

Functional Safety Working Group

White Paper

December 13, 2023

P a g e | 2

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Contents
I. Introduction ... 5

II. FMEDA Process ... 10

III. Design Representation and Mapping of Data .. 12

A. Design Representation ... 12

B. Mapping ... 15

Design Mapping ... 16

Failure Modes Mapping .. 18

Safety Mechanism Mapping .. 19

Technology Element Mapping... 20

Failure Mode Effects Mapping .. 21

Complex Use Cases .. 22

IV. FMEDA Type ... 24

A. Assumption-based ... 24

B. Calculation-based... 24

C. Mixing FMEDA Types ... 24

V. Conceptual Data Model .. 26

A. Introduction to the Entity-Relationship Model ... 26

B. General Considerations ... 27

VI. Detailed Annotations on the Data Model ... 30

A. FMEDA Type (Assumption-based, Calculation-base) .. 30

B. FS Hierarchy and FM Hierarchy ... 31

C. Technology Element .. 33

Digital ... 33

RAM/ROM/Flash ... 34

Analog .. 34

D. FS Hierarchy Modeling ... 35

E. Operations on Design Mapping ... 36

F. DC Aggregation Methods ... 37

G. Failure Mode Effect .. 38

VII. Concluding Remarks ... 43

H. Accellera FS WG Supporting Entities ... 43

P a g e | 3

Copyright © Accellera Systems Initiative Inc. All rights reserved.

I. Acknowledgements.. 43

VIII. Annex A – Data Model ... 44

A. FMEDA ... 46

B. Element .. 48

C. Failure Mode .. 49

D. Technology Element .. 52

E. Safety Mechanism .. 54

F. Failure Mode Effect .. 56

G. Mapping Safety Mechanism – Failure Mode ... 57

H. Mapping Failure Mode – Failure Mode Effect ... 59

I. Mapping Technology Element – Failure Mode .. 60

J. Mapping Technology Element – Element .. 62

K. Define ISO26262 Failure Rate .. 64

L. Define ISO26262 Metric ... 66

M. Define IEC61508 Failure Rate .. 67

N. Define IEC61508 Metric ... 69

IX. Annex B – Language ... 71

A. Introduction ... 71

B. Conventions ... 73

C. Safety Analysis Commands v0.1 .. 73

create_fmeda .. 74

create_element ... 76

create_fm .. 77

create_te ... 79

create_sm .. 81

create_fme .. 83

add_attribute .. 84

add_collection ... 86

assign_sm_fm .. 89

assign_fm_fme .. 91

assign_te_fm ... 92

assign_te_element .. 94

define_fr_iso26262 ... 96

P a g e | 4

Copyright © Accellera Systems Initiative Inc. All rights reserved.

define_metric_iso26262 ... 97

define_fr_iec61508 ... 99

define_metric_iec61508 ... 100

X. Annex C – Add-on to v0.1 ... 101

load_slf .. 102

save_slf .. 103

set_scope ... 104

add_parameter .. 105

attr_expr .. 107

assign_fmeda_fmeda .. 108

assign_fmeda_element ... 110

XI. Annex D – Repository ... 112

A. Example 1 ... 112

B. Example 2 ... 113

C. Example 3 ... 114

D. Example 4 ... 116

Introduction ... 116

Step 0. Understand the Difference Between a Language and a Data Model 117

Step 1. Create a Library of Collections of Attributes ... 118

Step 2. Create a Library of Safety Mechanisms .. 120

Step 3. Create the Safety Hierarchy .. 122

Step 4. Create Failure Modes and Assisting Collections ... 123

Step 5. Assign Safety Mechanisms to Failure Modes .. 126

Step 6. Create Technology Elements... 127

Step 7. Assign Technology Elements to Failure Modes, Mapping 128

Step 8. Create Failure Mode Effects and Connect them to Failure Modes 130

Step 9. Update Objects According to Verification Strategy .. 131

Step 10. Create FMEDA-scoped Metrics ... 132

Step 11. Create FME-scoped Metrics .. 133

Data Tracing... 134

Equivalent Tables .. 135

XII. Bibliography .. 138

P a g e | 5

Copyright © Accellera Systems Initiative Inc. All rights reserved.

I. Introduction
The Accellera Functional Safety Data Model is intended to support the generation and
interchange of Functional Safety Content that represents diverse elements of the safety cases
of safety-relevant systems, modules, components, and IP in related industries. The data model
is a foundational component to complete the working group objectives defined in the
Functional Safety Working Group White Paper [1]. The goal and scope of the data model is to
capture and propagate the Functional Safety (FS) content across the different safety operations
and the distributed development environment, from system to IPs. Achieving this goal will
enable automation, interoperability, and traceability across safety activities.

In a distributed development environment with multiple organizations as suppliers and
customers (integrators), it is efficient to perform the safety activities separately at each level or
in each organization or team. The safety activities (operations and the resulting work products)
involved in these developments for activities within a single organizational layer are depicted in
Figure 1. The interchange between organizations at different “layers” is depicted in Figure 2.
Throughout this paper, the term "Intra-layer" and "Inter-layer" will be used and the definitions
for those terms are as follows:

• Intra-layer: Through different safety analysis/operations of the same hierarchy level, e.g.,
FMEDA analysis, verification

• Inter-layer: Between layers of design hierarchy/supply chain, e.g., System ↔ Module ↔
Component ↔ IP

P a g e | 6

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 1. Representation of the concept of the data model to cover the intra-layer operations and work products.

Figure 2. The data-model includes information to allow exchange for both intra-layer and inter-layer requirements.

P a g e | 7

Copyright © Accellera Systems Initiative Inc. All rights reserved.

The initial focus of the Accellera working group is to develop a data model supporting FMEDA
(Failure Modes Effects and Diagnostic Analysis) creation and exchange within the following
scope:

• Domains (Digital, Analog, SW)

• Industries (Automotive, Industrial, Machinery)

• Supply Chain layers (IP, Component, Module, System)

The metrics specific to FMEA (Failure Mode and Effects Analysis) are not directly covered in this
white paper, however support can be included easily in a subsequent version as the rest of the
data model is shared between FMEDA and FMEA. The Accellera FS Data Model support for FS
content related to architecture, requirements, FTA, DFA, verification and validation (V&V), and
others will be completed at a later stage of development.

The data model implementation supports two main use cases:

1. FMEDA evaluation: A safety analysis is performed and described, for example, by using a
command-based formalism describing the atomic actions (e.g., create the safety analysis,
create a failure mode, etc.). When the user decides to generate final reports, all of the
outputs are also stored in the data model. In this use case the provided authoring
information is evaluated with the intent to populate the data model and to be able to
generate final reports.

2. “As is”: A safety analysis is shared “as is,” as for example an FMEDA table or summary. In
this use case there is no authoring information but only failure rates and metrics to be
exchanged as outputs (for example, following a numerical evaluation of the data model) or
imported as inputs.

As stated in the Accellera FS WG white paper [1], the goal for the Accellera FS standard is to
work in alignment with well-established safety standards (e.g., ISO26262 [2] and IEC61508 [3])
and to facilitate their implementation. Hence, calculations and definitions are meant to be
consistent with such standards (unless stated otherwise).

Figure 3 describes the phased approach used by the Accellera FS WG to develop a functional
safety language:

• First, the process of Functional Safety Analysis is formalized.

• Second, the conceptual data model will emerge from the data exchanged and the
operations formalized in the first step.

• Third, the Functional Safety language will be derived formally from the conceptual data
model.

This paper will cover the first and second step, while the third will be part of the Language
Reference Manual (LRM) to be published later and will constitute the Accellera Functional

P a g e | 8

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Safety Standard. A sample language will be deployed in this paper solely for the sake of
illustration through examples, however the final standard might differ.

Figure 3. The Development process of the Functional Safety Language.

This white paper is organized as follows:

• FMEDA Process captures the formalization of the process to perform a Failure Mode and
Effects and Diagnostic Analysis (FMEDA). This is a conceptual representation that identifies
the elements of the FMEDA process (e.g., FS Hierarchy, Failure Modes, Technology
elements) and how they are connected to each other

• Design Representation and Mapping of Data connects the FS data model with the design
representation and details the concept of mapping. Mapping is used to connect different
sets of data (e.g., the Functional Safety hierarchy to the design hierarchy) and therefore
several different mapping types are defined.

• FMEDA type introduces the definition of distinct types of FMEDA: calculation-based and
assumption-based. These concepts clarify how the design metrics are extracted or provided
to calculate the failure modes distribution.

• Conceptual Data Model summarizes the basics of an entity-relationship data model,
continues with general considerations about the data model and connects the elements of
the FMEDA process identified in FMEDA Process above to the entities of the FS data model.
It then expands the entities covered to include all attributes that constitute the complete
and detailed FS data model.

• Detailed Annotations on the Data Model includes several detailed discussions about the
methodology supporting the definition of some of the data model attributes, based on the
FMEDA process.

• Annex A: Data model expands the entities defined in Conceptual Data Model above to
include all attributes that constitute the complete and detailed FS data model.

P a g e | 9

Copyright © Accellera Systems Initiative Inc. All rights reserved.

• Annex B: Language covers a prototype language, which is used to illustrate examples of FS
projects created using the defined data model. Additionally, hypothetical language
constructs are covered to illustrate additional opportunities that are available in the scope
of this work.

• Annex C: Add-on to v0.1 reports additions to the proposed data model/language that will
be considered for inclusion beyond the first release.

• Annex D: Repository includes several examples created using the prototype language,
ranging from a one-picture example to a step-by-step illustration accompanied by source
code, author’s comments and equivalent FMEDA tables.

P a g e | 10

Copyright © Accellera Systems Initiative Inc. All rights reserved.

II. FMEDA Process
The FMEDA process is a bottom-up, inductive analysis describing how elements of a system can
fail, and how the effects of defined failures can be mitigated (detected or controlled) to
maintain a safe state. The remainder of this section details the traditional FMEDA process to
identify the data and operations that will eventually lead to the definition of the FS data model.

The traditional components and operations of an FMEDA are listed below and highlighted in
Figure 4:

• The process receives as input a representation of the Design Under Analysis (DUA) via a
comprehensive list of all of the components in it, typically organized in a hierarchy as
appropriate.

• An analysis of the intended functionality identifies the functional safety analysis hierarchy
(FS Analysis Hierarchy) detailing the portions of the design that are safety related and
which have the potential to violate a safety goal or safety requirement.

• For each relevant portion of the FS Analysis Hierarchy, the Failure Modes analysis defines
the Failure Mode (FM) hierarchy (FM Hierarchy) through enumeration of the possible
failure modes of each element that can cause its failure to function as specified
(malfunction).

• One or more technology elements are identified for each Failure Mode of the DUA, based
on the technology elements available (Technology Elements Library).

• The Failure Mode Effects Analysis (Failure Mode Effects or FME) identifies the effects of the
FM on the DUA as seen when instantiating the DUA into the next level of the supply chain.

• Safety diagnostics are selected from the inventory of potentially available safety
mechanism(s) (Safety Mechanisms Library) and applied to mitigate the identified failure
modes and bring the system to a safe state within the required time.

The Safety Mechanism may be implemented within the design under analysis or in another
element of the system into which the component is integrated. Safety Mechanisms in elements
outside the scope of a safety element provided by a supplier are documented in the element’s
safety manual as Assumptions of Use (AoUs).

The formalization of the process to perform an FMEDA captured in Figure 4 identifies the
elements of the FMEDA process and how they connect to each other. These form the basis to
define the categories of information of the FS data model and how they are related. The next
section details these relationships.

P a g e | 11

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 4. Fundamental data and operations in the creation of an FMEDA.

P a g e | 12

Copyright © Accellera Systems Initiative Inc. All rights reserved.

III. Design Representation and Mapping of Data
This section introduces the concepts of design representation and design mapping, both of
which are fundamental to the formalization of a data model supporting and automating FMEDA
activities.

A. Design Representation

A design can have multiple representations as it matures through its development lifecycle, and
safety analysis can be performed on any representation within the selected scope (i.e., IP,
Component, Module). It may be convenient for the analyst to organize the elements of the
source design in abstract or functional groupings to ease the identification of failure modes and
their associated safety mechanisms. This is permitted if the representation is complete with no
omissions in scope.

In a functional partitioning, the design is represented by a hierarchy of functions and
subfunctions with their interfaces and interactions. In this representation, specific
implementation details such as target technologies may have not been relevant. In a structural
design representation, the actual intended circuit implementation is displayed. Figure 5 and
Figure 6 show an example of a functional representation and a structural representation,
respectively [15]. Note that the concept of functional and structural design representations
applies to all layers of the supply chain (IP, Component, Module, System), which is a distributed
development environment with multiple organizations as suppliers and customers (integrators).

Figure 5 Functional Representation of a component

P a g e | 13

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 6 Structural representation of a component

The data model supports (and is agnostic) of whether the design representation is functional or
structural.

Examples of common products and design representations across the supply chain are included
in Table 1.

Table 1. Description of layers and common design representations at each layer.

Supply
Chain
Layer Layer definition Product examples

Common design
representations

System Captures the function(s)
visible at the
driver/vehicle level

ECU(s) including sensing, processing,
automation

System Model

Module Implements one or more
safety goal(s) and can be
shared by different
systems

• Sensor, actuator, processing
module

• PCB(s) and enclosure

System Model

Component Implements one or more
safety function(s) and can
be shared by several
modules

• Packaged part (die + package):
- SIP/MCM: System-in-

package
- IC: Integrated circuit
- Simple components:

Passives
• Die-level:

- Single function: e.g., ADC
- SoC: System-on-chip:

multiple functions/
subsystems (e.g., processor,
peripherals, accelerators,

Block Diagram, specification,
Modeling language (SysML
[10], IP-XACT [8]), RTL, Gate-
level Netlist [5]

P a g e | 14

Copyright © Accellera Systems Initiative Inc. All rights reserved.

interface ports)

IP Implements one or more
standalone (safety)
function(s) and can be
shared by different
components

• Soft IP (e.g., SPI port, DDR
controller, ML subsystem)

• Hard IP (Analog function, e.g.,
MIPI PHY)

• Foundation libraries (pads,
memory array compilers, cell
libs)

Block Diagram specification,
Modeling language (SysML,
IP-XACT), RTL, Gate-level
Netlist

The design representation exists independently and is an input into the functional safety
analysis to be performed. The independence of the design representation is critical in
supporting the various scenarios encountered performing FS analysis within and across the
supply chain. To perform the FS analysis, a connection to the design representation is
commonly enabled through a set of mapping operations as explained in Mapping.

Figure 7. FMEDA process overview with mapping included.

P a g e | 15

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. Mapping

Mapping is defined as the operation of connecting one set of data to another. In the context of
the Accellera Functional Safety Data Model, mapping connects data across the FMEDA
workflow defined in Figure 7. Several types of mapping are defined in the context of performing
an FMEDA, depending on the data it connects. The complete list is defined in Table 2 and is
detailed in the remainder of this section.

Table 2. Data mapping involved in the FMEDA process.

Type Description

Technology Element
Mapping

Maps the FS Hierarchy elements and/or the Failure Modes to the Technology Elements

Safety Mechanism
Mapping

Links a Safety Mechanism to the Failure Mode to protect

Failure Mode Effects
Mapping

Maps failure mode(s) to a failure mode effect that can be exported to higher analysis
levels

Design Mapping (FS
Analysis Hierarchy)

Through the Technology Element Mapping, connects the design component(s) to the
Functional Safety Hierarchy (represented as FMEDA Elements) identified during the
analysis of the intended functionality

Design Mapping
(Failure Modes)

Through the Technology Element Mapping, connects the design component(s) to the
Failure Mode(s) they may cause

To illustrate the mapping concepts, the OpenRisc 1200 (OR1200) structural hierarchy will be
used as a demonstration vehicle.

P a g e | 16

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Design Mapping

Design Mapping connects the design instances of the source design to the FS analysis hierarchy,
represented for example as Parts and Subparts, and/or to the Failure Modes. No specific design
representation is assumed for the source design.

Mapping real design information to a given safety hierarchy supports mainly three purposes:

• Provides a simplified system partitioning targeting the failure mode definitions and safety
hierarchy elements. Typically, safety engineers want to have the possibility to describe FS
hierarchy elements and failure modes by using a simplified partitioning compared to the
real design hierarchy, but still having a link with real design information.

• Having a link with real design information enables automatic computation of the failure
rates assuming they will be computed according to the related mapped technologies and
areas (e.g., number of transistors) that are evaluated following the design mapping.

• By providing a bidirectional mapping between the safety hierarchy and the real design
hierarchy it will be possible to perform cross-checks, for example to verify the consistency
of the technology mapping, potential overlaps of the design information mapped to the
failure modes, and hierarchical inconsistencies.

It is important to note that the definition of the FS hierarchy is not required to align to the
design hierarchy. The definition of the FS hierarchy is left to expert analysis. Mapping is
subsequently performed connecting the defined FS analysis hierarchy to design
components/instances. Figure 8 shows an example of such mapping where the subpart DCACHE
RAM is mapped to a single design component such as a module instance, while the subpart
MMU is mapped to a collection of instances, leaf cells, or other design structures.

P a g e | 17

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 8. Mapping of functional safety hierarchy to design components.

The proposed data model does not support direct mapping of failure modes or elements to
design objects. This is done through mapping of failure modes, elements, and technology
elements. A “relationship” object that establishes such connectivity has a set of attributes that
describes external design information. See details in Figure 21 and Figure 7. A data model-
accurate example of an FMEDA project with source code examples is shown in Example 4. In
this chapter a detailed description of mapping operations through various objects is omitted for
simplicity.

P a g e | 18

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Failure Modes Mapping

After the functional safety analysis hierarchy is set up, a failure mode analysis is performed.
Failure modes are identified as functional safety hierarchical elements and represent unique
objects within the data model, and there is link between a functional safety hierarchy element
to the failure modes for that element. At this point, the design mapping may also be used to
connect the design instances of the source design to the Failure Modes. Extending the prior
example, two failure modes in Figure 9 are defined for the "MAC" while a single failure mode is
defined for the "MMU" and "DCACHE_RAM." A failure mode can be mapped to a single design
component such as a module instance (e.g., FM1_dcache), or a collection of instances, leaf
cells, or other design structures (e.g., FM1_mmu). Also, more than one failure mode (e.g.,
FM1_mac and FM2_mac) can be mapped to a single module instance. Like the FS analysis
hierarchy, a design mapping facilitates higher levels of automation such as automated failure
mode distribution.

Figure 9. Mapping of failure modes to design components.

P a g e | 19

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Safety Mechanism Mapping

Once the failure modes are identified, the safety features working to control or avoid failures to
those failure modes can be defined. The safety mechanisms mapping connects the safety
feature(s) deployed to detect and mitigate random failures, preventing the violation of a safety
goal/requirement to the failure modes. A failure mode may be "protected" by one or more
safety mechanisms, and similarly multiple failure modes may be "protected" by a single safety
mechanism. Therefore, the data model supports a many-to-many relationship between failure
modes and safety mechanisms. Figure 10 demonstrates these concepts by showing one-to-
many, many-to-one, and one-to-one safety mechanism configurations.

Figure 10. Mapping of the safety mechanisms to failure modes.

P a g e | 20

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Technology Element Mapping

Technology elements represent the data model safety objects used to store the reliability
information for a given design technology (e.g., digital, or standard cells, memories, etc.). By
mapping technology elements to the failure modes, it is possible to compute the related failure
rates. In the proposed data model, three basic modes are supported:

• Assumption-based FMEDA: The technology element has both the reliability information for
the technology and the design information to be mapped to a given failure mode.

• Calculation-based FMEDA: The technology element has only reliability information and the
design information is provided by the design mapping.

In Figure 11 two technologies elements are created: one for a memory technology and one for
a digital technology. The two technology elements are mapped to the failure modes, linking the
design information with reliability data, and enabling the failure rates computation.

The proposed data model supports mapping different technology elements to the same failure
mode.

Figure 11. Mapping of the technology elements to failure modes.

P a g e | 21

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Failure Mode Effects Mapping

The concept of Failure Mode Effect (FME) can be used to group, abstract, and finally
“transport” failure rate contribution of one or more failure modes of a given safety analysis to a
higher safety analysis scope. For example, it is possible to associate to an FME the weighted
contribution of failure modes from an IP FMEDA in order to have a specific and desired safety
metrics reporting at the SoC level.

If the end user wants to keep consistency of the FME reporting at different abstraction levels
(e.g., IP vs SoC), constraints could be implemented on top of the data model, for example
between the applied weights (e.g., sum of the weights for a given FME for all failure modes in
the analysis to be 100%).

Figure 12. Creation of a Failure Mode Effect.

P a g e | 22

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Complex Use Cases

The example provided during this section highlights a simplistic but common implementation
including:

• Definition of the FS hierarchy

• Failure modes for each element of the hierarchy

• Safety mechanisms protecting those failure modes

• Technology elements within the failure modes

• Failure mode effects

The data model supports the broad range of FMEDA permutations such as FMEDAs with two or
more parts and FMEDAs requiring greater than two levels of FS hierarchy depth.

P a g e | 23

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 13. Final structure of the example.

The left-hand side branch of the diagram above shows a data model-accurate representation of
mapping to design hierarchy operations. Mapping to design happens through the dashed red
“Relationship object” box that connects Technology element TE_MEM, Failure mode
FM1_dcache, and design hierarchy Top.dc_top.dc_ram.dc_ram. A detailed description of a
relationship object is given in Mapping Technology Element – Failure Mode.

P a g e | 24

Copyright © Accellera Systems Initiative Inc. All rights reserved.

IV. FMEDA Type
The Accellera Functional Safety Working Group has defined two types of FMEDA supported by
the data model: Assumption-based and Calculation-based. The following sections describe
features and differences.

A. Assumption-based

An assumption-based FMEDA relies on user estimations to compute failure rates and metrics.
The FS analysis and failure mode hierarchies do not have a correlation or mapping to any real
design hierarchy, and therefore the metrics are only estimated.

B. Calculation-based

A calculation-based FMEDA leverages design mapping to enable automated computation of
failure rates and metrics. A calculation-based FMEDA has associations (mapping) to a real
design hierarchy or “design representation,” allowing for quantitative analysis of FMEDA
metrics. The total areas and the related failure mode distribution (FMD) by default are not
manually assigned by the user but are derived from the design hierarchy.

C. Mixing FMEDA Types

It is important to note that the two FMEDA types can co-exist on the same DUA for different
portions of the design. For example, by mapping a technology element, it is always possible to
manually specify the failure mode area information (e.g., FM_Size_Permanent,
FM_Size_Transient). This feature has a potential priority conflict with the real design
information mapped to failure modes in a calculation-based FMEDA (e.g., FM_mapping). The
data model attribute used to discriminate between an Assumption-based and Calculation-
based FMEDA can be used to define the priority in case of a mixed-mapping scenario. For
example, in an assumption-based FMEDA, manually provided design information will take
precedence (see Figure 14). Alternatively, information coming from design mapping will take
precedence in a calculation-based FMEDA (see Figure 15).

P a g e | 25

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 14. Assumption-based FMEDA.

Figure 15. Calculation-based FMEDA.

Assumption-based FMEDA

• Defines the FS analysis hierarchy and FM hierarchy

• Does not have correlation/mapping to a design
hierarchy and hence does not link to Design Objects

• Metrics are estimated and not derived from design
objects

Calculation-based FMEDA

• FS analysis hierarchy is mapped/associated
with the design hierarchy to quantify the
failure rates and the failure mode
distribution

• Failure modes can be mapped to their root
cause, i.e., the portion of the design
hierarchy that can trigger that failure mode

• Maps/Associates the FS analysis hierarchy
and FM hierarchy to the design hierarchy
(creates connections to predefined objects)
to quantify FIT and FMD

• Includes Design Object identifiers of the
design hierarchy associated to the textual
description of the FS analysis hierarchy

P a g e | 26

Copyright © Accellera Systems Initiative Inc. All rights reserved.

V. Conceptual Data Model

A. Introduction to the Entity-Relationship Model

After the formalization of the FMEDA process, we extract a conceptual data model to represent
the data needed to perform an FMEDA and exchange an FMEDA report. The goal of the
conceptual data model is:

• To define and detail the information content (FS data) needed to perform the Functional
Safety activities and generate the work products

• NOT to provide a reference implementation

• To be a systematic approach to define a language/format

A conceptual data model [12] [11]:

• Defines WHAT the system contains

• Does NOT define HOW the system should be implemented

In this work, to capture the conceptual data model, we rely on the well-known entity-
relationship model [13] [14], and this section gives a brief summary of some if its terminology.

The three basic tenants of the Entity Relationship model are:

• Entity: A real-world thing

• Attribute: Characteristics or properties of an entity

• Relationship: Dependency or association between two entities

In addition to the three objects above, we will also rely on the concept of Weak Entity. While
Entities are uniquely identified by a primary key, a weak entity is an entity that cannot be
uniquely identified by its attributes alone; therefore, it must use a foreign key in conjunction
with its attributes to create a primary key. A simple example is an employer that has a database
of its employees, each represented as an entity with their unique employee ID. In this case,
each employee can have one (or more) dependents. The dependents are weak entities because
they do not have a unique ID by themselves, but only exist in the context of the employee (and
their unique ID).

P a g e | 27

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. General Considerations

Key points about the conceptual data model:

• The data model is in addition to the existing design standards (see Figure 11 from [1]).

• We use an entity-relationship data model to capture the content.

• The high-level categories (i.e., entities) are derived from the FMEDA process defined in
(reference to previous section) to meet the use cases.

• The detailed data model is represented in a table form to keep it generic.

Figure 16. Functional Safety Standard in addition to the standard design representations.

Several options have been considered and discussed during the definition of the data model.
The rationale used for the data model is to start with the simplest model and add complexity
only if there are specific cases that are not supported. In fact, in general the more
complex/flexible the model, the more rules are then needed to ensure
consistent/exchangeable models. Even though the data model has been derived to support the
FMEDA for a single IP/device, the validation process covers the hierarchical combination of
multiple FMEDAs as a use case.

The high-level data categories are identified directly one-to-one from the data objects in the
FMEDA process formalization described in Figure 7. In other words, the data model represents
the implementation of the requirements defined as the formal FMEDA process.

Figure 17 reports the description of the high-level categories identified for the FMEDA process
and the corresponding entity of the data model in which they are captured, connecting them to
the role they play in the design definition captured in Figure 16. Each entity will then include
several attributes to describe its properties, as detailed in Annex A – Data Model.

Objects in the table included in Figure 17 are also indicated with the same colored symbol used
in Figure 7 to highlight the direct traceability existing between the process formalization and
the definition of the conceptual data model. The data model has been defined as a direct

P a g e | 28

Copyright © Accellera Systems Initiative Inc. All rights reserved.

traceable derivation of the data and data mapping used in the FMEDA process. The complete
design definition and the scope in which the objects are defined is represented in a hierarchical
way in Figure 18.

Figure 17. Information included in the Functional Safety data model, derived from the process in Figure 7.

The following points describe the rationale applied for the attribute definition:

• Allow flexibility to support use cases without sacrificing ease of use.

• Select attributes to allow the smallest granularity needed.

• In specific cases, allow attributes for convenience only if they support significant ease of
use.

• If the same attribute is defined on different entities, also specify the rules to reconcile the
values in case of discrepancy/inconsistency if a single value is used for metrics calculation.

• An attribute is defined as required if the parsing of the data model will fail if that attribute is
not provided.

• Other secondary criteria are readability and compactness of the model.

P a g e | 29

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Detailed description of the data model and a derived language can be found in Annex A – Data
Model and Annex B – Language, respectively.

Figure 18. Design Definition and scope of the objects.

P a g e | 30

Copyright © Accellera Systems Initiative Inc. All rights reserved.

VI. Detailed Annotations on the Data Model
This section captures some of the methodology discussions that emerged as part of the data
model definition; these discussions support the choices made for the content included in the
data model itself.

A. FMEDA Type (Assumption-based, Calculation-base)

The FMEDA_type attribute defines the source of failure mode distribution data in case a choice
needs to be made.

The failure mode distributions can be calculated based on:

• Estimations provided with the options fm_size or element_size

• Design metrics extracted from the design mapping as specified in the fm_mapping and
element_mapping

When both options (*_size and *_mapping) are specified for an FM or element, the FMEDA
type will select as follows:

• Assumption-based: The *_size takes precedence over *_mapping.

• Calculation-based: The *_mapping takes precedence over *_size.

This choice reflects the following intent:

• Assumption-based: The size of the FM or element is provided by the user.

• Calculation-based: The size of the FM or element is extracted by the mapping to the design
hierarchy and the corresponding design metrics.

Even though the parameter is defined at the FMEDA level, the granularity of the choice can be
applied to each individual FM or Element by the usage of the *_size and *_mapping
parameters.

An example of usage is to start with an assumption-based FMEDA and then switch the attribute
FMEDA_type to calculation-based and continue with design metrics extracted from the design
representation. When the FMEDA_type is calculation-based, a design representation (see
Figure 16) is also expected to be provided along with the FS data model.

P a g e | 31

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. FS Hierarchy and FM Hierarchy

The FS hierarchy (i.e., the Element objects) and FM hierarchy are defined in the context of an
FMEDA.

The FMEDA, element, and FM have a required attribute “Name” that only needs to be unique in
the context of the parent.

The FM also has an optional ID attribute that is instead unique inside an FMEDA.

An example of valid usage is the following:

FMEDA_Name Part_Name Subpart_Name FailureMode_Name FailureMode_ID

FMEDA_top_1 CPU_1 ALU Wrong Data Computation 1

 Incorrect Adder Output 2

 Register File Incorrect Data Value in the Register
File

3

 Wrong Data Computation 4

 CPU_2 ALU Wrong Data Computation 5

 Incorrect Adder Output 6

 Register File Incorrect Data Value in the Register
File

7

 Wrong Data Computation 8

FMEDA_top_2 CPU_1 ALU Wrong Data Computation 1

 Incorrect Adder Output 2

 Register File Incorrect Data Value in the Register
File

3

 Wrong Data Computation 4

 CPU_2 ALU Wrong Data Computation 5

 Incorrect Adder Output 6

 Register File Incorrect Data Value in the Register
File

7

 Wrong Data Computation 8

P a g e | 32

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Or more generically:

FMEDA_Name Part_Name Subpart_Name FailureMode_Name FailureMode_ID

FMEDA_IP1 Part_1 Subpart_1 FailureMode_1 ID_1

 FailureMode_2 ID_2

 Subpart_2 FailureMode_2 ID_3

 FailureMode_3 ID_4

 Part_2 Subpart_1 FailureMode_1 ID_5

 FailureMode_2 ID_6

 Subpart_2 FailureMode_2 ID_7

 FailureMode_3 ID_8

FMEDA_IP2 Part_1 Subpart_1 FailureMode_1 ID_1

 FailureMode_2 ID_2

 Subpart_2 FailureMode_2 ID_3

 FailureMode_3 ID_4

 Part_2 Subpart_1 FailureMode_1 ID_5

 FailureMode_2 ID_6

 Subpart_2 FailureMode_2 ID_7

 FailureMode_3 ID_8

P a g e | 33

Copyright © Accellera Systems Initiative Inc. All rights reserved.

C. Technology Element

The term technology is commonly referred to as a technology node (e.g., 16nm, 7nm). The term
technology element refers here to different elements of a technology node, such as RAM,
digital, analog, and so on.

The Base Failure Rate (BFR) is the Failure rate of a unit design element. For digital technology
elements, the unit design element is often defined as the smallest nand2 cell or as a transistor.
For memories, the unit design element is the bit, while for analog it is the transistor. The BFR
can be calculated as the FR of the whole design (λ_die) normalized to the unit design element.
The BFR is provided as attributes FR_Permanent, FR_Transient and FR_Transient_Derating in
the Technology entity.

Digital

For permanent faults, the Failure Rate (Raw Fit) for the Failure Mode (FM) is then calculated
starting from the FR_perm as:

𝜆𝜆𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × #𝐹𝐹𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑑𝑑𝑝𝑝𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢_𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑑𝑑

Or equivalently:

𝜆𝜆𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×
𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢_𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑𝑢𝑢𝑢𝑢_𝑑𝑑𝑢𝑢𝑠𝑠𝑑𝑑

For permanent faults, 𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑢𝑢 is assumed to have the whole area contribution of
combinatorial and sequential logic.

For transient faults, the Failure Rate (Raw Fit) for the Failure Mode (FM) is then calculated
starting from the FR_trans as:

𝜆𝜆𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢 ×
𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢_𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑𝑢𝑢𝑢𝑢_𝑑𝑑𝑢𝑢𝑠𝑠𝑑𝑑
+ 𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢_𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐 ×

𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢_𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑𝑢𝑢𝑢𝑢_𝑑𝑑𝑢𝑢𝑠𝑠𝑑𝑑

In case the 𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢_𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐 is not available, it is possible to assume that the contribution of the
combinatorial logic to the 𝜆𝜆𝐹𝐹𝐹𝐹can be obtained as a percentage of the failure rate transient:

𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢_𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐 = 𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑑𝑑 × 𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑑𝑑_𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑑𝑑

P a g e | 34

Copyright © Accellera Systems Initiative Inc. All rights reserved.

RAM/ROM/Flash

For permanent and transient faults, the Failure Rate (Raw Fit) for the Failure Mode (FM) is then
calculated starting from the BFR as:

𝜆𝜆𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑅𝑅 × 𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑐𝑐𝑢𝑢𝑢𝑢𝑑𝑑

Where FR is 𝐹𝐹𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐹𝐹𝑅𝑅𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑑𝑑 respectively.

Analog

The permanent Failure Rate can be calculated as:

𝜆𝜆𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × #𝐹𝐹𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑑𝑑𝑝𝑝𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢_𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑑𝑑 =
𝐹𝐹𝑀𝑀𝑑𝑑𝑢𝑢𝑠𝑠𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢_𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑𝑢𝑢𝑢𝑢_𝑑𝑑𝑢𝑢𝑠𝑠𝑑𝑑

Note that the Failure Rate derating due to degradation of BFR characteristics based on the
expected environmental conditions of the application is not accounted for in these formulas,
but rather assumed to be included as part of the BFR.

P a g e | 35

Copyright © Accellera Systems Initiative Inc. All rights reserved.

D. FS Hierarchy Modeling

In the final reporting of ISO2626 [2], several levels of hierarchy can be compressed into a single
subpart. However, to allow for flexibility to handle the complexity of modern SoCs, the data
model also allows several levels of subparts in the FS hierarchy. The final reporting can still be
compressed to have a single level of parts and subparts.

The following properties apply to the data model:

• Only one level of Part is supported in the FS Hierarchy.

• Several levels of Subparts are supported in the FS Hierarchy.

• A leaf is defined as an Element (part or subpart) with no children subparts (or, equivalently,
only FM children).

• FM can be defined only on leaves of the FS hierarchy.

• An element of type Subpart can only have an element of type Part as a parent (in other
words, the FS hierarchy cannot be FMEDA → Subpart).

• For calculation-based FMEDA, the design hierarchy mapped to parts and subparts cannot
overlap.

Figure 19 below shows a few examples of FS hierarchy definitions that are allowed or not
allowed:

Figure 19. Examples of functional safety hierarchy definitions.

In ISO26262, the concept of Elementary SubPart (ESP) is also present and is defined as the leaf
level of the FS hierarchy: “…smallest portion of a hardware subpart (3.73) considered in safety
(3.132) analysis.”

In practice, however, ESP is often used to partition the design hierarchy into a finer granularity,
often implementing a specific methodology based on cone-of-logic extraction, and therefore
describes parts of a design hierarchy instead. In other words, ESPs are used in practice to gather

P a g e | 36

Copyright © Accellera Systems Initiative Inc. All rights reserved.

portions of HW logic and build them into an FM root cause. Other examples referred to as ESP
in ISO can be modeled with the mapping attribute.

Therefore, we will not introduce the concept of ESP in the data model, but we will consider
instead whether we need to define a specific operation/support for design hierarchy
manipulation/aggregation/partitioning in case a finer granularity is needed. The addition of this
support would have the goal to capture the design manipulation/aggregation/partitioning in an
implicit rather than explicit way and avoid potentially excessive data transfer.

E. Operations on Design Mapping

Logic operations on design mapping can be convenient and allow for an implicit description
rather than an explicit, potentially large, list of design elements. The most useful operation is
subtraction or exclusion. The parameters Part_Mapping_Exclude, SubPart_Mapping_exclude,
and FM_Mapping_Exclude provide the capability; they define which design elements to exclude
from the list of design elements mapped to a safety object. An example of usage is to provide a
convenient way to exclude pervasive logic like BIST.

P a g e | 37

Copyright © Accellera Systems Initiative Inc. All rights reserved.

F. DC Aggregation Methods

Some FMs are covered by a single SM, and some FMs are protected by a combination of SMs.
Both use cases are possible. When multiple SMs are covering the same FM, the overall resulting
DC is the aggregation of the individual DC based on some heuristics/criteria. The data model
includes an FM attribute called DC_aggregation that supports the definition of several
heuristics:

• max: The max DC of all SMs is selected

• sum: The DC from all SM are summed up and capped to 100%

• residual: The DC is calculated with the following formula:

𝐷𝐷𝐶𝐶𝑝𝑝𝑝𝑝𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢𝑝𝑝𝑒𝑒 = 100% −∏(100% −𝐷𝐷𝐶𝐶𝑆𝑆𝐹𝐹)

The DC_aggregation attribute is defined separately for Transient and Permanent.

An example is included in Table 3, where a single FM is covered by several SMs called SM1,
SM2, and SM3, and the value of the DC associated with each SM is defined. The last three
columns show the resulting DC obtained using each of the heuristic.

Table 3. Example of a single FM covered by three SMs: SM1, SM2, and SM3

FM DC-SM1 DC-SM2 DC-SM3 Max Sum Residual

FM1 30% 60% 90% 90% 100% 97.2%

Specifically, and for sake of example, these are the detailed calculations for the 𝐷𝐷𝐶𝐶𝑝𝑝𝑝𝑝𝑑𝑑𝑢𝑢𝑑𝑑𝑢𝑢𝑝𝑝𝑒𝑒:

1. 100% − [(100% − 30%) × (100% − 60%) × (100% − 90%)]

2. 100% − [70% × 40% × 10%]

3. 100% − 2.8% = 97.2%

P a g e | 38

Copyright © Accellera Systems Initiative Inc. All rights reserved.

G. Failure Mode Effect

A Failure Mode Effect (FME) represents the consequence of a failure mode seen at the top level
of the DUA when a fault occurs in the DUA. For a Safety Element out of Context (SEooC), the
FME is based on assumptions of how the DUA is going to be used at the next layer. The
receiving layer needs to validate the assumptions and map the IP FME to the component FM
(and similarly for the other layers of the supply chain). In other words, the FME captures the
information of the interface between various levels/layers of the FMEDA analysis.

The relationship between FM and FME can be many-to-many:

• An FM can contribute to multiple FMEs.

• An FME can be caused by many FMs.

Also, there are no limitations or rules on how to map FMs to FMEs in terms of where the FM
belongs in the FS hierarchy.

The contribution of FMs to FMEs can be assigned a weight as well. For a given FM, the sum of
its contributions to the FME adds up to 100%. The assumption behind this is that the FMEs are
non-overlapping. Table 4 shows a case of ill-defined FMEs where this assumption is not fulfilled.
In this case, the sum of the FMEs is beyond 100% because FME_B and FME_C are overlapping.,
i.e., a packet could be "corrupted" (FME_B) and "at a wrong time" (FME_C) at the same time. A
better way to define FMEs is in Table 5.

Defined in this way, the total residual FR for the device (due to all of the FMs) is maintained and
distributed in a different view across the FMEs.

Table 6 provides an example of the FS hierarchy, the FM hierarchy, and the FMEs for IP1 (the
DUA) and shows the information about the FM to FME mapping, including the corresponding
weights. Figure 20 reports a graphical view of part of the same example, where the FMs of
IP1/P1/SP1 and IP1/P2/SP2 are mapped to the FMEs (FME_A, FME_B, FME_C, FME_D, and
FME_E).

Table 4. Example of ill-defined, overlapping
FMEs.

FME_A Packet not generated when it
should be

30%

FME_B Packet corrupted 35%

FME_C Packet at wrong time 35%

Table 5. Example of well-defined, no overlapping
FMEs.

FME_A Packet not generated when it should
be

30%

FME_B Packet corrupted but at right time 20%

FME_C Packet at wrong time 20%

FME_C2 Packet at wrong time and corrupted 30%

P a g e | 39

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 20. Example of FME mapping with FMs of two subparts mapped.

Table 6. Example of FME mapping with all FMs mapped to FMEs.

Part Subpart Failure Mode IP1: FME_A IP1: FME_C IP1: FME_D IP1: FME_E

P1 SP1 P1_SP1_FM1 80% 20%

 P1_SP1_FM2 100%

 P1_SP1_FM3 50% 50%

 P1_SP1_FM4 33% 67%

 SP2 P1_SP2_FM1 59% 41%

P a g e | 40

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 P1_SP2_FM2 50% 50%

 P1_SP2_FM3 10% 90%

 P1_SP2_FM4 20% 80%

P2 SP1 P2_SP1_FM1 100%

 P2_SP1_FM2 100%

 P2_SP1_FM3 100%

 P2_SP1_FM4 100%

 SP2 P2_SP2_FM1 10% 90%

 P2_SP2_FM2 25% 75%

 P2_SP2_FM3 50% 50%

 P2_SP2_FM4 100%

There is no prescription of how the IP1 FMEDA is then abstracted to be provided from the
provider to the consumer/integrator. Any combination is possible and independent of the data
model definition. Examples of use cases are included in Table 7 and Table 8: Table 7 shows
maximum compression, which is typically used for non-configurable IPs, while Table 8
maintains higher granularity keeping the subparts of the original FMEDA and it is typically used
for configurable IPs.

Since FMEDA analysis uses a bottom-up, the definition of FME and their connection is also
defined bottom-up. Based on the intended functionality, the user defines the FMEs for the
device and then maps the FMs to the FMEs. The specific weight of a FM on the FME can also be
assigned.

Following the example above, the user would follow this process:

1. Define the FMEs: Create IP1:FME_A, IP1:FME_B, IP1:FME_C, IP1:FME_D, IP1:FME_E

2. Map each FM to all of the FMEs to which it contributes:

a. Map P1_SP1_FM1 to IP1:FME_A with weight 80%

b. Map P1_SP1_FM1 to IP1:FME_B with weight 20%

c. Map P1_SP1_FM2 to IP1:FME_A with weight 100%

d. …

P a g e | 41

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Table 7. Example of FMEDA abstraction
doing high compression.

Part Subpart Failure Mode

IP1 IP1 IP1:FME_A

 IP1:FME_B

 IP1:FME_C

 IP1:FME_D

 IP1:FME_E

Table 8. Example of FMEDA abstraction
maintaining higher granularity.

Part Subpart Failure Mode

P1 SP1 IP1:FME_A

 IP1:FME_B

 IP1:FME_C

 SP1 IP1:FME_D

 IP1:FME_E

P2 SP1 IP1:FME_A

 SP2 IP1:FME_A

 IP1:FME_D

 IP1:FME_E

Table 9, Table 10, and Table 11 cover an example of how the IP1 FMEDA would be summarized
and then integrated at a component level. Table 9 is the IP1 FMEDA, Table 10 is the IP1
summary FMEDA and Table 11 is the component FMEDA in which IP1 is instantiated, together
with IP2, IP3 and so on.

Table 9. Example of IP1 FMEDA.

Part Subpart Failure Mode
IP1:
FME_A

IP1:
FME_B

IP1:
FME_C

IP1:
FME_D

IP1:
FME_E

P1 SP1 P1_SP1_FM1 x x

 P1_SP1_FM2 x

 P1_SP1_FM3 x x

 P1_SP1_FM4 x x

 SP2 P1_SP2_FM1 x x

 P1_SP2_FM2 x x

P a g e | 42

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 P1_SP2_FM3 x x

 P1_SP2_FM4 x x x x

P2 SP1 P2_SP1_FM1 x

 P2_SP1_FM2 x

 P2_SP1_FM3 x x

 P2_SP1_FM4 x x

 SP2 P2_SP2_FM1 x

 P2_SP2_FM2 x x

 P2_SP2_FM3 x x x

 P2_SP2_FM4 x x

Table 10. Example of summarized IP1
FMEDA.

Part Subpart Failure Mode

IP1 IP1 IP1: FME_A

 IP1: FME_B

 IP1: FME_C

 IP1: FME_D

 IP1: FME_E

Table 11. Example of IP1 FMEDA summarized and
instantiated.

Part Subpart Failure Mode

IP1 IP1 IP1: FME_A

 IP1: FME_B

 IP1: FME_C

 IP1: FME_D

 IP1: FME_E

IP2 IP2 …

…

IP3 IP4 …

…

P a g e | 43

Copyright © Accellera Systems Initiative Inc. All rights reserved.

VII. Concluding Remarks
The first Accellera FS WG White Paper [1] details the goals and scope of the work covered in the
working group. This Accellera FS WG Data Model White Paper focuses instead on defining the
FS content necessary to create, modify, and exchange an FMEDA. The work follows a three-step
process: formalize the FMEDA process, extract from it a data model, and then define the
corresponding language to capture the data model itself. This paper contains the first two
steps, and the details of the data model are illustrated using a sample language, which can be
subject to change. The actual language constitutes the Accellera FS standard and will be
finalized and formalized in the LRM. The goal of the Accellera FS standard is to facilitate the
implementation of best practices defined in existing safety standards, such as ISO26262 [2] and
IEC61508 [3].

H. Accellera FS WG Supporting Entities

We are thankful to our supporting entities (in alphabetical order): Agnisys, Inc., Allegro
MicroSystems, AMD, ams Osram, Analog Devices, ARM Ltd., Arteris, Inc., Breker Verification
Systems, Inc., Cadence Design Systems, Inc., COSEDA Technologies GmbH, Doulos Ltd.,
Fraunhofer Institute For Integrated Circuits, Huawei Technologies Sweden AB, Infineon
Technologies AG, Intel Corporation, Marvell International Ltd, NVIDIA Corporation, NXP
Semiconductor, Perforce, Qualcomm, Renesas Electronics Corp., Robert Bosch GmbH, Shanghai
UniVista Industrial Software Group, Siemens EDA, SiFive, STMicroelectronics, Synopsys,
Technical University Dortmund, Texas Instruments, Vayavya Labs, XEPIC Corporation.

I. Acknowledgements

Special recognition (in alphabetical order by last name) for their contributions to the Accellera
FS WG and Proposed WG with discussions, brainstorming, examples, and writing/reviewing of
this white paper: Jyotika Athavale, Oscar Ballan, Pramod Bhardwaj, Alexis Boutillier, Samir
Camdzic, Jason Campbell, Giuseppe Capodanno, Bala Chavali, Shivakumar Chonnad, Teo
Cupaiuolo, Kaushik De, Yakov Felikman, Darren Galpin, Franck Galtie, Joerg Grosse, Regis
Gubian, Mark Hampton, John Hayden, Ghani Kanawati, Francesco Lertora, Thiyagu Loganathan,
Stefano Lorenzini, Nir Maor, Shrenik Mehta, Alessandra Nardi, Meirav Nitzan, Alexandre Palus,
Arpita Potdar, Vatsa Prahallada, Om Ranjan, Kevin Rich, Rolf Schlagenhaft, Francesco Sforza,
Ivano Shivananda Troja, Ashish Vanjari, Federico Venini, Riccardo Vincelli, Prasanth
Viswanathan Pillai, Evgeny Vlasov, Ekaterina Vlasova, Jens Warmuth, Jacob Wiltgen.

P a g e | 44

Copyright © Accellera Systems Initiative Inc. All rights reserved.

VIII. Annex A – Data Model
This chapter describes data model objects, their attributes, and additional properties of
attributes: name, type, description, and whether an attribute is required. The assumption is
that if the attribute is required, the parsing of the data model will fail if that attribute is not
provided.

The full list of objects defined according to the data model v0.1 is as follows:

• FMEDA

• Element

• Failure Mode

• Technology Element

• Safety Mechanism

• Failure Mode Effect

• Mapping Safety Mechanism – Failure Mode

• Mapping Failure Mode – Failure Mode Effect

• Mapping Technology Element – Failure Mode

• Mapping Technology Element – Element

• Define ISO26262 Failure Rate

• Define ISO26262 Metric

• Define IEC61508 Failure Rate

• Define IEC61508 Metric

A full ERD is presented on Figure 21. It shows a high-level overview of available objects and
their attributes, as well as the connections between them. For detailed information regarding
each object, use links from above.

P a g e | 45

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Figure 21. Entity Relationship Diagram of the data model.

Implicit hierarchical relationships of objects are not shown on the ERD. An example of such
implicit connection is shown using FMEDA attributes that are highlighted in green.

P a g e | 46

Copyright © Accellera Systems Initiative Inc. All rights reserved.

A. FMEDA 1

Entity name FMEDA

Key identifier FMEDA_Name

Attribut
e Name Attribute Type Description Req’d

FMEDA_N
ame

String Name (identifier) of the FMEDA of the project. Yes

Type Enumerate {assumption-based, calculation-
based}

Defines the source of the failure mode distribution in case a choice needs to be made.

The failure mode distributions can be calculated based on:

• Estimations provided with the options fm_size or element_size
• Design metrics extracted from the design mapping as specified in the fm_mapping

and element_mapping

When both options (*_size and *_mapping) are specified for an FM, the FMEDA type
will select as follows:

• assumption-based: The *_size takes precedence over *_mapping
• calculation-based: The *_mapping takes precedence over *_size

No

ASIL Enumerate {None, A, B, C, D} Defines the ASIL target for the FMEDA (for a given Safety Goal) according to ISO26262.
Used also to specify that the FMEDA is for ISO26262.

No

SIL Enumerate {None, 1, 2, 3, 4} Defines the SIL target for the FMEDA according to IEC61508. Used also to specify that
the FMEDA is for IEC61508.

No

Analysis_T
ype

List of Enumerate {Permanent, Transient, All} Defines the failure types to be considered and which metrics to be calculated within
the safety analysis.

More than one value can be specified, e.g., Analysis_Type = {Permanent} or

Yes

P a g e | 47

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Analysis_Type = {Permanent, Transient}

The value “All” implies all Failure Types are activated. Defined as “All” instead of
“Both” allows for plans for more than just Transient and Permanent.

Creator String Name of the company that generated the FMEDA. No

Date Date Date when the FMEDA was generated. No

Version Float Version of the FMEDA. No

Data_Mod
el_Version

Float The version of the data model (not the FMEDA version). No

Comment String Information that does not have a specific field in the FMEDA object. No

Hierarchic
al

Enumerate {Yes, No} Describes whether the FMEDA is fully flat or hierarchical, meant as aggregation of
other FMEDAs

Yes

User_Defi
ned_Attri
bute

List of tuples List of previously created user-defined attributes and their values No

 2

P a g e | 48

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. Element 3

Entity name Element

Key identifier Element_Name + Parent_Element + FMEDA_Name

Attribute
Name Attribute Type Description Req’d

Element_N
ame

String Name (identifier) of the Element. Yes

Element_D
escription

String Description of the intended functionality of the Element. No

Element_T
ype

Enum {System, Element, SubElement, Component,
SubComponent, Part, SubPart}

Specifies the type of the Element. Element_Type = Component or
SubComponent can only be defined if the analysis is for IEC61508, inferred from
the FMEDA entity, whether it has ASIL or SIL defined.

Yes

Parent_Ele
ment

String Connects the Element to its Parent in the FS hierarchy. No

FMEDA_Na
me

String Connects the FS hierarchy to the FMEDA project. Yes

User_Defin
ed_Attribu
te

List of tuples List of previously created user-defined attributes and their values. No

 4

P a g e | 49

Copyright © Accellera Systems Initiative Inc. All rights reserved.

C. Failure Mode 5

Entity name Failure Mode

Key identifier Failure_Mode_Name + Parent_Element + FMEDA_Name

Attribut
e Name Attribute Type Description Req’d

FM_Name String Name (identifier) of the Failure Mode. Yes

FM_Descri
ption

String Description of the Failure Mode. No

Parent_El
ement

String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

FMEDA_N
ame

String Connects the FS hierarchy to the FMEDA project. Yes

Type Enumerate {Mission, Passive,
Active}

Describes if and how the FM can violate a safety goal.

• Mission: Participates in a safety function

Diagnostic is broken into:

• Passive: Participates in a safety mechanism
• Active: Participates in a safety mechanism that can violate a safety goal

Yes

Safety_Rel
evant

Boolean {yes, no} Specifies if the failure mode is safety related. Safety_Relevant = no is equivalent to the "no part"
according to IEC61508.

Yes

DC_Aggre
gation

Enumerate {Max, Sum, Residual,
Expert}

Defines the heuristic/algorithm used to aggregate the DC of multiple SMs applied to the same
FM. If DC_aggregation = expert, then the value is provided by the user using the attribute
DC_expert.

Yes

P a g e | 50

Copyright © Accellera Systems Initiative Inc. All rights reserved.

DC_Perm_
Expert

Float [0, 100] Allows the user to specify the Permanent DC of the FM aggregated over the SMs associated with
an FM. Only available if DC_Aggregation = expert.

No

DC_Trans
_Expert

Float [0, 100] Allows the user to specify the Transient DC of the FM aggregated over the SMs associated with an
FM. Only available if DC_Aggregation = expert.

No

DC_Lat_Ex
pert

Float [0, 100] Allows the user to specify the DC latent of the FM aggregated over the SMs associated with an
FM. Only available if DC_Aggregation = expert.

No

DC_Perm_
Calculated

Float [0, 100] Stores the results of the total Permanent DC in case several SMs are defined for the FM. The
algorithm followed to aggregate the DC of the multiple SMs is defined with attribute
DC_aggregation. The DC of the individual SM will be either defined in the SM entity (DC_Perm) or
in the SM-FM entity (DC_Perm_Estimated).

No

DC_Perm_
Measured

Float [0, 100] Store the value of the Permanent DC coming from Fault Injection activities. When present, it will
take precedence over the DC_Perm_Calculated in the metrics calculations.

No

DC_Trans
_Calculate
d

Float [0, 100] Stores the results of the total Transient DC in case several SMs are defined for the FM. The
algorithm followed to aggregate the DC of the multiple SMs is defined with attribute
DC_aggregation. The DC of the individual SM will be either defined in the SM entity (DC_Trans) or
in the SM-FM entity (DC_Trans_Estimated).

No

DC_Trans
_Measure
d

Float [0, 100] Store the value of the Transient DC coming from Fault Injection activities. When present, it will
take precedence over the DC_Perm_Calculated in the metrics calculations.

No

DC_Lat_C
alculated

Float [0, 100] Stores the results of the total Latent DC in case several SMs are defined for the FM. The algorithm
followed to aggregate the DC of the multiple SMs is defined with attribute DC_aggregation. The
DC of the individual SM will be either defined in the SM entity (DC_Lat) or in the SM-FM entity
(DC_Lat_Estimated).

No

DC_Lat_M
easured

Float [0, 100] Store the value of the Latent DC coming from Fault Injection activities. When present, it will take
precedence over the DC_Lat_Calculated in the metrics calculations.

No

Safeness_
Perm_Esti
mated

Float [0, 100] Percentage/Fraction of safeness for permanent faults (i.e., faults that do not contribute to the
violation of a safety goal).

No

P a g e | 51

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Safeness_
Trans_Esti
mated

Float [0, 100] Percentage/Fraction of safeness for transient faults (i.e., faults that do not contribute to the
violation of a safety goal).

No

Safeness_
Perm_Me
asured

Float [0, 100] Percentage/Fraction of safeness for permanent faults, (i.e., faults that do not contribute to the
violation of a safety goal) as a result of Fault Injection Activities or other techniques to measure.

No

Safeness_
Trans_Me
asured

Float [0, 100] Percentage/Fraction of safeness for transient faults, (i.e., faults that do not contribute to the
violation of a safety goal) as a result of Fault Injection Activities or other techniques to measure.

No

No_Effect
_Permane
nt

Float [0, 100] No effect Permanent rate according to IEC 61508. This can only be used if the FMEDA has SIL
target values (attribute of the FMEDA entity).

Yes

No_Effect
_Transient

Float [0, 100] No effect Transient rate according to IEC 61508. This can only be used if the FMEDA has SIL target
values (attribute of the FMEDA entity).

Yes

Perceived
_Permane
nt

Float [0, 100] Specifies the fraction of multi-point faults that are not detected but are perceived. This is only for
ISO26262 (i.e., if the FMEDA has the ASIL level defined).

Yes

Perceived
_Transient

Float [0, 100] Specifies the fraction of multi-point faults that are not detected but are perceived. This is only for
ISO26262 (i.e., if the FMEDA has the ASIL level defined).

Yes

User_Defi
ned_Attri
bute

List of tuples List of previously created user-defined attributes and their values. No

 6

P a g e | 52

Copyright © Accellera Systems Initiative Inc. All rights reserved.

D. Technology Element 7

Entity name Technology Element

Key identifier Technology_Element_Name

Attribute
Name Attribute Type Description Req’d

Technology
Element
Name

String Name (identifier) of the Technology_Element. Yes

Type Enumerate {Digital, RAM, ROM,
Flash, Analog}

Type of t=Technology Yes

Source Enumerate {IEC_62380, SN_25900,
IEC_61709, Expert}

Description of the source of BFR data (e.g., IEC TR 62380, testing, field returns…). No

FR_Perman
ent

Float [0,N] Base Failure Rate (BFR) for permanent faults. Yes

FR_Transie
nt

Float [0,N] Base Failure Rate (BFR) for transient faults. Yes

FR_Transie
nt_Deratin
g

Float [0,1] Derating of the BFR for transient faults in digital and analog technology elements. Used to
account for the contribution of combinatorial logic to the raw fit transient (as a percentage of
the raw fit transient from sequential/memory elements). For details see Technology Element.

Yes

Unit_Desig
n_Element
_Size

Float [0,N] Area of the unit design element of the technology element. Required if Technology_Element =
Digital/Analog. Not utilized if Technology_Element = RAM/ROM/Flash.

It is used to calculate the number of unit design elements in an FM and hence calculates the
raw FIT for the FM. The following formula applies: `#FM_unit_design_elements =
FM_size_permanent/unit_design_element_size`. It should be set to 1 if the
FM_size_permanent/FM_size_transient is already expressed in number of unit design elements.

Yes

P a g e | 53

Copyright © Accellera Systems Initiative Inc. All rights reserved.

User_Defin
ed_Attribut
e

List of tuples List of previously created user-defined attributes and their values. No

P a g e | 54

Copyright © Accellera Systems Initiative Inc. All rights reserved.

E. Safety Mechanism 8

Entity name Safety mechanism

Key identifier Safety_Mechanism_Name

Attribut
e Name Attribute Type Description Req’d

SM_Name String Name (identifier) of the Safety Mechanism. Yes

SM_Descri
ption

String Description of the SM. No

FMEDA_N
ame

String Connects the FS hierarchy to the FMEDA project. No

Class Enumerate {HW, SW, AoU, AoU-SW, AoU-
HW, user-defined}

Method by which the safety mechanism is to be realized.

Notes:
1) AoU is to capture when the SM is not part of the product (potentially raise a flag
during FMEDA integration)
2) HW allows for further specification for downstream tools

No

Class_desc
ription

String Description of the class. This is specially meant in the case in which the class is user-
defined, but available for all classes.

No

Configura
ble

Boolean {yes, no} Captures whether the SM can be turned on or off by the user/integrator. If
configurable=yes, then the “SM-FM active” attribute can be used.

Yes

DC_Perm Float [0, 100] Diagnostic coverage of the SM in isolation for permanent faults. Yes

DC_Trans Float [0, 100] Diagnostic coverage of the SM in isolation for transient faults. Yes

P a g e | 55

Copyright © Accellera Systems Initiative Inc. All rights reserved.

DC_Lat Float [0, 100] Diagnostic coverage of the SM in isolation for latent faults. This attribute is only
available when the ASIL target level is defined. Not available if only the SIL target is
defined.

Yes

User_Defi
ned_Attri
bute

List of tuples List of previously created user-defined attributes and their values. No

 9

To apply a diagnostic coverage specific to an SM-FM pair, use the DC_ type attribute in the SM-FM category. When SM:DC_ type and 10
SM-FM:DC_ type are specified, the SM-FM:DC_ type attribute takes precedence. See Mapping Safety Mechanism – Failure Mode for 11
details. 12

P a g e | 56

Copyright © Accellera Systems Initiative Inc. All rights reserved.

F. Failure Mode Effect 13

Entity name Failure Mode Effect

Key identifier Failure_Mode_Effect_Name + FMEDA_name

Attribute Name Attribute Type Description Req’d

FME_Name String Name (identifier) of the FME. Yes

FME_Description String Description of the FME. No

FMEDA_Name String Connects the FME to the FMEDA project. Yes

User_Defined_Attribute List of tuples List of previously created user-defined attributes and their values. No

 14

P a g e | 57

Copyright © Accellera Systems Initiative Inc. All rights reserved.

G. Mapping Safety Mechanism – Failure Mode 15

Entity name SM_FM

Key
identifier

Assignment_Name + FMEDA_Name

Attribu
te
Name Attribute Type Description Req’d

SM_Na
me

String Name (identifier) of the SM applied to the FM. Yes

FM_Na
me

String Name (identifier) of the FM covered by the SM. Yes

Parent_
Element

String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

FMEDA_
Name

String Connects to the FMEDA project. Yes

DC_Per
m_Estim
ated

Float [0, 100] Diagnostic coverage of the SM applied to the FM for permanent faults. No

DC_Tran
s_Estima
ted

Float [0, 100] Diagnostic coverage of the SM applied to the FM for transient faults. No

DC_Lat_
Estimate
d

Float [0, 100] Diagnostic coverage of the SM applied to the FM for latent faults. No

P a g e | 58

Copyright © Accellera Systems Initiative Inc. All rights reserved.

DC_Per
m_Meas
ured

Float [0, 100] Diagnostic coverage of the SM applied to the FM for permanent faults as a result of Fault Injection
Activities.

No

DC_Tran
s_Measu
red

Float [0, 100] Diagnostic coverage of the SM applied to the FM for transient faults as a result of Fault Injection
Activities.

No

DC_Lat_
Measure
d

Float [0, 100] Diagnostic coverage of the SM applied to the FM for latent faults as a result of Fault Injection
Activities.

No

Active Boolean {yes, no} Specifies whether the SM is enabled for this FM. Only accessible if the SM_Configurable
attribute=yes.

Yes

User_De
fined_At
tribute

List of tuples List of previously created user-defined attributes and their values. No

DC_ type value is specific to the SM-FM pair and takes precedence over the DC_ type of the SM category. If such value is not 16
specified, then the value is taken from the DC_ type attribute of the SM category. 17

P a g e | 59

Copyright © Accellera Systems Initiative Inc. All rights reserved.

H. Mapping Failure Mode – Failure Mode Effect 18

Entity name FM_FME

Key
identifier

Assignment_Name + FMEDA_Name

Attribu
te
Name Attribute Type Description Req’d

FM_Na
me

String Name (identifier) of the FM contributing to the FME. Yes

Parent_
Element

String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

FME_list List of strings List of names (identifiers) of the FMEs caused by the FM. Connects the FM to the FME that represents
the consequence seen at the top level (of the DUA scope).

Yes

FMEDA_
Name

String Connects to the FMEDA project. Yes

FME_we
ights

List of floats Weights of the contributions of the FM to the list of FMEs defined in FME_list. Yes

User_De
fined_At
tribute

List of tuples List of previously created user-defined attributes and their values. No

 19

P a g e | 60

Copyright © Accellera Systems Initiative Inc. All rights reserved.

I. Mapping Technology Element – Failure Mode 20

Entity name TE_FM

Key identifier Assignment_Name + FMEDA_Name

Attribute
Name Attribute Type Description Req’d

Technology_
Element_Na
me

String Defines a technology element in which the FM is implemented. Yes

FM_Name String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

Parent_Elem
ent

String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

FMEDA_Na
me

String Connects to the FMEDA project. Yes

Size_Type Enumerate {Percentage, Absolute,
Uniform_Distribution}

Defines whether the FM_Size will be:

• Percentage: A percentage of the parent Element_Size
• Absolute: An absolute value
• Uniform_Distribution: A uniform distribution of the parent Element_Size

Yes

FM_Size_Per
manent

Float [0,N] Specifies the size of the FM to calculate the FMD (FM distribution) for permanent
faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the
FMD is calculated based on the area of the FM defined by the mapping to the
design hierarchy. Detailed semantics are to be defined in the LRM.

In the semiconductor world, this is the size of the logic for which permanent faults

Yes

P a g e | 61

Copyright © Accellera Systems Initiative Inc. All rights reserved.

can occur (combinatorial and sequential logic gates).

FM_Size_Tra
nsient

Float [0,N] Specifies the size of the FM to calculate the FMD (FM distribution) for transient
faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the
FMD is calculated based on the area of the FM defined by the mapping to the
design hierarchy. Detailed semantics are to be defined in the LRM.

In the semiconductor world, this is the size of the logic for which transient faults
can occur (sequential logic gates, e.g., includes Flip-Flops, Latches and Register
Files).

Yes

FM_Size_Bit
s

Integer [0,N] Specifies the size of the FM to calculate the FMD (FM distribution) for transient and
permanent faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the
FMD is calculated based on the area of the FM defined by the mapping to the
design hierarchy. Detailed semantics are to be defined in the LRM.

In the semiconductor world, this is the size of the memory logic for which transient
and permanent faults can occur.

Yes

FM_Mappin
g

List of Strings Connects to the DUA representation and identifies the portion of the design
responsible for the Failure Mode. This attribute is given precedence for a
calculation-based FMEDA. Detailed semantics are to be defined in the LRM.

No

FM_Mappin
g_Exclude

List of Strings Connects to the DUA representation and identifies the portion of the design to be
excluded from the FM_Mapping. Can only be used in conjunction with the
FM_Mapping attribute. This attribute is only used for a calculation-based FMEDA.

No

User_Define
d_Attribute

List of tuples List of previously created user-defined attributes and their values. No

 21

P a g e | 62

Copyright © Accellera Systems Initiative Inc. All rights reserved.

J. Mapping Technology Element – Element 22

Entity name TE_Element

Key identifier Assignment_Name + FMEDA_Name

Attribute
Name Attribute Type Description Req’d

Technolog
y_Element
_Name

String Defines a technology element in which the FM is implemented. Yes

Element_N
ame

String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

Parent_Ele
ment

String Connects the Failure Mode to its Parent in the FS hierarchy. Yes

FMEDA_N
ame

String Connects to the FMEDA project. Yes

Element_Si
ze_Perman
ent

Float [0,N] Specifies the size of the Element for permanent faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the Element size is
calculated based on the area extracted by the mapping to the design hierarchy. Detailed semantics
are to be defined in the LRM.

In the semiconductor world, this is the size of the logic implementing the intended functionality of
the Element.

No

Element_Si
ze_Transie
nt

Float [0,N] Specifies the size of the Element for transient faults for the associated Technology Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the Element size is
calculated based on the area extracted by the mapping to the design hierarchy. Detailed semantics
are to be defined in the LRM.

No

P a g e | 63

Copyright © Accellera Systems Initiative Inc. All rights reserved.

In the semiconductor world, this is the size of the logic implementing the intended functionality of
the Element.

Element_Si
ze_Bits

Integer [0,N] Specifies the size of the Element for transient and permanent faults for the associated Technology
Element.

This attribute is given precedence for an assumption-based FMEDA. Otherwise, the Element size is
calculated based on the area extracted by the mapping to the design hierarchy. Detailed semantics
are to be defined in the LRM.

In the semiconductor world, this is the size of the memory logic included in the intended
functionality of the Element.

No

Element_
Mapping

List of Strings Connects to the DUA representation and identifies the portion of the design implementing the
intended functionality of the Element. This attribute is given precedence for a calculation-based
FMEDA. Detailed semantics are to be defined in the LRM.

No

Element_
Mapping_
Exclude

List of Strings Connects to the DUA representation and identifies the portion of the design to be excluded from the
Element_Mapping. Can only be used in conjunction with the Element_Mapping attribute. This
attribute is only used for a calculation-based FMEDA.

No

User_Defin
ed_Attribu
te

List of tuples List of previously created user-defined attributes and their values. No

 23

P a g e | 64

Copyright © Accellera Systems Initiative Inc. All rights reserved.

K. Define ISO26262 Failure Rate 24

Entity name FR_ISO26262

Key identifier Object_Name

Attribute
Name Attribute Type Description Req’d

FR_Type Enumerate {Intrinsic_FR, SR_Failure_Rate, NSR_FR, Safe_FR, Non_Safe_FR, SPF_FR,
Residual_FR, MPF_FR, MPF_Primary_FR, MPF_Secondary_FR, MPF_Detected,
MPF_Perceived, MPF_Latent}

Failure Rates (FRs) calculated according to
Figure 10, Part 10, Clause 8 of ISO26262
[2]

No

Scope Enumerate {FMEDA, Element, Failure_Mode, Failure_Mode_Effect_Name} Defines whether the FRs are calculated for
the FMEDA, for an Element, or for a
Failure Mode.

No

TE_Name String Specifies for which technology the FR is
calculated.

No

Analysis_Type Enumerate {Permanent, Transient} Care to be taken about the effect of the
FMEDA Analysis Type.

No

FMEDA_Nam
e

String Name of the FMEDA No

Element_Nam
e

String This value is to be provided if the Scope =
Element. This is used if the FR is combined
at Element-level.

No

Parent_Eleme
nt

String Identifies he unique path for the Element No

Failure_Mode String This value is to be provided if the Scope =
Failure Mode

No

P a g e | 65

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Failure_Mode
_Effect

String This value is to be provided if the Scope =
Failure Mode Effect

No

Metric_Value Float > 0 Value of the Failure Rate No

 25

P a g e | 66

Copyright © Accellera Systems Initiative Inc. All rights reserved.

L. Define ISO26262 Metric 26

Entity name Metric_ISO26262

Key identifier Object_Name

Attribute
Name Attribute Type Description Req’d

Metric_Nam
e

Enumerate {SPFM, LFM, PMHF} Metrics calculated according to ISO 26262. No

Scope Enumerate {FMEDA, Element, Failure_Mode,
Failure_Mode_Effect_Name}

Defines whether the metrics are calculated for the FMEDA, for
an Element, or for a Failure Mode.

No

TE_Name String Technology Element for which the metric is calculated No

Analysis_Typ
e

Enumerate {Permanent, Transient} Care to be taken about the effect of FMEDA Analysis Type. No

FMEDA_Nam
e

String Name of the FMEDA No

Element_Na
me

String This value is to be provided if the Scope = Element. This is used if
the metric is combined at Element-level.

No

Parent_Elem
ent

String Identifies the unique path for the Element. No

Failure_Mod
e

String This value is to be provided if the Scope = Failure Mode. No

Failure_Mod
e_Effect

String This value is to be provided if the Scope = Failure Mode Effect. No

P a g e | 67

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Metric_Value Float > 0 Value of the metric No

User_Define
d_Attribute

List of tuples List of previously created user-defined attributes and their
values.

No

 27

M. Define IEC61508 Failure Rate 28
 29
Entity name FR_IEC61508

Key identifier Object_Name

Attribute
Name Attribute Type Description Req’d

FR_Type Enumerate {Dangerous, Dangerous_Detected,
Dangerous_Undetected }

Failure Rates (FRs) calculated according to IEC61508. No

Scope Enumerate {FMEDA, Element, Failure_Mode,
Failure_Mode_Effect_Name }

Defines whether the FRs are calculated for the FMEDA, for an
Element, or for a Failure Mode.

No

Analysis_Typ
e

Enumerate {Permanent, Transient} Care to be taken about the effect of the FMEDA Analysis Type. No

FMEDA_Nam
e

String Name of the FMEDA No

Element_Na
me

String This value is to be provided if the Scope = Element. This is used if
the FR is combined at the Element level.

No

Parent_Elem
ent

String Identifies the unique path for the Element. No

Failure_Mod String This value is to be provided if the Scope = Failure Mode. No

P a g e | 68

Copyright © Accellera Systems Initiative Inc. All rights reserved.

e

Failure_Mod
e_Effect

String This value is to be provided if the Scope = Failure Mode Effect. No

Metric_Value Float > 0 Value of the Failure Rate No

User_Define
d_Attribute

List of tuples List of previously created user-defined attributes and their
values.

No

P a g e | 69

Copyright © Accellera Systems Initiative Inc. All rights reserved.

N. Define IEC61508 Metric 30
 31
Entity name Metric_IEC61508

Key identifier Object_Name

Attribute
Name Attribute Type Description Req’d

Metric_Name Enumerate {SFF, Probability_dangerous_failure_low_demand,
Probability_dangerous_failure_high_demand}

Metrics calculated according to IEC61508. No

Scope Enumerate {FMEDA, Element, Failure_Mode, Failure_Mode_Effect_Name } Defines whether the metrics are calculated for
the FMEDA, for an Element, or for a Failure
Mode.

No

FMEDA_Name String Name of the FMEDA No

Element_Name String This value is to be provided if the Scope =
Element. This is used if the FR is combined at the
Element level.

No

Parent_Elemen
t

String Identifies the unique path for the Element. No

Failure_Mode String This value is to be provided if the Scope = Failure
Mode.

No

Failure_Mode_
Effect

String This value is to be provided if the Scope = Failure
Mode Effect.

No

Metric_Value Float > 0 Value of the metric No

User_Defined_ List of tuples List of previously created user-defined attributes No

P a g e | 70

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Attribute and their values.

 32

P a g e | 71

Copyright © Accellera Systems Initiative Inc. All rights reserved.

IX. Annex B – Language 33

A. Introduction 34

In this paper we defined a sample language for the only purpose of showing some concrete 35
examples of usage of the Functional Safety Standard. The final LRM defined in the standard 36
might differ from the sample used in this paper. 37

Following the principle of traceability, the sample language is derived directly from the 38
conceptual data model with remarkably simple rules: 39

• Objects are created with “create” commands and updated with the “-update” option. 40

• Relationships are created with the "assign" commands. 41

• Weak objects are assigned a value with the "define" command. 42

In other words, the sample language is the implementation of the requirements defined in 43
the conceptual data model. 44

A special rule stands for the Design mapping since it connects objects in the data model to 45
objects in the design hierarchy, which are not part of the data model. The design mapping 46
connection is described through the “-mapping” and “-exclude_mapping” options inside the 47
design mapping relationship commands. 48

Table 12. Sample language derived from the data model. 49

FMEDA Process data Entity type Information type Commands

FMEDA FMEDA Object create_fmeda

FS Analysis Hierarchy Element Object create_element

FM Hierarchy Failure_Mode Object create_fm

Technology Element Technology_Element Object create_te

Safety Mechanism Library Safety_Mechanism Object create_sm

FM Effects Failure_Mode_Effect Object create_fme

SM Mapping SM-FM Relationship assign_sm_fm

FM Effect Mapping FM-FME Relationship assign_fm_fme

TE Mapping TE-FM Relationship assign_te_fm

TE Mapping TE-Element Relationship assign_te_element

Design Mapping Attribute of TE-FM Relationship assign_te_fm -mapping {…}

Design Mapping Attribute of TE-Element Relationship assign_te_element -mapping {…}

P a g e | 72

Copyright © Accellera Systems Initiative Inc. All rights reserved.

ISO26262 Metrics ISO26262_Metrics Weak object define_metric_iso26262

ISO26262 Failure Rate ISO26262_FR Weak object define_fr_iso26262

IEC61508 Metrics IEC61508_Metrics Weak object define_metric_iec61508

IEC61508 Failure Rate IEC61508_FR Weak object define_fr_iec61508

 50

The full list of commands defined according to the data model v0.1 is as follows: 51

• create_fmeda 52

• create_element 53

• create_fm 54

• create_te 55

• create_sm 56

• create_fme 57

• add_attribute 58

• add_collection 59

• assign_sm_fm 60

• assign_fm_fme 61

• assign_te_fm 62

• assign_te_element 63

• define_fr_iso26262 64

• define_metric_iso26262 65

• define_fr_iec61508 66

• define_metric_iec61508 67

As you can see, two commands are not directly derived from the FMEDA process: 68
add_attribute and add_collection. These commands are auxiliary and serve the purpose of 69
enabling reusability and extendibility of the data model and a language. If FMEDA project 70
development can be limited solely to the objects and their attributes as defined by the data 71
model, usage of add_attribute and add_collection is not necessary, although they can 72
provide additional flexibility when needed. 73

P a g e | 73

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. Conventions 74

This document is using syntax highlight schema similar to IEEE 1801 (UPF) standard, chapter 75
5.2. 76

Key points can be summarized as follows: 77

• italic indicates user-defined variables 78

• [] square brackets indicate optional parameters 79

• {} curly braces indicate required values and can consist of one or more values 80

• <> angle brackets indicate a set of alternative parameters to choose from 81

• | separator bar indicates alternative choices within a group 82

• * asterisk indicates that a parameter can be repeated 83

Also, the "R" parameter of available arguments indicates a possibility to update a value of 84
this argument using the -update switch. 85

For example, a create_object command (not a valid FS WG Language command) must be 86
written as is, and it accepts a user defined value object_name; it also requires the -dc 87
attribute to be specified. DC attributes can take multiple values as a list of lists, where the 88
exact value is to be specified by the user. 89

create_object object_name 90
-dc { {<perm | tran | lat> value %}* } 91

Usage example: 92

create_object "SM_003"-dc {{perm 99} {tran 99}} -dc {lat 100} 93
The fact that the language visually appears to be relying on Tcl syntax doesn’t mean that the 94
FS WG voted for Tcl or any other language to be the base interpreter language. In practice, 95
this means that no assumptions regarding the usage of built-in Tcl (or any other language) 96
constructs can be made, and virtually any language can be used to build a parser for a 97
proposed language. 98

C. Safety Analysis Commands v0.1 99

Intentionally empty space. 100

P a g e | 74

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_fmeda 101

Purpose Create FMEDA project.

Syntax create_FMEDA FMEDA_name
[-type <assumption-based | calculation-based>]
[-asil [<a | b | c | d>]]
[-sil [<1 | 2 | 3 | 4>]]
[-analysis <permanent | transient | all>]
[-creator [{creator_name}]]
[-date [date]]
[-version version]
-data_model_version data_model_version
[-comment comment]
[-description description]
[-attribute { {name_of_the_user_defined_attribute value}* }]
-hierarchical [<yes | no>]
[-update]

Arguments FMEDA_name Name of the FMEDA project.

-data_model_version version Version of the data model.

-type <assumption-based | calculation-
based>

Selects whether the FMEDA project is
assumption-based or calculation-based. This
attribute is informative only. If the type is
calculation-based, the user can still specify the
failure mode contribution through the "failure
mode size" attribute.

-sil [<1 | 2 | 3 | 4>] Defines the target safety level according to SIL
classifications used by IEC61508 standards.

R

-asil [<a | b | c | d>] Defines the target safety level according to ASIL
classifications used by ISO26262 standards.

R

-analysis <permanent | transient | all> Defines the failure types to be considered and
which metrics to be calculated within the safety
analysis.

More than one value can be specified, e.g.,
Failure_Type = {Permanent} or Failure_Type =
{Permanent, Transient}

The value “All” implies all Failure Types are
activated. Defined as “All” instead of “Both”
allows for plans for more than just Transient and
Permanent.

R

-creator {creator_name} Name of the company that generated the
FMEDA.

R

-date date Date when the FMEDA was generated. R

-version fmeda_version Version of the FMEDA project. R

P a g e | 75

Copyright © Accellera Systems Initiative Inc. All rights reserved.

-comment comment Information that doesn’t have a specific field in
the FMEDA object.

R

-description description Description of the FMEDA project. R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-hierarchical [<yes | no>] Describes whether the FMEDA is fully flat or
hierarchical, meant as aggregation of other
FMEDAs. If no value is provided, then default no
is used.

R

-update Indicates this command provides additional
information for a previous command with the
same FMEDA_name.

R

Return
value

Return an empty string if successful or raise an ERROR if not.

 102

Usage example: 103

create_fmeda "Project_D" -type "assumption-based" -asil d -analysis all \ 104
 -creator "Hornet LLC" -date 27.01.2023 -version 0.1 \ 105
 -data_model_version 0.1 -hierarchical yes \ 106
 -comment "Project is an IP level project" 107
 108
create_fmeda "Project_D" -type "calculation-based" -asil b -analysis perm \ 109
 -creator "Hornet LLC" -date 25.01.2023 -version 0.1 \ 110
 -data_model_version 0.1 -hierarchical yes \ 111
 -comment "Project is an IP level project" -update 112
 113

P a g e | 76

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_element 114

Purpose Create element.

Syntax create_element element_name
-type <system | element | subelement | component | subcomponent | part | subpart>
-fmeda fmeda_name
[-description description]
[-parent parent]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments element_name Name (identifier) of the Element.

-type <system | element | subelement |
component | subcomponent | part | subpart>

Specifies the type of the Element.

Element_Type = Component or
SubComponent can only be defined if the
analysis is for IEC61508, inferred from the
FMEDA entity, whether it has ASIL or SIL
defined.

-fmeda fmeda_name Connects the FS hierarchy to the FMEDA
project.

R

-description description Description of the intended functionality
of the Element.

R

-parent parent Connects the Element to its Parent in the
FS hierarchy.

R

-attribute {
{name_of_the_user_defined_attribute value}*
}

Sets values of user-defined attributes. R

-update Indicates this command provides
additional information for a previous
command with the same element_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 115

Usage example: 116

create_element “A1” -type part -parent root -fmeda Project_A \ 117
 -description “Top-level element in a system” 118
 119
create_element “A2” -type element -parent A1 -fmeda Project_A \ 120
 -description "Top-level element in a system" 121
 122
create_element "A2" -type element -parent A1 -fmeda Project_A \ 123
 -description "2nd-level element in a system" \ 124
 -update 125

P a g e | 77

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_fm 126

Purpose Create failure mode.

Syntax create_fm fm_name
-parent parent
-fmeda fmeda_name
-type <mission | passive | active>
-safety_relevant [<yes | no>]
-dc_aggregation { { <perm | tran> <max | sum | residual | expert> }* }
-no_effect { { <perm | tran> value % }* }
-perceived { { <perm | tran> value % }* }
[-dc { {<perm | tran | lat> <calculated | measured> value % }* }]
[-safeness { {<perm | tran > <estimated | measured> value %}* }]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-description description]
[-update]

Arguments fm_name Name (identifier) of the Failure Mode.

-parent parent Connects the Failure Mode to its Parent
in the FS hierarchy.

R

-fmeda fmeda_name Connects the FS hierarchy to the FMEDA
project.

R

-type <mission | passive | active> Describes if and how the FM can violate a
safety goal

Mission: participates to a safety function

Diagnostic is broken into:

- Passive: participates in a safety
mechanism

- Active: participates in a safety
mechanism that can violate a safety goal.

R

-safety_relevant [<yes | no>] Specifies if the failure mode is safety
related.

Safety_Relevant = no is equivalent to the
"no part" according to IEC61508.

R

-dc_aggregation { { <perm | tran> <max | sum |
residual | expert> }* }

Defines the heuristic/algorithm used to
aggregate the DC of multiple SMs applied
to the same FM. If DC_aggregation =
expert, then the value is provided by the
user using the attribute DC_expert.

R

-no_effect { { <perm | tran> value % }* } No effect Permanent rate according to
IEC 61508. This can only be used if the
FMEDA has SIL target values (attribute of

R

P a g e | 78

Copyright © Accellera Systems Initiative Inc. All rights reserved.

the FMEDA entity).

-perceived { { <perm | tran> value % }* } Specifies that fraction of multi-point
faults that are not detected but are
perceived. This is only for ISO26262, i.e.,
if the FMEDA has the ASIL level defined.

R

-dc { {<perm | tran | lat> <calculated |
measured> value % [-attr_expr {boolean_expr}]
}* }

Allows the user to specify the Permanent
DC of the FM aggregated over the SMs
associated with an FM. Only available if
DC_Aggregation = expert.

R

-safeness { {<perm | tran > <estimated |
measured> value %}* }

Percentage/Fraction of safeness for
permanent faults, i.e., faults that do not
contribute to the violation of a safety
goal.

R

-attribute {
{<_name_of_the_user_defined_attribute_
value}* }

Sets values of user-defined attributes. R

-description description Description of the Failure Mode. R

-update Indicates this command provides
additional information for a previous
command with the same fm_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 127

Usage example: 128

set_scope {{"fmeda" "Project_A"} {"parent" "A1"} 129
 create_fm "FM001" -type mission -safety_relevant yes -dc_aggregation max \ 130
 -no_effect { {perm 90} {tran 90} } 131
 -perceived { {perm 50} {tran 50} } 132
 -dc { {perm measured 99.5} {tran measured 99.5} {lat measured 99.5} } 133
 -dc { {perm calculated 99.5} {tran calculated 99.5} {lat calculated 99.5} 134
} 135
 -safeness { {perm measured 99.5} {tran measured 99.5} } 136
 -safeness { {perm estimated 99.5} {tran estimated 99.5} } 137
 -description "Some random overcomplicated FM" 138
 139
 create_fm "FM001" -type mission -safety_relevant yes -dc_aggregation max \ 140
 -no_effect { {perm 90} {tran 90} } 141
 -perceived { {perm 50} {tran 50} } 142
 -dc { {perm measured 99.5 -attr_expr {config == "b"}} \ 143
 {tran measured 99.5 -attr_expr {config == "b"}} \ 144
 {lat measured 99.5 -attr_expr {config == "b"}} } 145
 -dc { {perm calculated 99.5} {tran calculated 99.5} {lat calculated 99.5} 146
} 147
 -safeness { {perm measured 99.5} {tran measured 99.5} } 148
 -safeness { {perm estimated 99.5} {tran estimated 99.5} } 149
 -description "Some random FM" -update 150

P a g e | 79

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_te 151

Purpose Create technology element.

Syntax create_te te_name
-type [<digital | ram | rom | flash | analog | custom>]
[-source [<IEC_62380 | SN_25900 | expert>]
-fr { {<perm | tran > value}* }
[-fr_derating value %]
-unit_design_element_size value
[-description description]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments te_name Name (identifier) of the Technology_Element.

-type [<digital | ram | rom | flash |
analog | custom>]

Name of the technology type for a given
technology element.

R

-source [<IEC_62380 | SN_25900 |
expert>]

Description of the source of BFR data (e.g., IEC TR
62380, testing, field returns …).

R

-fr { {<perm | tran > value}* } Base Failure Rate (BFR) for permanent or transient
faults.

R

-fr_derating value Derating of the BFR for transient faults in digital
technology elements. Used to account for the
contribution of combinatorial logic to the raw fit
transient (as a percentage of the raw fit transient
from sequential/memory elements).

R

-unit_design_element_size value Area of the unit design element of the technology
element. Required if Technology_Element =
Digital/Analog. Not utilized if Technology_Element
= RAM/ROM/Flash.

It is used to calculate the number of unit design
elements in an FM and hence calculates the raw FIT
for the FM. The following formula applies:
`#FM_unit_design_elements =
FM_size_permanent/unit_design_element_size`. It
should be set to 1 if the
FM_size_permanent/FM_size_transient is already
expressed in number of unit design elements.

R

-description description Description of the technology element. R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the same
te_name.

R

P a g e | 80

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Return
value

Returns an empty string if successful or raises an ERROR if not.

 152

Usage example: 153

Create_te “Digital_Area” -type digital -source IEC_62380 -fr {{perm 0.03033} {tran 154
0} } 155
create_te “Analog_Area” -type analog -source IEC_62380 -fr {{perm 0.03033} {tran 156
0.01} } 157
create_te “ROM” -type ram -source IEC_62380 -fr {{perm 0.03033} {tran 158
1e-7} } 159

 160

P a g e | 81

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_sm 161

Purpose Create safety mechanism.

Syntax create_sm sm_name
[-fmeda fmeda_name]
[-class [<HW | SW | AoU | AoU-SW | AoU-HW | user-defined>]]
[-class_description class_description]
-configurable [<yes | no>]
-dc { {<perm | tran | lat> value %}* }
[-description description]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments sm_name Name (identifier) of the Safety Mechanism.

-fmeda fmeda_name Connects the FS hierarchy to the FMEDA
project.

R

-class [<HW | SW | AoU | AoU-SW | AoU-
HW | user-defined>]

Method by which the safety mechanism is to be
realized.

Notes:
1) AoU is to capture when the SM is not part of
the product (potentially raise a flag during
FMEDA integration).
2) HW allows for further specification for
downstream tools.

R

-class_description class_description Description of the class.

Note: Especially meant in the case in which the
class is user-defined, but is available for all
classes.

R

-configurable [<yes | no>] Captures whether the SM can be turned on or
off by the user/integrator. If configurable=yes,
then the “SM-FM active” attribute can be used.

R

-dc { {<perm | tran | lat> value %}* } Diagnostic coverage of the SM in isolation for
permanent faults.

Notes: To apply a diagnostic coverage specific
to an SM-FM pair, use the DC_perm attribute in
the SM-FM category. When SM:DC_perm and
SM-FM:DC_perm are specified, the SM-
FM:DC_perm attribute takes precedence.

R

-description description Description of the intended functionality of the
SM.

R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

P a g e | 82

Copyright © Accellera Systems Initiative Inc. All rights reserved.

-update Indicates this command provides additional
information for a previous command with the
same sm_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 162

Usage example: 163

create_sm “SM_001” -class “AoU-SW” -collection “SM_default_99” 164
 165
create_sm “SM_001.5” -class “AoU” -collection “SM_default_99” -class_description 166
“What exactly do we assume?..” 167
 168
create_sm “SM_002” -fmeda “CPU_FMEDA” -class “HW” -configurable “no” -dc {{perm 169
99} {tran 99} {lat 100}} 170
 171
create_sm “SM_003” -class “HW” -configurable “no” -dc {{perm 99} {tran 99}} -dc 172
{lat 100} 173
create_sm “SM_003” -class “AoU-HW” -configurable “no” -dc {{perm 99} {tran 99}} -174
dc {lat 100} -update 175
 176

P a g e | 83

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_fme 177

Purpose Create failure mode effect.

Syntax create_fme fme_name
-fmeda fmeda_name
[-description description]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments fme_name Name (identifier) of the Failure Mode
effect.

-fmeda fmeda_name Connects the FME to the FMEDA project. R

-description description Description of the FME. R

-attribute {
{name_of_the_user_defined_attribute value}*
}

Sets values of user-defined attributes. R

-update Indicates this command provides
additional information for a previous
command with the same fme_name.

R

Return
value

Returns an empty string if successful, or raises
an ERROR if not.

 178

Usage example: 179

create_fme “FME001” -fmeda IP_A -description “Loss of data” 180
create_fme “FME002” -fmeda IP_A -description “Incorrect data” 181

 182

P a g e | 84

Copyright © Accellera Systems Initiative Inc. All rights reserved.

add_attribute 183

Purpose Create new attribute.

Syntax add_attribute attribute_name
-default value
-fmeda fmeda_name
[-object [<global | entity_object >]]
[-type [{ <string | int [min max] | float [min max] | enum {list_of_enum_values} > }]]
[-description description]
[-update]

Arguments te_name Name (identifier) of the attribute.

-default value Default value of the attribute. R

-fmeda fmeda_name Connects to the FMEDA project. R

-object [<global | entity_object >] Defines an object of an ERD on which to
enable the use of user-defined attributes.

R

-type [{ <string | int [min max] | float [
min max] | enum {list_of_enum_values} >
}]

Type hinting for the tools’ backend. Enables
the tool to check a type of the attribute
(similar to system-defined attribute).

R

-description description Description of the attribute. R

-update Indicates this command provides additional
information for a previous command with the
same te_name.

R

Return
value

Returns an empty string if successful, or
raises an ERROR if not.

 184

This command uses the individual set -attribute command to work with built-in attributes of 185
safety objects. It works with user-defined attributes, inspired by the asciidoctor text markup 186
toolchain that is using custom attributes of objects. All attributes are defined within a single 187
create_* command. In addition, efficient usage of UDA (user-define attributes) is heavily 188
linked to the proposed new extension of the -attr_expr command that is inspired by UPF’s -189
logic_expr. Together these features enable rich reconfigurability and extendibility of the 190
proposed language and can mimic functionalities that the safety community is used to (e.g., 191
creating a new column in a spreadsheet). 192

In addition to reconfigurability, this command also enables various users to store extra 193
information inside the data model itself. 194

Similar to the RISC-V community, here it is also expected that users will contribute to this 195
WG and share their feedback regarding their most used custom user-defined attributes so 196
that the WG can potentially introduce those attributes as built-ins in a later release of the 197
language. If this expectation is not satisfied, there can be a vendor-lock for certain features, 198
similar to custom attributes and pragmas in SystemVerilog. 199

P a g e | 85

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Usage example: 200

add_attribute "strobing_point" -object "fm" -default "" 201
add_attribute "config" -object "create_sm" -default "" 202
 203
create_fm "FM_001" -parent "MULT16" \ 204
 -attribute { "strobing_point" "top.SoC.IP1.IP2.output_x" } 205
 206
create_sm "SM_001" -class "AoU-SW" -configurable "no" \ 207
 -dc {{perm 90} {tran 90} {lat 100}} \ 208
 -attribute { "config" {"ASIL_D_CONFIG" "ASIL_B_CONFIG" 209
"QM_CONFIG"} } 210
 211
• attribute - user-defined attribute 212

Usage example with a multiple definition attempt: 213

add_attribute "Diagnostic or Avoidance" -object "fm" -default "Avoidance" 214
add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" 215
 216
• Error upon execution: To enable a user-defined attribute on multiple ERD entities, use 217

the "global" -object. 218

Usage example with type hinting: 219

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" -type 220
{enum {"Avoidance" "Diagnostic"}} 221
 222
add_collection "Baseline SM values" -object "sm" \ 223
 -list { {"Diagnostic or Avoidance" "Undefined"} \ 224
 } 225
 226
• Error upon execution: User-defined attribute “Diagnostic or Avoidance” of type “enum” 227

does not support the "Undefined" input value. 228

Usage example with type hinting: 229

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" -type 230
{enum {"Avoidance" "Diagnostic"}} 231
add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" -type 232
"string" -update 233
 234
• Error upon execution: Cannot update a user-defined attribute’s datatype. 235

Usage example: Extend the data model using UDA to enable new tool-level features. 236

P a g e | 86

Copyright © Accellera Systems Initiative Inc. All rights reserved.

add_collection 237

Purpose Create a new collection of attributes.

Syntax add_collection collection_name
-object entity_object
-list { {name_of_the_attribute value}* }
-fmeda fmeda_name
[-description description]

Arguments collection_name Name (identifier) of the attribute.

-object entity_object The type of the attribute limits its applicability
to various objects of ERD.

-list { {name_of_the_attribute value}* } List of lists with defined names and values of
the attributes of the selected ERD object.

-fmeda fmeda_name Connects to the FMEDA project.

-description description Description of the attribute.

Return
value

Returns an empty string if successful, or
raises an ERROR if not.

 238

Notes: 239

• Collection works as an intermediate storage of attribute-value pairs before they get 240
assigned to an ERD object, weak object, or a relationship. 241

• Collection cannot be updated. 242

• Collection cannot be redefined. 243

• Repetitive declarations are to be discarded. 244

• Collection cannot be empty. 245

• Collection can use previously defined user-defined attributes. 246

• Collection must belong to particular ERD object. 247

• Collection cannot use attributes that do not belong to the selected ERD entity. 248

• Collection, when connected to a safety object, cannot overwrite attributes' values 249
already stored in an ERD entity. 250

• Values of attributes defined in a collection are copied over to an ERD entity upon 251
connection of said ERD object to the collection. Connection to be done by additional key 252
-collection. 253

Usage example with Safety Mechanisms definition: 254

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" 255
add_attribute "Error Response" -object "sm" -default "HW Error Flag" 256

P a g e | 87

Copyright © Accellera Systems Initiative Inc. All rights reserved.

add_attribute "ISO26262 DC" -object "sm" -default "High" 257
 258
add_collection "Baseline SM values" -object "sm" \ 259
 -list { {"Diagnostic or Avoidance" "Diagnostic"} \ 260
 {"Error Response" "Diagnostic"} \ 261
 {"ISO26262 DC" "High"} \ 262
 {"dc" {perm 95}} \ 263
 {"dc" {tran 90}} \ 264
 {"dc" {lat 0}} \ 265
 {"configurable" "no"} \ 266
 {"class" "HW"} \ 267
 {"fmeda" "TOP"} \ 268
 } 269
 -fmeda TOP 270
 271
 272
create_sm "SM_001" -collection "Baseline SM values" -description "My first SM, 273
with default values assigned" 274
create_sm "SM_002" -collection "Baseline SM values" -description "My second SM, 275
with default values assigned" 276
create_sm "SM_003" -collection "Baseline SM values" -description "My third SM, 277
with default values assigned" 278
create_sm "SM_004" -collection "Baseline SM values" -description "My 4th SM, with 279
default values assigned" 280
 281
Equivalent single command: 282
create_sm "SM_005" -class "HW" -configurable "no" -dc {{perm 95} {tran 90} {lat 283
0}} \ 284
 -attribute { {"Diagnostic or Avoidance" "Diagnostic"} \ 285
 {"Error Response" "Diagnostic"} \ 286
 {"ISO26262 DC" "High"} \ 287
 } \ 288
 -fmeda "TOP" 289
 -description "My 5th SM, with values assigned explicitly" 290
 291

Usage example with redefinition attempt: 292

add_attribute "Diagnostic or Avoidance" -object "sm" -default "Avoidance" 293
add_attribute "Error Response" -object "sm" -default "HW Error Flag" 294
 295
add_collection "Baseline SM values" -object "sm" \ 296
 -list { {"Diagnostic or Avoidance" "Diagnostic"} \ 297
 } 298
 299
 300
add_collection "Baseline SM values" -object "sm" \ 301
 -list { {"Diagnostic or Avoidance" "Avoidance"} \ 302
 } 303
• Error upon execution: Cannot redefine existing "Baseline SM values" collection. 304

Usage example with type mismatch: 305

add_attribute "Diagnostic or Avoidance" -object "fm" -default "Avoidance" 306
 307
add_collection "Baseline SM values" -object "sm" \ 308

P a g e | 88

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 -list { {"Diagnostic or Avoidance" "Diagnostic"} \ 309
 } 310
• Error upon execution: Illegal access to the user-defined "Diagnostic or Avoidance" 311

attribute. Type mismatch: The attribute "Diagnostic or Avoidance" belongs to the "fm" 312
ERD entity, whereas the collection belongs to the "sm" ERD entity. 313

P a g e | 89

Copyright © Accellera Systems Initiative Inc. All rights reserved.

assign_sm_fm 314

Purpose Assign safety mechanism to failure mode.

Syntax assign_sm_fm smfm_name
-sm_name safety_mechanism
-fm_name failure_mode
-parent parent
-fmeda fmeda_name
[-dc { {<perm | tran | lat> <estimated | measured> value %}* }]
-active <yes | no>
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments smfm_name Name (identifier) of the assignment.

-sm_name safety_mechanism Name (identifier) of the SM applied to the FM. R

-fm_name failure_mode Non-unique name (identifier) of the FM
covered by the SM.

R

-parent parent Defines a parent scope for a previously defined
Failure Mode to make an FM definition
unambiguous.

R

-fmeda fmeda_name Connects to the FMEDA project. R

-dc { {<perm | tran | lat> <estimated |
measured> value %}* }

Diagnostic coverage of the SM applied to the
FM for permanent faults. If no value is
specified, the DC_Perm value of the SM entity
will be used.

Notes: This value is specific to the SM-FM pair
and takes precedence over the DC_perm of the
SM category. If this is not specified, then the
value is taken from the DC_perm attribute of
the SM category.

R

-active [<yes | no>] Specifies whether the SM is enabled for this
FM.

Only accessible if the SM_Configurable
attribute = yes.

R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the
same smfm_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

P a g e | 90

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 315

Usage example: 316

add_collection "SM_default_99" -object "sm" -fmeda "CPU_FMEDA" \ 317
 -list { {"configurable" "no"} \ 318
 {"dc" "{{perm 99} {tran 99} {lat 100}}"} \ 319
 {"fmeda" "CPU_FMEDA"} } 320
 321
create_sm "SM_001" -class "AoU-SW" -collection "SM_default_99" 322
 323
assign_sm_fm "SM_001_to_ALU_X.MULT32.FM001" -sm_name "SM_001" -fm_name "FM_001" -324
parent "ALU_X.MULT32" \ 325
 -fmeda "CPU_FMEDA" -attribute {"use_case_generic" "no"} \ 326
 -dc {{perm estimated 90} {tran estimated 90} {lat estimated 100}} 327
 328

P a g e | 91

Copyright © Accellera Systems Initiative Inc. All rights reserved.

assign_fm_fme 329

Purpose Assign failure mode to failure mode effect.

Syntax assign_fm_fme fmfme_name
-fm_name failure_mode
-parent parent
-fme_name {fme_name }
-fmeda fmeda_name
-fme_weight { fme_weight }
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments fmfme_name Name (identifier) of the assignment.

-fm_name failure_mode Name (identifier) of the FM contributing to the
FME.

R

-parent parent Defines a parent scope for a previously
defined Failure Mode to make an FM
definition unambiguous.

R

-fme_name { fme_name } List of names (identifiers) of the FMEs caused
by the FM. Connects the FM to the FME that
represents the consequence seen at the top
level (of the DUA scope).

R

-fmeda fmeda_name Connects to the FMEDA project. R

-fme_weight { fme_weight } Weights of the contributions of the FM to the
list of FMEs defined in FME_list.

R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the
same fmfme_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 330

P a g e | 92

Copyright © Accellera Systems Initiative Inc. All rights reserved.

assign_te_fm 331

Purpose Assign technology element to failure mode.

Syntax assign_te_fm tefm_name
-te_name { te_name }
-fm_name { fm_name }
-parent parent
-fmeda fmeda_name
-fm_size { {<percentage | absolute | uniform-distribution> <perm | tran | bits> value }* }
[-fm_mapping { {<sv | vhdl | spice | user-defined> path }* }]
[-fm_mapping_exclude { {<sv | vhdl | spice | user-defined> path }* }]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments tefm_name Name (identifier) of the assignment.

-te_name { te_name } Defines a technology element in which the FM
is implemented.

R

-fm_name { fm_name } Defines a name of the target failure mode. R

-parent parent Connects the Failure Mode to its Parent in the
FS hierarchy.

R

-fmeda fmeda_name Connects to the FMEDA project. R

-fm_size { {<percentage | absolute |
uniform-distribution> <perm | tran | bits>
value }* }

The first value of an array defines whether the
FM_Size will be:

• Percentage: A percentage of the parent
Element_Size

• Absolute: An absolute value
• Uniform_Distribution: A uniform

distribution of the parent Element_Size

The second value of an array defines the type
of faults that can occur:

• Permanent
• Transient
• Bit

The third value defines the size of a FM where a
given type of fault can occur. This is used to
calculate a FMD for the associated TE. In the
semiconductor world, these fault types are
associated with combinatorial and sequential
logic gates, sequential logic gates, and storage
elements respectively.

This attribute is given precedence for an
assumption-based FMEDA. Otherwise, the FMD
is calculated based on the area of the FM
defined by the mapping to the design

R

P a g e | 93

Copyright © Accellera Systems Initiative Inc. All rights reserved.

hierarchy. Detailed semantics are to be defined
in the LRM.

-fm_mapping { {<sv | vhdl | spice | user-
defined> path }* }

Connects to the DUA representation and
identifies the portion of the design responsible
for the Failure Mode. This attribute is given
precedence for a calculation-based FMEDA.
Detailed semantics are to be defined in the
LRM.

R

-fm_mapping_exclude { {<sv | vhdl | spice
| user-defined> path }* }

Connects to the DUA representation and
identifies the portion of the design to be
excluded from the FM_Mapping. Can only be
used in conjunction with the FM_Mapping
attribute. This attribute is only used for a
calculation-based FMEDA.

R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the
same tefm_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 332

Usage example: 333

create_fm "FM_001" -parent "ELEMENT_A.ELEMENT_B" -safety_relevant "no" 334
 335
assign_fm_fme "TE_002" -source "expert" -fr {{perm 0.00000000073} {tran 336
0.00000000019}} 337
 338
assign_te_fm "AT_006" -te_name "TE_002" --fm_name "FM_001" -parent 339
"ELEMENT_A.ELEMENT_B" \ 340
 -fm_mapping {top.c.u.g.*, top.c.x.p.v.*, top.f.n.*} \ 341
 -fm_size {{absolute perm 26.45} {absolute tran 1428.73}} 342
 343

P a g e | 94

Copyright © Accellera Systems Initiative Inc. All rights reserved.

assign_te_element 344

Purpose Assign technology element to element.

Syntax assign_te_element teelement_name
-te_name { te_name }
-element_name { element_name }
-parent parent
-fmeda fmeda_name
[-element_size { {<perm | tran | bits> value }* }]
[-element_mapping { path }]
[-element_mapping_exclude { path }]
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments teelement_name Name (identifier) of the assignment.

-te_name { te_name } Defines a technology element in which the FM is
implemented.

R

-element_name { element_name } Defines an element to be connected to a
Technology element.

R

-parent parent Connects the Element to its Parent in the FS
hierarchy.

R

-fmeda fmeda_name Connects to the FMEDA project. R

-element_size { {<perm | tran | bits>
value }* }

The first value of an array defines the type of
faults that can occur:

• Permanent
• Transient
• Bit

The second value defines the size of an element
where a given type of fault can occur for the
corresponding TE.

This attribute is given precedence for an
assumption-based FMEDA. Otherwise, the
Element size is calculated based on the area
extracted by the mapping to the design
hierarchy. Detailed semantics are to be defined
in the LRM.

R

-element_mapping { path } Connects to the DUA representation and
identifies the portion of the design
implementing the intended functionality of the
Element. This attribute is given precedence for a
calculation-based FMEDA. Detailed semantics
are to be defined in the LRM.

R

-element_mapping_exclude { path } Connects to the DUA representation and
identifies the portion of the design to be

R

P a g e | 95

Copyright © Accellera Systems Initiative Inc. All rights reserved.

excluded from the Element_Mapping. Can only
be used in conjunction with the
Element_Mapping attribute. This attribute is
only used for a calculation-based FMEDA.

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the
same teelement_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 345

Usage example: 346

create_te "Analog_5n" -type "analog" -fr {perm 3e-9} 347
 348
create_element "PARTN" -fmeda "TOP" -type element 349
create_element "S_PART_X" -fmeda "TOP" -type element -parent "PARTN" 350
 351
assign_te_element -fmeda "TOP" -te_name "Analog_5n" -element_name "S_PART_Y" -352
parent "PARTN.S_PART_X" \ 353
 -element_mapping {top.a.b.c.*, top.a.b.p.q.*, top.a.s.t.p.*} 354
 -element_size {{perm 582.18} {tran 438.21} {bits 512}} 355
 356

P a g e | 96

Copyright © Accellera Systems Initiative Inc. All rights reserved.

define_fr_iso26262 357

Purpose Define a value of a Failure Rate associated with particular scope according to the FR type.

Syntax define_fr_iso26262 fr_name
-fr_type { {<intrinsic_fr | sr_failure_fr | nsr_fr | safe_fr | non_safe_fr | spf_fr | residual_fr |
mpf_fr | mpf_primary_fr | mpf_seconday_fr | mpf_detected | mpf_perceived | mpf_latent >
fr_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }
[-te_name { te_name }]
-analysis_type <perm | tran>
-fmeda fmeda_name
[-attribute { {name_of_the_user_defined_attribute value}* }]

[-update]

Arguments fr_name Name (identifier) of the
failure rate.

-fr_type { {<intrinsic_fr | sr_failure_fr | nsr_fr | safe_fr |
non_safe_fr | spf_fr | residual_fr | mpf_fr | mpf_primary_fr |
mpf_seconday_fr | mpf_detected | mpf_perceived |
mpf_latent > fr_value }* }

Failure Rates (FR)
calculated according to
Figure 10, Part 10, Clause 8
of ISO26262 [2].

R

-scope { <fmeda | element | fm | fme> value [parent] } Defines whether the FRs
are calculated for the
FMEDA, for an Element, for
a Failure Mode, or for a
Failure Mode Effect.

R

-te_name { te_name } Specifies for which
technology the FR is
calculated.

R

-analysis_type <perm | tran> Specifies the analysis type
the calculated FR belongs
to.

R

-fmeda fmeda_name Connects to the FMEDA
project.

R

-attribute { {name_of_the_user_defined_attribute value}* } Sets values of user-defined
attributes.

R

-update Indicates this command
provides additional
information for a previous
command with the same
fr_name.

R

 358

P a g e | 97

Copyright © Accellera Systems Initiative Inc. All rights reserved.

define_metric_iso26262 359

Purpose Define a value of a Metric associated with a particular scope according to the Metric’s type.

Syntax define_metric_iso26262 metric_name
-metric_type { {<spfm | lfm | pmhf> metric_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }
-te_name { te_name }
-analysis_type <perm | tran>
-fmeda fmeda_name
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments metric_name Name (identifier) of the metric definition.

-metric_type { {<spfm | lfm | pmhf>
metric_value }* }

Metrics calculated according to ISO 26262 [2]. R

-scope { <fmeda | element | fm | fme>
value [parent] }

Defines whether the metrics are calculated for
the FMEDA, for an Element, for a Failure
Mode, or for a Failure Mode Effect.

R

-te_name { te_name } Specifies for which technology the FR is
calculated.

R

-analysis_type <perm | tran> Care to be taken about the effect of FMEDA
Analysis Type. (Pending the decision on
whether we will have a single language for
input+output or two separate ones.)

R

-fmeda fmeda_name Connects to the FMEDA project. R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the
same metric_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 360

Usage example: 361

define_metric_iso26262 SPFM_Measured_P_global -metric_type {spfm 91.96} -scope 362
{fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -analysis_type perm 363
define_metric_iso26262 SPFM_Measured_T_global -metric_type {spfm 97.95} -scope 364
{fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -analysis_type tran 365
define_metric_iso26262 LFM_Measured_T_global -metric_type {lfm 92.74} -scope 366
{fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -analysis_type perm 367
define_metric_iso26262 PMHF_Measured_P_global -metric_type {pmhf 4.970} -scope 368
{fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -analysis_type perm 369

P a g e | 98

Copyright © Accellera Systems Initiative Inc. All rights reserved.

define_metric_iso26262 PMHF_Measured_T_global -metric_type {pmhf 1.786E-6} -scope 370
{fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -analysis_type tran 371
 372
define_metric_iso26262 IP_A_Global_Perm -metric_type {{spfm 91.96} {lfm 92.74} 373
{pmhf 4.970}}-scope {fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -374
analysis_type perm 375
define_metric_iso26262 IP_A_Global_Tran -metric_type {{spfm 97.95} {pmhf 1.786E-376
6}} -scope {fmeda IP_A} -te_name {"Digital_Area" "RAM"} -fmeda IP_A -analysis_type 377
tran 378
 379

P a g e | 99

Copyright © Accellera Systems Initiative Inc. All rights reserved.

define_fr_iec61508 380

Purpose Define the value of a Failure Rate associated with a particular scope according to the FR type.

Syntax define_fr_iec61508 fr_name
-fr_type { {<dangerous | dangerous_detected | dangerous_undetected > fr_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }
[-te_name { te_name }]
-analysis_type <perm | tran>
-fmeda fmeda_name
[-attribute { {name_of_the_user_defined_attribute value}* }] [-update]

Arguments fr_name Name (identifier) of the failure
rate.

 -fr_type { {<intrinsic_fr | sr_failure_fr | nsr_fr | safe_fr |
non_safe_fr | spf_fr | residual_fr | mpf_fr |
mpf_primary_fr | mpf_seconday_fr | mpf_detected |
mpf_perceived | mpf_latent > fr_value }* }

Failure Rates (FR) calculated
according to IEC 61508 [3].

R

-scope { <fmeda | element | fm | fme> value [parent] } Defines whether the FRs are
calculated for the FMEDA, for an
Element, for a Failure Mode, or
for a Failure Mode Effect.

R

-te_name { te_name } Specifies for which technology
the FR is calculated.

R

-analysis_type <perm | tran> Care to be taken about the effect
of the FMEDA Analysis Type.
(Pending the decision on
whether we will have a single
language for input+output or two
separate ones.)

R

-fmeda fmeda_name Connects to the FMEDA project. R

-attribute { {name_of_the_user_defined_attribute value}* } Sets values of user-defined
attributes.

R

-update Indicates this command provides
additional information for a
previous command with the
same fr_name.

R

 381

P a g e | 100

Copyright © Accellera Systems Initiative Inc. All rights reserved.

define_metric_iec61508 382

Purpose Define the value of a Metric associated with a particular scope according to the Metric’s type.

Syntax define_metric_iec61508 metric_name
-metric_type { {<SFF | Probability_dangerous_failure_low_demand |
Probability_dangerous_failure_high_demand> metric_value }* }
-scope { <fmeda | element | fm | fme> value [parent] }
-te_name { te_name }
-analysis_type <perm | tran>
-fmeda fmeda_name
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments metric_name Name (identifier) of the metric
definition.

-metric_type { {<SFF |
Probability_dangerous_failure_low_demand |
Probability_dangerous_failure_high_demand>
metric_value }* }

Metrics calculated according to
IEC 61508 [3].

R

-scope { <fmeda | element | fm | fme> value [parent] } Defines whether the metrics are
calculated for the FMEDA, for an
Element, for a Failure Mode, or
for a Failure Mode Effect.

R

-te_name { te_name } Specifies for which technology
the FR is calculated.

R

-analysis_type <perm | tran> Care to be taken about the
effect of the FMEDA Analysis
Type. (Pending the decision on
whether we will have a single
language for input+output or
two separate ones.)

R

-fmeda fmeda_name Connects to the FMEDA project. R

-attribute { {name_of_the_user_defined_attribute
value}* }

Sets values of user-defined
attributes.

R

-update Indicates this command provides
additional information for a
previous command with the
same metric_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 383

P a g e | 101

Copyright © Accellera Systems Initiative Inc. All rights reserved.

X. Annex C – Add-on to v0.1 384

This chapter describes commands that were considered by the working group, but no 385
decision was agreed on whether accept or decline them. This chapter is for informative 386
purposes only. 387

The full list of commands defined according to this extension is as follows: 388

• load_slf 389

• save_slf 390

• set_scope 391

• add_parameter 392

• attr_expr 393

• assign_fmeda_fmeda 394

• assign_fmeda_element 395

P a g e | 102

Copyright © Accellera Systems Initiative Inc. All rights reserved.

load_slf 396

SLF = safety language format. This naming was created to enable users to write scripts in SLF 397
and show examples containing file extensions. 398

This naming is not approved by the WG. 399

Purpose Load a project described with the language defined by Accellera’s FS WG.

Syntax load_slf filename
[-prefix name_of_the_prefix]
[-parameters { { name_of_the_parameter value}* }]

Arguments filename Name of the file to load into the Tcl console.

-prefix name_of_the_prefix A text value to prepend to all objects within a
loaded file.

-parameters { { name_of_the_parameter
value}* }

Overwrites values of parameters defined in
the loaded file.

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 400

Usage example: 401

402
SoC Project in ASIL D configuration ############## 403
404
load_slf "Project_A.slf" -parameters { "ATTR_ASIL_LEVEL" d } 405
 406
407
SoC Project in ASIL B configuration ############## 408
409
add_parameter "ATTR_ASIL_LEVEL2" -default d 410
load_slf "Project_B.slf" 411
 412
• Parameter ATTR_ASIL_LEVEL has a scope of load_slf command only. 413

• Parameter ATTR_ASIL_LEVEL2 has a global scope, including the load_slf command. 414

P a g e | 103

Copyright © Accellera Systems Initiative Inc. All rights reserved.

save_slf 415

SLF = safety language format. This naming was created to enable users to write scripts in SLF 416
and show example containing file extensions. 417

This naming is not approved by the WG. 418

Purpose Save active project in a target tool as a project in SLF format.

Syntax save_slf filename
[-fmeda fmeda_name]

Arguments filename Name of the file to save to.

-fmeda
fmeda_name

Name of the project to save. If omitted, all available projects are to
be saved.

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 419

P a g e | 104

Copyright © Accellera Systems Initiative Inc. All rights reserved.

set_scope 420

Purpose Set the scope of execution for subsequent commands.

Syntax set_scope [{ { <fmeda | parent | parent_prefix> value }* }]

Arguments { { <fmeda | parent | parent_prefix>
value }* }

Sets the value of the -fmeda key for all subsequent
calls.
Sets the value of a -parent key for all subsequent
calls.
Sets the value of a prefix for a -parent key for all
subsequent calls.
An empty value resets all scoping settings.

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 421

Usage examples: 422

create_fmeda "Project_D" 423
set_scope {"fmeda" "Project_D"} 424
 create_element "D1" -type "part" -parent "root" 425
 create_fm "FM001" -parent "D1" -dc {"tran" "measured" 91.5} 426
 create_fm "FM002" -parent "D1" -dc {"tran" "measured" 91.4} 427
 create_element sD1 -type "subpart" -parent "D1" 428
 set_scope {"parent" "sD1"} 429
 create_fm "FM003" -dc {"tran" "measured" 71.5} 430
 create_fm "FM004" -dc {"tran" "measured" 71.4} 431
 set_scope {{"parent" ""} {"parent_prefix" "D1.sD1"} 432
 create_element C1 -type "part" -parent root 433
 create_fm "FM001" -parent "C1" -dc {"perm" "measured" 99.5} 434
 create_fm "FM002" -parent "C1" -dc {"perm" "measured" 99.4} 435
 create_element sC1 -type "subpart" -parent "C1" 436
 create_fm "FM003" -parent "sC1" -dc {"perm" "measured" 437
79.5} 438
 create_fm "FM004" -parent "sC1" -dc {"perm" "measured" 439
79.4} 440
 441
• Omit -fmeda Project_D key for all subsequent commands. 442

• Omit -parent sD1 key for subsequent commands. 443

• Set parent_prefix so that all subsequent hierarchies can be copied from somewhere 444
else. 445

The set_scope command does not replace the existing -fmeda and -parent keys. It sets a 446
default value for those keys to reduce the necessity to duplicate the same entry all over 447
again. 448

P a g e | 105

Copyright © Accellera Systems Initiative Inc. All rights reserved.

add_parameter 449

Purpose Create a new parameter.

Syntax add_parameter parameter_name
-default value
[-type [<global | erd_entity >]]
[-description description]
[-update]

Arguments parameter_name Name (identifier) of the parameter.

-default value Default value of the parameter. R

-type [<global |
erd_entity >]

The type of the parameter limits its visibility to various
commands.

R

-description description Description of the parameter. R

-update Indicates this command provides additional information for a
previous command with the same parameter_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 450

Usage example based on UB-AB20 and UB-AB21: 451

add_parameter "ATTR_ASIL_LEVEL" -default d 452
add_parameter "ATTR_SIL_LEVEL" -default 4 453
add_parameter "ASIL_D_CONF" -default yes 454
add_parameter "ASIL_D_NO_EFF" -default 100 455
 456
create_fmeda "CPU_FMEDA" -type "assumption" -ASIL $ATTR_ASIL_LEVEL -SIL 457
$ATTR_SIL_LEVEL 458
 459
set_scope {"fmeda" "CPU_FMEDA"} 460
create_element "ALU_X" -type part 461
 462
set_scope {"parent" "ALU_X"} 463
create_element "MULT32" -type subpart 464
create_element "MULT16" -type subpart 465
create_element "ADD32" -type subpart 466
 467
set_scope { {"parent" ""} {"parent_prefix" "ALU_X"} } 468
create_fm "FM_001" -parent "MULT16" -no_effect { {perm $ASIL_D_NO_EFF} {tran 469
$ASIL_D_NO_EFF} } 470
create_fm "FM_002" -parent "MULT32" -no_effect { {perm $ASIL_D_NO_EFF} {tran 471
$ASIL_D_NO_EFF} } 472
create_fm "FM_003" -parent "ADD32" 473
create_fm "FM_004" -parent "ADD32" 474
create_fm "FM_005" -parent "ADD32" 475
 476
set_scope { {"parent" ""} {"parent_prefix" ""} } 477
 478
create_sm "SM_001" -class "AoU-SW" -configurable "no" -dc {{perm 90} {tran 90} 479

P a g e | 106

Copyright © Accellera Systems Initiative Inc. All rights reserved.

{lat 100}} 480
create_sm "SM_002" -class "HW" -configurable "no" -dc {{perm 90} {tran 90} 481
{lat 100}} 482
create_sm "SM_003" -class "AoU-HW" -configurable "yes" -dc {{perm 99} {tran 99} 483
{lat 100}} 484
 485
assign_sm_fm "SM3_FM1" -sm_name "SM_003" -fm_name "FM_004" -active $ASIL_D_CONF 486
 487

Usage example based on UB-AB20 and UB-AB21: 488

add_parameter "ATTR_ASIL_LEVEL" -default d 489
add_parameter "ATTR_SIL_LEVEL" -default 4 490
add_parameter "ASIL_D_CONF" -default yes 491
add_parameter "ASIL_D_NO_EFF" -default 100 492
 493
load_slf "Project_D.slf" 494

P a g e | 107

Copyright © Accellera Systems Initiative Inc. All rights reserved.

attr_expr 495

The attr_expr extension provided a support for the conditional usage of given values based 496
on equality or otherwise of a previously declared parameter. 497

Usage example: Project A has a new parameter “ATTR_ASIL_LEVEL” defined that can take 498
multiple values. A UDA “config” is assigned to the value of the “ATTR_ASIL_LEVEL” 499
parameter. DC values are assigned using the conditional command attr_expr, which allows 500
the use of different DC metrics based on a selected input ASIL level that is passed through 501
the “ATTR_ASIL_LEVEL” parameter. This allows one FMEDA project to store information 502
related to multiple ASIL levels, design configurations, device configurations, and so on 503
within one file without relying on extensions provided by tool vendors. 504

################## 505
Project A #### 506
################## 507
add_parameter "ATTR_ASIL_LEVEL" -default b 508
add_attribute "config" -object "create_sm" -default "" 509
 510
create_sm "SM_001" -class "AoU-SW" -configurable "no" \ 511

-attribute { "config" $ATTR_ASIL_LEVEL } 512
 -dc {{perm 90 -attr_expr {config == "d"}} \ 513

 {tran 90 -attr_expr {config == "d"}} \ 514
 {lat 100 -attr_expr {config == "d"}}} \ 515

 516
 -dc {{perm 0 -attr_expr {config == "b"}} \ 517

 {tran 0 -attr_expr {config == "b"}} \ 518
 {lat 0 -attr_expr {config == "b"}}} 519
 520
 521
SoC Project in ASIL D configuration ############## 522
add_parameter "ATTR_ASIL_LEVEL" -default d 523
load_slf "Project_A.slf" 524
 525
SoC Project in ASIL B configuration ############## 526
add_parameter "ATTR_ASIL_LEVEL" -default b 527
load_slf "Project_A.slf" 528

 529
• Expression attr_expr looks for user-defined attributes. 530

• Value of attribute config is set to parameter $ATTR_ASIL_LEVEL. 531

• Project A is loaded into SoC-level project with configuration d. 532

• Project A is loaded into SoC-level project with configuration b. 533

P a g e | 108

Copyright © Accellera Systems Initiative Inc. All rights reserved.

assign_fmeda_fmeda 534

Purpose Assign fmeda to fmeda.

Syntax assign_fmeda_fmeda fmeda_fmeda_name
-top top_fmeda_name
-ip { ip_fmeda_name }
[-attribute { {name_of_the_user_defined_attribute value}* }]
[-update]

Arguments fmeda_fmeda_name Name (identifier) of the assignment.

-top top_fmeda_name Name of the top-level FMEDA. R

-ip { ip_fmeda_name } List of the FMEDAs to be aggregated into the
top_FMEDA.

R

-attribute {
{name_of_the_user_defined_attribute
value}* }

Sets values of user-defined attributes. R

-update Indicates this command provides additional
information for a previous command with the
same fmeda_fmeda_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

 535

Usage example: 536

load_slf “Project_A.slf” 537
load_slf “Project_B.slf” 538
load_slf “Project_C.slf” 539
 540
create_fmeda “UC-CB3” -asil “D” -analysis “permanent” -creator “Tier1” -541
hierarchical yes 542
assign_fmeda_fmeda ABC_A -top “UC-CB3” -ip “Project_A” 543
assign_fmeda_fmeda ABC_B -top “UC-CB3” -ip “Project_B” 544
assign_fmeda_fmeda ABC_C -top “UC-CB3” -ip “Project_C” 545
 546

P a g e | 109

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 547

Figure 22. Block diagram of assign_fmeda_fmeda command. 548

P a g e | 110

Copyright © Accellera Systems Initiative Inc. All rights reserved.

assign_fmeda_element 549

Purpose Assign FMEDA project to an element.

Syntax assign_fmeda_element fmeda_element_name
-mode <summary | detailed>
-target { target_fmeda_name target_safety_hierarchy_object }
-source { source_fmeda_name source_safety_hierarchy_object }
-fmeda fmeda_name
[-description description]
[-update]

Arguments fmeda_element_name Name (identifier) of the assignment.

-mode <summary | detailed> Specifies the how the selected element connects to
another FMEDA project.

• summary: Converts the existing hierarchy into a
“one-liner.” A whole hierarchy and all failure
modes should be converted into a top-level
hierarchy and an FM using top-level FMEs from
the IP. If this is used with -copy = no, then this
“one-liner” is recreated each time there is an
update trigger action. We also must copy the SM
with the AoU class.

• detailed: Brings the whole hierarchy from the
remote project.

-target { target_fmeda_name
target_safety_hierarchy_object }

Specifies a project and an element name of the target
object. (The target is an object that is being replaced
with external information.)

-source { source_fmeda_name
source_safety_hierarchy_object }

Specifies a project and an element name of the source
object.

-fmeda fmeda_name Connects the FS hierarchy to the FMEDA project.

-description description Description of the intended functionality of the
Element.

R

-update Indicates this command provides additional
information for a previous command with the same
fmeda_fmeda_name.

R

Return
value

Returns an empty string if successful, or raises an ERROR if not.

P a g e | 111

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 550

 551

Figure 23. Block diagram of the assign_fmeda_element command. 552

P a g e | 112

Copyright © Accellera Systems Initiative Inc. All rights reserved.

XI. Annex D – Repository 553

This document describes validation efforts targeted to validate the data model v0.1 and a 554
language at the same time. Given that the language description is far from being finalized, 555
some assumptions were made that are captured in the beginning of this document. 556

List of additional assumptions: 557

• SLF - Safety Language Format 558

• ESLF - Encrypted SLF 559

A. Example 1 560

 561

Figure 24. Example 562

Example of uncompressed code: 563

create_fmeda "CPU_FMEDA" -type "assumption" 564
 create_element "ALU_X" -type part -fmeda "CPU_FMEDA" 565
 create_element "ADD32" -type subpart -parent "ALU_X" -fmeda "CPU_FMEDA" 566
 create_fm "FM_001" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA" 567
 create_fm "FM_002" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA" 568
 create_fm "FM_003" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA" 569
 create_element "MULT32" -type subpart -parent "ALU_X" -fmeda "CPU_FMEDA" 570
 create_fm "FM_001" -parent "ALU_X.MULT32" -fmeda "CPU_FMEDA" 571
 create_element "PARTN" -type part -fmeda "CPU_FMEDA" 572
 create_element "S_PART_X" -type subpart -parent "PARTN" -fmeda "CPU_FMEDA" 573
 create_element "S_PART_Z" -type subpart -parent "PARTN.S_PART_X" -fmeda 574
"CPU_FMEDA" 575
 create_fm "FM_001" -parent "PARTN.S_PART_X.S_PART_Z" -fmeda "CPU_FMEDA" 576
 create_element "S_PART_Y" -type subpart -parent "PARTN.S_PART_X" -fmeda 577
"CPU_FMEDA" 578
 create_fm "FM_003" -parent "PARTN.S_PART_X.S_PART_Y" -fmeda "CPU_FMEDA" 579
 create_fm "FM_004" -parent "PARTN.S_PART_X.S_PART_Y" -fmeda "CPU_FMEDA" 580
 create_element "PARTD" -type part -fmeda "CPU_FMEDA" 581
 create_fm "FM_001" -parent "PARTD" -fmeda "CPU_FMEDA" 582

P a g e | 113

Copyright © Accellera Systems Initiative Inc. All rights reserved.

B. Example 2 583

 584

Figure 25. Example 585

P a g e | 114

Copyright © Accellera Systems Initiative Inc. All rights reserved.

C. Example 3 586

1. Create an FS hierarchy with multiple levels of subparts. 587

2. Create an FM for parts and for subparts. 588

3. Assign multiple technologies to the same FM. 589

4. Assign sizes to both the FM and the Element; check precedence schema. 590

 591

Figure 26. Example 592

Example of code using only the element type of objects: 593

create_fmeda "CPU_FMEDA" -type "assumption" 594
create_element "ALU_X" -type element -fmeda "CPU_FMEDA" 595
create_element "ADD32" -type element -parent "ALU_X" -fmeda "CPU_FMEDA" 596
create_fm "FM_001" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA" 597
assign_te_fm -te_name "Digital_5n" -fm_name "FM_001" -parent "ALU_X.ADD32" -598
fm_size { absolute perm 15 } -fmeda "CPU_FMEDA" 599
create_fm "FM_002" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA" 600
assign_te_fm -te_name "Digital_5n" -fm_name "FM_002" -parent "ALU_X.ADD32" -601
fm_size { absolute perm 5 } -fmeda "CPU_FMEDA" 602
create_fm "FM_003" -parent "ALU_X.ADD32" -fmeda "CPU_FMEDA" 603
assign_te_fm -te_name "Digital_5n" -fm_name "FM_003" -parent "ALU_X.ADD32" -604
fm_size { absolute perm 10 } -fmeda "CPU_FMEDA" 605
create_element "MULT32" -type subpart -parent "ALU_X"-fmeda "CPU_FMEDA" 606
create_fm "FM_001" -parent "ALU_X.MULT32" -fmeda "CPU_FMEDA" 607
assign_te_fm -te_name "Digital_5n" -fm_name "FM_001" -parent "ALU_X.MULT32" -608
fm_size { absolute perm 35 } -fmeda "CPU_FMEDA" 609
create_element "PARTN" -type element -fmeda "CPU_FMEDA" 610
create_element "S_PART_X" -type element -parent "PARTN" -fmeda "CPU_FMEDA" 611
assign_te_element -te_name "Analog_5n" -element_name "S_PART_Y" -parent 612
"PARTN.S_PART_X" -fm_size { absolute perm 100 } -fmeda "CPU_FMEDA" 613

P a g e | 115

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_element "S_PART_Z" -type element -parent "PARTN.S_PART_X" -fmeda 614
"CPU_FMEDA" 615
create_fm "FM_001" -parent "PARTN.S_PART_X.S_PART_Z" -fmeda "CPU_FMEDA" 616
assign_te_fm -te_name "Digital_5n" -fm_name "FM_001" -parent 617
"PARTN.S_PART_X.S_PART_Z" -fm_size { absolute perm 55 } -fmeda "CPU_FMEDA" 618
create_element "S_PART_Y" -type element -parent "PARTN.S_PART_X" -fmeda 619
"CPU_FMEDA" 620
create_fm "FM_003" -parent "PARTN.S_PART_X.S_PART_Y" -fmeda "CPU_FMEDA" 621
assign_te_fm -te_name "Digital_5n" -fm_name "FM_003" -parent 622
"PARTN.S_PART_X.S_PART_Y" -fm_size { absolute perm 40 } -fmeda "CPU_FMEDA" 623
assign_te_fm -te_name "Analog_5n" -fm_name "FM_003" -parent 624
"PARTN.S_PART_X.S_PART_Y" -fm_size { absolute perm 60 } -fmeda "CPU_FMEDA" 625
create_fm "FM_004" -parent "PARTN.S_PART_X.S_PART_Y" -fmeda "CPU_FMEDA" 626
assign_te_fm -te_name "Analog_5n" -fm_name "FM_004" -parent 627
"PARTN.S_PART_X.S_PART_Y" -fm_size { absolute perm 20 } -fmeda "CPU_FMEDA" 628
create_element "PARTD" -type element -fmeda "CPU_FMEDA" 629
create_fm "FM_001" -parent "PARTD" -fmeda "CPU_FMEDA" 630
assign_te_fm -te_name "RAM_5n" -fm_name "FM_001" -parent "PARTD" -fm_size { 631
absolute perm 100 } -fmeda "CPU_FMEDA" 632
create_te "Analog_5n" -type "analog" -fr {perm 3e-9} 633
create_te "Digital_5n" -type "digital" -fr {perm 1e-9} -fr {tran 8e-9} 634
create_te "RAM_5n" -type "ram" -fr {tran 10e-9} 635
 636
1. Create FMEDA project 637

2. Create top-level element ALU_X 638

3. Create 2nd-level element ADD32, its FMs, link it to TEs 639

4. Create 2nd-level element MULT32, its FMs, link it to TEs 640

5. Create top-level element PARTN 641

6. Create 2nd-level element S_PART_Z, its nested elements, its FMs, link it to TEs 642

7. Create top-level element `PARTD 643

8. Create TEs 644

P a g e | 116

Copyright © Accellera Systems Initiative Inc. All rights reserved.

D. Example 4 645

Introduction 646

Review of a simplified block diagram of a safety design of the FIFO module. 647

 648

Figure 27. Block diagram of the safety design. 649

The steps below incrementally present source code of the project as well as diagrams of 650
objects created according to the data model v0.1. A color coding of connections on the 651
diagrams serves only illustrative purposes to ensure a picture with sharp contrast. Please 652
note that connections are also objects of ERD called "relationship" with their own set of 653
attributes. Rectangular boxes are objects of ERD called "object;" an object can have a built-654
in set of attributes and can also reuse a collection, in which case the object is shown 655
explicitly. Built-in attributes and their values are not shown. 656

In the illustrations below, the grey box at the right is not a project scope; it is simply a 657
drawing canvas that allows us to logically encapsulate a tool working area for easier review. 658
Data sources that do not expected to exist within a working area of an imaginary software 659
tool will be placed explicitly outside of the drawing canvas. Whether an object belongs to 660
the FMEDA project or not is defined by the existence or absence of a connection net from 661
the leaf object to the FMEDA object on the top, unless otherwise explicitly stated otherwise 662
with a Warning sign below the illustration. 663

P a g e | 117

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Be aware that this example is an attempt to map existing a simple FMEDA project from a 664
commercial tool to a newly developed draft of a safety language. It highlights the flexibility 665
of a new language that supports all necessary basic constructs and means to store 666
additional metadata. 667

Step 0. Understand the Difference Between a Language and a Data Model 668

 669

Figure 28. Example of objects created by various commands, and allocation of attributes into predefined data 670
model fields. 671

Figure 28 demonstrates a crucial difference between a data model and a language. The data 672
model and its requirements define the set of data that must be present in a project 673
regardless of its format (e.g., safety language, Excel file, database). The language defines a 674
way to populate that data in a format that is human-readable and machine-readable. While 675
the Accellera FS WG is using a well-defined framework to ensure consistency of the data 676
model and language, a direct derivation of every command key from every data model’s 677
objects' attributes was considered to be extremely wordy. Due to that fact, language 678
commands, while still being directly derived from the data model objects, are more efficient 679
and optimized for the writing of a project manually. 680

You can see that the create_sm command is using multiple ways to store DC metrics in an 681
imaginary object “SM.” 682

The language does not define implementation details of the expected tools’ backend. Also, 683
it doesn’t define what effect executing a command should be on a tool level. Currently, the 684
language’s commands are a data container that hold all necessary data. 685

P a g e | 118

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 1. Create a Library of Collections of Attributes 686

 687

Figure 29. Block diagram of the objects created according to the data model definitions in step 1. 688

This example is based on data obtained from a commercial tool, and while the set of 689
available fields was purposefully reduced, it’s explicitly shown here that often the user’s 690
intent is to store more data than is supported by baseline objects and their attributes of the 691
data model and language. Nevertheless, the add_attribute command enables the storing of 692
metadata in a convenient way. User-defined attributes are a powerful way to store all types 693
of data in the format that is accepted by various tools. 694

User-defined attributes, while being a standard syntax of the language, cannot be 695
understood equally by all tools. It’s expected that all members of this WG and the broader 696
safety community will communicate back to the WG with proposals of the most prevalent 697
user-defined attributes as baseline attributes for adoption. 698

A reluctance to contribute back will inevitably cause a fragmentation of an ecosystem and 699
will prevent the correct interoperability of projects. 700

The second step in enabling reusability within the same project is to use the add_collection 701
command as a virtual static container for a set of attributes and their values. 702

P a g e | 119

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Source code example of creating a project and a library of collections: 703

create_fmeda IP_A -type calculation-based -asil d -sil 4 -analysis all -creator 704
119lasov -date 10/03/2023 -version 0.1 -data_model_version 0.1 -hierarchical no 705
 706
Additional Primary SM attributes 707
add_attribute “Diagnostic or Avoidance” -object “sm” -default “Avoidance” -type 708
{enum {“Avoidance” “Diagnostic”}} 709
add_attribute “Error Response” -object “sm” -default “HW Error Flag” 710
add_attribute “ISO26262 DC” -object “sm” -default “High” -type {enum 711
{“Low” “Medium” “High”}} 712
add_attribute “Category” -object “sm” -default “HW” 713
add_attribute “Default SM Type” -object “sm” -default “” 714
add_attribute “Name” -object “sm” -default “” 715
add_attribute “Primary” -object “sm” -default “no” -type {enum 716
{“yes” “no”}} 717
add_attribute “Generic comment” -object “global” -default “” 718
add_attribute “Equivalent ISO 26262 Diagnostic” -object “sm” -default “” 719
 720
add_collection “Baseline SM” -object “sm” \ 721
 -list { 722
 {“Diagnostic or Avoidance” “Diagnostic”} \ 723
 {“Error Response” “HW Error Flag”} \ 724
 {“ISO26262 DC” “High”} \ 725
 {“Category” “HW”} \ 726
 {“configurable” “no”} \ 727
 {“class” “HW”} \ 728
 {“fmeda” “IP_A”} \ 729
 } 730
 -fmeda IP_A 731
 732
Each collection represents one Safety Mechanism Type 733
add_collection “SMT Dup & cmp” -object “sm” -list { {“dc” {perm 95}} {“dc” {tran 734
90}} {“dc” {lat 0}} } -fmeda IP_A 735
add_collection “SMT ECC” -object “sm” -list { {“dc” {perm 99}} {“dc” {tran 736
99}} {“dc” {lat 0}} } -fmeda IP_A 737
add_collection “SMT LBIST” -object “sm” -list { {“dc” {perm 0}} {“dc” {tran 738
0}} {“dc” {lat 95}} } -fmeda IP_A 739
 740

P a g e | 120

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 2. Create a Library of Safety Mechanisms 741

 742

Figure 30. Block diagram of the objects created according to the data model definitions in step 2. 743

While the language supports Safety Mechanisms as objects attached to an FMEDA project, it 744
also supports Safety Mechanisms independently. In this particular example, there’s no 745
specific goal in having Safety Mechanisms not connected to the FMEDA project, but it is 746
more closely aligned with the user’s intent. 747

Source code example of creating a library of Safety mechanisms: 748

create_sm "SM001" -collection "Baseline SM" -collection "SMT Dup & cmp" \ 749
 -attribute {{"Primary" "no"} {"Name" "Flag Logic Dup"}} \ 750
 -attribute {"Equivalent ISO 26262 Diagnostic" "Processing units: 751
Regis-ters::HW redundancy (e.g.dual core lockstep, asym-metric redundancy, coded 752
processing)"} 753
 754
create_sm "SM002" -collection "Baseline SM" -collection "SMT Dup & cmp" \ 755
 -attribute {{"Primary" "no"} {"Name" "WR Logic Dup"}} 756
 -attribute {"Equivalent ISO 26262 Diagnostic" "Processing units: 757
Regis-ters::HW redundancy (e.g.dual core lockstep, asym-metric redundancy, coded 758
processing)"} 759
 760
create_sm "SM003" -collection "Baseline SM" -collection "SMT Dup & cmp" \ 761
 -attribute {{"Primary" "no"} {"Name" "RD Logic Dup"}} \ 762
 -attribute {"Equivalent ISO 26262 Diagnostic" "Processing units: 763
Regis-ters::HW redundancy (e.g.dual core lockstep, asym-metric redundancy, coded 764
processing)"} 765
 766
create_sm "SM004" -collection "Baseline SM" -collection "SMT ECC" \ 767
 -attribute {{"Primary" "no"} {"Name" "ECC"}} \ 768

P a g e | 121

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 -attribute {"Equivalent ISO 26262 Diagnostic" "Volatile memory::Memory 769
monitoring using error-detection-correction codes(EDC)"} 770
 771
create_sm "LSM001" -collection "Baseline SM" \ 772
 -collection "SMT LBIST" \ 773
 -attribute { 774
 {"Primary" "no"} \ 775
 {"Name" "LBIST"} \ 776
 {"Error Response" "Abort"} \ 777
 {"ISO26262 DC" "Medium"} \ 778
 {"Equivalent ISO 26262 Diagnostic" "Processing units: Registers::Self-test 779
supported by hardware(one-channel)"} 780
 } 781

P a g e | 122

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 3. Create the Safety Hierarchy 782

 783

Figure 31. Block diagram of the objects created according to the data model definitions in step 3. 784

The FIFO demo project is quite simple, so here we have created four parts. 785

Source code example of creating a Safety hierarchy: 786

create_element FLAGS -parent IP_A -type part -fmeda IP_A -description "Status 787
flags control logic" 788
create_element WP -parent IP_A -type part -fmeda IP_A -description "Write 789
pointer logic" 790
create_element RP -parent IP_A -type part -fmeda IP_A -description "Read 791
pointer logic" 792
create_element SRAM -parent IP_A -type part -fmeda IP_A -description "SRAM 793
memory" 794

P a g e | 123

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 4. Create Failure Modes and Assisting Collections 795

 796

Figure 32. Block diagram of the objects created according to the data model definitions in step 4. 797

For each part we create two Failure modes. One is to be associated later with the actual 798
design hierarchy, and the other one with the safety mechanism hierarchy. This difference is 799
reflected by using various values for the os -type attribute. 800

Source code example of creating Failure modes and assisting collections: 801

add_attribute "Probability to violate Safety Goal" -object "fm" -default 802
"no" -type {enum {"yes" "no"}} 803
add_attribute "Systematic or random failure" -object "fm" -default 804
"random" -type {enum {"systematic" "random"}} 805
add_attribute "Potential faults" -object "fm" -default "" 806
add_attribute "Potential errors" -object "fm" -default "" 807
add_attribute "Permanent ot transient" -object "fm" -default "" 808
-type {enum {"permanent" "transient"}} 809
add_attribute "Potential Cause of SM Fault" -object "fm" -default "" 810
-type {enum {"SEU" "TDDB"}} 811
add_attribute "ISO 26262 Equivalent Fault/Error/Failure" -object "fm" -default "" 812
 813
 814
add_collection "Baseline FM" -object "fm" \ 815
 -list { 816
 {"Probability to violate Safety Goal" "yes"} \ 817
 {"Systematic or random failure" "random"} \ 818
 {"safety_relevant" "yes"} 819
 } 820
 -fmeda IP_A 821
 822

P a g e | 124

Copyright © Accellera Systems Initiative Inc. All rights reserved.

create_fm "F001" -parent FLAGS -type mission -safety_relevant yes -dc_aggregation 823
max \ 824
 -no_effect { {perm 0} {tran 100} } \ 825
 -perceived { {perm 0} {tran 0} } \ 826
 -attribute {{"Potential faults" "Flag logic is faulty"} \ 827
 {"Potential errors" "Incorrect flag indication"} \ 828
 {"Potential Cause of SM Fault" "TDDB"} \ 829
 {"ISO 26262 Equivalent Fault/Error/Failure" "Processing units: 830
Registers::Stackoverflow/underflow"}} 831
 -collection "Baseline FM" 832
 833
create_fm "F002" -parent FLAGS -type passive -safety_relevant yes -dc_aggregation 834
max \ 835
 -no_effect { {perm 100} {tran 0} } \ 836
 -perceived { {perm 0} {tran 0} } \ 837
 -attribute {{"Potential faults" "Flag logic is faulty"} \ 838
 {"Potential errors" "Incorrect flag indication"} \ 839
 {"Potential Cause of SM Fault" "SEU"} \ 840
 {"ISO 26262 Equivalent Fault/Error/Failure" "Processing units: 841
Registers::Stackoverflow/underflow"}} 842
 -collection "Baseline FM" 843
 844
create_fm "F003" -parent WP -type mission -safety_relevant yes -dc_aggregation max 845
\ 846
 -no_effect { {perm 0} {tran 100} } \ 847
 -perceived { {perm 0} {tran 0} } \ 848
 -attribute {{"Potential faults" "WR logic is faulty"} \ 849
 {"Potential errors" "Incorrect WR ptr to SRAM"} \ 850
 {"Potential Cause of SM Fault" "TDDB"} 851
 {"ISO 26262 Equivalent Fault/Error/Failure" "Processing units: 852
Registers::Stackoverflow/underflow"}} 853
 -collection "Baseline FM" 854
 855
create_fm "F004" -parent WP -type passive -safety_relevant yes -dc_aggregation max 856
\ 857
 -no_effect { {perm 100} {tran 0} } \ 858
 -perceived { {perm 0} {tran 0} } \ 859
 -attribute {{"Potential faults" "WR logic is faulty"} \ 860
 {"Potential errors" "Incorrect WR ptr to SRAM"} \ 861
 {"Potential Cause of SM Fault" "SEU"} \ 862
 {"ISO 26262 Equivalent Fault/Error/Failure" "Processing units: 863
Registers::Stackoverflow/underflow"}} 864
 -collection "Baseline FM" 865
 866
create_fm "F005" -parent RP -type mission -safety_relevant yes -dc_aggregation max 867
\ 868
 -no_effect { {perm 0} {tran 100} } \ 869
 -perceived { {perm 0} {tran 0} } \ 870
 -attribute {{"Potential faults" "RP logic is faulty"} \ 871
 {"Potential errors" "Incorrect RD ptr to SRAM"} \ 872
 {"Potential Cause of SM Fault" "TDDB"} \ 873
 {"ISO 26262 Equivalent Fault/Error/Failure" "Processing units: 874
Registers::Stackoverflow/underflow"}} 875
 -collection "Baseline FM" 876
 877
create_fm "F006" -parent RP -type passive -safety_relevant yes -dc_aggregation max 878
\ 879
 -no_effect { {perm 100} {tran 0} } \ 880
 -perceived { {perm 0} {tran 0} } \ 881

P a g e | 125

Copyright © Accellera Systems Initiative Inc. All rights reserved.

 -attribute {{"Potential faults" "RP logic is faulty"} \ 882
 {"Potential errors" "Incorrect RD ptr to SRAM"} \ 883
 {"Potential Cause of SM Fault" "SEU"} \ 884
 {"ISO 26262 Equivalent Fault/Error/Failure" "Processing units: 885
Registers::Stackoverflow/underflow"}} 886
 -collection "Baseline FM" 887
 888
create_fm "F007" -parent SRAM -type mission -safety_relevant yes -dc_aggregation 889
max \ 890
 -no_effect { {perm 0} {tran 100} } \ 891
 -perceived { {perm 0} {tran 0} } \ 892
 -attribute {{"Potential faults" "Failure in SRAM bits"} \ 893
 {"Potential errors" "Corrupted data in SRAM"} \ 894
 {"Potential Cause of SM Fault" "TDDB"} \ 895
 {"ISO 26262 Equivalent Fault/Error/Failure" "Volatile memory::d.c. 896
faults model(addr,data,control)"}} 897
 -collection "Baseline FM" 898
 899
create_fm "F008" -parent SRAM -type active -safety_relevant yes -dc_aggregation 900
max \ 901
 -no_effect { {perm 100} {tran 0} } \ 902
 -perceived { {perm 0} {tran 0} } \ 903
 -attribute {{"Potential faults" "Failure in SRAM bits"} \ 904
 {"Potential errors" "Corrupted data in SRAM"} \ 905
 {"Potential Cause of SM Fault" "SEU"} \ 906
 {"ISO 26262 Equivalent Fault/Error/Failure" "Volatile memory::d.c. 907
faults model(addr,data,control)"}} 908
 -collection "Baseline FM" 909

P a g e | 126

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 5. Assign Safety Mechanisms to Failure Modes 910

 911

Figure 33. Block diagram of the objects created according to the data model definitions in step 5. 912

Links related to baseline collections have been removed from the image. 913

Source code example of creating a link from Safety mechanisms to Failure modes: 914

assign_sm_fm PSM_to_perm_FM_FLAG -sm_name SM001 -fm_name {"F001" "F002"} -parent 915
IP_A -fmeda IP_A -active yes 916
assign_sm_fm PSM_to_perm_FM_WP -sm_name SM002 -fm_name {"F003" "F004"} -parent 917
IP_A -fmeda IP_A -active yes 918
assign_sm_fm PSM_to_perm_FM_RP -sm_name SM003 -fm_name {"F005" "F006"} -parent 919
IP_A -fmeda IP_A -active yes 920
assign_sm_fm PSM_to_perm_FM_SRAM -sm_name SM004 -fm_name {"F007" "F008"} -parent 921
IP_A -fmeda IP_A -active yes 922
assign_sm_fm LBSIT_to_all_latent_FM -sm_name LSM001 -fm_name {"F001" "F003" "F005" 923
"F007"} -parent IP_A -fmeda IP_A -active yes 924

P a g e | 127

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 6. Create Technology Elements 925

 926

Figure 34. Block diagram of the objects created according to the data model definitions in step 6. 927

Source code example of creating technology elements: 928

create_te "Digital_Area" -type digital -source IEC_62380 -fr {{perm 0.03033} {tran 929
0} } 930
create_te "Analog_Area" -type analog -source IEC_62380 -fr {{perm 0.03033} {tran 931
0.01} } 932
create_te "ROM" -type ram -source IEC_62380 -fr {{perm 0.03033} {tran 933
1e-7} } 934
create_te "RAM" -type rom -source IEC_62380 -fr {{perm 0.03033} {tran 935
1e-7} } 936
create_te "Flops" -type digital -source IEC_62380 -fr {{perm 0} {tran 937
3.4e-6}} 938

P a g e | 128

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 7. Assign Technology Elements to Failure Modes, Mapping 939

 940

Figure 35. Block diagram of the objects created according to the data model definitions in step 7. 941

 942

Figure 36. Detalization of a TE-to-FM connection with design data mapping. Native attributes are shown to 943
illustrate internal data structures. 944

 945

P a g e | 129

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Source code example of creating a link from Technology elements to Failure modes with 946
design data mapping: 947

add_attribute "TE_Gates" -object "te" -default 0 948
add_attribute "TE_Flops" -object "te" -default 0 949
assign_te_fm "F001_DD" -te_name "Digital_Area" -fm_name "F001" -parent IP_A -fmeda 950
IP_A -fm_size {absolute perm 330.85} -fm_mapping {"test.DUT.FL_IF"} -attribute 951
{{"TE_Gates" 34} {"TE_Flops" 4}} 952
assign_te_fm "F002_DD" -te_name "Digital_Area" -fm_name "F002" -parent IP_A -fmeda 953
IP_A -fm_size {absolute perm 330.85} -fm_mapping {"test.DUT.FL_SM"} -attribute 954
{{"TE_Gates" 34} {"TE_Flops" 4}} 955
assign_te_fm "F003_DD" -te_name "Digital_Area" -fm_name "F003" -parent IP_A -fmeda 956
IP_A -fm_size {absolute perm 147.46} -fm_mapping {"test.DUT.RP_IF"} -attribute 957
{{"TE_Gates" 8} {"TE_Flops" 3}} 958
assign_te_fm "F004_DD" -te_name "Digital_Area" -fm_name "F004" -parent IP_A -fmeda 959
IP_A -fm_size {absolute perm 147.46} -fm_mapping {"test.DUT.RP_SM"} -attribute 960
{{"TE_Gates" 8} {"TE_Flops" 3}} 961
assign_te_fm "F005_DD" -te_name "Digital_Area" -fm_name "F005" -parent IP_A -fmeda 962
IP_A -fm_size {absolute perm 158.52} -fm_mapping {"test.DUT.WP_IF"} -attribute 963
{{"TE_Gates" 10} {"TE_Flops" 3}} 964
assign_te_fm "F006_DD" -te_name "Digital_Area" -fm_name "F006" -parent IP_A -fmeda 965
IP_A -fm_size {absolute perm 158.52} -fm_mapping {"test.DUT.WP_SM"} -attribute 966
{{"TE_Gates" 10} {"TE_Flops" 3}} 967
assign_te_fm "F007_DD" -te_name "RAM" -fm_name "F007" -parent IP_A -fmeda IP_A -968
fm_size {absolute bits 192.00} -fm_mapping {"test.DUT.sdpram_i1.sdpram_i1"} -969
attribute {{"TE_Gates" 2} {"TE_Flops" 0}} 970
assign_te_fm "F008_DD" -te_name "RAM" -fm_name "F008" -parent IP_A -fmeda IP_A -971
fm_size {absolute bits 192.00} -fm_mapping {"test.DUT.sdpram_i1.sdpram_i1"} -972
attribute {{"TE_Gates" 2} {"TE_Flops" 0}} 973

P a g e | 130

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 8. Create Failure Mode Effects and Connect them to Failure Modes 974

 975

Figure 37. Block diagram of the objects created according to the data model definitions in step 8. 976

Source code example of creating a link from Technology elements to Failure modes, 977
mapping. 978

create_fme "FME001" -fmeda IP_A -description "Loss of data" 979
create_fme "FME002" -fmeda IP_A -description "Incorrect data" 980
assign_fm_fme "FME001_Contributors" -fmeda IP_A -fm_name {"F001" "F002" "F003" 981
"F004" "F005" "F006"} -parent IP_A -fme_name "FME001" -fme_weight {1 1 1 1 1 1} 982
assign_fm_fme "FME002_Contributors" -fmeda IP_A -fm_name {"F007" "F008"} -parent 983
IP_A -fme_name "FME002" -fme_weight {1 1} 984

P a g e | 131

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 9. Update Objects According to Verification Strategy 985

It is assumed here that an integrated toolchain is used to connect FMEDA data to 986
verification data. The bare minimum subset of the data to be shared is observation and 987
detection points, mapping to a design hierarchy. Fault simulation settings are not reflected 988
in this example, although for traceability purposes we need to have that connection. 989

Nevertheless, as of today a fault campaign object is not considered to be a part of an 990
FMEDA analysis, and there is no construct that would allow a user to create a new type of 991
object. Therefore, pointers to the verification data can be stored as user-defined attributes 992
of the create_fmeda command, thus enabling a baseline traceability from measured metrics 993
back to fault simulation results. Such usage is not shown in this example, however. 994

Please note the use of the -update key to update already created objects. 995

Source code example of updating Failure modes with verification information: 996

add_attribute "Observation points" -object "fm" -default "" 997
create_fm "F001" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 998
"test.DUT.FL_IF.Empty_ test.DUT.FL_IF.Full_ test.DUT.FL_IF.HalfFull_"} 999
create_fm "F002" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1000
""} 1001
create_fm "F003" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1002
"test.DUT.WP_IF.Count"} 1003
create_fm "F004" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1004
""} 1005
create_fm "F005" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1006
"test.DUT.RP_IF.Count"} 1007
create_fm "F006" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1008
""} 1009
create_fm "F007" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1010
"test.DUT.sdpram_i1.sdpram_i1.L_DataOut test.DUT.sdpram_i1.sdpram_i1.R_DataOut"} 1011
create_fm "F008" -update -parent IP_A -fmeda IP_A -attribute {"Observation points" 1012
""} 1013
 1014
Source code example of updating Safety mechanisms with verification information: 1015

add_attribute "Diagnostic points" -object "sm" -default "" 1016
create_sm "SM001" -update -attribute {"Diagnostic points" "test.DUT.FlagError"} 1017
create_sm "SM002" -update -attribute {"Diagnostic points" "test.DUT.WriteError"} 1018
create_sm "SM003" -update -attribute {"Diagnostic points" "test.DUT.ReadError"} 1019
create_sm "SM004" -update -attribute {"Diagnostic points" 1020
"test.DUT.sdpram_i1.EccError"} 1021
 1022
Source code example of updating Failure modes with results of a digital fault simulation 1023
campaign: 1024

create_fm "F001" -update -parent IP_A -fmeda IP_A -dc {perm measured 95.45} 1025
create_fm "F003" -update -parent IP_A -fmeda IP_A -dc {perm measured 94.44} 1026
create_fm "F005" -update -parent IP_A -fmeda IP_A -dc {perm measured 94.44} 1027
create_fm "F007" -update -parent IP_A -fmeda IP_A -dc {perm measured 40.14} -1028
no_effect {perm 16.47} 1029

P a g e | 132

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 10. Create FMEDA-scoped Metrics 1030

 1031

Figure 38. Block diagram of the objects created according to the data model definitions in step 10. 1032

Source code example of creating metrics: 1033

add_collection "Baseline FMEDA metric" -object "metric" \ 1034
 -list { 1035
 {"scope" {fmeda IP_A}} \ 1036
 {"te_name" {"Digital_Area" "RAM"}} \ 1037
 {"fmeda" "IP_A"} 1038
 } 1039
 -fmeda IP_A 1040
 1041
define_metric_iso26262 SPFM_Measured_P_global -metric_type {spfm 91.96} -1042
analysis_type perm -collection "Baseline FMEDA metric" 1043
define_metric_iso26262 SPFM_Measured_T_global -metric_type {spfm 97.95} -1044
analysis_type tran -collection "Baseline FMEDA metric" 1045
define_metric_iso26262 LFM_Measured_T_global -metric_type {lfm 92.74} -1046
analysis_type perm -collection "Baseline FMEDA metric" 1047
define_metric_iso26262 PMHF_Measured_P_global -metric_type {pmhf 4.970} -1048
analysis_type perm -collection "Baseline FMEDA metric" 1049
define_metric_iso26262 PMHF_Measured_T_global -metric_type {pmhf 1.786E-6} -1050
analysis_type tran -collection "Baseline FMEDA metric" 1051

P a g e | 133

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Step 11. Create FME-scoped Metrics 1052

 1053

Figure 39. Block diagram of the objects created according to the data model definitions in step 11. 1054

In this case, FMEDA-scoped metrics are no different from FME-scoped metrics due to the 1055
way that FMEs are connected to FMs. 1056

Source code example of creating metrics: 1057

add_collection "Baseline FME metric" -object "metric" \ 1058
 -list { 1059
 {"scope" {fme "FME001" "FME002"}} \ 1060
 {"te_name" {"Digital_Area" "RAM"}} \ 1061
 {"fmeda" "IP_A"} 1062
 } 1063
 -fmeda IP_A 1064
 1065
define_metric_iso26262 SPFM_Measured_P_FMEs -metric_type {spfm 91.96} -1066
analysis_type perm -collection "Baseline FME metric" 1067
define_metric_iso26262 SPFM_Measured_T_FMEs -metric_type {spfm 97.95} -1068
analysis_type tran -collection "Baseline FME metric" 1069
define_metric_iso26262 LFM_Measured_T_FMEs -metric_type {lfm 92.74} -1070
analysis_type perm -collection "Baseline FME metric" 1071
define_metric_iso26262 PMHF_Measured_P_FMEs -metric_type {pmhf 4.970} -1072
analysis_type perm -collection "Baseline FME metric" 1073
define_metric_iso26262 PMHF_Measured_T_FMEs -metric_type {pmhf 1.786E-6} -1074
analysis_type tran -collection "Baseline FME metric" 1075

P a g e | 134

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Data Tracing 1076

 1077

Figure 40. Block diagram of the objects created according to the data model definitions. Only objects related to 1078
element SRAM are highlighted. 1079

Figure 40 shows how data tracing can be done using the data model. The operation on a 1080
dataset—as on a set of interlinked objects—enables very detailed introspection capabilities. 1081
As of today, the language does not support introspection capabilities or any kind of queries 1082
to internal objects. Nevertheless, it is expected that those capabilities will be added into the 1083
language in a later release to enable vendor-lock-free introspection of safety projects. 1084

 1085

P a g e | 135

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Equivalent Tables 1086

Equivalent tables show required and user-defined attributes of objects defined previously. This example may deviate from textual definitions 1087
and serves only for illustrative purposes. 1088

Table 13. FMEDA 1089

Proje
ct

Failur
e Rate
(FIT)

Nam
e

Eleme
nt

Potenti
al
Faults

Potenti
al
Effect(s
) of
Failure

ISO 26262
Equivalent
Fault/Error/Fail
ure

Systema
tic or
Random
Failure?

Perm
or Tran

Safety
Relate
d

PVS
G

Potenti
al
Cause(
s)

Curre
nt
PSM

Curre
nt
LSM

KFMC,
RF

IP_A 4,447E
+1

F001 FLAGS Flag is
faulty

Loss of
data

Processing units:
Registers::Stack
overflow/underflo
w

Random Permane
nt

true true TDDB SM001 LSM00
1

95,45%

 F003 WP WR logic
is faulty

Loss of
data

Processing units:
Registers::Stack
overflow/underflo
w

Random Permane
nt

true true TDDB SM002 LSM00
1

94,44%

 F005 RP RP logic
is faulty

Loss of
data

Processing units:
Registers::Stack
overflow/underflo
w

Random Permane
nt

true true TDDB SM003 LSM00
1

94,44%

 F007 SRAM Failure
in SRAM
bits

Incorrect
data

Volatile
memory::d.c.
faults model
(addr,data,control)

Random Permane
nt

true true TDDB SM004 LSM00
1

40,14%

 1090

P a g e | 136

Copyright © Accellera Systems Initiative Inc. All rights reserved.

Table 14. List of SMs 1091

Project Name Status
Safety
Mechanism

Diagnostic
or
Avoidance? Category

Error
Response

Equivalent ISO
26262
Diagnostic

ISO
26262
DC

Default
SM
Type

Permanent
KRF

Transient
KRF

Permanent
KMPF

IP_A SM001 Active Flag Logic
Dup

Diagnostic HW HW Error
Flag

Processing units:
Registers::HW
redundancy (e.g.,
dual core
lockstep,
asymmetric
redundancy,
coded processing)

High Dup &
cmp

95,00% 90,00% 0,00%

 SM002 Active WR Logic Dup Diagnostic HW HW Error
Flag

Processing units:
Registers::HW
redundancy (e.g.,
dual core
lockstep,
asymmetric
redundancy,
coded processing)

High Dup &
cmp

95,00% 90,00% 0,00%

 SM003 Active RD Logic Dup Diagnostic HW HW Error
Flag

Processing units:
Registers::HW
redundancy (e.g.,
dual core
lockstep,
asymmetric
redundancy,
coded processing)

High Dup &
cmp

95,00% 90,00% 0,00%

 SM004 Active ECC Diagnostic HW HW Error
Flag

Volatile
memory::Memory
monitoring using

High ECC 99,00% 99,00% 0,00%

P a g e | 137

Copyright © Accellera Systems Initiative Inc. All rights reserved.

error-detection-
correction codes
(EDC)

 LSM001 Active LBIST Diagnostic HW Abort Processing units:
Registers::Self-
test supported by
hardware (one-
channel)

Medium LBIST 95,00%

 1092

Table 15. List of FRs 1093

Project SPFM LFM PMHF Type

IP_A 91,96% 92,74% 4,970E+0 Perm

IP_A 97,95% N/A 1,786E-6 Tran

P a g e | 138

Copyright © Accellera Systems Initiative Inc. All rights reserved.

XII. Bibliography 1094

[1] Accellera Functional Safety Working Group: White Paper, 2021 1095
https://accellera.org/images/downloads/standards/functional-1096
safety/Functional_Safety_White_Paper_051020.pdf 1097

[2] ISO 26262:2018 Road Vehicles – Functional Safety of Electrical/Electronic/Programmable 1098
Electronic Safety-related Systems 1099

[3] IEC 61508:2010 Functional Safety of Electrical/Electronic/Programmable Electronic 1100
Safety-Related Systems 1101

[4] IEEE 1666-2011 – IEEE Standard for Standard SystemC Language Reference Manual 1102

[5] 1364-2005 – IEEE Standard for Verilog Hardware Description Language 1103

[6] IEEE P2851 https://sagroups.ieee.org/2851/ 1104

[7] P1800 - Standard for SystemVerilog – Unified Hardware Design, Specification, and 1105
Verification Language 1106

[8] IEEE 1685-2014 – IEEE Standard for IP-XACT, Standard Structure for Packaging, 1107
Integrating, and Reusing IP within Tool Flows 1108

[9] IEEE P1801 – Draft Standard for Design and Verification of Low Power, Energy Aware 1109
Electronic Systems (UPF) 1110

[10] https://sysml.org/ 1111

[11] "The Data Model Resource Book," Len Silverston, Wiley 1112

[12] https://www.gleek.io/blog/conceptual-data-model 1113

[13] The Entity-Relationship Model – Toward a Unified View of Data (ACM Transactions on 1114
Database Systems, Vol. 1, No. 1, 1976) - 1115
https://dspace.mit.edu/bitstream/handle/1721.1/47432/entityrelationshx00chen.pdf 1116

[14] https://www.guru99.com/data-modelling-conceptual-logical.html 1117

[15] “Hazard Analysis Techniques for System Safety,” Clifton A. Ericson, Wiley 1118

https://accellera.org/images/downloads/standards/functional-safety/Functional_Safety_White_Paper_051020.pdf
https://accellera.org/images/downloads/standards/functional-safety/Functional_Safety_White_Paper_051020.pdf
https://sagroups.ieee.org/2851/
https://sysml.org/
https://www.gleek.io/blog/conceptual-data-model
https://dspace.mit.edu/bitstream/handle/1721.1/47432/entityrelationshx00chen.pdf
https://www.guru99.com/data-modelling-conceptual-logical.html

	I. Introduction
	II. FMEDA Process
	III. Design Representation and Mapping of Data
	A. Design Representation
	B. Mapping
	Design Mapping
	Failure Modes Mapping
	Safety Mechanism Mapping
	Technology Element Mapping
	Failure Mode Effects Mapping
	Complex Use Cases

	IV. FMEDA Type
	A. Assumption-based
	B. Calculation-based
	C. Mixing FMEDA Types

	V. Conceptual Data Model
	A. Introduction to the Entity-Relationship Model
	B. General Considerations

	VI. Detailed Annotations on the Data Model
	A. FMEDA Type (Assumption-based, Calculation-base)
	B. FS Hierarchy and FM Hierarchy
	C. Technology Element
	Digital
	RAM/ROM/Flash
	Analog

	D. FS Hierarchy Modeling
	E. Operations on Design Mapping
	F. DC Aggregation Methods
	G. Failure Mode Effect

	VII. Concluding Remarks
	H. Accellera FS WG Supporting Entities
	I. Acknowledgements

	VIII. Annex A – Data Model
	A. FMEDA
	B. Element
	C. Failure Mode
	D. Technology Element
	E. Safety Mechanism
	F. Failure Mode Effect
	G. Mapping Safety Mechanism – Failure Mode
	H. Mapping Failure Mode – Failure Mode Effect
	I. Mapping Technology Element – Failure Mode
	J. Mapping Technology Element – Element
	K. Define ISO26262 Failure Rate
	L. Define ISO26262 Metric
	M. Define IEC61508 Failure Rate
	N. Define IEC61508 Metric

	IX. Annex B – Language
	A. Introduction
	B. Conventions
	C. Safety Analysis Commands v0.1
	create_fmeda
	create_element
	create_fm
	create_te
	create_sm
	create_fme
	add_attribute
	add_collection
	assign_sm_fm
	assign_fm_fme
	assign_te_fm
	assign_te_element
	define_fr_iso26262
	define_metric_iso26262
	define_fr_iec61508
	define_metric_iec61508

	X. Annex C – Add-on to v0.1
	load_slf
	save_slf
	set_scope
	add_parameter
	attr_expr
	assign_fmeda_fmeda
	assign_fmeda_element

	XI. Annex D – Repository
	A. Example 1
	B. Example 2
	C. Example 3
	D. Example 4
	Introduction
	Step 0. Understand the Difference Between a Language and a Data Model
	Step 1. Create a Library of Collections of Attributes
	Step 2. Create a Library of Safety Mechanisms
	Step 3. Create the Safety Hierarchy
	Step 4. Create Failure Modes and Assisting Collections
	Step 5. Assign Safety Mechanisms to Failure Modes
	Step 6. Create Technology Elements
	Step 7. Assign Technology Elements to Failure Modes, Mapping
	Step 8. Create Failure Mode Effects and Connect them to Failure Modes
	Step 9. Update Objects According to Verification Strategy
	Step 10. Create FMEDA-scoped Metrics
	Step 11. Create FME-scoped Metrics
	Data Tracing
	Equivalent Tables

	XII. Bibliography

