11.7.2 Scoping rules for named sub-activities
	11.7.3 Hierarchical references using named sub-activity

	11.8 Explicitly binding flow objects
	11.8.1 DSL syntax
	11.8.2 C++ syntax
	11.8.3 Examples

	11.9 Hierarchical flow object binding
	11.10 Hierarchical resource object binding

	12. Flow objects
	12.1 Buffer objects
	12.1.1 DSL syntax
	12.1.2 C++ syntax
	12.1.3 Examples

	12.2 Stream objects
	12.2.1 DSL syntax
	12.2.2 C++ syntax
	12.2.3 Examples

	12.3 State objects
	12.3.1 DSL syntax
	12.3.2 C++ syntax
	12.3.3 Examples

	12.4 Using flow objects
	12.4.1 DSL syntax
	12.4.2 C++ syntax
	12.4.3 Examples

	13. Resource objects
	13.1 Declaring resource objects
	13.1.1 DSL syntax
	13.1.2 C++ syntax
	13.1.3 Examples

	13.2 Claiming resource objects
	13.2.1 DSL syntax
	13.2.2 C++ syntax
	13.2.3 Examples

	14. Pools
	14.1 DSL syntax
	14.2 C++ syntax
	14.3 Examples
	14.4 Static pool binding directive
	14.4.1 DSL syntax
	14.4.2 C++ syntax
	14.4.3 Examples

	14.5 Resource pools and the instance_id attribute
	14.6 Pool of states and the initial attribute

	15. Randomization specification constructs
	15.1 Algebraic constraints
	15.1.1 Member constraints
	15.1.2 Constraint inheritance
	15.1.3 Action-traversal in-line constraints
	15.1.4 Set membership expression
	15.1.5 Implication constraint
	15.1.6 if-else constraint
	15.1.7 foreach constraint
	15.1.8 Unique constraint

	15.2 Scheduling constraints
	15.2.1 DSL syntax
	15.2.2 Example

	15.3 Sequencing constraints on state objects
	15.4 Randomization process
	15.4.1 Random attribute fields
	15.4.2 Randomization of flow objects
	15.4.3 Randomization of resource objects
	15.4.4 Randomization of component assignment
	15.4.5 Random value selection order
	15.4.6 Evaluation of expressions with action-handles
	15.4.7 Relationship lookahead
	15.4.8 Lookahead and sub-actions
	15.4.9 Lookahead and dynamic constraints
	15.4.10 pre_solve and post_solve exec blocks
	15.4.11 Body blocks and sampling external data

	16. Action inferencing
	16.1 Implicit binding and action inferences
	16.2 Object pools and action inferences
	16.3 Data constraints and action inferences

	17. Coverage specification constructs
	17.1 Defining the coverage mode: covergroup
	17.1.1 DSL syntax
	17.1.2 C++ syntax
	17.1.3 Examples

	17.2 covergroup instantiation
	17.2.1 DSL syntax
	17.2.2 C++ syntax
	17.2.3 Examples

	17.3 Defining coverage points
	17.3.1 DSL syntax
	17.3.2 C++ syntax
	17.3.3 Examples
	17.3.4 Specifying bins
	17.3.5 coverpoint bin with covergroup expressions
	17.3.6 Automatic bin creation for coverage points
	17.3.7 Excluding coverage point values
	17.3.8 Specifying illegal coverage point values
	17.3.9 Value resolution

	17.4 Defining cross coverage
	17.4.1 DSL syntax
	17.4.2 C++ syntax
	17.4.3 Examples

	17.5 Defining cross bins
	17.6 Specifying coverage options
	17.6.1 C++ syntax
	17.6.2 Examples

	17.7 covergroup sampling
	17.8 Per-type and per-instance coverage collection
	17.8.1 Per-instance coverage of flow objects
	17.8.2 Per-instance coverage in actions

	18. Type extension
	18.1 Specifying type extensions
	18.1.1 DSL syntax
	18.1.2 C++ syntax
	18.1.3 Examples
	18.1.4 Compound type extensions
	18.1.5 Enum type extensions
	18.1.6 Ordering of type extensions

	18.2 Overriding types
	18.2.1 DSL syntax
	18.2.2 C++ syntax
	18.2.3 Examples

	19. Packages
	19.1 Package declaration
	19.1.1 DSL syntax
	19.1.2 Examples

	19.2 Namespaces and name resolution
	19.3 Import statement
	19.4 Naming rules for members across extensions

	20. Test realization
	20.1 exec blocks
	20.1.1 DSL syntax
	20.1.2 C++ syntax
	20.1.3 Examples

	20.2 Exec block evaluation with extension and inheritance
	20.2.1 Inheritance and overriding
	20.2.2 Using super
	20.2.3 Type extension

	20.3 Referencing PSS fields in target-template exec blocks
	20.3.1 Examples
	20.3.2 Formatting

	20.4 Implementation using a procedural interface (PI)
	20.4.1 Function declaration
	20.4.2 DSL syntax
	20.4.3 C++ syntax
	20.4.4 Examples
	20.4.5 Method result
	20.4.6 Method parameters
	20.4.7 Parameter direction

	20.5 PI PSS layer
	20.6 PI function qualifiers
	20.6.1 DSL syntax
	20.6.2 C++ syntax
	20.6.3 Specifying function availability
	20.6.4 Specifying an implementation language

	20.7 Calling PI methods
	20.8 Target-template implementation for functions
	20.8.1 DSL syntax
	20.8.2 C++ syntax
	20.8.3 Examples

	20.9 Import classes
	20.9.1 DSL syntax
	20.9.2 C++ syntax
	20.9.3 Examples

	20.10 Implementation using target-template code blocks
	20.10.1 Target-template code exec block kinds
	20.10.2 Target language
	20.10.3 exec file

	20.11 C++ in-line solve exec implementation
	20.12 C++ generative target exec implementation
	20.12.1 Generative PI execs
	20.12.2 Generative target-template execs

	20.13 Comparison between mapping mechanisms
	20.14 Exported actions
	20.14.1 DSL syntax
	20.14.2 C++ syntax
	20.14.3 Examples
	20.14.4 Export action foreign-language binding

	21. Conditional code processing
	21.1 Overview
	21.1.1 Statically-evaluated statements
	21.1.2 Elaboration procedure
	21.1.3 Constant expressions

	21.2 compile if
	21.2.1 Scope
	21.2.2 DSL syntax
	21.2.3 Examples

	21.3 compile has
	21.3.1 DSL syntax
	21.3.2 Examples

	21.4 compile assert
	21.4.1 DSL syntax
	21.4.2 Examples

	Annex A - Bibliography
	Annex B - Formal syntax
	B.1 Package declarations
	B.2 Action declarations
	B.3 Struct declarations
	B.4 Procedural interface (PI)
	B.4.1 Import class declaration
	B.4.2 Export action

	B.5 Component declarations
	B.6 Activity statements
	B.7 Overrides
	B.8 Data declarations
	B.9 Data types
	B.10 Constraint
	B.11 Coverage specification
	B.12 Conditional-compile
	B.13 Expression
	B.14 Identifiers and literals
	B.15 Numbers
	B.16 Additional lexical conventions

	Annex C - C++ header files
	C.1 File pss.h
	C.2 File pss/action.h
	C.3 File pss/action_attr.h
	C.4 File pss/action_handle.h
	C.5 File pss/attr.h
	C.6 File pss/bind.h
	C.7 File pss/bit.h
	C.8 File pss/buffer.h
	C.9 File pss/chandle.h
	C.10 File pss/comp_inst.h
	C.11 File pss/component.h
	C.12 File pss/cond.h
	C.13 File pss/constraint.h
	C.14 File pss/covergroup.h
	C.15 File pss/covergroup_bins.h
	C.16 File pss/covergroup_coverpoint.h
	C.17 File pss/covergroup_cross.h
	C.18 File pss/covergroup_iff.h
	C.19 File pss/covergroup_inst.h
	C.20 File pss/covergroup_options.h
	C.21 File pss/enumeration.h
	C.22 File pss/exec.h
	C.23 File pss/export_action.h
	C.24 File pss/extend.h
	C.25 File pss/foreach.h
	C.26 File pss/function.h
	C.27 File pss/if_then.h
	C.28 File pss/import_class.h
	C.29 File pss/in.h
	C.30 File pss/input.h
	C.31 File pss/lock.h
	C.32 File pss/output.h
	C.33 File pss/override.h
	C.34 File pss/pool.h
	C.35 File pss/rand_attr.h
	C.36 File pss/range.h
	C.37 File pss/resource.h
	C.38 File pss/scope.h
	C.39 File pss/share.h
	C.40 File pss/state.h
	C.41 File pss/stream.h
	C.42 File pss/structure.h
	C.43 File pss/symbol.h
	C.44 File pss/type_decl.h
	C.45 File pss/unique.h
	C.46 File pss/vec.h
	C.47 File pss/width.h
	C.48 File pss/detail/activityStmt.h
	C.49 File pss/detail/algebExpr.h
	C.50 File pss/detail/comp_ref.h
	C.51 File pss/detail/FunctionParam.h
	C.52 File pss/detail/FunctionResult.h

	Annex D - Foreign-language data type bindings
	D.1 C primitive types
	D.2 C++ composite and user-defined types
	D.2.1 Built-in types
	D.2.2 User-defined types
	D.2.3 Parameter passing semantics

	D.3 SystemVerilog

	Annex E - Solution space

