SYSTEMS INITIATIVE™

Functional Safety Working Group

White Paper

December 13, 2023

Page |2

Contents
[[a 1 oo [V o1 { o o PRSP PPOTOPPPTOPPOPPON 5
[I. FIMEEDA PIOCESS ...evviiiiiiiiiei ittt e s s saba s e s s aba s e e s abae e s ssannas 10
lll. Design Representation and Mapping Of Data......ccccveeeeeiiiiiiiiiiireeeeeeeeeccireeeeee e 12
F AN B T T Fed I R U=T o] (=TT o) =1 o o] IS 12
S T \V/ = T o o 11 USRS 15
(DL F=d oI\ =T o] o] [o V- ST 16
Failure Modes IMApPingueeeeieiiiieeiiiiiee ettt e e e s e e st e e e s stre e e s ssabaeeesssees 18
Safety Mechanism Mapping......ccocuuieiiiiiiieiiiiiiee et e s siaee e s ssaaeeesnaes 19
Technology ElIemMeENnt MapPing...ccuueeeiieeiiiiiiireeeeeeeeeieiiiirreeeeeeeeessnnnrereeesesssesessrssereseseens 20
Failure Mode Effects MapPing .ccccvveeeeeeiiiiiiiieieee e ceecciirreee e e e sentreeeee e e e s eessarsreeeaeeeens 21
COMPIEX USE CASES....ccceiiutrrieeiieeeeiieiiirereeeeeeeeeseitrrereeeeeeesesabtraeeeesesssasstrsneresesseesasresenes 22
IV FIMIEDA Ty Pttt ettt et ettt et et e s b e s st e e bt e et e e s bneeabeesmneeneennneenneennes 24
A, ASSUMPLION-DASEAvviiiiiiiiie it e e s st e e e s b e e e s sbaeeessaraeeeenan 24
B. Calculation-Dased.........cocuiiiiiiiiiiii e s 24
C. MiXING FIMED A Ty S it e e 24
V. Conceptual Data MOEL........coiiiiiiiiiiiiee e e s s e e s s abaee e s 26
A. Introduction to the Entity-Relationship Modelccooovvriviiiiiiiiiiiiiiee e, 26
B. General ConSIdEratioNnsSc.ceeieiiieerieeieesee ettt e s e e s n e smneeas 27
VI. Detailed Annotations on the Data Modelccooiiiieeniiiiiineeeeee e 30
A. FMEDA Type (Assumption-based, Calculation-base)cccoceeeveiiiiiiiiiveeeiiiiiiireeeeeeenn 30
B. FS Hierarchy and FIM HI€rarChy ...ttt anee s 31
C. TechnOlOgY EIEMENT ..coiiiiiiieieeie ettt et e s s e e s s sabae e e s sabaeeeenaes 33
BT ={] - PP PPPRP 33
RAM/ROMY/FIASN ..ttt sttt s sae e s nbe et 34
Y 0T Lo - RO PRt 34
D. FS HIerarchy MOGEIINGcccuvveeeiiei ettt ettt e e e e e e e seabar e e e e e e e e seansbeeeees 35
E. Operations on DeSigN MapPPing ..ccceuuuuiiiii it e e e e e e e e et e e e e e e eeeeaanaaaeeeeeeeens 36
F. DC AGEregation MethOds........cuuiiiiiiiiiie ettt e e s s saaee s 37
G. FQilure Mode EffECt........oiiiiiiiieceeee et 38
VI CoNCIUING REMAIKS ..eeiiiiiiieiciiiee ettt s s e e e s s bba e e e s baeeessaraeeeen 43
H. Accellera FS WG SUPPOrting ENTItiEsvveviiriiieeiiiiiee it 43

Copyright © Accellera Systems Initiative Inc. All rights reserved.

[, ACKNOWIEOZEMENTS.cciiiiiiiiieiiiie ettt et e e e e e st bae e e e e e e eeesesarabeeeeeseessenansrenenes 43
VI ANNEX A = Data MOGEloouieiieieeeeeeee e s 44
AL FIMIEDA .ttt et e a e et h e bt eh e e bt e h et e be e ehe e e bt e e at e e beenateeneeeaee 46
B. ElEMIENT .t s e e st e sbe e sanee s 48
C. FQIlUIE MO ...ttt e bt e st esbe e e sbe e e sneeeas 49
B =Tl o Ta o] [o =4Vl = [=Y o =T o | PO PRI 52
E. Safety MECNANISIM..cciii it e e e e e e e seabbr e e e e e e e e s e ansreaees 54
F. Failure Mode EffeCt.......ceoiiiiieeieeee et e 56
G. Mapping Safety Mechanism — Failure MOde..........cooecvrrieieeiiiiiiiiiieeeeee e e e e e e 57
H. Mapping Failure Mode — Failure Mode Effect.......cccceeeiiiiiiiiiiiieeeeiecceecrreeeeee e, 59
I. Mapping Technology Element — Failure Mode.........ccooviieiiiiiiieiiiiiieee e 60
J. Mapping Technology Element — Element........ccoooiuiiiiiniiiieiiniiee e 62
K. Define I1SO26262 FaAilure RAte.......coocueiiiiiiiiie ettt 64
L. Define ISO26262 IMETHIC....cciiuieeiiiieiiieeeite ettt ettt ettt ettt ir e s e e st e e sbeeesaneeas 66
M. Define IEC61508 Failure RAtecccueeiieeriieiieiieeeeeeee ettt 67
N. Define IECH1508 IMETIIC ..ccuuerrieiiieieeiee ettt ettt esiee e s e e neennneeas 69
DO AN oY =) 2 e I T T (U T =L PPNt 71
AL INEFOAUCTION it 71
B. CONVENTIONS ..ttt st e e e s s r e e e e e s s s nr e n e 73
C. Safety Analysis COmMMaNds VO.1cuuviiiiiiiiieiiiiiee et e e s e e s s sbae e e s saraeeeennes 73
CrEate_FMEAA i e e e s bae e e e e 74

(o (=T (T (=10 11=1 0] OO UURRRRROPP 76

(o (=T 1 (T {11 [P PO TP OO UUTRRRRROPP 77

(o =T | (T USSP 79

(o =T | (T 2 SRR URSPN 81

(ol =T) I 11 0[O PP TPPPPROPPPPN 83

Lo [0 I A {4 o TV (O PP PPPPSOPPPPN 84

Lo [0 [oo | [=T o 4 o Yo WO PSP PPPROPPPPN 86
ASSIBN_SIM_ MLttt e s s e e e et ae e e s ebreeeenans 89

Y T4 o T €0 0 T 0 1 L= O UTTRRRRROPP 91

Y F=d o T (= 1 1 J OO PTRRRRROPP 92
ASSIEN_ T BIEMEBNT oo e e et e e e s e aarraeees 94

o [y Hl o LI (R o VA Y XY O U UTTRRRRROPP 96

Copyright © Accellera Systems Initiative Inc. All rights reserved.

AefiNe_MELIIC_ISO26262uvveeeeeiieiieiirieeeee e eeeccrree et e e e e eeesbreeeeeeeeesestraeeeeeesssessnsreaeees 97
AefiNe_fIr HEBCOL508ccoeiirireeiiee ettt e e e e e e eeabb b e e e e e eeeseastbaeeeeeesssesansreaeees 99
define_mMetric_I@COL508uuiiiiiiiiieeiriieee ettt e e s e e s s sbre e e e s saraeee s 100

X. ANNEX C— Add-0N 10 V0.1 ...eeiiiiiiieiieee ettt et s 101
Fo =T JE | AP PP UUPRRUPPPPRS 102

- V= | PSPPI 103

Y=Y Yol] o =SSR 104

Lo Lo o ¥ [7= [4 11 (=1 (PP 105

Y o <4 | USSR 107
aSSIZN_fMEda _fMEa ... e e e e eeanes 108
asSIBN_fMeda_elemMENto 110

XI. ANNEX D = REPOSITONY .cciiiiiiiiiiiiiiiiiiiiiiitttttttttt ettt eetteettee ettt eteeeeeteeeeeeeeeeeaeeesesesesesesesesesesesennnnnnnes 112
R =Y 1 T] L= OO P RO PPPP 112
2 e 0 0o [0 A PSSP TPPPP 113
(O e o] o] (=T TSRO PP 114
D. EXGMPIE ..ttt e e e s e et e e e e e e bbb araaeeeeeeannbraaeees 116
INEFOAUCTION. ...t e 116

Step 0. Understand the Difference Between a Language and a Data Model............. 117

Step 1. Create a Library of Collections of Attributes........cccccevvviveiiiniiiee i, 118

Step 2. Create a Library of Safety Mechanismsccccoecvieeiiiiieiiiniiee e, 120

Step 3. Create the Safety Hierarchycccoooviiiiiiniiii e 122

Step 4. Create Failure Modes and Assisting Collectionsccccceeevieeiiiiciiinveeeeeeeeeieinnns 123

Step 5. Assign Safety Mechanisms to Failure Modes........cccccvvvveeeiiieiiiiciinveeeeee e, 126

Step 6. Create Technology El@mMENtS......uveeeiiieiiiiiiieeeee et 127

Step 7. Assign Technology Elements to Failure Modes, Mapping......ccccoeveeeeeeeeerenns 128

Step 8. Create Failure Mode Effects and Connect them to Failure Modes................. 130

Step 9. Update Objects According to Verification Strategy........ccccevevveeiviiieeeenineennn, 131

Step 10. Create FMEDA-SCOPEA MELIICS ...cvviviiiiiiiiiiieeeeriiiee e eiree e esiee et iree e 132

Step 11. Create FME-SCOPEA MELIICS ...ccuviiiiiiiiieiiiiee ettt see e iee e 133

(D) = I = Tod 1o = U 134
EQUIVAIENT TADIES .ttt e e et e e e e e eesabbrreeeeeeeees 135

XIL BiBHOZIAPNY cevveveiiiiiiieccittietee ettt e e e e e s bbb e e e e e eessessbbaaeeeseeesesassstbeneeesesssannnns 138

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |5

. Introduction

The Accellera Functional Safety Data Model is intended to support the generation and
interchange of Functional Safety Content that represents diverse elements of the safety cases
of safety-relevant systems, modules, components, and IP in related industries. The data model
is a foundational component to complete the working group objectives defined in the
Functional Safety Working Group White Paper [1]. The goal and scope of the data model is to
capture and propagate the Functional Safety (FS) content across the different safety operations
and the distributed development environment, from system to IPs. Achieving this goal will
enable automation, interoperability, and traceability across safety activities.

In a distributed development environment with multiple organizations as suppliers and
customers (integrators), it is efficient to perform the safety activities separately at each level or
in each organization or team. The safety activities (operations and the resulting work products)
involved in these developments for activities within a single organizational layer are depicted in
Figure 1. The interchange between organizations at different “layers” is depicted in Figure 2.
Throughout this paper, the term "Intra-layer" and "Inter-layer" will be used and the definitions
for those terms are as follows:

e Intra-layer: Through different safety analysis/operations of the same hierarchy level, e.g.,
FMEDA analysis, verification

e Inter-layer: Between layers of design hierarchy/supply chain, e.g., System < Module <
Component < IP

Copyright © Accellera Systems Initiative Inc. All rights reserved.

AoU
FS Verification
<
FS Design <&
&
FS
Architecture

FMEDA

Safety

Requirements

Functional Safety
intent/data

& - standartization opportunity

o
BFR/Reliability
<
<
o
DFA
Safety Manual

FMEA

FTA

Page |6

Safety Case

Figure 1. Representation of the concept of the data model to cover the intra-layer operations and work products.

1P FS Intent

Data Model / FS Intent (Intra-Layer)

safety
Requirements

FMEA

DFA

FTA

FMEDA

FS

BFR/Reliabiity | L e

FS Design

FS Verification

Safety Manual

Component FS Intent

Safety
Requirements

FMEA

DFA

FTA

FMEDA

Fs

BFR/Reliability Architacture

FS Design

FS Verification

Safety Manual

Safety
Requirements.

FMEA

DFA

FTA

FMEDA

FS

BFR/Reliability Architecture

FS Design

FS Verification

Safety Manual

Safety
Requirements

FMEA

DFA

FTA

FMEDA

FS

BFR/Reliability Architacture

FS Design

FS Verification

Safety Manual

Data Model / FS Intent (Inter-Layer)

Figure 2. The data-model includes information to allow exchange for both intra-layer and inter-layer requirements.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |7

The initial focus of the Accellera working group is to develop a data model supporting FMEDA
(Failure Modes Effects and Diagnostic Analysis) creation and exchange within the following
scope:

e Domains (Digital, Analog, SW)
e Industries (Automotive, Industrial, Machinery)

e Supply Chain layers (IP, Component, Module, System)

The metrics specific to FMEA (Failure Mode and Effects Analysis) are not directly covered in this
white paper, however support can be included easily in a subsequent version as the rest of the
data model is shared between FMEDA and FMEA. The Accellera FS Data Model support for FS
content related to architecture, requirements, FTA, DFA, verification and validation (V&V), and
others will be completed at a later stage of development.

The data model implementation supports two main use cases:

1. FMEDA evaluation: A safety analysis is performed and described, for example, by using a
command-based formalism describing the atomic actions (e.g., create the safety analysis,
create a failure mode, etc.). When the user decides to generate final reports, all of the
outputs are also stored in the data model. In this use case the provided authoring
information is evaluated with the intent to populate the data model and to be able to
generate final reports.

2. “Asis”: A safety analysis is shared “as is,” as for example an FMEDA table or summary. In
this use case there is no authoring information but only failure rates and metrics to be
exchanged as outputs (for example, following a numerical evaluation of the data model) or
imported as inputs.

As stated in the Accellera FS WG white paper [1], the goal for the Accellera FS standard is to
work in alignment with well-established safety standards (e.g., 1ISO26262 [2] and IEC61508 [3])
and to facilitate their implementation. Hence, calculations and definitions are meant to be
consistent with such standards (unless stated otherwise).

Figure 3 describes the phased approach used by the Accellera FS WG to develop a functional
safety language:
e First, the process of Functional Safety Analysis is formalized.

e Second, the conceptual data model will emerge from the data exchanged and the
operations formalized in the first step.

e Third, the Functional Safety language will be derived formally from the conceptual data
model.

This paper will cover the first and second step, while the third will be part of the Language
Reference Manual (LRM) to be published later and will constitute the Accellera Functional

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |8

Safety Standard. A sample language will be deployed in this paper solely for the sake of
illustration through examples, however the final standard might differ.

Functional Safety Analysis Process

Conceptual Data Model

Functional Safety Language

Figure 3. The Development process of the Functional Safety Language.

This white paper is organized as follows:

e FMEDA Process captures the formalization of the process to perform a Failure Mode and
Effects and Diagnostic Analysis (FMEDA). This is a conceptual representation that identifies
the elements of the FMEDA process (e.g., FS Hierarchy, Failure Modes, Technology
elements) and how they are connected to each other

e Design Representation and Mapping of Data connects the FS data model with the design
representation and details the concept of mapping. Mapping is used to connect different
sets of data (e.g., the Functional Safety hierarchy to the design hierarchy) and therefore
several different mapping types are defined.

e FMEDA type introduces the definition of distinct types of FMEDA: calculation-based and
assumption-based. These concepts clarify how the design metrics are extracted or provided
to calculate the failure modes distribution.

e Conceptual Data Model summarizes the basics of an entity-relationship data model,
continues with general considerations about the data model and connects the elements of
the FMEDA process identified in FMEDA Process above to the entities of the FS data model.
It then expands the entities covered to include all attributes that constitute the complete
and detailed FS data model.

e Detailed Annotations on the Data Model includes several detailed discussions about the
methodology supporting the definition of some of the data model attributes, based on the
FMEDA process.

e Annex A: Data model expands the entities defined in Conceptual Data Model above to
include all attributes that constitute the complete and detailed FS data model.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |9

e Annex B: Language covers a prototype language, which is used to illustrate examples of FS
projects created using the defined data model. Additionally, hypothetical language
constructs are covered to illustrate additional opportunities that are available in the scope
of this work.

e Annex C: Add-on to v0.1 reports additions to the proposed data model/language that will
be considered for inclusion beyond the first release.

e Annex D: Repository includes several examples created using the prototype language,
ranging from a one-picture example to a step-by-step illustration accompanied by source
code, author’s comments and equivalent FMEDA tables.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |10

I1. FMEDA Process

The FMEDA process is a bottom-up, inductive analysis describing how elements of a system can
fail, and how the effects of defined failures can be mitigated (detected or controlled) to
maintain a safe state. The remainder of this section details the traditional FMEDA process to
identify the data and operations that will eventually lead to the definition of the FS data model.

The traditional components and operations of an FMEDA are listed below and highlighted in
Figure 4:

e The process receives as input a representation of the Design Under Analysis (DUA) via a
comprehensive list of all of the components in it, typically organized in a hierarchy as
appropriate.

e An analysis of the intended functionality identifies the functional safety analysis hierarchy
(FS Analysis Hierarchy) detailing the portions of the design that are safety related and
which have the potential to violate a safety goal or safety requirement.

e For each relevant portion of the FS Analysis Hierarchy, the Failure Modes analysis defines
the Failure Mode (FM) hierarchy (FM Hierarchy) through enumeration of the possible
failure modes of each element that can cause its failure to function as specified
(malfunction).

e One or more technology elements are identified for each Failure Mode of the DUA, based
on the technology elements available (Technology Elements Library).

e The Failure Mode Effects Analysis (Failure Mode Effects or FME) identifies the effects of the
FM on the DUA as seen when instantiating the DUA into the next level of the supply chain.

e Safety diagnostics are selected from the inventory of potentially available safety
mechanism(s) (Safety Mechanisms Library) and applied to mitigate the identified failure
modes and bring the system to a safe state within the required time.

The Safety Mechanism may be implemented within the design under analysis or in another
element of the system into which the component is integrated. Safety Mechanisms in elements
outside the scope of a safety element provided by a supplier are documented in the element’s
safety manual as Assumptions of Use (AoUs).

The formalization of the process to perform an FMEDA captured in Figure 4 identifies the
elements of the FMEDA process and how they connect to each other. These form the basis to
define the categories of information of the FS data model and how they are related. The next
section details these relationships.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Design Intended
Under Functionality
Analysis Analysis

Figure 4. Fundamental data and operations in the creation of an FMEDA.

FS Analysis

Hierarchy

Technology

Element

Technology
Element
Identification

Failure
Mode
Analysis

Failure Mode
Effects
Analysis

Application
of SMs

Safety

Mechanisms
Library

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |11

Page |12

lll. Design Representation and Mapping of Data

This section introduces the concepts of design representation and design mapping, both of
which are fundamental to the formalization of a data model supporting and automating FMEDA
activities.

A. Design Representation

A design can have multiple representations as it matures through its development lifecycle, and
safety analysis can be performed on any representation within the selected scope (i.e., IP,
Component, Module). It may be convenient for the analyst to organize the elements of the
source design in abstract or functional groupings to ease the identification of failure modes and
their associated safety mechanisms. This is permitted if the representation is complete with no
omissions in scope.

In a functional partitioning, the design is represented by a hierarchy of functions and
subfunctions with their interfaces and interactions. In this representation, specific
implementation details such as target technologies may have not been relevant. In a structural
design representation, the actual intended circuit implementation is displayed. Figure 5 and
Figure 6 show an example of a functional representation and a structural representation,
respectively [15]. Note that the concept of functional and structural design representations
applies to all layers of the supply chain (IP, Component, Module, System), which is a distributed
development environment with multiple organizations as suppliers and customers (integrators).

Functional representation
(What it does)

Communicate
Send function - Failure Modes
+ Send function fails to occur
+ Send function occurs
erroneously
+ Send function occurs without Transmit Receive
Commands function function

Interrupt Receive Interrupt
function function function

Send function

Figure 5 Functional Representation of a component

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |13

Structural representation
{How it does)

Radio

Tuner - Failure Modes
+ Tuner unit fails to operate
= Tuner unit has too much static
» Tuner unit is out of tolerance

Chassis Headset

Tuner Power supply Antenna Microphone Speaker

Figure 6 Structural representation of a component

The data model supports (and is agnostic) of whether the design representation is functional or
structural.

Examples of common products and design representations across the supply chain are included
in Table 1.

Table 1. Description of layers and common design representations at each layer.

Supply
Chain Common design
Layer Layer definition Product examples representations
System Captures the function(s) ECU(s) including sensing, processing, | System Model
visible at the automation
driver/vehicle level
Module Implements one or more | e Sensor, actuator, processing System Model
safety goal(s) and can be module
shared by different e PCB(s) and enclosure
systems
Component | Implements one or more | e Packaged part (die + package): Block Diagram, specification,

safety function(s) and can
be shared by several
modules

- SIP/MCM: System-in-
package

- IC: Integrated circuit

- Simple components:
Passives

Die-level:

- Single function: e.g., ADC

- SoC: System-on-chip:
multiple functions/

subsystems (e.g., processor,

peripherals, accelerators,

Modeling language (SysML
[10], IP-XACT [8]), RTL, Gate-
level Netlist [5]

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |14

interface ports)

Implements one or more
standalone (safety)
function(s) and can be
shared by different
components

Soft IP (e.g., SPI port, DDR
controller, ML subsystem)
Hard IP (Analog function, e.g.,
MIPI PHY)

Foundation libraries (pads,

Block Diagram specification,
Modeling language (SysML,
IP-XACT), RTL, Gate-level
Netlist

memory array compilers, cell
libs)

The design representation exists independently and is an input into the functional safety
analysis to be performed. The independence of the design representation is critical in
supporting the various scenarios encountered performing FS analysis within and across the
supply chain. To perform the FS analysis, a connection to the design representation is
commonly enabled through a set of mapping operations as explained in Mapping.

Technology
Element

| FMEDA

Technology Technology

’:eSIg.n Element Element Fm Efft?cis
s Mapping Identification £ FMEDA
metrics
- Element
Intended o Failure Failure Mode .
. e FS Analysis metrics
Design Functionality Hi h Mode Effects
Hierarchy Analysis CraIehy; Analysis Analysis —
SM
Mapping E
Application

of SMs

EIEY
Mechanisms
Library

Process

Weak object
External DB

Relationship

Figure 7. FMIEEDA process overview with mapping included.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. Mapping

Page |15

Mapping is defined as the operation of connecting one set of data to another. In the context of
the Accellera Functional Safety Data Model, mapping connects data across the FMEDA
workflow defined in Figure 7. Several types of mapping are defined in the context of performing
an FMEDA, depending on the data it connects. The complete list is defined in Table 2 and is
detailed in the remainder of this section.

Table 2. Data mapping involved in the FMEDA process.

Type

Description

Technology Element
Mapping

Maps the FS Hierarchy elements and/or the Failure Modes to the Technology Elements

Safety Mechanism
Mapping

Links a Safety Mechanism to the Failure Mode to protect

Failure Mode Effects
Mapping

Maps failure mode(s) to a failure mode effect that can be exported to higher analysis
levels

Design Mapping (FS
Analysis Hierarchy)

Through the Technology Element Mapping, connects the design component(s) to the
Functional Safety Hierarchy (represented as FMEDA Elements) identified during the
analysis of the intended functionality

Design Mapping
(Failure Modes)

Through the Technology Element Mapping, connects the design component(s) to the
Failure Mode(s) they may cause

To illustrate the mapping concepts, the OpenRisc 1200 (OR1200) structural hierarchy will be
used as a demonstration vehicle.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |16

Design Mapping

Design Mapping connects the design instances of the source design to the FS analysis hierarchy,
represented for example as Parts and Subparts, and/or to the Failure Modes. No specific design
representation is assumed for the source design.

Mapping real design information to a given safety hierarchy supports mainly three purposes:

e Provides a simplified system partitioning targeting the failure mode definitions and safety
hierarchy elements. Typically, safety engineers want to have the possibility to describe FS
hierarchy elements and failure modes by using a simplified partitioning compared to the
real design hierarchy, but still having a link with real design information.

e Having a link with real design information enables automatic computation of the failure
rates assuming they will be computed according to the related mapped technologies and
areas (e.g., number of transistors) that are evaluated following the design mapping.

e By providing a bidirectional mapping between the safety hierarchy and the real design
hierarchy it will be possible to perform cross-checks, for example to verify the consistency
of the technology mapping, potential overlaps of the design information mapped to the
failure modes, and hierarchical inconsistencies.

It is important to note that the definition of the FS hierarchy is not required to align to the
design hierarchy. The definition of the FS hierarchy is left to expert analysis. Mapping is
subsequently performed connecting the defined FS analysis hierarchy to design
components/instances. Figure 8 shows an example of such mapping where the subpart DCACHE
RAM is mapped to a single design component such as a module instance, while the subpart
MMU is mapped to a collection of instances, leaf cells, or other design structures.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |17

Design model

dc_top tt pic dmmu_top cpu du pm iwb_biu ic_top imi mu_top dwb_biu

dc_tag de_ram de_fsm except freeze whmux imu_tib

dc_tag0 dmu_tib Isu sprs of itlb_tr_ram itlb_mr_ram

dtlb_tr_ram dtlb_ram operandmuxes mult_mac ic_tag ic_ram ic_fsm

genpe ctrl it

ifc_tag0d ic_ram

FS Analysis Hierarchy

Figure 8. Mapping of functional safety hierarchy to design components.

The proposed data model does not support direct mapping of failure modes or elements to
design objects. This is done through mapping of failure modes, elements, and technology
elements. A “relationship” object that establishes such connectivity has a set of attributes that
describes external design information. See details in Figure 21 and Figure 7. A data model-
accurate example of an FMEDA project with source code examples is shown in Example 4. In

this chapter a detailed description of mapping operations through various objects is omitted for
simplicity.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |18

Failure Modes Mapping

After the functional safety analysis hierarchy is set up, a failure mode analysis is performed.
Failure modes are identified as functional safety hierarchical elements and represent unique
objects within the data model, and there is link between a functional safety hierarchy element
to the failure modes for that element. At this point, the design mapping may also be used to
connect the design instances of the source design to the Failure Modes. Extending the prior
example, two failure modes in Figure 9 are defined for the "MAC" while a single failure mode is
defined for the "MMU" and "DCACHE_RAM." A failure mode can be mapped to a single design
component such as a module instance (e.g., FM1_dcache), or a collection of instances, leaf
cells, or other design structures (e.g., FM1_mmu). Also, more than one failure mode (e.g.,
FM1_mac and FM2_mac) can be mapped to a single module instance. Like the FS analysis
hierarchy, a design mapping facilitates higher levels of automation such as automated failure
mode distribution.

Design model

Top

de_top tt pic dmmu_top cpu du pm iwb_biu ic_top imi mu_top dwb_biu

de_tag de_ram de_fsm except freeze whmux imu_tib

dc_tago dc_ram dmu_tib sprs f itlb_tr_ram itlb_mr_ram
dtlb_tr_ram dtib_ram operandmuxe: mult_mac ic_tag ic_ram ic_fsm
genpc ctrl f ifc_tagd ic_ram
5 Anaysis Hirarchy]
TOP
1 DCACHE RAM MAC — MMU
I
I
I
)
]
§
B FM1_dcache BNV mcCI. - ————— H FM1_mmu
|
|
)
FM2_mac --———- =

Figure 9. Mapping of failure modes to design components.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |19

Safety Mechanism Mapping

Once the failure modes are identified, the safety features working to control or avoid failures to
those failure modes can be defined. The safety mechanisms mapping connects the safety
feature(s) deployed to detect and mitigate random failures, preventing the violation of a safety
goal/requirement to the failure modes. A failure mode may be "protected" by one or more
safety mechanisms, and similarly multiple failure modes may be "protected" by a single safety
mechanism. Therefore, the data model supports a many-to-many relationship between failure
modes and safety mechanisms. Figure 10 demonstrates these concepts by showing one-to-
many, many-to-one, and one-to-one safety mechanism configurations.

Design model

dc_top tt pic dmmu_top cpu pm iwb_biu ic_top imi mu_top dwb_biu

de_tag de_ram de_fsm except freeze whmux imu_tib

dc_tag0 dc_ram dmu_tib sprs i itlb_tr_ram itlb_mr_ram
SM1_dcache
dtib_tr_ram dtib_ram operandmuxe: m SM1_mac ic_tag ic_ram ic_fsm

du

genpc ctrl if ifc_tag0 ic_ram
FS Analysis Hierarchy ‘
TOP
& FM1_dcache FM1_mac) FM1_mmu
1 |
! I
e FM2_mac B
e)
& 4
| SMi_dcache SM1_mac —— SM1_mmu

SM2_mmu

Figure 10. Mapping of the safety mechanisms to failure modes.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |20

Technology Element Mapping

Technology elements represent the data model safety objects used to store the reliability
information for a given design technology (e.g., digital, or standard cells, memories, etc.). By
mapping technology elements to the failure modes, it is possible to compute the related failure
rates. In the proposed data model, three basic modes are supported:

e Assumption-based FMEDA: The technology element has both the reliability information for
the technology and the design information to be mapped to a given failure mode.

e Calculation-based FMEDA: The technology element has only reliability information and the
design information is provided by the design mapping.

In Figure 11 two technologies elements are created: one for a memory technology and one for
a digital technology. The two technology elements are mapped to the failure modes, linking the
design information with reliability data, and enabling the failure rates computation.

The proposed data model supports mapping different technology elements to the same failure
mode.

Design odel
Top

dc_top tt pic dmmu_top cpu du pm iwb_biu ic_top imi mu_top dwb_biu

dc_tag de_ram de_fsm except

dc_tagd dc_ram dmu_tib

dtlb_tr_ram dtlb_ram

freeze whbmux imu_tib

sprs of itlo_tr_ram itlb_mr_ram

mult_mac ic_tag ic_ram ic_fsm

ctrl f ifc_tago ic_ram

FS Analysis Hierarchy

i FM1_dcache FM1_mac = - s

I
|
|
|
T
|
\

H FM1_mmu
|
|
ENVI2S G- ———— — p
TE_MEM TE_DIGITAL

Figure 11. Mapping of the technology elements to failure modes.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |21

Failure Mode Effects Mapping

The concept of Failure Mode Effect (FME) can be used to group, abstract, and finally
“transport” failure rate contribution of one or more failure modes of a given safety analysis to a
higher safety analysis scope. For example, it is possible to associate to an FME the weighted
contribution of failure modes from an IP FMEDA in order to have a specific and desired safety
metrics reporting at the SoC level.

If the end user wants to keep consistency of the FME reporting at different abstraction levels
(e.g., IP vs SoC), constraints could be implemented on top of the data model, for example
between the applied weights (e.g., sum of the weights for a given FME for all failure modes in
the analysis to be 100%).

Design model

dc_top tt pic dmmu_top cpu du pm iwb_biu ic_top imi mu_top dwb_biu

dc_tag de_ram de_fsm except freeze whmux imu_tib

dc_tag0 dc_ram dmu_tib

ifc_tago ic_ram

FS Analysis Hierarchy

FM1_dcache FMl_mac ————- = FM1_mmu

e ————————

ENVI2S G- ———— —

FME_MEM_EXCEPTION

Figure 12. Creation of a Failure Mode Effect.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |22

Complex Use Cases

The example provided during this section highlights a simplistic but common implementation
including:

e Definition of the FS hierarchy

e Failure modes for each element of the hierarchy

Safety mechanisms protecting those failure modes

Technology elements within the failure modes

Failure mode effects

The data model supports the broad range of FMEDA permutations such as FMEDAs with two or
more parts and FMEDASs requiring greater than two levels of FS hierarchy depth.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |23

Design model
fm——————— A n fm——————— o
- | SM1_mmu | y . | SM2_mmu |
[g CESEERESSE o 4 [-4
dc_top tt pic © dmmu_top cpu du pm iwb_biu ic_top immu_top dwb_biu
dc_tag dc_ram de_fsm except freeze whmux imu_tib
dc_tag0 — -, W dmu_tib sprs rf itlb_tr_ram i(lb_m‘v_ram
SM1_dcache | ‘
dllb__(r_raml dtlb_ram operandmusxe: ic_tag ic_ram ic_fsm
I genpe ctrl if ifc_tag0 ic_ram
| TOP
.~ FMi_dcache - =} ~ FM1_mac E FM1T_mmu
l) . R 1 i T,
B L _ | Relationship | p? FM2_mac B
| i object i === ;
S S SE—— _d _ak
~——{ SMi_dcache | I SMi_mac ~ ———— SMi_mmu |
| . - o
| SM2_mmu)
|
TE_MEM i) il TE_DIGITAL

FME_MEM_EXCEPTION

Figure 13. Final structure of the example.

The left-hand side branch of the diagram above shows a data model-accurate representation of
mapping to design hierarchy operations. Mapping to design happens through the dashed red
“Relationship object” box that connects Technology element TE_MEM, Failure mode
FM1_dcache, and design hierarchy Top.dc_top.dc_ram.dc_ram. A detailed description of a
relationship object is given in Mapping Technology Element — Failure Mode.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |24

IV. FMEDA Type

The Accellera Functional Safety Working Group has defined two types of FMEDA supported by
the data model: Assumption-based and Calculation-based. The following sections describe
features and differences.

A. Assumption-based

An assumption-based FMEDA relies on user estimations to compute failure rates and metrics.
The FS analysis and failure mode hierarchies do not have a correlation or mapping to any real
design hierarchy, and therefore the metrics are only estimated.

B. Calculation-based

A calculation-based FMEDA leverages design mapping to enable automated computation of
failure rates and metrics. A calculation-based FMEDA has associations (mapping) to a real
design hierarchy or “design representation,” allowing for quantitative analysis of FMEDA
metrics. The total areas and the related failure mode distribution (FMD) by default are not
manually assigned by the user but are derived from the design hierarchy.

C. Mixing FMEDA Types

It is important to note that the two FMEDA types can co-exist on the same DUA for different
portions of the design. For example, by mapping a technology element, it is always possible to
manually specify the failure mode area information (e.g., FM_Size_Permanent,
FM_Size_Transient). This feature has a potential priority conflict with the real design
information mapped to failure modes in a calculation-based FMEDA (e.g., FM_mapping). The
data model attribute used to discriminate between an Assumption-based and Calculation-
based FMEDA can be used to define the priority in case of a mixed-mapping scenario. For
example, in an assumption-based FMEDA, manually provided design information will take
precedence (see Figure 14). Alternatively, information coming from design mapping will take
precedence in a calculation-based FMEDA (see Figure 15).

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 14. Assumption-based FMEDA.

Assumption-based FMEDA
. Defines the FS analysis hierarchy and FM hierarchy

. Does not have correlation/mapping to a design
hierarchy and hence does not link to Design Objects

. Metrics are estimated and not derived from design
objects

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |25

Figure 15. Calculation-based FMEDA.

Calculation-based FMEDA

. FS analysis hierarchy is mapped/associated
with the design hierarchy to quantify the
failure rates and the failure mode
distribution

. Failure modes can be mapped to their root
cause, i.e., the portion of the design
hierarchy that can trigger that failure mode

. Maps/Associates the FS analysis hierarchy
and FM hierarchy to the design hierarchy
(creates connections to predefined objects)
to quantify FIT and FMD

. Includes Design Object identifiers of the
design hierarchy associated to the textual
description of the FS analysis hierarchy

Page |26

V. Conceptual Data Model

A. Introduction to the Entity-Relationship Model

After the formalization of the FMEDA process, we extract a conceptual data model to represent
the data needed to perform an FMEDA and exchange an FMEDA report. The goal of the
conceptual data model is:

e To define and detail the information content (FS data) needed to perform the Functional
Safety activities and generate the work products
e NOT to provide a reference implementation

e To be a systematic approach to define a language/format
A conceptual data model [12] [11]:

e Defines WHAT the system contains

e Does NOT define HOW the system should be implemented

In this work, to capture the conceptual data model, we rely on the well-known entity-
relationship model [13] [14], and this section gives a brief summary of some if its terminology.

The three basic tenants of the Entity Relationship model are:

e Entity: A real-world thing
e Attribute: Characteristics or properties of an entity

e Relationship: Dependency or association between two entities

In addition to the three objects above, we will also rely on the concept of Weak Entity. While
Entities are uniquely identified by a primary key, a weak entity is an entity that cannot be
uniquely identified by its attributes alone; therefore, it must use a foreign key in conjunction
with its attributes to create a primary key. A simple example is an employer that has a database
of its employees, each represented as an entity with their unique employee ID. In this case,
each employee can have one (or more) dependents. The dependents are weak entities because
they do not have a unique ID by themselves, but only exist in the context of the employee (and
their unique ID).

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |27

B. General Considerations

Key points about the conceptual data model:

e The data model is in addition to the existing design standards (see Figure 11 from [1]).
e We use an entity-relationship data model to capture the content.

e The high-level categories (i.e., entities) are derived from the FMEDA process defined in
(reference to previous section) to meet the use cases.

e The detailed data model is represented in a table form to keep it generic.

Design - Automation Tools
Standards esign
(e.g. Verilog, VHDL, Definition = ==
SystemVerilog, SystemC)
= ==

Functional Safety

Standard =

FS Work Products I

Figure 16. Functional Safety Standard in addition to the standard design representations.

Several options have been considered and discussed during the definition of the data model.
The rationale used for the data model is to start with the simplest model and add complexity
only if there are specific cases that are not supported. In fact, in general the more
complex/flexible the model, the more rules are then needed to ensure
consistent/exchangeable models. Even though the data model has been derived to support the
FMEDA for a single IP/device, the validation process covers the hierarchical combination of
multiple FMEDASs as a use case.

The high-level data categories are identified directly one-to-one from the data objects in the
FMEDA process formalization described in Figure 7. In other words, the data model represents
the implementation of the requirements defined as the formal FMEDA process.

Figure 17 reports the description of the high-level categories identified for the FMEDA process
and the corresponding entity of the data model in which they are captured, connecting them to
the role they play in the design definition captured in Figure 16. Each entity will then include
several attributes to describe its properties, as detailed in Annex A — Data Model.

Objects in the table included in Figure 17 are also indicated with the same colored symbol used
in Figure 7 to highlight the direct traceability existing between the process formalization and
the definition of the conceptual data model. The data model has been defined as a direct

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |28

traceable derivation of the data and data mapping used in the FMEDA process. The complete
design definition and the scope in which the objects are defined is represented in a hierarchical

way in Figure 18.

Design
Standards
{e.g. Veerilog, VHDL,
SystemVerilog, Systemc)

Design Hierarchy

(source design)

Autemnation Tools
Design
Definition = | =
= ==
= =

Functional Safety
Standard ==

FS Work Products II

Functional Safety Data Model

FMEDA process data Entity Type | Information Type
FMEDA FMEDA Object
FS Analysis Hierarchy Element Object
FM Hierarchy Failure_Mode Object
Technology Element Technology_Element Object
Safety Mechanism Library Safety_Mechanism Object
FM Effects Failure_Mode_Effect Object
SM Mapping SM-FM Relationship Relationship
FM Effects Mapping FM-FME Relationship Relationship
Technology Element Mapping TE-FM Relationship Relaiionship
Technology Element Mapping TE-Element Relationship Relationship
Design Mapping In_sw'de the _TE—FM since there is no Design Relationship e
Hierarchy in the data model
Design Mapping InsTt_ie th_e TE—E\err_\ent since there is no Relationship i
Design Hierarchy in the data model
Calculated FR FR_1S026262 Weak object (*)
Calculated metrics Metrics_IS026262 Weak object (¥)
Calculated FR FR_IEC61508 Weak object (*)
Calculated metrics Metrics_IEC61508 Weak object (¥)

Figure 17. Information included in the Functional Safety data model, derived from the process in Figure 7.

The following points describe the rationale applied for the attribute definition:

e Allow flexibility to support use cases without sacrificing ease of use.

e Select attributes to allow the smallest granularity needed.

e In specific cases, allow attributes for convenience only if they support significant ease of
use.

e If the same attribute is defined on different entities, also specify the rules to reconcile the
values in case of discrepancy/inconsistency if a single value is used for metrics calculation.

e An attribute is defined as required if the parsing of the data model will fail if that attribute is
not provided.

e Other secondary criteria are readability and compactness of the model.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |29

Detailed description of the data model and a derived language can be found in Annex A — Data
Model and Annex B — Language, respectively.

[Design Definitions |

Design Hierarchy l

Accellera FS Data model l

Technology Elements]

Safety Mechanisms Library l

FMEDA]
N Calculated FMEDA metrics
N Failure Mode Effect

Calculated FME metrics

Da— Safety Mechanisms

S— Element

Calculated Element metrics
Failure Mode

Calculated Failure Mode metrics

Figure 18. Design Definition and scope of the objects.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |30

VI. Detailed Annotations on the Data Model

This section captures some of the methodology discussions that emerged as part of the data
model definition; these discussions support the choices made for the content included in the
data model itself.

A. FMEDA Type (Assumption-based, Calculation-base)

The FMEDA type attribute defines the source of failure mode distribution data in case a choice
needs to be made.

The failure mode distributions can be calculated based on:

e Estimations provided with the options fm_size or element_size
e Design metrics extracted from the design mapping as specified in the fm_mapping and

element_mapping

When both options (*_size and *_mapping) are specified for an FM or element, the FMEDA
type will select as follows:
e Assumption-based: The *_size takes precedence over *_mapping.

e Calculation-based: The *_mapping takes precedence over *_size.
This choice reflects the following intent:

e Assumption-based: The size of the FM or element is provided by the user.

e Calculation-based: The size of the FM or element is extracted by the mapping to the design
hierarchy and the corresponding design metrics.

Even though the parameter is defined at the FMEDA level, the granularity of the choice can be
applied to each individual FM or Element by the usage of the *_size and *_mapping
parameters.

An example of usage is to start with an assumption-based FMEDA and then switch the attribute
FMEDA _type to calculation-based and continue with design metrics extracted from the design
representation. When the FMEDA_type is calculation-based, a design representation (see
Figure 16) is also expected to be provided along with the FS data model.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. FS Hierarchy and FM Hierarchy

Page |31

The FS hierarchy (i.e., the Element objects) and FM hierarchy are defined in the context of an

FMEDA.

The FMEDA, element, and FM have a required attribute “Name” that only needs to be unique in
the context of the parent.

The FM also has an optional ID attribute that is instead unique inside an FMEDA.

An example of valid usage is the following:

FMEDA_Name | Part_Name | Subpart_Name | FailureMode_Name FailureMode_ID
FMEDA top_1 CPU_1 ALU Wrong Data Computation 1
Incorrect Adder Output 2
Register File Incorrect Data Value in the Register | 3
File
Wrong Data Computation 4
CPU_2 ALU Wrong Data Computation 5
Incorrect Adder Output 6
Register File Incorrect Data Value in the Register | 7
File
Wrong Data Computation 8
FMEDA_top_2 CPU_1 ALU Wrong Data Computation 1
Incorrect Adder Output 2
Register File Incorrect Data Value in the Register | 3
File
Wrong Data Computation 4
CPU_2 ALU Wrong Data Computation 5
Incorrect Adder Output 6
Register File Incorrect Data Value in the Register | 7
File
Wrong Data Computation 8

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Or more generically:

Page |32

FMEDA_Name Part_ Name | Subpart_ Name FailureMode_Name FailureMode_ID
FMEDA_IP1 Part_1 Subpart_1 FailureMode_1 ID_1
FailureMode_2 ID_2
Subpart_2 FailureMode_2 ID_3
FailureMode_3 ID 4
Part_2 Subpart_1 FailureMode_1 ID 5
FailureMode_2 ID_6
Subpart_2 FailureMode_2 ID_7
FailureMode_3 ID_8
FMEDA_IP2 Part_1 Subpart_1 FailureMode_1 ID 1
FailureMode_2 ID_2
Subpart_2 FailureMode_2 ID_3
FailureMode_3 ID_4
Part_2 Subpart_1 FailureMode_1 ID_5
FailureMode_2 ID_6
Subpart_2 FailureMode_2 ID_7
FailureMode_3 ID_8

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |33

C. Technology Element

The term technology is commonly referred to as a technology node (e.g., 16nm, 7nm). The term
technology element refers here to different elements of a technology node, such as RAM,
digital, analog, and so on.

The Base Failure Rate (BFR) is the Failure rate of a unit design element. For digital technology
elements, the unit design element is often defined as the smallest nand2 cell or as a transistor.
For memories, the unit design element is the bit, while for analog it is the transistor. The BFR
can be calculated as the FR of the whole design (A_die) normalized to the unit design element.
The BFR is provided as attributes FR_Permanent, FR_Transient and FR_Transient_Derating in
the Technology entity.

Digital

For permanent faults, the Failure Rate (Raw Fit) for the Failure Mode (FM) is then calculated
starting from the FR_perm as:

AFM = FRperm X #FMunit_design_elementS
Or equivalently:

FMsize_permanent

unit_design_element_size

Apm = FRperm X

For permanent faults, F Mg e permanent iS assumed to have the whole area contribution of
combinatorial and sequential logic.

For transient faults, the Failure Rate (Raw Fit) for the Failure Mode (FM) is then calculated
starting from the FR_trans as:

FMsize_tran FMsize_perm - FMsize_tran
. . . + Rtran_comb . . .
unit_design_element_size unit_design_element_size

Arm = FRypgn X

In case the FRyyqn_comp is NOt available, it is possible to assume that the contribution of the
combinatorial logic to the Agjcan be obtained as a percentage of the failure rate transient:

FRtran_comb = FRtrans X FRtrans_derating

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |34

RAM/ROM/Flash

For permanent and transient faults, the Failure Rate (Raw Fit) for the Failure Mode (FM) is then
calculated starting from the BFR as:

Apm = FR X FMsize pits

Where FRis FRyerm and FRy.qns respectively.
Analog

The permanent Failure Rate can be calculated as:

F Msize_permanent

unit_design_element_size

AFM = FRperm X #FMunit_design_elementS =

Note that the Failure Rate derating due to degradation of BFR characteristics based on the
expected environmental conditions of the application is not accounted for in these formulas,
but rather assumed to be included as part of the BFR.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |35

D. FS Hierarchy Modeling

In the final reporting of 1ISO2626 [2], several levels of hierarchy can be compressed into a single
subpart. However, to allow for flexibility to handle the complexity of modern SoCs, the data
model also allows several levels of subparts in the FS hierarchy. The final reporting can still be
compressed to have a single level of parts and subparts.

The following properties apply to the data model:

e Only one level of Part is supported in the FS Hierarchy.
e Several levels of Subparts are supported in the FS Hierarchy.

e Aleafis defined as an Element (part or subpart) with no children subparts (or, equivalently,
only FM children).

e FM can be defined only on leaves of the FS hierarchy.

e An element of type Subpart can only have an element of type Part as a parent (in other
words, the FS hierarchy cannot be FMEDA - Subpart).

e For calculation-based FMEDA, the design hierarchy mapped to parts and subparts cannot
overlap.

Figure 19 below shows a few examples of FS hierarchy definitions that are allowed or not
allowed:

(Part P1 “PartP2 Part P3
Subpart SPA FM) FM yrt SPA
Subpart SPB I Subpart SPB
/) ——=—-NO_ P N
| Subpart SPC Subpart SPD FM) Subpart SPC Subpart SPD [Subpart SPE |
_XYES,

FM FM

Figure 19. Examples of functional safety hierarchy definitions.

In 1S026262, the concept of Elementary SubPart (ESP) is also present and is defined as the leaf
level of the FS hierarchy: “...smallest portion of a hardware subpart (3.73) considered in safety
(3.132) analysis.”

In practice, however, ESP is often used to partition the design hierarchy into a finer granularity,
often implementing a specific methodology based on cone-of-logic extraction, and therefore
describes parts of a design hierarchy instead. In other words, ESPs are used in practice to gather

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |36

portions of HW logic and build them into an FM root cause. Other examples referred to as ESP
in ISO can be modeled with the mapping attribute.

Therefore, we will not introduce the concept of ESP in the data model, but we will consider
instead whether we need to define a specific operation/support for design hierarchy
manipulation/aggregation/partitioning in case a finer granularity is needed. The addition of this
support would have the goal to capture the design manipulation/aggregation/partitioning in an
implicit rather than explicit way and avoid potentially excessive data transfer.

E. Operations on Design Mapping

Logic operations on design mapping can be convenient and allow for an implicit description
rather than an explicit, potentially large, list of design elements. The most useful operation is
subtraction or exclusion. The parameters Part_Mapping_Exclude, SubPart_Mapping_exclude,
and FM_Mapping_Exclude provide the capability; they define which design elements to exclude
from the list of design elements mapped to a safety object. An example of usage is to provide a
convenient way to exclude pervasive logic like BIST.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |37

F. DC Aggregation Methods

Some FMs are covered by a single SM, and some FMs are protected by a combination of SMs.
Both use cases are possible. When multiple SMs are covering the same FM, the overall resulting
DC is the aggregation of the individual DC based on some heuristics/criteria. The data model
includes an FM attribute called DC_aggregation that supports the definition of several
heuristics:

e max: The max DC of all SMs is selected

e sum: The DC from all SM are summed up and capped to 100%

e residual: The DC is calculated with the following formula:
DCyesiquar = 100% — [](100% — DCsy)
The DC_aggregation attribute is defined separately for Transient and Permanent.

An example is included in Table 3, where a single FM is covered by several SMs called SM1,
SM2, and SM3, and the value of the DC associated with each SM is defined. The last three
columns show the resulting DC obtained using each of the heuristic.

Table 3. Example of a single FM covered by three SMs: SM1, SM2, and SM3

FM DC-SM1 DC-SM2 DC-SM3 Max Sum Residual

FM1 30% 60% 90% 90% 100% 97.2%

Specifically, and for sake of example, these are the detailed calculations for the D Cycsiguar:

1. 100% — [(100% — 30%) X (100% — 60%) X (100% — 90%)]
2. 100% — [70% X 40% X 10%]
3. 100% — 2.8% = 97.2%

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |38

G. Failure Mode Effect

A Failure Mode Effect (FME) represents the consequence of a failure mode seen at the top level
of the DUA when a fault occurs in the DUA. For a Safety Element out of Context (SEooC), the
FME is based on assumptions of how the DUA is going to be used at the next layer. The
receiving layer needs to validate the assumptions and map the IP FME to the component FM
(and similarly for the other layers of the supply chain). In other words, the FME captures the
information of the interface between various levels/layers of the FMEDA analysis.

The relationship between FM and FME can be many-to-many:

e An FM can contribute to multiple FMEs.
e An FME can be caused by many FMs.

Also, there are no limitations or rules on how to map FMs to FMEs in terms of where the FM
belongs in the FS hierarchy.

The contribution of FMs to FMEs can be assigned a weight as well. For a given FM, the sum of
its contributions to the FME adds up to 100%. The assumption behind this is that the FMEs are
non-overlapping. Table 4 shows a case of ill-defined FMEs where this assumption is not fulfilled.
In this case, the sum of the FMEs is beyond 100% because FME_B and FME_C are overlapping.,
i.e., a packet could be "corrupted" (FME_B) and "at a wrong time" (FME_C) at the same time. A
better way to define FMEs is in Table 5.

Defined in this way, the total residual FR for the device (due to all of the FMs) is maintained and
distributed in a different view across the FMEs.

Table 6 provides an example of the FS hierarchy, the FM hierarchy, and the FMEs for IP1 (the
DUA) and shows the information about the FM to FME mapping, including the corresponding
weights. Figure 20 reports a graphical view of part of the same example, where the FMs of
IP1/P1/SP1 and IP1/P2/SP2 are mapped to the FMEs (FME_A, FME_B, FME_C, FME_D, and
FME_E).

Table 4. Example of ill-defined, overlapping Table 5. Example of well-defined, no overlapping

FMEs. FMEs.
FME_A | Packet not generated when it 30% FME_A | Packet not generated when it should 30%
should be be
FME_B | Packet corrupted 35% FME_B Packet corrupted but at right time 20%
FME_C | Packet at wrong time 35% FME_C Packet at wrong time 20%
FME_C2 | Packet at wrong time and corrupted 30%

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |39

Example of FME mapping with IP1.P1.SP1 and IP1.P2.SP2 FMs mapped

IP1
P1 P2
SP1 SP2 SP1 SP2
— G — FM1 FM1 FM1
ﬁ FM2 FM2 FM2
f FM3 FM3 FM3
\- 80% ~ 33% 3 W
|
\~ 5no '
L 50% l 100% - 2?/° 50% 67%
FME_A FME_B FME_C FME_D FME_E
25% 25% 90% 20%
10% 25% 80% 25% 25%
75%

Figure 20. Example of FME mapping with FMs of two subparts mapped.

Table 6. Example of FME mapping with all FMs mapped to FMEs.

Part | Subpart | Failure Mode IP1: FME_A IP1: FME_C IP1: FME_D IP1: FME_E
P1 SP1 P1_SP1_FM1 80% 20%
P1_SP1_FM2 100%
P1_SP1_FM3 50% 50%
P1_SP1_FM4 33% 67%
SP2 P1_SP2_FM1 59% 41%

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |40

P1_SP2_FM2 50% 50%
P1_SP2_FM3 10% 90%
P1_SP2_FM4 20% 80%

P2 SP1 P2_SP1_FM1 100%
P2_SP1_FM2 100%
P2_SP1_FM3 100%
P2_SP1_FM4 100%

SP2 P2_SP2_FM1 10% 90%

P2_SP2_FM2 25% 75%
P2_SP2_FM3 50% 50%
P2_SP2_FM4 100%

There is no prescription of how the IP1 FMEDA is then abstracted to be provided from the
provider to the consumer/integrator. Any combination is possible and independent of the data
model definition. Examples of use cases are included in Table 7 and Table 8: Table 7 shows
maximum compression, which is typically used for non-configurable IPs, while Table 8
maintains higher granularity keeping the subparts of the original FMEDA and it is typically used
for configurable IPs.

Since FMEDA analysis uses a bottom-up, the definition of FME and their connection is also
defined bottom-up. Based on the intended functionality, the user defines the FMEs for the
device and then maps the FMs to the FMEs. The specific weight of a FM on the FME can also be
assigned.

Following the example above, the user would follow this process:

1. Define the FMEs: Create IP1:FME_A, IP1:FME_B, IP1:FME_C, IP1:FME_D, IP1:FME_E
2. Map each FM to all of the FMEs to which it contributes:

a. MapP1_SP1 FM1 to IP1:FME_A with weight 80%

b. Map P1 _SP1_FM1 to IP1:FME_B with weight 20%

c. MapP1 _SP1 FM2 to IP1:FME_A with weight 100%

d.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Table 7. Example of FMEDA abstraction
doing high compression.

Page |41

Table 8. Example of FMEDA abstraction
maintaining higher granularity.

Part Subpart Failure Mode Part Subpart Failure Mode
IP1 IP1 IP1:FME_A P1 SP1 IP1:FME_A
IP1:FME_B IP1:FME_B
IP1:FME_C IP1:FME_C
IP1:FME_D SP1 IP1:FME_D
IP1:FME_E IP1:FME_E
P2 SP1 IP1:FME_A
SP2 IP1:FME_A
IP1:FME_D
IP1:FME_E

Table 9, Table 10, and Table 11 cover an example of how the IP1 FMEDA would be summarized
and then integrated at a component level. Table 9 is the IP1 FMEDA, Table 10 is the IP1
summary FMEDA and Table 11 is the component FMEDA in which IP1 is instantiated, together
with IP2, IP3 and so on.

Table 9. Example of IP1 FMEDA.

IP1: IP1: IP1: IP1: IP1:

Part | Subpart | Failure Mode | FME_A FME_B FME_C FME_D FME_E
P1 SP1 P1_SP1_FM1 X X

P1_SP1_FM2 X

P1_SP1_FM3 X X

P1_SP1_FM4 X X

sP2 P1_SP2_FM1 x x
P1_SP2_FM2 X X

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |42

P1_SP2_FM3

P1_SP2_FM4 X

P2

SP1

P2_SP1_FM1

P2_SP1_FM2

P2_SP1_FM3

P2_SP1_FM4

SP2

P2_SP2_FM1 X

P2_SP2_FM2

P2_SP2_FM3 X

P2_SP2_FM4

Table 10. Example of summarized IP1

Table 11. Example of IP1 FMEDA summarized and

FMEDA. instantiated.
Part | Subpart Failure Mode Part Subpart Failure Mode
IP1 IP1 IP1: FME_A IP1 IP1 IP1: FME_A
IP1: FME_B IP1: FME_B
IP1: FME_C IP1: FME_C
IP1: FME_D IP1: FME_D
IP1: FME_E IP1: FME_E
IP2 IP2
IP3 IP4

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |43

VII. Concluding Remarks

The first Accellera FS WG White Paper [1] details the goals and scope of the work covered in the
working group. This Accellera FS WG Data Model White Paper focuses instead on defining the
FS content necessary to create, modify, and exchange an FMEDA. The work follows a three-step
process: formalize the FMEDA process, extract from it a data model, and then define the
corresponding language to capture the data model itself. This paper contains the first two
steps, and the details of the data model are illustrated using a sample language, which can be
subject to change. The actual language constitutes the Accellera FS standard and will be
finalized and formalized in the LRM. The goal of the Accellera FS standard is to facilitate the
implementation of best practices defined in existing safety standards, such as 1SO026262 [2] and
IEC61508 [3].

H. Accellera FS WG Supporting Entities

We are thankful to our supporting entities (in alphabetical order): Agnisys, Inc., Allegro
MicroSystems, AMD, ams Osram, Analog Devices, ARM Ltd., Arteris, Inc., Breker Verification
Systems, Inc., Cadence Design Systems, Inc., COSEDA Technologies GmbH, Doulos Ltd.,
Fraunhofer Institute For Integrated Circuits, Huawei Technologies Sweden AB, Infineon
Technologies AG, Intel Corporation, Marvell International Ltd, NVIDIA Corporation, NXP
Semiconductor, Perforce, Qualcomm, Renesas Electronics Corp., Robert Bosch GmbH, Shanghai
UniVista Industrial Software Group, Siemens EDA, SiFive, STMicroelectronics, Synopsys,
Technical University Dortmund, Texas Instruments, Vayavya Labs, XEPIC Corporation.

I. Acknowledgements

Special recognition (in alphabetical order by last name) for their contributions to the Accellera
FS WG and Proposed WG with discussions, brainstorming, examples, and writing/reviewing of
this white paper: Jyotika Athavale, Oscar Ballan, Pramod Bhardwaj, Alexis Boutillier, Samir
Camdzic, Jason Campbell, Giuseppe Capodanno, Bala Chavali, Shivakumar Chonnad, Teo
Cupaiuolo, Kaushik De, Yakov Felikman, Darren Galpin, Franck Galtie, Joerg Grosse, Regis
Gubian, Mark Hampton, John Hayden, Ghani Kanawati, Francesco Lertora, Thiyagu Loganathan,
Stefano Lorenzini, Nir Maor, Shrenik Mehta, Alessandra Nardi, Meirav Nitzan, Alexandre Palus,
Arpita Potdar, Vatsa Prahallada, Om Ranjan, Kevin Rich, Rolf Schlagenhaft, Francesco Sforza,
Ivano Shivananda Troja, Ashish Vanjari, Federico Venini, Riccardo Vincelli, Prasanth
Viswanathan Pillai, Evgeny Vlasov, Ekaterina Vlasova, Jens Warmuth, Jacob Wiltgen.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |44

VIIl. Annex A — Data Model

This chapter describes data model objects, their attributes, and additional properties of
attributes: name, type, description, and whether an attribute is required. The assumption is
that if the attribute is required, the parsing of the data model will fail if that attribute is not
provided.

The full list of objects defined according to the data model v0.1 is as follows:

FMEDA

e Element

e Failure Mode

e Technology Element

e Safety Mechanism

e Failure Mode Effect

e Mapping Safety Mechanism — Failure Mode

e Mapping Failure Mode — Failure Mode Effect
e Mapping Technology Element — Failure Mode
e Mapping Technology Element — Element

e Define 1SO26262 Failure Rate

e Define 1SO026262 Metric

e Define IEC61508 Failure Rate

e Define IEC61508 Metric

A full ERD is presented on Figure 21. It shows a high-level overview of available objects and

their attributes, as well as the connections between them. For detailed information regarding
each object, use links from above.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Object 'FMEDA'

Object Technology Element

Object 'TE_Element’

Page |45

Object 'Element’

[FMEDA_Name (Technology_Element_Name | | Technology_Element.... |
Type (Type J Element_Name Element_Description
ASIL Source IW‘
SIL | FR_Permanent [FMEDA_Name | Parent_Element
Analysis_Type [FR_Transient Element_Size_Perma...
Creator (FR_Transient_Derating [Element_Size_Transi |
Date [Unit_Design_Element_Size | Element_Size_Bits |
Version Element_Mapping
Data_Model_Version Element_Mapping_EXx...
Comment
N\
Object Failure Mode"
Object Safety Mechanism' Object 'SM_FM'
FM_Name]
FM_Description
SC_Description FM_Name Parent_Element] Object 'TE_FM'
FMEDA_Name)
Class Type] FM_Name
Class_description 1 DC_Perm_Estimated J Safety_Relevant]
Configurable [DC_Trans Estimated | === DC_Aggregation
DC_Perm M: DC_Perm_Expert Size_Type
DC_Trans DC_Perm_Measured DC_Trans_Expert — FM_Size_Permanent
DC_Lat [__bc.Trans Measured] FM_Size_Transient

Object 'Failure Mode Effect’

FME_Name

FME_Description

FMEDA_Name

DC_Lat_ Measured |

Active

Object 'FM_FME"

FM_Name
Parent_Element

L

DC_Lat_Expert

DC_Perm_Calculated
DC_Perm_Measured
DC_Trans_Calculated
DC_Trans_Measured

DC_Lat_Calculated

DC_Lat_Measured

Safeness_Perm_Estimated

FM_Size_Bits
FM_Mapping

FM_Mapping_Excl...

— Safeness_Trans_Estimated
Safeness_Perm_Measured
FME_weights Safeness_Trans_Measured
No_Effect_Permanent |
No_Effect_Transient |
Perceived_Permanent]
Perceived_Transient]
Obiject 'FR_1S026262' Obiject 'Metric_IS026262" Object FR_IEC61508" Obiject 'Metric_IEC61508"
FR_Type Metric_Name FR_Type Metric_Name
Scope Scope Scope Scope
TE_Name TE_Name TE_Name TE_Name
Analysis_Type Analysis_Type Analysis_Type Analysis_Type
FMEDA_Name FMEDA_Name FMEDA_Name FMEDA_Name
Element_Name Element_Name Element_Name Element_Name
Parent_Element Parent_Element Parent_Element Parent_Element
Failure_Mode Failure_Mode Failure_Mode Failure_Mode
Metric_Value Metric_Value Metric_Value Metric_Value
FME_Value FME_Value FME_Value FME_Value
Weak object Object Relationship

Required attribute

Design mapping attribute

Optional attribute

Implicit connection

Explicit connection of objects

through a Relationship

Figure 21. Entity Relationship Diagram of the data model.

Implicit hierarchical relationships of objects are not shown on the ERD. An example of such
implicit connection is shown using FMEDA attributes that are highlighted in green.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |46

A. FMEDA
Entity name FMEDA
Key identifier FMEDA_Name
Attribut
e Name | Attribute Type Description Req’d
FMEDA_N | String Name (identifier) of the FMEDA of the project. Yes
ame
Type Enumerate {assumption-based, calculation- Defines the source of the failure mode distribution in case a choice needs to be made. | No
based}
The failure mode distributions can be calculated based on:
e Estimations provided with the options fm_size or element_size
e Design metrics extracted from the design mapping as specified in the fm_mapping
and element_mapping
When both options (*_size and *_mapping) are specified for an FM, the FMEDA type
will select as follows:
e assumption-based: The *_size takes precedence over *_mapping
e calculation-based: The *_mapping takes precedence over *_size
ASIL Enumerate {None, A, B, C, D} Defines the ASIL target for the FMEDA (for a given Safety Goal) according to 1SO26262. | No
Used also to specify that the FMEDA is for 1ISO26262.
SIL Enumerate {None, 1, 2, 3, 4} Defines the SIL target for the FMEDA according to IEC61508. Used also to specify that No
the FMEDA is for IEC61508.
Analysis_T | List of Enumerate {Permanent, Transient, All} | Defines the failure types to be considered and which metrics to be calculated within Yes
ype the safety analysis.
More than one value can be specified, e.g., Analysis_Type = {Permanent} or

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |47

Analysis_Type = {Permanent, Transient}

The value “All” implies all Failure Types are activated. Defined as “All” instead of

“Both” allows for plans for more than just Transient and Permanent.
Creator String Name of the company that generated the FMEDA. No
Date Date Date when the FMEDA was generated. No
Version Float Version of the FMEDA. No
Data_Mod | Float The version of the data model (not the FMEDA version). No
el_Version
Comment | String Information that does not have a specific field in the FMEDA object. No
Hierarchic | Enumerate {Yes, No} Describes whether the FMEDA is fully flat or hierarchical, meant as aggregation of Yes
al other FMEDAs
User_Defi | List of tuples List of previously created user-defined attributes and their values No
ned_Attri
bute

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |48

B. Element
Entity name Element
Key identifier Element_Name + Parent_Element + FMEDA_Name
Attribute
Name Attribute Type Description Req’d
Element_N | String Name (identifier) of the Element. Yes
ame
Element_D | String Description of the intended functionality of the Element. No
escription
Element_T | Enum {System, Element, SubElement, Component, | Specifies the type of the Element. Element_Type = Component or Yes
ype SubComponent, Part, SubPart} SubComponent can only be defined if the analysis is for IEC61508, inferred from

the FMEDA entity, whether it has ASIL or SIL defined.
Parent_Ele | String Connects the Element to its Parent in the FS hierarchy. No
ment
FMEDA_Na | String Connects the FS hierarchy to the FMEDA project. Yes
me
User_Defin | List of tuples List of previously created user-defined attributes and their values. No
ed_Attribu
te

Copyright © Accellera Systems Initiative Inc. All rights reserved.

C. Failure Mode

Entity name

Key identifier

Failure Mode

Failure_Mode_Name + Parent_Element + FMEDA_Name

Page |49

Attribut
e Name | Attribute Type Description Req’d
FM_Name | String Name (identifier) of the Failure Mode. Yes
FM_Descri | String Description of the Failure Mode. No
ption
Parent_El | String Connects the Failure Mode to its Parent in the FS hierarchy. Yes
ement
FMEDA_N | String Connects the FS hierarchy to the FMEDA project. Yes
ame
Type Enumerate {Mission, Passive, Describes if and how the FM can violate a safety goal. Yes
Active}

e Mission: Participates in a safety function

Diagnostic is broken into:

e Passive: Participates in a safety mechanism

e Active: Participates in a safety mechanism that can violate a safety goal
Safety Rel | Boolean {yes, no} Specifies if the failure mode is safety related. Safety_Relevant = no is equivalent to the "no part" Yes
evant according to IEC61508.
DC_Aggre | Enumerate {Max, Sum, Residual, Defines the heuristic/algorithm used to aggregate the DC of multiple SMs applied to the same Yes
gation Expert} FM. If DC_aggregation = expert, then the value is provided by the user using the attribute

DC_expert.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |50

DC_Perm_ | Float [0, 100] Allows the user to specify the Permanent DC of the FM aggregated over the SMs associated with No
Expert an FM. Only available if DC_Aggregation = expert.
DC_Trans Float [0, 100] Allows the user to specify the Transient DC of the FM aggregated over the SMs associated with an | No
_Expert FM. Only available if DC_Aggregation = expert.
DC_Lat_Ex | Float [0, 100] Allows the user to specify the DC latent of the FM aggregated over the SMs associated with an No
pert FM. Only available if DC_Aggregation = expert.
DC_Perm_ | Float [0, 100] Stores the results of the total Permanent DC in case several SMs are defined for the FM. The No
Calculated algorithm followed to aggregate the DC of the multiple SMs is defined with attribute
DC_aggregation. The DC of the individual SM will be either defined in the SM entity (DC_Perm) or
in the SM-FM entity (DC_Perm_Estimated).
DC_Perm_ | Float [0, 100] Store the value of the Permanent DC coming from Fault Injection activities. When present, it will No
Measured take precedence over the DC_Perm_Calculated in the metrics calculations.
DC_Trans | Float [0, 100] Stores the results of the total Transient DC in case several SMs are defined for the FM. The No
_Calculate algorithm followed to aggregate the DC of the multiple SMs is defined with attribute
d DC_aggregation. The DC of the individual SM will be either defined in the SM entity (DC_Trans) or
in the SM-FM entity (DC_Trans_Estimated).
DC_Trans Float [0, 100] Store the value of the Transient DC coming from Fault Injection activities. When present, it will No
_Measure take precedence over the DC_Perm_Calculated in the metrics calculations.
d
DC _Lat_C | Float [0, 100] Stores the results of the total Latent DC in case several SMs are defined for the FM. The algorithm | No
alculated followed to aggregate the DC of the multiple SMs is defined with attribute DC_aggregation. The
DC of the individual SM will be either defined in the SM entity (DC_Lat) or in the SM-FM entity
(DC_Lat_Estimated).
DC_Lat_M | Float [0, 100] Store the value of the Latent DC coming from Fault Injection activities. When present, it will take No
easured precedence over the DC_Lat_Calculated in the metrics calculations.
Safeness_ | Float [0, 100] Percentage/Fraction of safeness for permanent faults (i.e., faults that do not contribute to the No
Perm_Esti violation of a safety goal).
mated

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |51

Safeness_ | Float [0, 100] Percentage/Fraction of safeness for transient faults (i.e., faults that do not contribute to the No
Trans_Esti violation of a safety goal).

mated

Safeness_ | Float [0, 100] Percentage/Fraction of safeness for permanent faults, (i.e., faults that do not contribute to the No
Perm_Me violation of a safety goal) as a result of Fault Injection Activities or other techniques to measure.

asured

Safeness_ | Float [0, 100] Percentage/Fraction of safeness for transient faults, (i.e., faults that do not contribute to the No
Trans_Me violation of a safety goal) as a result of Fault Injection Activities or other techniques to measure.

asured

No_Effect | Float [0, 100] No effect Permanent rate according to IEC 61508. This can only be used if the FMEDA has SIL Yes
_Permane target values (attribute of the FMEDA entity).

nt

No_Effect | Float [0, 100] No effect Transient rate according to IEC 61508. This can only be used if the FMEDA has SIL target | Yes
_Transient values (attribute of the FMEDA entity).

Perceived | Float [0, 100] Specifies the fraction of multi-point faults that are not detected but are perceived. This is only for | Yes
_Permane 1S026262 (i.e., if the FMEDA has the ASIL level defined).

nt

Perceived | Float [0, 100] Specifies the fraction of multi-point faults that are not detected but are perceived. This is only for | Yes
_Transient 1S026262 (i.e., if the FMEDA has the ASIL level defined).

User_Defi | List of tuples List of previously created user-defined attributes and their values. No
ned_Attri

bute

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |52

D. Technology Element

Entity name Technology Element

Key identifier Technology_Element_Name

Attribute

Name Attribute Type Description Req’d
Technology | String Name (identifier) of the Technology Element. Yes
Element

Name

Type Enumerate {Digital, RAM, ROM, Type of t=Technology Yes

Flash, Analog}

Source Enumerate {IEC_62380, SN_25900, | Description of the source of BFR data (e.g., IEC TR 62380, testing, field returns...). No
IEC_61709, Expert}

FR_Perman | Float [O,N] Base Failure Rate (BFR) for permanent faults. Yes
ent

FR_Transie | Float [O,N] Base Failure Rate (BFR) for transient faults. Yes
nt

FR_Transie | Float [0,1] Derating of the BFR for transient faults in digital and analog technology elements. Used to Yes
nt_Deratin account for the contribution of combinatorial logic to the raw fit transient (as a percentage of

g the raw fit transient from sequential/memory elements). For details see Technology Element.
Unit_Desig | Float [O,N] Area of the unit design element of the technology element. Required if Technology Element = Yes
n_Element Digital/Analog. Not utilized if Technology_Element = RAM/ROM/Flash.

_Size

It is used to calculate the number of unit design elements in an FM and hence calculates the
raw FIT for the FM. The following formula applies: ‘#FM_unit_design_elements =
FM_size_permanent/unit_design_element_size". It should be set to 1 if the
FM_size_permanent/FM_size_transient is already expressed in number of unit design elements.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |53

User_Defin
ed_Attribut
e

List of tuples

List of previously created user-defined attributes and their values.

No

Copyright © Accellera Systems Initiative Inc. All rights reserved.

E. Safety Mechanism

Entity name

Key identifier

Safety mechanism

Safety_Mechanism_Name

Page |54

Attribut
e Name | Attribute Type Description Req’d
SM_Name | String Name (identifier) of the Safety Mechanism. Yes
SM_Descri | String Description of the SM. No
ption
FMEDA_N | String Connects the FS hierarchy to the FMEDA project. No
ame
Class Enumerate {HW, SW, AoU, AoU-SW, AoU- Method by which the safety mechanism is to be realized. No
HW, user-defined}

Notes:

1) AoU is to capture when the SM is not part of the product (potentially raise a flag

during FMEDA integration)

2) HW allows for further specification for downstream tools
Class_desc | String Description of the class. This is specially meant in the case in which the class is user- No
ription defined, but available for all classes.
Configura | Boolean {yes, no} Captures whether the SM can be turned on or off by the user/integrator. If Yes
ble configurable=yes, then the “SM-FM active” attribute can be used.
DC_Perm Float [0, 100] Diagnostic coverage of the SM in isolation for permanent faults. Yes
DC_Trans | Float [0, 100] Diagnostic coverage of the SM in isolation for transient faults. Yes

Copyright © Accellera Systems Initiative Inc. All rights reserved.

10
11
12

Page |55

DC lat Float [0, 100] Diagnostic coverage of the SM in isolation for latent faults. This attribute is only Yes
available when the ASIL target level is defined. Not available if only the SIL target is
defined.
User_Defi | List of tuples List of previously created user-defined attributes and their values. No
ned_Attri
bute

To apply a diagnostic coverage specific to an SM-FM pair, use the DC_ type attribute in the SM-FM category. When SM:DC_ type and
SM-FM:DC__ type are specified, the SM-FM:DC_ type attribute takes precedence. See Mapping Safety Mechanism — Failure Mode for

details.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

13

14

F. Failure Mode Effect

Entity name

Key identifier

Failure Mode Effect

Failure_Mode_Effect_Name + FMEDA_name

Page |56

Attribute Name Attribute Type Description Req’d
FME_Name String Name (identifier) of the FME. Yes
FME_Description String Description of the FME. No
FMEDA_Name String Connects the FME to the FMEDA project. Yes
User_Defined_Attribute List of tuples List of previously created user-defined attributes and their values. No

Copyright © Accellera Systems Initiative Inc. All rights reserved.

15

G. Mapping Safety Mechanism — Failure Mode

Entity name SM_FM

Key
identifier

Assignment_Name + FMEDA_Name

Page |57

Attribu
te
Name

Attribute Type

Description

Req’d

SM_Na
me

String

Name (identifier) of the SM applied to the FM.

Yes

FM_Na
me

String

Name (identifier) of the FM covered by the SM.

Yes

Parent_
Element

String

Connects the Failure Mode to its Parent in the FS hierarchy.

Yes

FMEDA _
Name

String

Connects to the FMEDA project.

Yes

DC_Per
m_Estim
ated

Float [0, 100]

Diagnostic coverage of the SM applied to the FM for permanent faults.

No

DC_Tran
s_Estima
ted

Float [0, 100]

Diagnostic coverage of the SM applied to the FM for transient faults.

No

DC_Lat_
Estimate
d

Float [0, 100]

Diagnostic coverage of the SM applied to the FM for latent faults.

No

Copyright © Accellera Systems Initiative Inc. All rights reserved.

16
17

Page |58

DC_Per Float [0, 100] Diagnostic coverage of the SM applied to the FM for permanent faults as a result of Fault Injection No

m_Meas Activities.

ured

DC_Tran | Float [0, 100] Diagnostic coverage of the SM applied to the FM for transient faults as a result of Fault Injection No

s_Measu Activities.

red

DC_Lat_ | Float [0, 100] Diagnostic coverage of the SM applied to the FM for latent faults as a result of Fault Injection No

Measure Activities.

d

Active Boolean {yes, no} Specifies whether the SM is enabled for this FM. Only accessible if the SM_Configurable Yes
attribute=yes.

User_De | List of tuples List of previously created user-defined attributes and their values. No

fined_At

tribute

DC_ type value is specific to the SM-FM pair and takes precedence over the DC_ type of the SM category. If such value is not
specified, then the value is taken from the DC_ type attribute of the SM category.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

18

19

H. Mapping Failure Mode - Failure Mode Effect

Entity name FM_FME

Page |59

Key Assignment_Name + FMEDA_Name

identifier

Attribu

te

Name | Attribute Type Description Req’d

FM_Na String Name (identifier) of the FM contributing to the FME. Yes

me

Parent_ | String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

Element

FME_list | List of strings List of names (identifiers) of the FMEs caused by the FM. Connects the FM to the FME that represents Yes
the consequence seen at the top level (of the DUA scope).

FMEDA_ | String Connects to the FMEDA project. Yes

Name

FME_we | List of floats Weights of the contributions of the FM to the list of FMEs defined in FME_list. Yes

ights

User_De | List of tuples List of previously created user-defined attributes and their values. No

fined_At

tribute

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 60

I. Mapping Technology Element — Failure Mode

Entity name TE_FM

Key identifier Assignment_Name + FMEDA_Name

Attribute

Name Attribute Type Description Req’d
Technology_ | String Defines a technology element in which the FM is implemented. Yes
Element_Na

me

FM_Name String Connects the Failure Mode to its Parent in the FS hierarchy. Yes
Parent_Elem | String Connects the Failure Mode to its Parent in the FS hierarchy. Yes
ent

FMEDA_Na String Connects to the FMEDA project. Yes
me

Size_Type Enumerate {Percentage, Absolute, Defines whether the FM_Size will be: Yes

Uniform_Distribution}
e Percentage: A percentage of the parent Element_Size

e Absolute: An absolute value

e Uniform_Distribution: A uniform distribution of the parent Element_Size

FM_Size_Per | Float [O,N] Specifies the size of the FM to calculate the FMD (FM distribution) for permanent Yes
manent faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the
FMD is calculated based on the area of the FM defined by the mapping to the
design hierarchy. Detailed semantics are to be defined in the LRM.

In the semiconductor world, this is the size of the logic for which permanent faults

Copyright © Accellera Systems Initiative Inc. All rights reserved.

21

Page |61

can occur (combinatorial and sequential logic gates).

FM_Size Tra | Float [O,N] Specifies the size of the FM to calculate the FMD (FM distribution) for transient Yes
nsient faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the

FMD is calculated based on the area of the FM defined by the mapping to the

design hierarchy. Detailed semantics are to be defined in the LRM.

In the semiconductor world, this is the size of the logic for which transient faults

can occur (sequential logic gates, e.g., includes Flip-Flops, Latches and Register

Files).
FM_Size Bit | Integer [O,N] Specifies the size of the FM to calculate the FMD (FM distribution) for transient and | Yes
s permanent faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the

FMD is calculated based on the area of the FM defined by the mapping to the

design hierarchy. Detailed semantics are to be defined in the LRM.

In the semiconductor world, this is the size of the memory logic for which transient

and permanent faults can occur.
FM_Mappin | List of Strings Connects to the DUA representation and identifies the portion of the design No
g responsible for the Failure Mode. This attribute is given precedence for a

calculation-based FMEDA. Detailed semantics are to be defined in the LRM.
FM_Mappin | List of Strings Connects to the DUA representation and identifies the portion of the design to be No
g_Exclude excluded from the FM_Mapping. Can only be used in conjunction with the

FM_Mapping attribute. This attribute is only used for a calculation-based FMEDA.
User_Define | List of tuples List of previously created user-defined attributes and their values. No
d_Attribute

Copyright © Accellera Systems Initiative Inc. All rights reserved.

22

J. Mapping Technology Element — Element

Entity name

Key identifier

TE_Element

Assignment_Name + FMEDA_Name

Page |62

Attribute
Name Attribute Type Description Req’d
Technolog | String Defines a technology element in which the FM is implemented. Yes
y_Element
_Name
Elrir:ent_N String Connects the Failure Mode to its Parent in the FS hierarchy. ves
Parent_Ele | String Connects the Failure Mode to its Parent in the FS hierarchy. Yes
ment
FMEDA_N | String Connects to the FMEDA project. Yes
ame
Element_Si | Float [O,N] Specifies the size of the Element for permanent faults for the associated Technology Element. No
ze_Perman
ent This attribute is given precedence for an assumption-based FMEDA. Otherwise, the Element size is
calculated based on the area extracted by the mapping to the design hierarchy. Detailed semantics
are to be defined in the LRM.
In the semiconductor world, this is the size of the logic implementing the intended functionality of
the Element.
Element_Si | Float [O,N] Specifies the size of the Element for transient faults for the associated Technology Element. No
ze_Transie
nt This attribute is given precedence for an assumption-based FMEDA. Otherwise, the Element size is
calculated based on the area extracted by the mapping to the design hierarchy. Detailed semantics
are to be defined in the LRM.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

23

Page |63

In the semiconductor world, this is the size of the logic implementing the intended functionality of
the Element.
Element_Si | Integer [O,N] Specifies the size of the Element for transient and permanent faults for the associated Technology No
ze_Bits Element.
This attribute is given precedence for an assumption-based FMEDA. Otherwise, the Element size is
calculated based on the area extracted by the mapping to the design hierarchy. Detailed semantics
are to be defined in the LRM.
In the semiconductor world, this is the size of the memory logic included in the intended
functionality of the Element.
Element_ List of Strings Connects to the DUA representation and identifies the portion of the design implementing the No
Mapping intended functionality of the Element. This attribute is given precedence for a calculation-based
FMEDA. Detailed semantics are to be defined in the LRM.
Element_ List of Strings Connects to the DUA representation and identifies the portion of the design to be excluded from the | No
Mapping_ Element_Mapping. Can only be used in conjunction with the Element_Mapping attribute. This
Exclude attribute is only used for a calculation-based FMEDA.
User_Defin | List of tuples List of previously created user-defined attributes and their values. No
ed_Attribu
te

Copyright © Accellera Systems Initiative Inc. All rights reserved.

24

K. Define 1SO26262 Failure Rate

Entity name

Key identifier

FR_1SO26262

Object_Name

Page | 64

Attribute
Name Attribute Type Description Req’d
FR_Type Enumerate {Intrinsic_FR, SR_Failure_Rate, NSR_FR, Safe_FR, Non_Safe_FR, SPF_FR, Failure Rates (FRs) calculated accordingto | No
Residual_FR, MPF_FR, MPF_Primary_FR, MPF_Secondary_FR, MPF_Detected, Figure 10, Part 10, Clause 8 of 1IS026262
MPF_Perceived, MPF_Latent} [2]
Scope Enumerate {FMEDA, Element, Failure_Mode, Failure_Mode_Effect_Name} Defines whether the FRs are calculated for | No
the FMEDA, for an Element, or for a
Failure Mode.
TE_Name String Specifies for which technology the FR is No
calculated.
Analysis_Type | Enumerate {Permanent, Transient} Care to be taken about the effect of the No
FMEDA Analysis Type.
FMEDA_Nam | String Name of the FMEDA No
e
Element_Nam | String This value is to be provided if the Scope = No
e Element. This is used if the FR is combined
at Element-level.
Parent_Eleme | String Identifies he unique path for the Element No
nt
Failure_Mode | String This value is to be provided if the Scope = No

Failure Mode

Copyright © Accellera Systems Initiative Inc. All rights reserved.

25

Page |65

Failure_Mode | String This value is to be provided if the Scope = No
_Effect Failure Mode Effect
Metric_Value | Float>0 Value of the Failure Rate No

Copyright © Accellera Systems Initiative Inc. All rights reserved.

26

L. Define 1SO026262 Metric
Entity name Metric_1S026262

Key identifier Object_Name

Page | 66

Attribute

Name Attribute Type Description Req’d

Metric_Nam | Enumerate {SPFM, LFM, PMHF} Metrics calculated according to ISO 26262. No

e

Scope Enumerate {FMEDA, Element, Failure_Mode, Defines whether the metrics are calculated for the FMEDA, for No
Failure_Mode_Effect_Name} an Element, or for a Failure Mode.

TE_Name String Technology Element for which the metric is calculated No

Analysis_Typ | Enumerate {Permanent, Transient} Care to be taken about the effect of FMEDA Analysis Type. No

e

FMEDA_Nam | String Name of the FMEDA No

e

Element_Na String This value is to be provided if the Scope = Element. This is used if | No

me the metric is combined at Element-level.

Parent_Elem | String Identifies the unique path for the Element. No

ent

Failure_Mod | String This value is to be provided if the Scope = Failure Mode. No

e

Failure_Mod | String This value is to be provided if the Scope = Failure Mode Effect. No

e_Effect

Copyright © Accellera Systems Initiative Inc. All rights reserved.

27

28
29

Page | 67

Metric_Value | Float>0 Value of the metric No

User_Define | List of tuples List of previously created user-defined attributes and their No

d_Attribute values.

M. Define IEC61508 Failure Rate

Entity name FR_IEC61508

Key identifier Object_Name

Attribute

Name Attribute Type Description Req’d

FR_Type Enumerate {Dangerous, Dangerous_Detected, Failure Rates (FRs) calculated according to IEC61508. No
Dangerous_Undetected }

Scope Enumerate {FMEDA, Element, Failure_Mode, Defines whether the FRs are calculated for the FMEDA, for an No
Failure_Mode_Effect_Name } Element, or for a Failure Mode.

Analysis_Typ | Enumerate {Permanent, Transient} Care to be taken about the effect of the FMEDA Analysis Type. No

e

FMEDA_Nam | String Name of the FMEDA No

e

Element_Na String This value is to be provided if the Scope = Element. This is used if | No

me the FR is combined at the Element level.

Parent_Elem | String Identifies the unique path for the Element. No

ent

Failure_Mod | String This value is to be provided if the Scope = Failure Mode. No

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 68

e

Failure_Mod | String This value is to be provided if the Scope = Failure Mode Effect. No
e_Effect

Metric_Value | Float>0 Value of the Failure Rate No
User_Define | List of tuples List of previously created user-defined attributes and their No
d_Attribute values.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

30
31

N. Define IEC61508 Metric

Entity name

Key identifier

Metric_IEC61508

Object_Name

Page | 69

Attribute

Name Attribute Type Description Req’d

Metric_Name Enumerate {SFF, Probability_dangerous_failure_low_demand, Metrics calculated according to IEC61508. No

Probability_dangerous_failure_high_demand}

Scope Enumerate {FMEDA, Element, Failure_Mode, Failure_Mode_Effect_Name } Defines whether the metrics are calculated for No
the FMEDA, for an Element, or for a Failure
Mode.

FMEDA_Name | String Name of the FMEDA No

Element_Name | String This value is to be provided if the Scope = No
Element. This is used if the FR is combined at the
Element level.

Parent_Elemen | String Identifies the unique path for the Element. No

t

Failure_Mode String This value is to be provided if the Scope = Failure | No
Mode.

Failure_Mode_ | String This value is to be provided if the Scope = Failure | No

Effect Mode Effect.

Metric_Value Float>0 Value of the metric No

User_Defined_

List of tuples

List of previously created user-defined attributes | No

Copyright © Accellera Systems Initiative Inc. All rights reserved.

32

Page |70

Attribute

and their values.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

33

34

35
36
37

38
39
40
41
42

43
44

45
46
47
48

49

IX. Annex B —Language

A. Introduction

Page |71

In this paper we defined a sample language for the only purpose of showing some concrete
examples of usage of the Functional Safety Standard. The final LRM defined in the standard
might differ from the sample used in this paper.

Following the principle of traceability, the sample language is derived directly from the
conceptual data model with remarkably simple rules:

e Objects are created with “create” commands and updated with the “-update” option.

e Relationships are created with the "assign" commands.

e \Weak objects are assigned a value with the "define" command.

In other words, the sample language is the implementation of the requirements defined in
the conceptual data model.

A special rule stands for the Design mapping since it connects objects in the data model to
objects in the design hierarchy, which are not part of the data model. The design mapping
connection is described through the “-mapping” and “-exclude_mapping” options inside the
design mapping relationship commands.

Table 12. Sample language derived from the data model.

FMEDA Process data | Entity type Information type | Commands

FMEDA FMEDA Object create_fmeda

FS Analysis Hierarchy Element Object create_element

FM Hierarchy Failure_Mode Object create_fm

Technology Element Technology_Element Object create_te

Safety Mechanism Library | Safety Mechanism Object create_sm

FM Effects Failure_Mode_Effect Object create_fme

SM Mapping SM-FM Relationship assign_sm_fm

FM Effect Mapping FM-FME Relationship assign_fm_fme

TE Mapping TE-FM Relationship assign_te_fm

TE Mapping TE-Element Relationship assign_te_element

Design Mapping Attribute of TE-FM Relationship assign_te_fm -mapping {...}
Design Mapping Attribute of TE-Element | Relationship assign_te_element -mapping {...}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73

Page |72

1S026262 Metrics 1SO26262_Metrics Weak object define_metric_is026262
1SO26262 Failure Rate I1SO26262_FR Weak object define_fr is026262
IEC61508 Metrics IEC61508_ Metrics Weak object define_metric_iec61508
IEC61508 Failure Rate IEC61508 FR Weak object define_fr _iec61508

The full list of commands defined according to the data model v0.1 is as follows:

e create fmeda

e create_element

e create fm

e create_te

e create_sm

e create fme

e qadd attribute

e add collection

e assign_sm_fm

e assign_fm_fme

e assign_te fm

e assign_te_element

e define_fr is026262

e define_metric_is026262

e define_fr_iec61508

e define_metric_iec61508

As you can see, two commands are not directly derived from the FMEDA process:
add_attribute and add_collection. These commands are auxiliary and serve the purpose of
enabling reusability and extendibility of the data model and a language. If FMEDA project
development can be limited solely to the objects and their attributes as defined by the data

model, usage of add_attribute and add_collection is not necessary, although they can
provide additional flexibility when needed.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |73

74 B. Conventions

75 This document is using syntax highlight schema similar to IEEE 1801 (UPF) standard, chapter
76 5.2

77 Key points can be summarized as follows:

78 e jtalic indicates user-defined variables

79 e []square brackets indicate optional parameters

80 e {}curlybraces indicate required values and can consist of one or more values
81 e <>angle brackets indicate a set of alternative parameters to choose from

82 e | separator barindicates alternative choices within a group

83

* asterisk indicates that a parameter can be repeated

84 Also, the "R" parameter of available arguments indicates a possibility to update a value of
85 this argument using the -update switch.

86 For example, a create_object command (not a valid FS WG Language command) must be
87 written as is, and it accepts a user defined value object _name; it also requires the -dc

88 attribute to be specified. DC attributes can take multiple values as a list of lists, where the
89 exact value is to be specified by the user.

90 create_object object_name
91 -dc{{<perm | tran | lat> value %}* }

92 Usage example:

93 create_object "SM _003"-dc {{perm 99} {tran 99}} -dc {lat 100}

94 The fact that the language visually appears to be relying on Tcl syntax doesn’t mean that the
95 FS WG voted for Tcl or any other language to be the base interpreter language. In practice,
96 this means that no assumptions regarding the usage of built-in Tcl (or any other language)
97 constructs can be made, and virtually any language can be used to build a parser for a

98 proposed language.

99 C. Safety Analysis Commands v0.1

100 Intentionally empty space.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

101

Page |74

create_fmeda

Purpose Create FMEDA project.
Syntax create_FMEDA FMEDA_name
[-type <assumption-based | calculation-based>]
[-asil[<a | b |c|d>]]
[-sil[<1]2]|3]4>]]
[-analysis <permanent | transient | all>]
[-creator [{creator_name}]]
[-date [date]]
[-version version]
-data_model_version data_model_version
[-comment comment]
[-description description]
[-attribute { {name_of_the_user_defined_attribute value}* }]
-hierarchical [<yes | no>]
[-update]
Arguments | FMEDA _name Name of the FMEDA project.
-data_model_version version Version of the data model.
-type <assumption-based | calculation- Selects whether the FMEDA project is
based> assumption-based or calculation-based. This
attribute is informative only. If the type is
calculation-based, the user can still specify the
failure mode contribution through the "failure
mode size" attribute.
ssil[<1]2]3] 4] Defines the target safety level according to SIL
classifications used by IEC61508 standards.
;asil[<a | b | c | d>] Defines the target safety level according to ASIL
classifications used by 1IS026262 standards.
-analysis <permanent | transient | all> Defines the failure types to be considered and
which metrics to be calculated within the safety
analysis.
More than one value can be specified, e.g.,
Failure_Type = {Permanent} or Failure_Type =
{Permanent, Transient}
The value “All” implies all Failure Types are
activated. Defined as “All” instead of “Both”
allows for plans for more than just Transient and
Permanent.
-creator {creator_name} Name of the company that generated the
FMEDA.
-date date Date when the FMEDA was generated.
-version fmeda_version Version of the FMEDA project.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |75

-comment comment Information that doesn’t have a specific field in R
the FMEDA object.

-description description Description of the FMEDA project. R
-attribute { Sets values of user-defined attributes. R
{name_of the_user_defined_attribute

value}* }

-hierarchical [<yes | no>] Describes whether the FMEDA is fully flat or R

hierarchical, meant as aggregation of other
FMEDAEs. If no value is provided, then default no
is used.

-update Indicates this command provides additional R
information for a previous command with the
same FMEDA name.

Return Return an empty string if successful or raise an ERROR if not.
value

102

103 Usage example:

104 create_fmeda "Project D" -type "assumption-based" -asil d -analysis all \

105 -creator "Hornet LLC" -date 27.01.2023 -version 0.1 \
106 -data_model version 0.1 -hierarchical yes \

107 -comment "Project is an IP Level project"”

108

109 create_fmeda "Project D" -type "calculation-based" -asil b -analysis perm \
110 -creator "Hornet LLC" -date 25.01.2023 -version 0.1 \
111 -data_model_version 0.1 -hierarchical yes \

112 -comment "Project is an IP level project" -update
113

Copyright © Accellera Systems Initiative Inc. All rights reserved.

114

115

116

117
118
119
120
121
122
123
124
125

Page |76

create_element

Purpose Create element.
Syntax create_element element_name

-type <system | element | subelement | component | subcomponent | part | subpart>

-fmeda fmeda_name

[-description description]

[-parent parent]

[-attribute { {name_of _the_user_defined_attribute value}* }]

[-update]

Arguments | element_name Name (identifier) of the Element.

-type <system | element | subelement | Specifies the type of the Element.

component | subcomponent | part | subpart>
Element_Type = Component or
SubComponent can only be defined if the
analysis is for IEC61508, inferred from the
FMEDA entity, whether it has ASIL or SIL
defined.

-fmeda fmeda_name Connects the FS hierarchy to the FMEDA R
project.

-description description Description of the intended functionality R
of the Element.

-parent parent Connects the Element to its Parent in the R
FS hierarchy.

-attribute { Sets values of user-defined attributes. R

{name_of the_user_defined_attribute value}*

}

-update Indicates this command provides R
additional information for a previous
command with the same element_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

Usage example:

create_element “A1” -type part -parent root -fmeda Project_A \

-description “Top-level element in a system™

create_element “A2” -type element -parent Al -fmeda Project A \

-description "Top-level element in a system”

create_element "A2" -type element -parent Al -fmeda Project_A \

-description "2nd-level element in a system" \
-update

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |77

126 create_fm

Purpose Create failure mode.
Syntax create_fm fm_name
-parent parent
-fmeda fmeda_name
-type <mission | passive | active>
-safety_relevant [<yes | no>]
-dc_aggregation { { <perm | tran><max | sum | residual | expert> }* }
-no_effect { { <perm | tran> value % }* }
-perceived { { <perm | tran> value % }* }
[-dc {{<perm | tran | lat> <calculated | measured> value % }* } 1
[-safeness { {<perm | tran > <estimated | measured> value %}* }]
[-attribute { {name_of the_user_defined_attribute value}* }]
[-description description]
[-update]
Arguments | fm_name Name (identifier) of the Failure Mode.
-parent parent Connects the Failure Mode to its Parent R
in the FS hierarchy.
-fmeda fmeda_name Connects the FS hierarchy to the FMEDA R
project.
-type <mission | passive | active> Describes if and how the FM can violatea | R
safety goal
Mission: participates to a safety function
Diagnostic is broken into:
- Passive: participates in a safety
mechanism
- Active: participates in a safety
mechanism that can violate a safety goal.
-safety_relevant [<yes | no>] Specifies if the failure mode is safety R
related.
Safety_Relevant = no is equivalent to the
"no part" according to IEC61508.
-dc_aggregation { { <perm | tran><max | sum | | Defines the heuristic/algorithm used to R
residual | expert> }* } aggregate the DC of multiple SMs applied
to the same FM. If DC_aggregation =
expert, then the value is provided by the
user using the attribute DC_expert.
-no_effect { { <perm | tran> value % }* } No effect Permanent rate according to R
IEC 61508. This can only be used if the
FMEDA has SIL target values (attribute of

Copyright © Accellera Systems Initiative Inc. All rights reserved.

127

128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Page |78

the FMEDA entity).

-perceived { { <perm | tran> value % }* }

Specifies that fraction of multi-point R
faults that are not detected but are

perceived. This is only for 1ISO26262, i.e.,
if the FMEDA has the ASIL level defined.

-dc { {<perm | tran | lat> <calculated |

1}

measured> value % [-attr_expr {boolean_expr}]

Allows the user to specify the Permanent | R
DC of the FM aggregated over the SMs
associated with an FM. Only available if
DC_Aggregation = expert.

-safeness { {<perm | tran > <estimated |
measured> value %}* }

Percentage/Fraction of safeness for R
permanent faults, i.e., faults that do not
contribute to the violation of a safety
goal.

-attribute { Sets values of user-defined attributes. R
{<_name_of_the_user_defined_attribute_

value}* }

-description description Description of the Failure Mode. R
-update Indicates this command provides R

additional information for a previous
command with the same fm_name.

Return
value

Returns an empty string if successful, or raises an ERROR if not.

Usage example:

set_scope {{"fmeda" "Project A"} {"parent" "A1"}

create_fm "FMooO1" -type mission -safety relevant yes -dc_aggregation max \

-no_effect { {perm 99} {tran 96} }
-perceived { {perm 50} {tran 56} }

-dc { {perm measured 99.5} {tran measured 99.5} {lat measured 99.5} }
-dc { {perm calculated 99.5} {tran calculated 99.5} {lat calculated 99.5}

-safeness { {perm measured 99.5} {tran measured 99.5} }
-safeness { {perm estimated 99.5} {tran estimated 99.5} }
-description "Some random overcomplicated FM"

create_fm "FMoO1" -type mission -safety relevant yes -dc_aggregation max \

Copyright © Accellera Systems Initiative Inc. All rights reserved.

-no_effect { {perm 99} {tran 96} }
-perceived { {perm 50} {tran 56} }

-dc { {perm measured 99.5 -attr_expr {config == "b"}} \
{tran measured 99.5 -attr_expr {config == "b"}} \
{lat measured 99.5 -attr_expr {config == "b"}} }

-dc { {perm calculated 99.5} {tran calculated 99.5} {lat calculated 99.5}

-safeness { {perm measured 99.5} {tran measured 99.5} }
-safeness { {perm estimated 99.5} {tran estimated 99.5} }

-description "Some random FM" -update

Page |79

151 create_te

Purpose Create technology element.
Syntax create_te te_name

-type [<digital | ram | rom | flash | analog | custom>]

[-source [<IEC_62380 | SN_25900 | expert>]

-fr { {<perm | tran > value}* }

[-fr_derating value %]

-unit_design_element_size value

[-description description]

[-attribute { {name_of_the_user_defined_attribute value}* }]

[-update]

Arguments | te_name Name (identifier) of the Technology_Element.

-type [<digital | ram | rom | flash | Name of the technology type for a given R

analog | custom>] technology element.

-source [<IEC_62380 | SN_25900 | Description of the source of BFR data (e.g., IECTR R

expert>] 62380, testing, field returns ...).

-fr { {<perm | tran > value}* } Base Failure Rate (BFR) for permanent or transient | R
faults.

-fr_derating value Derating of the BFR for transient faults in digital R
technology elements. Used to account for the
contribution of combinatorial logic to the raw fit
transient (as a percentage of the raw fit transient
from sequential/memory elements).

-unit_design_element_size value Area of the unit design element of the technology R
element. Required if Technology Element =
Digital/Analog. Not utilized if Technology_Element
= RAM/ROM/Flash.

It is used to calculate the number of unit design
elements in an FM and hence calculates the raw FIT
for the FM. The following formula applies:
H#FM_unit_design_elements =
FM_size_permanent/unit_design_element_size". It
should be set to 1 if the
FM_size_permanent/FM_size_transient is already
expressed in number of unit design elements.

-description description Description of the technology element. R

-attribute { Sets values of user-defined attributes. R

{name_of the_user_defined_attribute

value}* }

-update Indicates this command provides additional R
information for a previous command with the same
te_name.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

152

153

154
155
156
157
158
159

160

Page |80

Return Returns an empty string if successful or raises an ERROR if not.
value

Usage example:

Create_te “Digital_Area” -type digital -source IEC 62380 -fr {{perm ©.03033} {tran
o} }
create_te “Analog Area” -type analog -source IEC 62380 -fr {{perm ©.03033} {tran
0.01} }
create_te “ROM” -type ram -source IEC 62380 -fr {{perm ©.03033} {tran

le-7} }

Copyright © Accellera Systems Initiative Inc. All rights reserved.

161

create_sm

Page |81

Purpose

Create safety mechanism.

Syntax

create_sm sm_name
[-fmeda fmeda_name]

[-class [<HW | SW | AoU | AoU-SW | AoU-HW | user-defined>]]

[-class_description class_description]
-configurable [<yes | no>]

-dc {{<perm | tran | lat> value %}* }

[-description description]

[-attribute { {name_of the_user_defined_attribute value}* }]

[-update]

Arguments

sm_name

Name (identifier) of the Safety Mechanism.

-fmeda fmeda_name

Connects the FS hierarchy to the FMEDA
project.

-class [<HW | SW | AoU | AoU-SW | AoU-
HW | user-defined>]

Method by which the safety mechanism is to be
realized.

Notes:

1) AoU is to capture when the SM is not part of
the product (potentially raise a flag during
FMEDA integration).

2) HW allows for further specification for
downstream tools.

-class_description class_description

Description of the class.

Note: Especially meant in the case in which the
class is user-defined, but is available for all
classes.

-configurable [<yes | no>]

Captures whether the SM can be turned on or
off by the user/integrator. If configurable=yes,
then the “SM-FM active” attribute can be used.

-dc { {<perm | tran | lat> value %}* }

Diagnostic coverage of the SM in isolation for
permanent faults.

Notes: To apply a diagnostic coverage specific
to an SM-FM pair, use the DC_perm attribute in
the SM-FM category. When SM:DC_perm and
SM-FM:DC_perm are specified, the SM-
FM:DC_perm attribute takes precedence.

-description description

Description of the intended functionality of the
SM.

-attribute {
{name_of the_user_defined_attribute
value}* }

Sets values of user-defined attributes.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

162

163

164
165
166
167
168
169
170
171
172
173
174
175

176

Page |82

-update Indicates this command provides additional R
information for a previous command with the
same sm_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

Usage example:
create_sm “SM_001” -class “AoU-SW” -collection “SM_default 99”

create_sm “SM_001.5” -class “AoU” -collection “SM_default_99” -class_description
“What exactly do we assume?..”

create_sm “SM_002” -fmeda “CPU_FMEDA” -class “HW” -configurable “no” -dc {{perm
99} {tran 99} {lat 100}}

create_sm “SM_003” -class “HW” -configurable
{lat 100}

create_sm “SM_003” -class “AoU-HW” -configurable “no” -dc {{perm 99} {tran 99}} -
dc {lat 100} -update

“no” -dc {{perm 99} {tran 99}} -dc

Copyright © Accellera Systems Initiative Inc. All rights reserved.

177

178

179

180
181

182

Page |83

create_fme
Purpose Create failure mode effect.
Syntax create_fme fme_name

-fmeda fmeda_name

[-description description]

[-attribute { {name_of_the_user_defined_attribute value}* }]

[-update]

Arguments | fme_name Name (identifier) of the Failure Mode
effect.

-fmeda fmeda_name Connects the FME to the FMEDA project. R

-description description Description of the FME. R

-attribute { Sets values of user-defined attributes. R

{name_of the_user_defined_attribute value}*

}

-update Indicates this command provides R
additional information for a previous
command with the same fme_name.

Return Returns an empty string if successful, or raises
value an ERROR if not.

Usage example:

create_fme “FME©O1” -fmeda IP_A -description “Loss of data”
create_fme “FME©O2” -fmeda IP_A -description “Incorrect data”

Copyright © Accellera Systems Initiative Inc. All rights reserved.

183

184

185
186
187
188
189
190
191
192

193
194

195
196
197
198
199

add_attribute

Page | 84

Purpose Create new attribute.
Syntax add_attribute attribute_name

-default value

-fmeda fmeda_name

[-object [<global | entity_object >] 1]

[-type [{ <string | int [min max] | float [min max] | enum {list_of enum_values}>}]]

[-description description]

[-update]

Arguments | te_name Name (identifier) of the attribute.

-default value Default value of the attribute.

-fmeda fmeda_name Connects to the FMEDA project.

-object [<global | entity_object >] Defines an object of an ERD on which to
enable the use of user-defined attributes.

-type [{ <string | int [min max] | float [Type hinting for the tools’ backend. Enables

min max] | enum {list_of _enum_values}> | the tool to check a type of the attribute

I3 (similar to system-defined attribute).

-description description Description of the attribute.

-update Indicates this command provides additional
information for a previous command with the
same te_name.

Return Returns an empty string if successful, or
value raises an ERROR if not.

This command uses the individual set -attribute command to work with built-in attributes of
safety objects. It works with user-defined attributes, inspired by the asciidoctor text markup
toolchain that is using custom attributes of objects. All attributes are defined within a single
create_* command. In addition, efficient usage of UDA (user-define attributes) is heavily
linked to the proposed new extension of the -attr_expr command that is inspired by UPF’s -
logic_expr. Together these features enable rich reconfigurability and extendibility of the
proposed language and can mimic functionalities that the safety community is used to (e.g.,
creating a new column in a spreadsheet).

In addition to reconfigurability, this command also enables various users to store extra
information inside the data model itself.

Similar to the RISC-V community, here it is also expected that users will contribute to this
WG and share their feedback regarding their most used custom user-defined attributes so
that the WG can potentially introduce those attributes as built-ins in a later release of the
language. If this expectation is not satisfied, there can be a vendor-lock for certain features,
similar to custom attributes and pragmas in SystemVerilog.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

200

201
202
203
204
205
206
207
208
209
210

211
212

213

214
215

216

217
218

219

220
221
222
223
224
225

226

227
228

229

230
231
232
233

234
235

236

Page |85

Usage example:

add_attribute "strobing point" -object "fm" -default
add_attribute "config" -object "create_sm" -default ""

create_fm "FM_001" -parent "MULT16" \
-attribute { "strobing point" "top.SoC.IP1.IP2.output x" }

create_sm "SM 001" -class "AoU-SW" -configurable "no" \

-dc {{perm 96} {tran 96} {lat 100}} \

-attribute { "config" {"ASIL_D CONFIG" "ASIL_B_CONFIG"
"QM_CONFIG"} }

e attribute - user-defined attribute

Usage example with a multiple definition attempt:

"

add_attribute "Diagnostic or Avoidance" -object "fm" -default "Avoidance"
add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance"

e Error upon execution: To enable a user-defined attribute on multiple ERD entities, use
the "global" -object.

Usage example with type hinting:

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" -type
{enum {"Avoidance" "Diagnostic"}}

add_collection "Baseline SM values" -object "sm" \
-list { {"Diagnostic or Avoidance" "Undefined"} \

}

e Error upon execution: User-defined attribute “Diagnostic or Avoidance” of type “enum”
does not support the "Undefined" input value.

Usage example with type hinting:

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" -type
{enum {"Avoidance" "Diagnostic"}}

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" -type
"string" -update

e Error upon execution: Cannot update a user-defined attribute’s datatype.

Usage example: Extend the data model using UDA to enable new tool-level features.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 86

237 add_collection

Purpose Create a new collection of attributes.

Syntax add_collection collection_name
-object entity_object

-list { {name_of the_attribute value}* }
-fmeda fmeda_name

[-description description]

Arguments | collection_name Name (identifier) of the attribute.

-object entity_object The type of the attribute limits its applicability
to various objects of ERD.

-list { {name_of the_attribute value}* } List of lists with defined names and values of
the attributes of the selected ERD object.

-fmeda fmeda_name Connects to the FMEDA project.
-description description Description of the attribute.
Return Returns an empty string if successful, or
value raises an ERROR if not.
238
239 Notes:

240 e Collection works as an intermediate storage of attribute-value pairs before they get
241 assigned to an ERD object, weak object, or a relationship.

242 e Collection cannot be updated.

243 e Collection cannot be redefined.

244 e Repetitive declarations are to be discarded.

245 e Collection cannot be empty.

246 e Collection can use previously defined user-defined attributes.

247 e Collection must belong to particular ERD object.

248 e Collection cannot use attributes that do not belong to the selected ERD entity.

249 e Collection, when connected to a safety object, cannot overwrite attributes' values
250 already stored in an ERD entity.

251 e Values of attributes defined in a collection are copied over to an ERD entity upon
252 connection of said ERD object to the collection. Connection to be done by additional key
253 -collection.

254 Usage example with Safety Mechanisms definition:

255 add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance"
256 add_attribute "Error Response" -object "sm" -default "HW Error Flag"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

201

292

293
294
295
296
297
298
299
300
301
302
303

304

305

306
307
308

Page |87

add_attribute "I1S026262 DC" -object "sm" -default "High"
add_collection "Baseline SM values" -object "sm" \
-list { {"Diagnostic or Avoidance" "Diagnostic"} \

{"Error Response” "Diagnostic”} \

{"15026262 DC" "High"} \

{"dc" {perm 95}} \

{"dc" {tran 90}} \

{"dc" {lat 0}} \

{"configurable” "no"} \

{"class" "HW"} \

{"fmeda" "TOP"} \

}
-fmeda TOP

create_sm "SM 001" -collection "Baseline SM values" -description "My first SM,
with default values assigned"”

create_sm "SM 002" -collection "Baseline SM values" -description "My second SM,
with default values assigned”

create_sm "SM 003" -collection "Baseline SM values" -description "My third SM,
with default values assigned”

create_sm "SM 004" -collection "Baseline SM values" -description "My 4th SM, with
default values assigned"

Equivalent single command:
create_sm "SM 005" -class "HW" -configurable "no" -dc {{perm 95} {tran 90} {lat
0} \
-attribute { {"Diagnostic or Avoidance" "Diagnostic"} \
{"Error Response” "Diagnostic"} \
{"IS026262 DC" "High"} \
}\
-fmeda "TOP"
-description "My 5th SM, with values assigned explicitly"”

Usage example with redefinition attempt:

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance"

add_attribute "Error Response” -object "sm" -default "HW Error Flag"
add_collection "Baseline SM values” -object "sm" \
-list { {"Diagnostic or Avoidance" "Diagnostic"} \

}

add_collection "Baseline SM values” -object "sm" \
-list { {"Diagnostic or Avoidance" "Avoidance"} \

}

e Error upon execution: Cannot redefine existing "Baseline SM values" collection.

Usage example with type mismatch:

add_attribute "Diagnostic or Avoidance" -object "fm" -default "Avoidance'

add_collection "Baseline SM values” -object "sm" \

Copyright © Accellera Systems Initiative Inc. All rights reserved.

309
310
311
312
313

Page |88

-list { {"Diagnostic or Avoidance" "Diagnostic"} \
}
e Error upon execution: lllegal access to the user-defined "Diagnostic or Avoidance"
attribute. Type mismatch: The attribute "Diagnostic or Avoidance" belongs to the "fm"
ERD entity, whereas the collection belongs to the "sm" ERD entity.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

314

assign_sm_fm

Page |89

Purpose Assign safety mechanism to failure mode.
Syntax assign_sm_fm smfm_name

-sm_name safety_mechanism

-fm_name failure_mode

-parent parent

-fmeda fmeda_name

[-dc {{<perm | tran | lat> <estimated | measured> value %}* }]

-active <yes | no>

[-attribute { {name_of the_user_defined_attribute value}* }]

[-update]

Arguments | smfm_name Name (identifier) of the assignment.

-sm_name safety_mechanism Name (identifier) of the SM applied to the FM.

-fm_name failure_mode Non-unique name (identifier) of the FM
covered by the SM.

-parent parent Defines a parent scope for a previously defined
Failure Mode to make an FM definition
unambiguous.

-fmeda fmeda_name Connects to the FMEDA project.

-dc { {<perm | tran | lat> <estimated | Diagnostic coverage of the SM applied to the

measured> value %}* } FM for permanent faults. If no value is
specified, the DC_Perm value of the SM entity
will be used.

Notes: This value is specific to the SM-FM pair
and takes precedence over the DC_perm of the
SM category. If this is not specified, then the
value is taken from the DC_perm attribute of
the SM category.

-active [<yes | no>] Specifies whether the SM is enabled for this
FM.

Only accessible if the SM_Configurable
attribute = yes.

-attribute { Sets values of user-defined attributes.

{name_of the_user_defined_attribute

value}* }

-update Indicates this command provides additional
information for a previous command with the
same smfm_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

Copyright © Accellera Systems Initiative Inc. All rights reserved.

315

316

317
318
319
320
321
322
323
324
325
326
327

328

Page |90

Usage example:

add_collection "SM default 99" -object "sm" -fmeda "CPU_FMEDA" \
-list { {"configurable" "no"} \
{"dc" "{{perm 99} {tran 99} {lat 100}}"} \
{"fmeda" "CPU_FMEDA"} }

create_sm "SM_ 001" -class "AoU-SW" -collection "SM_default_99"
assign_sm _fm "SM 001 _to ALU X.MULT32.FMOO1" -sm_name "SM 001" -fm_name "FM_001" -
parent "ALU X.MULT32" \

-fmeda "CPU_FMEDA" -attribute {"use _case_generic” "no"} \
-dc {{perm estimated 90} {tran estimated 90} {lat estimated 100}}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |91

329 assign_fm_fme

Purpose Assign failure mode to failure mode effect.
Syntax assign_fm_fme fmfme_name

-fm_name failure_mode

-parent parent

-fme_name {fme_name }

-fmeda fmeda_name

-fme_weight { fme_weight }

[-attribute { {name_of the_user_defined_attribute value}* }]

[-update]

Arguments | fmfme_name Name (identifier) of the assignment.

-fm_name failure_mode Name (identifier) of the FM contributing to the | R
FME.

-parent parent Defines a parent scope for a previously R
defined Failure Mode to make an FM
definition unambiguous.

-fme_name { fme_name} List of names (identifiers) of the FMEs caused R
by the FM. Connects the FM to the FME that
represents the consequence seen at the top
level (of the DUA scope).

-fmeda fmeda_name Connects to the FMEDA project. R

-fme_weight { fme_weight } Weights of the contributions of the FM to the R
list of FMEs defined in FME_list.

-attribute { Sets values of user-defined attributes. R

{name_of the_user_defined_attribute

value}* }

-update Indicates this command provides additional R
information for a previous command with the
same fmfme_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

330

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |92

331 assign_te_fm

Purpose Assign technology element to failure mode.

Syntax assign_te_fm tefm_name

-te_name {te_name}

-fm_name { fm_name}

-parent parent

-fmeda fmeda_name

-fm_size { {<percentage | absolute | uniform-distribution> <perm | tran | bits> value }* }
[-fm_mapping { {<sv | vhdl | spice | user-defined> path }* }]

[-fm_mapping_exclude { {<sv | vhdl | spice | user-defined> path }* }]

[-attribute { {name_of the_user_defined_attribute value}* }]

[-update]
Arguments | tefm_name Name (identifier) of the assignment.

-te_name { te_name} Defines a technology element in which the FM R
is implemented.

-fm_name { fm_name } Defines a name of the target failure mode. R

-parent parent Connects the Failure Mode to its Parent in the R
FS hierarchy.

-fmeda fmeda_name Connects to the FMEDA project. R

-fm_size { {<percentage | absolute | The first value of an array defines whether the R

uniform-distribution> <perm | tran | bits> | FM_Size will be:

value }* }

e Percentage: A percentage of the parent
Element_Size

e Absolute: An absolute value

e Uniform_Distribution: A uniform
distribution of the parent Element_Size

The second value of an array defines the type
of faults that can occur:

e Permanent
e Transient
e Bit

The third value defines the size of a FM where a
given type of fault can occur. This is used to
calculate a FMD for the associated TE. In the
semiconductor world, these fault types are
associated with combinatorial and sequential
logic gates, sequential logic gates, and storage
elements respectively.

This attribute is given precedence for an
assumption-based FMEDA. Otherwise, the FMD
is calculated based on the area of the FM
defined by the mapping to the design

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |93

hierarchy. Detailed semantics are to be defined

in the LRM.
-fm_mapping { {<sv | vhdl | spice | user- Connects to the DUA representation and R
defined> path }* } identifies the portion of the design responsible

for the Failure Mode. This attribute is given
precedence for a calculation-based FMEDA.
Detailed semantics are to be defined in the

LRM.
-fm_mapping_exclude { {<sv | vhdl | spice | Connects to the DUA representation and R
| user-defined> path }* } identifies the portion of the design to be

excluded from the FM_Mapping. Can only be
used in conjunction with the FM_Mapping
attribute. This attribute is only used for a
calculation-based FMEDA.

-attribute { Sets values of user-defined attributes. R
{name_of the _user_defined_attribute

value}* }

-update Indicates this command provides additional R

information for a previous command with the
same tefm_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

332

333 Usage example:

334 create_fm "FM 001" -parent "ELEMENT A.ELEMENT B" -safety relevant "no"
335

336 assign_fm fme "TE 002" -source "expert" -fr {{perm 0.00000000073} {tran
337 0.00000000019}}

338

339 assign_te_fm "AT_006" -te_name "TE_©02" --fm_name "FM_ 001" -parent

340 "ELEMENT_A.ELEMENT_B" \

341 -fm_mapping {top.c.u.g.*, top.c.x.p.v.*, top.f.n.*} \
342 -fm_size {{absolute perm 26.45} {absolute tran 1428.73}}
343

Copyright © Accellera Systems Initiative Inc. All rights reserved.

344

Page |94

assign_te_element

Purpose Assign technology element to element.
Syntax assign_te_element teelement_name
-te_name {te_name}
-element_name { element_name }
-parent parent
-fmeda fmeda_name
[-element_size { {<perm | tran | bits> value }* }]
[-element_mapping { path }]
[-element_mapping_exclude { path }]
[-attribute { {name_of the_user_defined_attribute value}* }]
[-update]
Arguments | teelement_name Name (identifier) of the assignment.
-te_name { te_name} Defines a technology element in which the FM is | R
implemented.
-element_name { element_name } Defines an element to be connected to a R
Technology element.
-parent parent Connects the Element to its Parent in the FS R
hierarchy.
-fmeda fmeda_name Connects to the FMEDA project. R
-element_size { {<perm | tran | bits> The first value of an array defines the type of R
value }* } faults that can occur:
e Permanent
e Transient
e Bit
The second value defines the size of an element
where a given type of fault can occur for the
corresponding TE.
This attribute is given precedence for an
assumption-based FMEDA. Otherwise, the
Element size is calculated based on the area
extracted by the mapping to the design
hierarchy. Detailed semantics are to be defined
in the LRM.
-element_mapping { path } Connects to the DUA representation and R
identifies the portion of the design
implementing the intended functionality of the
Element. This attribute is given precedence for a
calculation-based FMEDA. Detailed semantics
are to be defined in the LRM.
-element_mapping_exclude { path } Connects to the DUA representation and R
identifies the portion of the design to be

Copyright © Accellera Systems Initiative Inc. All rights reserved.

345

346

347
348
349
350
351
352
353
354
355

356

Page |95

excluded from the Element_Mapping. Can only
be used in conjunction with the
Element_Mapping attribute. This attribute is
only used for a calculation-based FMEDA.

-attribute { Sets values of user-defined attributes. R
{name_of the_user_defined_attribute

value}* }

-update Indicates this command provides additional R

information for a previous command with the
same teelement_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

Usage example:
create_te "Analog 5n" -type "analog" -fr {perm 3e-9}

create_element "PARTN" -fmeda "TOP" -type element
create_element "S _PART_X" -fmeda "TOP" -type element -parent "PARTN"

assign_te_element -fmeda "TOP" -te_name "Analog 5n" -element_name "S_PART_Y" -
parent "PARTN.S PART X" \
-element_mapping {top.a.b.c.*, top.a.b.p.q.*, top.a.s.t.p.*}
-element_size {{perm 582.18} {tran 438.21} {bits 512}}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page |96

357 define_fr_is026262

Purpose Define a value of a Failure Rate associated with particular scope according to the FR type.
Syntax define_fr_is026262 fr_name
-fr_type { {<intrinsic_fr | sr_failure_fr | nsr_fr | safe_fr | non_safe_fr | spf_fr | residual_fr |
mpf_fr | mpf_primary_fr | mpf_seconday_fr | mpf_detected | mpf_perceived | mpf_latent >
fr_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }
[-te_name {te_name }]
-analysis_type <perm | tran>
-fmeda fmeda_name
[-attribute { {name_of the_user_defined_attribute value}* }]
[-update]
Arguments | fr_name Name (identifier) of the
failure rate.
-fr_type { {<intrinsic_fr | sr_failure_fr | nsr_fr | safe_fr | Failure Rates (FR) R
non_safe_fr | spf_fr | residual_fr | mpf_fr | mpf_primary_fr | | calculated according to
mpf_seconday_fr | mpf_detected | mpf_perceived | Figure 10, Part 10, Clause 8
mpf_latent > fr_value }* } of 1IS026262 [2].
-scope { <fmeda | element | fm | fme> value [parent] } Defines whether the FRs R
are calculated for the
FMEDA, for an Element, for
a Failure Mode, or for a
Failure Mode Effect.
-te_name {te_name } Specifies for which R
technology the FR is
calculated.
-analysis_type <perm | tran> Specifies the analysis type R
the calculated FR belongs
to.
-fmeda fmeda_name Connects to the FMEDA R
project.
-attribute { {name_of_the_user_defined_attribute value}* } Sets values of user-defined | R
attributes.
-update Indicates this command R
provides additional
information for a previous
command with the same
fr_name.

358

Copyright © Accellera Systems Initiative Inc. All rights reserved.

359

360

361

362
363
364
365
366
367
368
369

define_metric_is026262

Page |97

Purpose Define a value of a Metric associated with a particular scope according to the Metric’s type.

Syntax define_metric_is026262 metric_name
-metric_type { {<spfm | Ifm | pmhf> metric_value }* }

-scope { <fmeda | element | fm | fme> value [parent] }

-te_name {te_name }

-analysis_type <perm | tran>

-fmeda fmeda_name

[-attribute { {name_of the_user_defined_attribute value}* }]

[-update]

Arguments | metric_name Name (identifier) of the metric definition.
-metric_type { {<spfm | Ifm | pmhf> Metrics calculated according to ISO 26262 [2].
metric_value }* }

-scope { <fmeda | element | fm | fme> Defines whether the metrics are calculated for

value [parent] } the FMEDA, for an Element, for a Failure
Mode, or for a Failure Mode Effect.

-te_name {te_name } Specifies for which technology the FR is
calculated.

-analysis_type <perm | tran> Care to be taken about the effect of FMEDA
Analysis Type. (Pending the decision on
whether we will have a single language for
input+output or two separate ones.)

-fmeda fmeda_name Connects to the FMEDA project.

-attribute { Sets values of user-defined attributes.

{name_of the_user_defined_attribute

value}* }

-update Indicates this command provides additional
information for a previous command with the
same metric_name.

Return Returns an empty string if successful, or raises an ERROR if not.

value

Usage example:

define_metric_15026262 SPFM_Measured P_global -metric_type {spfm 91.96} -scope
{fmeda IP_A} -te name {"Digital Area" "RAM"} -fmeda IP_A -analysis_type perm
define_metric_15026262 SPFM_Measured _T_global -metric_type {spfm 97.95} -scope
{fmeda IP_A} -te _name {"Digital Area” "RAM"} -fmeda IP_A -analysis_type tran

define_metric_15026262 LFM_Measured_T_global

-metric_type {lfm 92.74} -scope

{fmeda IP_A} -te name {"Digital Area" "RAM"} -fmeda IP_A -analysis_ type perm
define_metric_1s026262 PMHF_Measured P_global -metric_type {pmhf 4.9760} -scope
{fmeda IP_A} -te _name {"Digital Area” "RAM"} -fmeda IP_A -analysis_type perm

Copyright © Accellera Systems Initiative Inc. All rights reserved.

370
371
372
373
374
375
376
377
378

379

Page |98

define_metric_1s026262 PMHF_Measured_T_global -metric_type {pmhf 1.786E-6} -scope
{fmeda IP_A} -te name {"Digital Area"” "RAM"} -fmeda IP_A -analysis_type tran

define_metric_1so026262 IP_A Global_Perm -metric_type {{spfm 91.96} {lfm 92.74}
{pmhf 4.970}}-scope {fmeda IP_A} -te name {"Digital Area” "RAM"} -fmeda IP_A -
analysis_type perm

define_metric_1s026262 IP_A Global_Tran -metric_type {{spfm 97.95} {pmhf 1.786E-
6}} -scope {fmeda IP_A} -te _name {"Digital Area" "RAM"} -fmeda IP_A -analysis type
tran

Copyright © Accellera Systems Initiative Inc. All rights reserved.

380

381

define_fr_iec61508

Page |99

Purpose Define the value of a Failure Rate associated with a particular scope according to the FR type.
Syntax define_fr_iec61508 fr_name
-fr_type { {<dangerous | dangerous_detected | dangerous_undetected > fr_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }
[-te_name {te_name }]
-analysis_type <perm | tran>
-fmeda fmeda_name
[-attribute { {name_of the_user_defined_attribute value}* }] [-update]
Arguments | fr_name Name (identifier) of the failure

rate.

-fr_type { {<intrinsic_fr | sr_failure_fr | nsr_fr | safe_fr |
non_safe_fr | spf_fr | residual_fr | mpf_fr |
mpf_primary_fr | mpf_seconday_fr | mpf_detected |
mpf_perceived | mpf_latent > fr_value }* }

Failure Rates (FR) calculated
according to IEC 61508 [3].

-scope { <fmeda | element | fm | fme> value [parent] }

Defines whether the FRs are
calculated for the FMEDA, for an
Element, for a Failure Mode, or
for a Failure Mode Effect.

-te_name {te_name }

Specifies for which technology
the FRis calculated.

-analysis_type <perm | tran>

Care to be taken about the effect
of the FMEDA Analysis Type.
(Pending the decision on
whether we will have a single
language for input+output or two
separate ones.)

-fmeda fmeda_name

Connects to the FMEDA project.

-attribute { {name_of_the_user_defined_attribute value}* }

Sets values of user-defined
attributes.

-update

Indicates this command provides
additional information for a
previous command with the
same fr_name.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 100

382 define_metric_iec61508

Purpose Define the value of a Metric associated with a particular scope according to the Metric’s type.

Syntax define_metric_iec61508 metric_name

-metric_type { {<SFF | Probability_dangerous_failure_low_demand |
Probability_dangerous_failure_high_demand> metric_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }

-te_name {te_name }

-analysis_type <perm | tran>

-fmeda fmeda_name

[-attribute { {name_of the_user_defined_attribute value}* }]

[-update]

Arguments | metric_name Name (identifier) of the metric

definition.

-metric_type { {<SFF | Metrics calculated according to R
Probability_dangerous_failure_low_demand | IEC 61508 [3].
Probability_dangerous_failure_high_demand>
metric_value }* }
-scope { <fmeda | element | fm | fme> value [parent] } Defines whether the metrics are | R

calculated for the FMEDA, for an
Element, for a Failure Mode, or
for a Failure Mode Effect.

-te_name {te_name } Specifies for which technology R
the FRis calculated.

-analysis_type <perm | tran> Care to be taken about the R
effect of the FMEDA Analysis
Type. (Pending the decision on
whether we will have a single
language for input+output or
two separate ones.)

-fmeda fmeda_name Connects to the FMEDA project. | R
-attribute { {name_of_the_user_defined_attribute Sets values of user-defined R
value}* } attributes.

-update Indicates this command provides | R

additional information for a
previous command with the
same metric_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

383

Copyright © Accellera Systems Initiative Inc. All rights reserved.

384

385
386
387

388

389
390
391
392
393
394
395

Page | 101

X. Annex C—- Add-on to v0.1

This chapter describes commands that were considered by the working group, but no
decision was agreed on whether accept or decline them. This chapter is for informative
purposes only.

The full list of commands defined according to this extension is as follows:

e Joad slf

e save slf

e set scope

e add_parameter

e qttr_expr

e assign_fmeda_fmeda

e assign_fmeda_element

Copyright © Accellera Systems Initiative Inc. All rights reserved.

396

397
398

399

400

401

402
403
404
405
406
407
408
409
410
411

412
413

414

Page | 102

load_slf

SLF = safety language format. This naming was created to enable users to write scripts in SLF
and show examples containing file extensions.

This naming is not approved by the WG.

Purpose Load a project described with the language defined by Accellera’s FS WG.

Syntax load_slf filename
[-prefix name_of the_prefix
[-parameters { { name_of the_parameter value}* }]

Arguments | filename Name of the file to load into the Tcl console.
-prefix name_of _the_prefix A text value to prepend to all objects within a
loaded file.
-parameters { { name_of_the_parameter Overwrites values of parameters defined in
value}* } the loaded file.
Return Returns an empty string if successful, or raises an ERROR if not.
value

Usage example:

HHHHE R S S R
SoC Project in ASIL D configuration ############H#
HHHHAHFHFHHHH A H S A
Lload_slf "Project A.slLf" -parameters { "ATTR_ASIL LEVEL" d }

HHHHE R S R
SoC Project in ASIL B configuration ##t##########H#
HHHHAHFHFHHHH A H S A
add_parameter "ATTR_ASIL LEVEL2" -default d

Load_slf "Project B.sLf"

e Parameter ATTR_ASIL_LEVEL has a scope of load_slif command only.

e Parameter ATTR_ASIL_LEVEL2 has a global scope, including the load_sif command.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 103

415 save_slf

416 SLF = safety language format. This naming was created to enable users to write scripts in SLF
417 and show example containing file extensions.

418 This naming is not approved by the WG.

Purpose Save active project in a target tool as a project in SLF format.

Syntax save_slf filename
[-fmeda fmeda_name]

Arguments filename Name of the file to save to.
-fmeda Name of the project to save. If omitted, all available projects are to
fmeda_name be saved.

Return Returns an empty string if successful, or raises an ERROR if not.

value

419

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 104

420 set_scope

Purpose Set the scope of execution for subsequent commands.

Syntax set_scope [{{ <fmeda | parent | parent_prefix> value }* }]

Arguments {{<fmeda | parent | parent_prefix> Sets the value of the -fmeda key for all subsequent
value }* } calls.

Sets the value of a -parent key for all subsequent
calls.

Sets the value of a prefix for a -parent key for all
subsequent calls.

An empty value resets all scoping settings.

Return Returns an empty string if successful, or raises an ERROR if not.
value

421

422 Usage examples:

423 create_fmeda "Project D"
424 set_scope {"fmeda" "Project D"}

425 create_element "D1" -type "part" -parent "root"

426 create_fm "FMoo1" -parent "D1" -dc {"tran" "measured" 91.5}
427 create_fm "FMoo2" -parent "D1" -dc {"tran" "measured" 91.4}
428 create_element sD1 -type "subpart" -parent "D1"

429 set_scope {"parent" "sD1"}

430 create_fm "FMOO3" -dc {"tran" "measured" 71.5}

431 create_fm "FMoo4" -dc {"tran" "measured" 71.4}

432 set_scope {{"parent” ""} {"parent prefix" "D1.sD1"}

433 create_element C1 -type "part" -parent root

434 create_fm "FMoo1" -parent "C1" -dc {"perm" "measured" 99.5}
435 create_fm "FMoo2" -parent "C1" -dc {"perm" "measured" 99.4}
436 create_element sC1 -type "subpart" -parent "C1"

437 create_fm "FMoo3" -parent "sC1" -dc {"perm" "measured"
438 79.5}

439 create_fm "FMoo4 " -parent "sC1" -dc {"perm" "measured"
440 79.4}

441

442 e Omit -fmeda Project_D key for all subsequent commands.
443 e Omit -parent sD1 key for subsequent commands.
444 e Set parent_prefix so that all subsequent hierarchies can be copied from somewhere

445 else.

446 The set_scope command does not replace the existing -fmeda and -parent keys. It sets a
447 default value for those keys to reduce the necessity to duplicate the same entry all over
448 again.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 105

449 add_parameter

Purpose Create a new parameter.

Syntax add_parameter parameter_name
-default value
[-type [<global | erd_entity > 11
[-description description]
[-update]

Arguments | parameter_name Name (identifier) of the parameter.
-default value Default value of the parameter. R
-type [<global | The type of the parameter limits its visibility to various R
erd_entity >] commands.
-description description | Description of the parameter. R
-update Indicates this command provides additional information for a R

previous command with the same parameter_name.
Return Returns an empty string if successful, or raises an ERROR if not.
value

450

451 Usage example based on UB-AB20 and UB-AB21:

452 add_parameter "ATTR _ASIL LEVEL" -default d
453 add_parameter "ATTR SIL_LEVEL" -default 4

454 add _parameter "ASIL D CONF" -default yes
455 add _parameter "ASIL D NO EFF" -default 100
456

457 create_fmeda "CPU_FMEDA" -type "assumption" -ASIL $ATTR_ASIL LEVEL -SIL
458 $ATTR SIL_LEVEL

459

460 set _scope {"fmeda" "CPU_FMEDA"}

461 create_element "ALU X" -type part

462

463 set_scope {"parent" "ALU X"}

464 create_element "MULT32" -type subpart

465 create_element "MULT16" -type subpart

466 create _element "ADD32" -type subpart

467

468 set_scope { {"parent” ""} {"parent_prefix" "ALU X"} }

469 create_fm "FM_ 001" -parent "MULT16" -no_effect { {perm $ASIL_D NO_EFF} {tran
470 $ASIL D NO_EFF} }

471 create_fm "FM 002" -parent "MULT32" -no_effect { {perm $ASIL D NO _EFF} {tran
472 $ASIL_D NO_EFF} }

473 create_fm "FM_©03" -parent "ADD32"

474 create_fm "FM 004" -parent "ADD32"

475 create_fm "FM 005" -parent "ADD32"

476

477 set_scope { {"parent" ""} {"parent prefix" ""} }

478

479 create_sm "SM 001" -class "AoU-SW" -configurable "no" -dc {{perm 96} {tran 90}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

480
481
482
483
484
485
486

487

488

489
490
491
492
493
494

{lat 100}}

Page | 106

create_sm "SM 002" -class "HW" -configurable "no" -dc {{perm 96} {tran 96}

{lat 100}}

create_sm "SM 003" -class "AoU-HW" -configurable "yes" -dc {{perm 99} {tran 99}

{lat 100}}

assign_sm_fm "SM3_FM1" -sm_name "SM_0©03" -fm_name "FM_0064"

Usage example based on UB-AB20 and UB-AB21:
add_parameter "ATTR_ASIL_LEVEL" -default d
add_parameter "ATTR _SIL LEVEL" -default 4
add_parameter "ASIL D CONF" -default yes
add_parameter "ASIL D NO _EFF" -default 100

load_slf "Project D.sLf"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

-active $ASIL D CONF

495

496
497

498
499
500
501
502
503
504

505
506
507
508
509
510
511

512
513

514
515

516
517

518
519
520
521
522
523
524
525
526
527
528

529
530

531
532
533

Page | 107

attr_expr

The attr_expr extension provided a support for the conditional usage of given values based
on equality or otherwise of a previously declared parameter.

Usage example: Project A has a new parameter “ATTR_ASIL_LEVEL” defined that can take
multiple values. A UDA “config” is assigned to the value of the “ATTR_ASIL_LEVEL”
parameter. DC values are assigned using the conditional command attr_expr, which allows
the use of different DC metrics based on a selected input ASIL level that is passed through
the “ATTR_ASIL_LEVEL” parameter. This allows one FMEDA project to store information
related to multiple ASIL levels, design configurations, device configurations, and so on
within one file without relying on extensions provided by tool vendors.

HHHHAEHFHFHHHH A HAH

Project A

HHHHAEHFHFHHHH A HAH

add_parameter "ATTR_ASIL_LEVEL" -default b
add_attribute "config" -object "create_sm" -default ""

create_sm "SM 001" -class "AoU-SW" -configurable "no" \
-attribute { "config" $ATTR_ASIL LEVEL }

-dc {{perm 96 -attr_expr {config == "d"}} \
{tran 90 -attr_expr {config == "d"}} \
{lat 100 -attr_expr {config == "d"}}} \

-dc {{perm © -attr_expr {config == "b"}} \
{tran 6 -attr_expr {config == "b"}} \
{lat © -attr_expr {config == "b"}}}

SoC Project in ASIL D configuration ######H##H##FHHH
add_parameter "ATTR_ASIL_LEVEL" -default d
load_slf "Project A.sLf"

SoC Project in ASIL B configuration ########H##FHHH
add_parameter "ATTR_ASIL LEVEL" -default b
Load _slf "Project A.slLf"

e Expression attr_expr looks for user-defined attributes.
e Value of attribute config is set to parameter SATTR_ASIL_LEVEL.
e Project Ais loaded into SoC-level project with configuration d.

e Project Ais loaded into SoC-level project with configuration b.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

534

535

536

537
538
539
540
541
542
543
544
545

546

Page | 108

assign_fmeda_fmeda

Purpose Assign fmeda to fmeda.
Syntax assign_fmeda_fmeda fmeda_fmeda_name

-top top_fmeda_name

-ip {ip_fmeda_name }

[-attribute { {name_of _the_user_defined_attribute value}* }]

[-update]

Arguments | fmeda_fmeda_name Name (identifier) of the assignment.

-top top_fmeda_name Name of the top-level FMEDA. R

-ip {ip_fmeda_name } List of the FMEDAs to be aggregated into the R
top_FMEDA.

-attribute { Sets values of user-defined attributes. R

{name_of the_user_defined_attribute

value}* }

-update Indicates this command provides additional R
information for a previous command with the
same fmeda_fmeda_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

Usage example:

load slf “Project A.sLf”
load_slf “Project B.sLf”
load_slf “Project_C.sLf”

create_fmeda “UC-CB3” -asil “D” -analysis “permanent” -creator “Tierl” -
hierarchical yes

assign_fmeda_fmeda ABC_A -top “UC-CB3” -ip “Project_A”
assign_fmeda_fmeda ABC_B -top “UC-CB3” -ip “Project_B”
assign_fmeda_fmeda ABC_C -top “UC-CB3” -ip “Project_C”

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 109

547

548 Figure 22. Block diagram of assign_fmeda_fmeda command.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

549

assign_fmeda_element

Page | 110

Purpose Assign FMEDA project to an element.
Syntax assign_fmeda_element fmeda_element_name

-mode <summary | detailed>

-target { target_fmeda_name target_safety hierarchy object }

-source { source_fmeda_name source_safety hierarchy object }

-fmeda fmeda_name

[-description description]

[-update]

Arguments | fmeda_element_name Name (identifier) of the assignment.

-mode <summary | detailed> Specifies the how the selected element connects to
another FMEDA project.

e summary: Converts the existing hierarchy into a
“one-liner.” A whole hierarchy and all failure
modes should be converted into a top-level
hierarchy and an FM using top-level FMEs from
the IP. If this is used with -copy = no, then this
“one-liner” is recreated each time there is an
update trigger action. We also must copy the SM
with the AoU class.

e detailed: Brings the whole hierarchy from the
remote project.

-target { target_fmeda_name Specifies a project and an element name of the target

target_safety_hierarchy_object } object. (The target is an object that is being replaced
with external information.)

-source { source_fmeda_name Specifies a project and an element name of the source

source_safety_hierarchy object } object.

-fmeda fmeda_name Connects the FS hierarchy to the FMEDA project.

-description description Description of the intended functionality of the
Element.

-update Indicates this command provides additional
information for a previous command with the same
fmeda_fmeda_name.

Return Returns an empty string if successful, or raises an ERROR if not.
value

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 111

550

{ Hierarchical FMEDA project ABC with Part B2 referencing a project '
551 "
552 Figure 23. Block diagram of the assign_fmeda_element command.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 112

553 XI. Annex D — Repository

554 This document describes validation efforts targeted to validate the data model v0.1 and a
555 language at the same time. Given that the language description is far from being finalized,
556 some assumptions were made that are captured in the beginning of this document.

557 List of additional assumptions:

558 e SLF - Safety Language Format
559 e ESLF - Encrypted SLF

560 A. Example 1

FS Hierarchy #1
Element
ALU_X PART_N PART_D
Failure Mode
MULT32 ADD32 S_PART_X FM_001
Safety mechanism
Technology Element
FM_001 FM_001 FM_002 FM_003 S_PART_Y S_PART_Z
Metri
etrie TE_001 TE_001 SM_002
FM_003 FM_004 FM_001
Failure Mode Effect SM_001 SM_003
562 Figure 24. Example

563 Example of uncompressed code:

564 create fmeda "CPU FMEDA" -type "assumption”

565 create_element "ALU X" -type part -fmeda "CPU_FMEDA"

566 create_element "ADD32" -type subpart -parent "ALU X" -fmeda "CPU_FMEDA"

567 create_fm "FM_001" -parent "ALU X.ADD32" -fmeda "CPU_FMEDA"

568 create_fm "FM 002" -parent "ALU X.ADD32" -fmeda "CPU_FMEDA"

569 create_fm "FM 003" -parent "ALU X.ADD32" -fmeda "CPU_FMEDA"

570 create_element "MULT32" -type subpart -parent "ALU X" -fmeda "CPU_FMEDA"
571 create_fm "FM_001" -parent "ALU X.MULT32" -fmeda "CPU_FMEDA"

572 create_element "PARTN" -type part -fmeda "CPU FMEDA"

573 create_element "S PART X" -type subpart -parent "PARTN" -fmeda "CPU FMEDA"
574 create_element "S PART Z" -type subpart -parent "PARTN.S PART X" -fmeda
575 "CPU_FMEDA"

576 create_fm "FM_001" -parent "PARTN.S_PART_X.S PART_Z" -fmeda "CPU_FMEDA"
577 create_element "S PART Y" -type subpart -parent "PARTN.S PART X" -fmeda
578 "CPU_FMEDA"

579 create_fm "FM_©03" -parent "PARTN.S_PART_X.S PART_Y" -fmeda "CPU_FMEDA"
580 create_fm "FM_004" -parent "PARTN.S_PART_X.S PART_Y" -fmeda "CPU_FMEDA"
581 create_element "PARTD" -type part -fmeda "CPU_FMEDA"

582 create_fm "FM_001" -parent "PARTD" -fmeda "CPU_FMEDA"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 113

583 B. Example 2

FS Hierarchy

|
s | e
A

,
s s |
f—j%

_I

TE_001
A

) k
FM_002 l | FM_003
| |

[TE_002] [TE_003

TE_001

TE_001 TE_002

TE. 002 | Metric |

Metric

)

TE_003

ol

S—

TE_001

FMEDA

Failure Mode - Technology Element Metric

585 Figure 25. Example

584

Copyright © Accellera Systems Initiative Inc. All rights reserved.

586

587
588
589
590

591
592

593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

Page | 114

C. Example 3

Create an FS hierarchy with multiple levels of subparts.
Create an FM for parts and for subparts.

Assign multiple technologies to the same FM.

P wnN e

Assign sizes to both the FM and the Element; check precedence schema.

FS Hierarchy #1 with TE

CPU
ALU_X PART_N PART_D
MULT32 ADD32 S_PART_X FM_001
TE_003
FM_001 FM_001 FM_002 FM_003 S_PART_Y S_PART_Z
TE_001 TE_001 TE_001 TE_001
FM_003 FM_004 FM_001
TE_001 TE_002 TE_001
TE_002

Figure 26. Example

Example of code using only the element type of objects:

create_fmeda "CPU_FMEDA" -type "assumption"

create_element "ALU X" -type element -fmeda "CPU_FMEDA"

create_element "ADD32" -type element -parent "ALU X" -fmeda "CPU_FMEDA"
create_fm "FM_001" -parent "ALU X.ADD32" -fmeda "CPU_FMEDA"

assign_te fm -te_name "Digital_5n" -fm_name "FM_601" -parent "ALU X.ADD32" -
fm_size { absolute perm 15 } -fmeda "CPU_FMEDA™

create_fm "FM_002" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA"

assign_te fm -te_name "Digital_5n" -fm_name "FM_002" -parent "ALU X.ADD32" -
fm_size { absolute perm 5 } -fmeda "CPU_FMEDA"

create_fm "FM_003" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA"

assign_te_fm -te_name "Digital_5n" -fm_name "FM_©63" -parent "ALU X.ADD32" -
fm_size { absolute perm 16 } -fmeda "CPU_FMEDA"

create_element "MULT32" -type subpart -parent "ALU X"-fmeda "CPU_FMEDA"
create_fm "FM_001" -parent "ALU X.MULT32" -fmeda "CPU_FMEDA"

assign_te_fm -te_name "Digital_5n" -fm_name "FM_061" -parent "ALU X.MULT32"
fm_size { absolute perm 35 } -fmeda "CPU _FMEDA"

create_element "PARTN" -type element -fmeda "CPU_FMEDA"

create_element "S PART X" -type element -parent "PARTN" -fmeda "CPU_FMEDA"
assign_te _element -te _name "Analog 5n" -element_name "S_PART_Y" -parent
"PARTN.S _PART X" -fm_size { absolute perm 100 } -fmeda "CPU_FMEDA"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 115

614 create _element "S PART Z" -type element -parent "PARTN.S PART X" -fmeda
615 "CPU_FMEDA"

616 create_fm "FM 001" -parent "PARTN.S PART_X.S PART Z" -fmeda "CPU_FMEDA"
617 assign_te fm -te name "Digital 5n" -fm_name "FM 001" -parent

618 "PARTN.S PART X.S PART Z" -fm size { absolute perm 55 } -fmeda "CPU_FMEDA"
619 create_element "S_PART_Y" -type element -parent "PARTN.S_PART X" -fmeda
620 "CPU_FMEDA"

621 create_fm "FM_ 003" -parent "PARTN.S PART_X.S PART_Y" -fmeda "CPU_FMEDA"
622 assign_te fm -te name "Digital 5n" -fm_name "FM_083" -parent

623 "PARTN.S PART X.S PART Y" -fm size { absolute perm 460 } -fmeda "CPU FMEDA"
624 assign_te_fm -te_name "Analog 5n" -fm_name "FM_©83" -parent

625 "PARTN.S _PART_X.S_PART_Y" -fm_size { absolute perm 66 } -fmeda "CPU_FMEDA"
626 create_fm "FM_004" -parent "PARTN.S PART_X.S_PART_Y" -fmeda "CPU_FMEDA"
627 assign_te_fm -te_name "Analog 5n" -fm_name "FM_004" -parent

628 "PARTN.S PART X.S PART Y" -fm size { absolute perm 20 } -fmeda "CPU FMEDA"
629 create_element "PARTD" -type element -fmeda "CPU_FMEDA"

630 create_fm "FM 001" -parent "PARTD" -fmeda "CPU_FMEDA"

631 assign_te fm -te _name "RAM 5n" -fm name "FM 001" -parent "PARTD" -fm size {
632 absolute perm 100 } -fmeda "CPU_FMEDA"

633 create_te "Analog 5n" -type "analog" -fr {perm 3e-9}

634 create_te "Digital 5n" -type "digital" -fr {perm 1e-9} -fr {tran 8e-9}

635 create_te "RAM_5n" -type "ram" -fr {tran 16e-9}

636

637 1. Create FMEDA project

638 2. Create top-level element ALU_X

639 3. Create 2nd-level element ADD32, its FMs, link it to TEs

640 4. Create 2nd-level element MULT32, its FMs, link it to TEs

641 5. Create top-level element PARTN

642 6. Create 2nd-level element S_PART Z, its nested elements, its FMs, link it to TEs
643 7. Create top-level element "PARTD

644 8. Create TEs

Copyright © Accellera Systems Initiative Inc. All rights reserved.

645

646

647

648
649

650
651
652
653
654
655
656

657
658
659
660
661
662
663

Page | 116

D. Example 4

Introduction

Review of a simplified block diagram of a safety design of the FIFO module.

FIFO

Error logic < \
[TTTTTEEEEs——
T
o

<4—— Error

_

Dataln 7 — >
Loup & Cmo)
. >
Wr.|teEn Write pointer —>
WriteClk
Empty ‘
HalfFull | Flag logic
ful | ﬁ Dual Port SRAM
Reset a0
ReadEn
ReadClk

: —>
Read pointer

A

DataOut

Figure 27. Block diagram of the safety design.

The steps below incrementally present source code of the project as well as diagrams of
objects created according to the data model v0.1. A color coding of connections on the
diagrams serves only illustrative purposes to ensure a picture with sharp contrast. Please
note that connections are also objects of ERD called "relationship" with their own set of
attributes. Rectangular boxes are objects of ERD called "object;" an object can have a built-
in set of attributes and can also reuse a collection, in which case the object is shown
explicitly. Built-in attributes and their values are not shown.

In the illustrations below, the grey box at the right is not a project scope; it is simply a
drawing canvas that allows us to logically encapsulate a tool working area for easier review.
Data sources that do not expected to exist within a working area of an imaginary software
tool will be placed explicitly outside of the drawing canvas. Whether an object belongs to
the FMEDA project or not is defined by the existence or absence of a connection net from
the leaf object to the FMEDA object on the top, unless otherwise explicitly stated otherwise
with a Warning sign below the illustration.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

664
665
666
667

668

669

670
671

672
673
674
675
676
677
678
679
680

681
682

683
684
685

Page |117

Be aware that this example is an attempt to map existing a simple FMEDA project from a
commercial tool to a newly developed draft of a safety language. It highlights the flexibility
of a new language that supports all necessary basic constructs and means to store
additional metadata.

Step 0. Understand the Difference Between a Language and a Data Model

FS Hierarchy 3. Step 0. Understand difference between a language and a datamodel
create_sm "SM_003" -class "HW" -configurable "no" -dc {{perm 99} {tran 99}} -dc {lat 100}
FMEDA
Object 'SM'
SM_003
Element TR

Failure Mode

Safety mechanism . Ccmt“gurable ¢ J
| DC_Perm =
Technology Element | DC_Trans 2
| DC_Lat
Metric
: assign_fm_fme "FMEQ02_Contributors" -fm_name {" FOO? FOOS } -parent root -fme_name "FMEQ02"
Failure Mode Effect
‘ [FME002_Contributors]
Eafiecton Relatlonshlp FM_FME' Relationship 'FM_FME’
| FMName | W
User-definad atibuta | Parent element | Parent_element Parent_element
FME_list FME_list =
' ; | FMEDA_Name FMEDA_Name
Native attribute - =
| FME_weights FME_weights
£

Figure 28. Example of objects created by various commands, and allocation of attributes into predefined data
model fields.

Figure 28 demonstrates a crucial difference between a data model and a language. The data
model and its requirements define the set of data that must be present in a project
regardless of its format (e.g., safety language, Excel file, database). The language defines a
way to populate that data in a format that is human-readable and machine-readable. While
the Accellera FS WG is using a well-defined framework to ensure consistency of the data
model and language, a direct derivation of every command key from every data model’s
objects' attributes was considered to be extremely wordy. Due to that fact, language
commands, while still being directly derived from the data model objects, are more efficient
and optimized for the writing of a project manually.

You can see that the create_sm command is using multiple ways to store DC metrics in an
imaginary object “SM.”

The language does not define implementation details of the expected tools’ backend. Also,
it doesn’t define what effect executing a command should be on a tool level. Currently, the
language’s commands are a data container that hold all necessary data.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

686

687
688

689
690
691
692
693
694

695
696
697
698

699
700

701
702

Page | 118

Step 1. Create a Library of Collections of Attributes

FS Hierarchy 3. Step 1. Create library of Collections of attributes

FMEDA
Baseline SM SMT Dup & cmp SMT ECC
Element |
' User-defined attribute Native attribute u Native attribute
Failure Mode

Safety mechanism Native attribute

Technology Element SMT LBIST

Permanent DC = 0
Metric

Failure Mode Effect
Transient DC = 0

Collection

Latent DC = 95
User-defined attribute

Native attribute

Figure 29. Block diagram of the objects created according to the data model definitions in step 1.

This example is based on data obtained from a commercial tool, and while the set of
available fields was purposefully reduced, it’s explicitly shown here that often the user’s
intent is to store more data than is supported by baseline objects and their attributes of the
data model and language. Nevertheless, the add_attribute command enables the storing of
metadata in a convenient way. User-defined attributes are a powerful way to store all types
of data in the format that is accepted by various tools.

User-defined attributes, while being a standard syntax of the language, cannot be
understood equally by all tools. It's expected that all members of this WG and the broader
safety community will communicate back to the WG with proposals of the most prevalent
user-defined attributes as baseline attributes for adoption.

A reluctance to contribute back will inevitably cause a fragmentation of an ecosystem and
will prevent the correct interoperability of projects.

The second step in enabling reusability within the same project is to use the add_collection
command as a virtual static container for a set of attributes and their values.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

703

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

740

Page | 119

Source code example of creating a project and a library of collections:

create_fmeda IP_A -type calculation-based -asil d -sil 4 -analysis all -creator
119lasov -date 16/63/2023 -version 0.1 -data_model version 6.1 -hierarchical no

Additional Primary SM attributes
add_attribute “Diagnostic or Avoidance” -object
{enum {“Avoidance” “Diagnostic”}}

o«

sm” -default “Avoidance” -type

add_attribute “Error Response” -object “sm” -default “HW Error Flag”
add_attribute “IS026262 DC” -object “sm” -default “High” -type {enum
{{{LOWJ) {{Mediuml) {{H.i_gh)l}}

add_attribute “Category” -object “sm” -default “HW”
add_attribute “Default SM Type” -object “sm” -default “”

add_attribute “Name” -object “sm” -default “”

add_attribute “Primary” -object “sm” -default “no” -type {enum
{{{yesl) {{no)}}}

add_attribute “Generic comment” -object “global” -default

add_attribute “Equivalent ISO 26262 Diagnostic™ -object “sm” -default “”

add_collection “Baseline SM” -object “sm” \
-list {
{“Diagnostic or Avoidance” “Diagnostic™} \
{“Error Response” “HW Error Flag”} \
{“IS026262 DC” “High”} \
{“CGtegOl"y” rrHWu} \
{“configurable” “no”} \
{ﬂ'CLassl) {(Hw)l} \
{r(fmeda)J “‘IP_A)J} \
}
-fmeda IP_A

Each collection represents one Safety Mechanism Type
add_collection “SMT Dup & cmp” -object “sm” -list { {“dc” {perm 95}} {“dc” {tran
90}} {“dc” {lat 6}} } -fmeda IP_A

add_collection “SMT ECC” -object “sm” -List { {“dc” {perm 99}} {“dc” {tran
99}} {“dc” {lat 0}} } -fmeda IP_A
add_collection “SMT LBIST” -object “sm” -List { {“dc” {perm ©6}} {“dc” {tran

o}} {“dc” {lat 95}} } -fmeda IP_A

Copyright © Accellera Systems Initiative Inc. All rights reserved.

741

742
743

744
745
746
747

748

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

Step 2. Create a Library of Safety Mechanisms

FMEDA

Element

Failure Mode

Safety mechanism

Technology Element

Metric

Failure Mode Effect

Collection

User-defined attribute

Native attribute

FS Hierarchy 3. Step 2. Create library of Safety mechanisms

SM001

L

SM002

'SM003

SM004

Lsmoo1

Page | 120

Figure 30. Block diagram of the objects created according to the data model definitions in step 2.

While the language supports Safety Mechanisms as objects attached to an FMEDA project, it
also supports Safety Mechanisms independently. In this particular example, there’s no
specific goal in having Safety Mechanisms not connected to the FMEDA project, but it is

more closely aligned with the user’s intent.

Source code example of creating a library of Safety mechanisms:

create_sm "SMoO1" -collection "Baseline SM" -collection "SMT Dup & cmp" \
-attribute {{"Primary" "no"} {"Name" "Flag Logic Dup”}} \
-attribute {"Equivalent ISO 26262 Diagnostic" "Processing units:

Regis-ters::HW redundancy (e.g.dual core lLockstep, asym-metric redundancy, coded

processing)"}

create_sm "SMoO2" -collection "Baseline SM" -collection "SMT Dup & cmp" \
-attribute {{"Primary" "no"} {"Name" "WR Logic Dup"}}
-attribute {"Equivalent ISO 26262 Diagnostic" "Processing units:
Regis-ters::HW redundancy (e.g.dual core Llockstep, asym-metric redundancy, coded

processing)"}

create_sm "SMoO3" -collection "Baseline SM" -collection "SMT Dup & cmp" \
-attribute {{"Primary" "no"} {"Name" "RD Logic Dup"}} \
-attribute {"Equivalent ISO 26262 Diagnostic"” "Processing units:

Regis-ters::HW redundancy (e.g.dual core lockstep, asym-metric redundancy, coded

processing)"}

create_sm "SMoo4" -collection "Baseline SM" -collection "SMT ECC" \
-attribute {{"Primary" "no"} {"Name" "ECC"}} \

Copyright © Accellera Systems Initiative Inc. All rights reserved.

769
770
771
772
773
774
775
776
777
778
779
780
781

Page | 121

-attribute {"Equivalent ISO 26262 Diagnostic"” "Volatile memory: :Memory
monitoring using error-detection-correction codes(EDC)"}

create_sm "LSMoO1" -collection "Baseline SM" \
-collection "SMT LBIST" \
-attribute {
{"Primary" "no"} \
{"Name" "LBIST"} \
{"Error Response" "Abort"} \
{"IS026262 DC" "Medium"} \
{"Equivalent ISO 26262 Diagnostic" "Processing units: Registers::Self-test
supported by hardware(one-channel)"}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

782

783
784

785

786

787
788
789
790
791
792
793
794

Step 3. Create the Safety Hierarchy

FS Hierarchy 3. Step 3. Create Safety hierarchy
-
FMEDA *
(A X

Element

%

FLAGS

Failure Mode

[wmmmn]

R —

\ﬁ

Technology Element

SRAM | —’

Metric

Failure Mode Effect

Collection

User-defined attribute

SMT ECC

SMT LBIST

Page | 122

{

{

SMT Dup &.

I3

Baseline SM

Figure 31. Block diagram of the objects created according to the data model definitions in step 3.

The FIFO demo project is quite simple, so here we have created four parts.

Source code example of creating a Safety hierarchy:

create_element FLAGS -parent IP_A -type part -fmeda IP_A -description
flags control Llogic”

create_element WP -parent IP_A -type part -fmeda IP_A -description
pointer logic"
create_element RP -parent IP_A -type part -fmeda IP_A -description

pointer Llogic"
create_element SRAM -parent IP_A -type part -fmeda IP_A -description
memory"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

"Status

"Write

"Read

"SRAM

795

796
797

798
799
800

801

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

Step 4. Create Failure Modes and Assisting Collections

FS Hierarchy 3. Step 4. Create Failure Modes and associated collections

IP_A
L

Element |

FLAGS 'SM001
Failure Mode
—
SM002
Safety mechanism FOO1 6\ F002 (——-*\
_________ |
1 SMO003
Technology Element W }
M | Ao
| SM004
Metric F0O03 61 FOO4 &——— {
{ ————————— || tsmoon
Failure Mode Effect RP I
|
Collection l) X {
F0O05 e\ F006 <———:

Native attribute

et S |
User-defined attribute oy
SRAM

Page | 123

Figure 32. Block diagram of the objects created according to the data model definitions in step 4.

For each part we create two Failure modes. One is to be associated later with the actual
design hierarchy, and the other one with the safety mechanism hierarchy. This difference is

reflected by using various values for the os -type attribute.

Source code example of creating Failure modes and assisting collections:

add_attribute "Probability to violate Safety Goal"
"no" -type {enum {"yes" "no"}}

add_attribute "Systematic or random failure"”
"random” -type {enum {"systematic” "random"}}
add_attribute "Potential faults"

add_attribute "Potential errors"”

add_attribute "Permanent ot transient”

-type {enum {"permanent” "transient"}}
add_attribute "Potential Cause of SM Fault”

-type {enum {"SEU" "TDDB"}}

add_attribute "ISO 26262 Equivalent Fault/Error/Failure”

add_collection "Baseline FM" -object "fm" \
-list {
{"Probability to violate Safety Goal" "yes"} \
{"Systematic or random failure” "random"} \
{"safety _relevant” "yes"

}
-fmeda IP_A

Copyright © Accellera Systems Initiative Inc. All rights reserved.

-object
-object
-object
-object
-object
-object

-object

"
"
i
"

"

-default
-default
-default ""
-default ""
-default ""
-default ""

-default ""

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

Page | 124

create_fm "FoO1" -parent FLAGS -type mission -safety relevant yes -dc_aggregation
max \
-no_effect { {perm 6} {tran 100} } \
-perceived { {perm 6} {tran 6} } \
-attribute {{"Potential faults" "Flag logic 1is faulty"} \
{"Potential errors"” "Incorrect flag indication"} \
{"Potential Cause of SM Fault" "TDDB"} \
{"ISO 26262 Equivalent Fault/Error/Failure" "Processing units:
Registers::Stackoverflow/underflow”}}
-collection "Baseline FM"

create_fm "Fo02" -parent FLAGS -type passive -safety relevant yes -dc_aggregation
max \
-no_effect { {perm 100} {tran 6} } \
-perceived { {perm 6} {tran 6} } \
-attribute {{"Potential faults" "Flag logic is faulty"} \
{"Potential errors"” "Incorrect flag indication"} \
{"Potential Cause of SM Fault" "SEU"} \
{"ISO 26262 Equivalent Fault/Error/Failure” "Processing units:
Registers::Stackoverflow/underflow”}}
-collection "Baseline FM"

create_fm "Fo03" -parent WP -type mission -safety relevant yes -dc_aggregation max
\
-no_effect { {perm 6} {tran 1060} } \
-perceived { {perm 0} {tran 6} } \
-attribute {{"Potential faults" "WR Logic is faulty"} \
{"Potential errors” "Incorrect WR ptr to SRAM"} \
{"Potential Cause of SM Fault" "TDDB"}
{"ISO 26262 Equivalent Fault/Error/Failure” "Processing units:
Registers::Stackoverflow/underflow"}}
-collection "Baseline FM"

create_fm "Foo4" -parent WP -type passive -safety relevant yes -dc_aggregation max
\
-no_effect { {perm 106} {tran 6} } \
-perceived { {perm 0} {tran 6} } \
-attribute {{"Potential faults" "WR Logic 1is faulty"} \
{"Potential errors” "Incorrect WR ptr to SRAM"} \
{"Potential Cause of SM Fault" "SEU"} \
{"ISO 26262 Equivalent Fault/Error/Failure" "Processing units:
Registers::Stackoverflow/underflow"}}
-collection "Baseline FM"

create_fm "Fo05" -parent RP -type mission -safety relevant yes -dc_aggregation max
\
-no_effect { {perm 6} {tran 100} } \
-perceived { {perm 6} {tran 6} } \
-attribute {{"Potential faults" "RP logic 1is faulty"} \
{"Potential errors"” "Incorrect RD ptr to SRAM"} \
{"Potential Cause of SM Fault" "TDDB"} \
{"ISO 26262 Equivalent Fault/Error/Failure” "Processing units:
Registers::Stackoverflow/underflow”}}
-collection "Baseline FM"

create_fm "Foo6" -parent RP -type passive -safety relevant yes -dc_aggregation max
\

-no_effect { {perm 1060} {tran o6} } \

-perceived { {perm 6} {tran 6} } \

Copyright © Accellera Systems Initiative Inc. All rights reserved.

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

Page | 125

-attribute {{"Potential faults" "RP logic 1is faulty"} \
{"Potential errors"” "Incorrect RD ptr to SRAM"} \
{"Potential Cause of SM Fault" "SEU"} \
{"ISO 26262 Equivalent Fault/Error/Failure” "Processing units:
Registers::Stackoverflow/underflow”}}
-collection "Baseline FM"

create_fm "Fo07" -parent SRAM -type mission -safety relevant yes -dc_aggregation
max \
-no_effect { {perm 6} {tran 100} } \
-perceived { {perm 0} {tran 6} } \
-attribute {{"Potential faults" "Failure in SRAM bits"} \
{"Potential errors"” "Corrupted data in SRAM"} \
{"Potential Cause of SM Fault"™ "TDDB"} \
{"ISO 26262 Equivalent Fault/Error/Failure” "Volatile memory::d.c.
faults model (addr,data, control)"}}
-collection "Baseline FM"

create_fm "FO08" -parent SRAM -type active -safety relevant yes -dc_aggregation
max \
-no_effect { {perm 106} {tran 6} } \
-perceived { {perm 0} {tran 6} } \
-attribute {{"Potential faults" "Failure in SRAM bits"} \
{"Potential errors"” "Corrupted data in SRAM"} \
{"Potential Cause of SM Fault" "SEU"} \
{"ISO 26262 Equivalent Fault/Error/Failure"” "Volatile memory::d.c.
faults model (addr,data, control)"}}
-collection "Baseline FM"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

910

911
912

913

914

915
916
917
918
919
920
921
922
923
924

Page | 126

Step 5. Assign Safety Mechanisms to Failure Modes

FS Hierarchy 3. Step 5. Assign Safety mechanisms to Failure Modes (Baseline collections related links are removed)

- T
FMEDA L
S

Element = LSM001

FLAGS

M| Foon J FO02

WP

Failure Mode

Safety mechanism

Technology Element

Metric N> Foo3 J F004 l SM002 ¢

Failure Mode Effect RP
Collection J
N> Foos FO06

User-defined attribute
SRAM
Native attribute
N roo7 ¢/ | Foos 1 SM004

sM003 [¢——

g3 gl g

Figure 33. Block diagram of the objects created according to the data model definitions in step 5.

Links related to baseline collections have been removed from the image.

Source code example of creating a link from Safety mechanisms to Failure modes:

assign_sm _fm PSM_to _perm_FM_FLAG -sm_name SM@O1 -fm name {"FOO1" "F002"} -parent
IP_A -fmeda IP_A -active yes

assign_sm_fm PSM_to_perm_FM _WP -sm_name SM@©2 -fm _name {"FOO3" "Fo04"} -parent
IP A -fmeda IP_A -active yes

assign_sm_fm PSM_to _perm_FM_RP -sm_name SMO@3 -fm _name {"FOO5" "FO06"} -parent
IP A -fmeda IP_A -active yes

assign_sm_fm PSM_to_perm_FM_SRAM -sm_name SM@@4 -fm _name {"FOO7" "FOO8"} -parent
IP_A -fmeda IP_A -active yes

assign_sm_fm LBSIT to_all_Llatent_FM -sm_name LSMOO1 -fm name {"FOO1" "Foo3" "Foo5"
"Foo7"} -parent IP_A -fmeda IP_A -active yes

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 127

925 Step 6. Create Technology Elements

FS Hierarchy 3. Step 6. Create Technology elements

IP_A Digital Area
FMEDA L
~ \
- SMT ECC
Element
(N |

FLAGS
Failure Mode
SMT LBIST
- S‘ ! o

‘ RAM

I3

e

N

Technology Element Wi SMT Dup & ...
' (j > Nt
Metric N Foos ‘ F004 -<—/
Baseline SM
Failure Mode Effect RP

Iy

Collection J
S FO05 ‘ FO086 I
Baseline FM
User-defined attribute -

927 Figure 34. Block diagram of the objects created according to the data model definitions in step 6.

{

926

928 Source code example of creating technology elements:

929 create_te "Digital_ Area" -type digital -source IEC_62380 -fr {{perm ©.03633} {tran
930 o} }
931 create_te "Analog Area"” -type analog -source IEC 62380 -fr {{perm ©.063033} {tran
932 .01} }

933 create_te "ROM" -type ram -source IEC 62380 -fr {{perm ©.03033} {tran
934 1e-7} }
935 create_te "RAM" -type rom -source IEC 62380 -fr {{perm 6.03033} {tran
936 1e-7} }
937 create_te "Flops" -type digital -source IEC_62380 -fr {{perm 0} {tran

938 3.4e-6}}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 128

939 Step 7. Assign Technology Elements to Failure Modes, Mapping

FS Hierarchy 3. Step 7. Assign T y to rel Failure Modes; Provide design mapping information

IP_A

Digital Area | ~ RAM

SMT ECC

{

Failure Mode

Technology Element

Metric Foo3 ¢|| Foos

Failure Mode Effect

SMT LBIST

{

~N

T
PR REE
{

SMT Dup & ...

Baseline SM

{

| Collection

Baseline FM

FOO5 ¢/ | F008B }(—/
User-defined attribute

- F007 & ’ Foo8 e 7

{

940
941 Figure 35. Block diagram of the objects created according to the data model definitions in step 7.
Detalization of TE 'RAM' to FM 'FO08’ connection and design data mapping
IP_A
Design data) }
[Object 'FO08' — ————— : | Object 'FO08_DD' : Object 'RAM'
[fmeda) ————{fmeda 1 [e]
[parent) | [parent | [frperm]
[e | i [tename | [fran]
s an] -~ foome | sowee
[dc_aggregation | —— isze { Optional attributes |
[noeffect | ——>{_ fm_mapping _
[perceived | L fm_mapping exclude
| Optionalattributes | __ Optional attributes |
942
943 Figure 36. Detalization of a TE-to-FM connection with design data mapping. Native attributes are shown to
944 illustrate internal data structures.
945

Copyright © Accellera Systems Initiative Inc. All rights reserved.

946
947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

Page | 129

Source code example of creating a link from Technology elements to Failure modes with

design data mapping:

add_attribute "TE Gates" -object "te" -default ©
add_attribute "TE_Flops" -object "te" -default 06

assign_te fm "Foo1 DD" -te _name "Digital Area" -fm_name
IP_A -fm size {absolute perm 330.85} -fm _mapping {"test.

{{"TE Gates" 34} {"TE Flops" 4}}

assign_te fm "Fo002 DD" -te_name "Digital Area” -fm_name
IP A -fm _size {absolute perm 330.85} -fm_mapping {"test.

{{"TE Gates" 34} {"TE Flops" 4}}

assign_te fm "Fo03 DD" -te_name "Digital Area” -fm_name
IP A -fm size {absolute perm 147.46} -fm _mapping {"test.

{{"TE Gates" 8} {"TE Flops" 3}}

assign_te fm "Foo4 DD" -te _name "Digital Area" -fm_name
IP A -fm _size {absolute perm 147.46} -fm_mapping {"test.

{{"TE Gates" 8} {"TE_Flops" 3}}

assign_te fm "Foo5 DD" -te_name "Digital Area” -fm_name
IP A -fm _size {absolute perm 158.52} -fm_mapping {"test.

{{"TE Gates" 10} {"TE Flops" 3}}

assign_te fm "Foo6 DD" -te _name "Digital Area” -fm_name
IP_A -fm size {absolute perm 158.52} -fm _mapping {"test.

{{"TE _Gates" 10} {"TE_Flops" 3}}

assign_te_fm "Fo007 DD"
fm_size {absolute bits
attribute {{"TE_Gates"
assign_te_fm "Fo008 DD"
fm_size {absolute bits
attribute {{"TE_Gates"

-te_name "RAM" -fm_name "Fo07"

192.00} -fm_mapping {"test.DUT.

2} {"TE_Flops" 6}}
-te_name "RAM" -fm_name "Fo008"

192.00} -fm _mapping {"test.DUT.

2} {"TE_Flops" 06}}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

"Foo1l" -parent IP_A -fmeda
DUT.FL_IF"} -attribute

"Foo2" -parent IP_A -fmeda
DUT.FL_SM"} -attribute

"Foo3" -parent IP_A -fmeda
DUT.RP_IF"} -attribute

"Foo4" -parent IP_A -fmeda
DUT.RP_SM"} -attribute

"Foo5" -parent IP_A -fmeda
DUT.WP_IF"} -attribute

"Fooe6" -parent IP_A -fmeda
DUT.WP_SM"} -attribute

-parent IP_A -fmeda IP_A -
sdpram_1i1.sdpram 11"} -

-parent IP_A -fmeda IP_A -
sdpram_1il.sdpram_i1"} -

974

975
976

977
978

979
980
981
982
983
984

Page | 130

Step 8. Create Failure Mode Effects and Connect them to Failure Modes

FS Hierarchy 3. Step 8. Create FMEs (Collections were removed)
IP_A Digital Area I RAM
FMEDA
Element - FiEeet
FLAGS J
Failure Mode
- 8 7
Technology Element ’ B y
65 [
Failure Mode Effect RP
/
Collection A I
User-defined attribute -
SRAM
27
'@ v

Figure 37. Block diagram of the objects created according to the data model definitions in step 8.

Source code example of creating a link from Technology elements to Failure modes,
mapping.

create_fme "FME©O1" -fmeda IP_A -description "Loss of data"

create_fme "FME©O2" -fmeda IP_A -description "Incorrect data”

assign_fm _fme "FME©O1_Contributors" -fmeda IP_A -fm _name {"FO01" "Fo02" "F003"
"Foo4" "Foo5" "Fooe"} -parent IP_A -fme_name "FME©O1" -fme weight {1 1 1 1 1 1}
assign_fm _fme "FME©O2 Contributors" -fmeda IP_A -fm_name {"F007" "FOO8"} -parent
IP_A -fme_name "FME©O2" -fme_weight {1 1}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

985

986
987
988
989

990
991
992
993
994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

1014
1015

1016
1017
1018
1019
1020
1021

1022

1023
1024

1025
1026
1027
1028
1029

Page | 131

Step 9. Update Objects According to Verification Strategy

It is assumed here that an integrated toolchain is used to connect FMEDA data to
verification data. The bare minimum subset of the data to be shared is observation and
detection points, mapping to a design hierarchy. Fault simulation settings are not reflected
in this example, although for traceability purposes we need to have that connection.

Nevertheless, as of today a fault campaign object is not considered to be a part of an
FMEDA analysis, and there is no construct that would allow a user to create a new type of
object. Therefore, pointers to the verification data can be stored as user-defined attributes
of the create_fmeda command, thus enabling a baseline traceability from measured metrics
back to fault simulation results. Such usage is not shown in this example, however.

Please note the use of the -update key to update already created objects.

Source code example of updating Failure modes with verification information:

add_attribute "Observation points" -object "fm" -default ""

create_fm "FO01" -update -parent IP_A -fmeda IP_A -attribute {"Observation points"
"test.DUT.FL_IF.Empty test.DUT.FL_IF.Full_ test.DUT.FL_IF.HalfFull "}

create_fm "F002" -update -parent IP_A -fmeda IP_A -attribute {"Observation points”
n ”}

create_fm "FO03" -update -parent IP_A -fmeda IP_A -attribute {"Observation points"”
"test.DUT.WP_IF.Count"}

create_fm "Foo4" -update -parent IP_A -fmeda IP_A -attribute {"Observation points"
n ”}

create_fm "FO05" -update -parent IP_A -fmeda IP_A -attribute {"Observation points”
"test.DUT.RP_IF.Count"}

create_fm "FO06" -update -parent IP_A -fmeda IP_A -attribute {"Observation points"
n ”}

create_fm "Fo07" -update -parent IP_A -fmeda IP_A -attribute {"Observation points”
"test.DUT.sdpram_1il.sdpram_1il.L_DataOut test.DUT.sdpram_1il.sdpram_il.R_DataOut"}
create_fm "Fo08" -update -parent IP_A -fmeda IP_A -attribute {"Observation points"

"}

Source code example of updating Safety mechanisms with verification information:

add_attribute "Diagnostic points" -object "sm" -default ""

create_sm "SMoO1" -update -attribute {"Diagnostic points"” "test.DUT.FlagError"}
create_sm "SM0O2" -update -attribute {"Diagnostic points" "test.DUT.WriteError"}
create_sm "SMOO3" -update -attribute {"Diagnostic points" "test.DUT.ReadError"}
create_sm "SMoo4" -update -attribute {"Diagnostic points"
"test.DUT.sdpram_1i1.EccError"}

Source code example of updating Failure modes with results of a digital fault simulation
campaign:

create_fm "FOO1" -update -parent IP_A -fmeda IP_A -dc {perm measured 95.45}
create_fm "FO03" -update -parent IP_A -fmeda IP_A -dc {perm measured 94.44}
create_fm "FOO5" -update -parent IP_A -fmeda IP_A -dc {perm measured 94.44}
create_fm "Fo07" -update -parent IP_A -fmeda IP_A -dc {perm measured 46.14} -
no_effect {perm 16.47}

Copyright © Accellera Systems Initiative Inc. All rights reserved.

1030

1031
1032

1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

Step 10. Create FMEDA-scoped Metrics

FMEDA

Element

Failure Mode

Safety mechanism

Technology Element
Metric

Failure Mode Effect

Collection

User-defined attribute

Native attribute

FS Hierarchy 3. Step 10. Create FMEDA-scoped metrics

Page | 132

FMEQO1

J

FMEO02

7

IP_A At Digital Area RAM
LSM001
FLAGS
& 7 4
FOO1 F002 SMO001
N
WP -
v
= 7 — SPFM_Measured_P_global
FO03 F004 SM002 — SPFM_Measured_T_global
— LFM_Measured_T_global
RP — PMHF_Measured_P_global
- - ~ — PMHF_Measured_T_global
F005 FO06 SM003
SRAM
e 7
FOO07 Fo08 SM004

Figure 38. Block diagram of the objects created according to the data model definitions in step 10.

Source code example of creating metrics:

add_collection "Baseline FMEDA metric" -object "metric" \

-list {

{"scope” {fmeda IP_A}} \

{"te_name" {"Digital_Area" "RAM"}} \
{”fmeda” ”IP—A”}

}
-fmeda IP_A

define_metric_15026262 SPFM_Measured P_global -metric_type {spfm 91.96}
analysis_type perm -collection "Baseline FMEDA metric"”
define_metric_15026262 SPFM_Measured_T_global -metric_type {spfm 97.95}
analysis_type tran -collection "Baseline FMEDA metric"

define_metric_15026262 LFM_Measured_T_global

-metric_type {lfm 92.74}
analysis_type perm -collection "Baseline FMEDA metric"”
define_metric_15026262 PMHF_Measured P_global -metric_type {pmhf 4.976}
analysis_type perm -collection "Baseline FMEDA metric"

define_metric_1s026262 PMHF_Measured_T_global -metric_type {pmhf 1.786E-6} -

analysis_type tran -collection "Baseline FMEDA metric"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

1052

1053
1054

1055
1056

1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

Page | 133

Step 11. Create FME-scoped Metrics

FS Hierarchy 3. Step 11. Create FME-scoped metrics
IP_A Digital Area RAM
FMEDA
Element LSMo01 FMEQO1 €~
FLAGS J‘
Failure Mode
C 4 4
Safety mechanism FOO1 F002 SMO001 (—) FME002
. >
Technology Element Wi J
= 4 SPFM_Measured_P_global
Metric F0O03 FO04 SMO002 SPFM_Measured_T_global
LFM_Measured_T_global
Failure Mode Effect RP PMHF_Measured_P_global
>
Collection I's 7 PMHF_Measured_T_global
RoCS AL SMOOS N SPFM_Measured_P_FMEs -]
User-defined attribute | SPFM_Measured T_FMEs |-
SRAM \
1 LFM_Measured_T_FMEs 1
Native attribute C & N PMHF_Measured_P_FMEs
FO07 Foo8 SM004
\-| PMHF_Measured_T_FMEs

Figure 39. Block diagram of the objects created according to the data model definitions in step 11.

In this case, FMEDA-scoped metrics are no different from FME-scoped metrics due to the
way that FMEs are connected to FMs.

Source code example of creating metrics:

add_collection "Baseline FME metric" -object "metric" \
-list {
{"scope"” {fme "FME©O1" "FME©O2"}} \
{"te_name" {"Digital_Area” "RAM"}} \
{"fmeda" "IP_A"}
}
-fmeda IP_A

define_metric_1s026262 SPFM_Measured_P_FMEs -metric_type {spfm 91.96}
analysis_type perm -collection "Baseline FME metric"”
define_metric_15026262 SPFM_Measured T_FMEs -metric_type {spfm 97.95}
analysis_type tran -collection "Baseline FME metric"
define_metric_1s026262 LFM _Measured_T_FMEs -metric_type {lfm 92.74}
analysis_type perm -collection "Baseline FME metric"”
define_metric_15026262 PMHF_Measured P_FMEs -metric_type {pmhf 4.976}
analysis_type perm -collection "Baseline FME metric"”
define_metric_1s026262 PMHF_Measured_T_FMEs -metric_type {pmhf 1.786E-6} -
analysis_type tran -collection "Baseline FME metric"

Copyright © Accellera Systems Initiative Inc. All rights reserved.

1076

1077

1078
1079

1080
1081
1082
1083
1084

1085

Data Tracing

FMEDA

Failure Mode

Safety mechanism
Technology Element
Metric

Failure Mode Effect

Collection

User-defined attribute
Native attribute

FS Hierarchy 3. Data tracing example (weak objects 'metric' connectivity is now shown)

3 3 3
I SMT ECC
- LSMO001
FLAGS \
M —
| SMT LBIST
FoO1 F002 SMooT : i
|
|
WP :
| > £
I
F003 FO04 SM002 :
|
! Baseline SM
RP |
(
|
F005 FO06 SM003 |
: Baseline FM
I |
SRAM)
T T]
A— l £]
S Foo7 Fo08 —<—/ /
ey ’
SPFM_Measured_P_global SPFM_Measured_P_FMEs
FMEQO1 SPFM_Measured_T_global SPFM_Measured_T_FMEs
LFM_Measured_T_global LFM_Measured_T_FMEs
) EMEQ02 PMHF_Measured_P_global PMHF_Measured_P_FMEs
PMHF_Measured_T_global PMHF_Measured_T_FMEs

element SRAM are highlighted.

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Page | 134

Figure 40. Block diagram of the objects created according to the data model definitions. Only objects related to

Figure 40 shows how data tracing can be done using the data model. The operation on a
dataset—as on a set of interlinked objects—enables very detailed introspection capabilities.
As of today, the language does not support introspection capabilities or any kind of queries
to internal objects. Nevertheless, it is expected that those capabilities will be added into the
language in a later release to enable vendor-lock-free introspection of safety projects.

Page | 135

1086 Equivalent Tables

1087 Equivalent tables show required and user-defined attributes of objects defined previously. This example may deviate from textual definitions
1088 and serves only for illustrative purposes.

1089 Table 13. FMEDA

Potenti
al ISO 26262 Systema Potenti
Failur Potenti | Effect(s | Equivalent ticor Safety al Curre | Curre
Proje | e Rate | Nam | Eleme | al) of Fault/Error/Fail | Random | Perm Relate | PVS | Cause(| nt nt KFMC,
ct (FIT) e nt Faults | Failure | ure Failure? |orTran |d G s) PSM LSM RF
IP_A 4,447E | FOO1 FLAGS Flag is Loss of Processing units: Random Permane | true true | TDDB SM001 | LSMOO | 95,45%
+1 faulty data Registers::Stack nt 1
overflow/underflo
w
FOO3 | WP WR logic | Loss of Processing units: Random Permane | true true | TDDB SMO002 | LSM0OO | 94,44%
is faulty | data Registers::Stack nt 1
overflow/underflo
w
FO05 RP RP logic Loss of Processing units: Random Permane | true true | TDDB SMO003 | LSMOO | 94,44%
is faulty | data Registers::Stack nt 1
overflow/underflo
w
FO0O7 | SRAM Failure Incorrect | Volatile Random Permane | true true | TDDB SM004 | LSMOO0 | 40,14%
in SRAM | data memory::d.c. nt 1
bits faults model
(addr,data,control)

1090

Copyright © Accellera Systems Initiative Inc. All rights reserved.

1091

Table 14. List of SMs

Page | 136

Project

Name

Status

Safety
Mechanism

Diagnostic
or
Avoidance?

Category

Error
Response

Equivalent ISO
26262
Diagnostic

ISO
26262
DC

Default
SM

Type

Permanent
KRF

Transient
KRF

Permanent
KMPF

IP_A

SM001

Active

Flag Logic
Dup

Diagnostic

HW

HW Error
Flag

Processing units:
Registers::HW
redundancy (e.g.,
dual core
lockstep,
asymmetric
redundancy,
coded processing)

High

Dup &
cmp

95,00%

90,00%

0,00%

SM002

Active

WR Logic Dup

Diagnostic

HW

HW Error
Flag

Processing units:
Registers::HW
redundancy (e.g.,
dual core
lockstep,
asymmetric
redundancy,
coded processing)

High

Dup &
cmp

95,00%

90,00%

0,00%

SM003

Active

RD Logic Dup

Diagnostic

HW

HW Error
Flag

Processing units:
Registers::HW
redundancy (e.g.,
dual core
lockstep,
asymmetric
redundancy,
coded processing)

High

Dup &
cmp

95,00%

90,00%

0,00%

SM004

Active

ECC

Diagnostic

HW

HW Error
Flag

Volatile
memory::Memory
monitoring using

High

ECC

99,00%

99,00%

0,00%

Copyright © Accellera Systems Initiative Inc. All rights reserved.

1092

1093

Page | 137

error-detection-
correction codes

(EDC)
LSMO0O01 | Active LBIST Diagnostic HW Abort Processing units: Medium | LBIST 95,00%

Registers::Self-
test supported by
hardware (one-
channel)

Table 15. List of FRs

Project SPFM LFM PMHF Type

IP_A 91,96% 92,74% 4,970E+0 Perm

IP_A 97,95% N/A 1,786E-6 Tran

Copyright © Accellera Systems Initiative Inc. All rights reserved.

1094

1095
1096
1097

1098
1099

1100
1101

1102

1103

1104

1105
1106

1107
1108

1109
1110

1111

1112

1113

1114
1115
1116

1117

1118

Page | 138

Xll. Bibliography

[1] Accellera Functional Safety Working Group: White Paper, 2021
https://accellera.org/images/downloads/standards/functional-
safety/Functional_Safety White _Paper 051020.pdf

[2] 1SO 26262:2018 Road Vehicles — Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems

[3] IEC 61508:2010 Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems

[4] IEEE 1666-2011 — IEEE Standard for Standard SystemC Language Reference Manual
[5] 1364-2005 — IEEE Standard for Verilog Hardware Description Language
[6] IEEE P2851 https://sagroups.ieee.org/2851/

[7] P1800 - Standard for SystemVerilog — Unified Hardware Design, Specification, and
Verification Language

[8] IEEE 1685-2014 — IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows

[9] IEEE P1801 — Draft Standard for Design and Verification of Low Power, Energy Aware
Electronic Systems (UPF)

[10] https://sysml.org/
[11] "The Data Model Resource Book," Len Silverston, Wiley
[12] https://www.gleek.io/blog/conceptual-data-model

[13] The Entity-Relationship Model — Toward a Unified View of Data (ACM Transactions on
Database Systems, Vol. 1, No. 1, 1976) -
https://dspace.mit.edu/bitstream/handle/1721.1/47432/entityrelationshx00chen.pdf

[14] https.//www.guru99.com/data-modelling-conceptual-logical.htm|

[15] “Hazard Analysis Techniques for System Safety,” Clifton A. Ericson, Wiley

Copyright © Accellera Systems Initiative Inc. All rights reserved.

https://accellera.org/images/downloads/standards/functional-safety/Functional_Safety_White_Paper_051020.pdf
https://accellera.org/images/downloads/standards/functional-safety/Functional_Safety_White_Paper_051020.pdf
https://sagroups.ieee.org/2851/
https://sysml.org/
https://www.gleek.io/blog/conceptual-data-model
https://dspace.mit.edu/bitstream/handle/1721.1/47432/entityrelationshx00chen.pdf
https://www.guru99.com/data-modelling-conceptual-logical.html

	I. Introduction
	II. FMEDA Process
	III. Design Representation and Mapping of Data
	A. Design Representation
	B. Mapping
	Design Mapping
	Failure Modes Mapping
	Safety Mechanism Mapping
	Technology Element Mapping
	Failure Mode Effects Mapping
	Complex Use Cases

	IV. FMEDA Type
	A. Assumption-based
	B. Calculation-based
	C. Mixing FMEDA Types

	V. Conceptual Data Model
	A. Introduction to the Entity-Relationship Model
	B. General Considerations

	VI. Detailed Annotations on the Data Model
	A. FMEDA Type (Assumption-based, Calculation-base)
	B. FS Hierarchy and FM Hierarchy
	C. Technology Element
	Digital
	RAM/ROM/Flash
	Analog

	D. FS Hierarchy Modeling
	E. Operations on Design Mapping
	F. DC Aggregation Methods
	G. Failure Mode Effect

	VII. Concluding Remarks
	H. Accellera FS WG Supporting Entities
	I. Acknowledgements

	VIII. Annex A – Data Model
	A. FMEDA
	B. Element
	C. Failure Mode
	D. Technology Element
	E. Safety Mechanism
	F. Failure Mode Effect
	G. Mapping Safety Mechanism – Failure Mode
	H. Mapping Failure Mode – Failure Mode Effect
	I. Mapping Technology Element – Failure Mode
	J. Mapping Technology Element – Element
	K. Define ISO26262 Failure Rate
	L. Define ISO26262 Metric
	M. Define IEC61508 Failure Rate
	N. Define IEC61508 Metric

	IX. Annex B – Language
	A. Introduction
	B. Conventions
	C. Safety Analysis Commands v0.1
	create_fmeda
	create_element
	create_fm
	create_te
	create_sm
	create_fme
	add_attribute
	add_collection
	assign_sm_fm
	assign_fm_fme
	assign_te_fm
	assign_te_element
	define_fr_iso26262
	define_metric_iso26262
	define_fr_iec61508
	define_metric_iec61508

	X. Annex C – Add-on to v0.1
	load_slf
	save_slf
	set_scope
	add_parameter
	attr_expr
	assign_fmeda_fmeda
	assign_fmeda_element

	XI. Annex D – Repository
	A. Example 1
	B. Example 2
	C. Example 3
	D. Example 4
	Introduction
	Step 0. Understand the Difference Between a Language and a Data Model
	Step 1. Create a Library of Collections of Attributes
	Step 2. Create a Library of Safety Mechanisms
	Step 3. Create the Safety Hierarchy
	Step 4. Create Failure Modes and Assisting Collections
	Step 5. Assign Safety Mechanisms to Failure Modes
	Step 6. Create Technology Elements
	Step 7. Assign Technology Elements to Failure Modes, Mapping
	Step 8. Create Failure Mode Effects and Connect them to Failure Modes
	Step 9. Update Objects According to Verification Strategy
	Step 10. Create FMEDA-scoped Metrics
	Step 11. Create FME-scoped Metrics
	Data Tracing
	Equivalent Tables

	XII. Bibliography

