
July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Security Annotation for Electronic
Design Integration Standard

July 2021
Rev 1.0

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Abstract: The standard is collateral-centric with a focus on security concerns; it applies to
electrical designs that are integrated into other circuits. The standard defines a methodology that
(1) identifies elements, such as input or output ports, that can influence the behavior of a critical
section within the design and (2) associates known security weaknesses based on the type of
design and/or critical section. The methodology uses data objects, which are both human and
machine readable, to capture security relevant information through the architectural and design
phase of the electrical design to be consumed by an Integrator for their product lifecycle. The
standard is independent of existing standards and is not part of the electrical design itself.

Keywords: Security, RTL, attack surface, threat modeling, security weakness, mitigation,
hardware, circuit design, integrated circuit, SoC, ASIC, IP

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the

Technical Committee of Accellera. Accellera develops its standards through a consensus development

process, approved by its members and board of directors, which brings together volunteers representing

varied viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve

without compensation. While Accellera administers the process and establishes rules to promote fairness in

the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy

of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury,

property or other damage, of any nature whatsoever, whether special, indirect, consequential, or

compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any

other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and

expressly disclaims any express or implied warranty, including any implied warranty of merchantability or

suitability for a specific purpose, or that the use of the material contained herein is free from patent

infringement. Accellera Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test,

measure, purchase, market, or provide other goods and services related to the scope of an Accellera

Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to

change due to developments in the state of the art and comments received from users of the standard. Every

Accellera Standard is subjected to review periodically for revision and update. Users are cautioned to check

to determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or

other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty

owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards

document, should rely upon the advice of a competent professional in determining the exercise of

reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they

relate to specific applications. When the need for interpretations is brought to the attention of Accellera,

Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a

consensus of concerned interests, it is important to ensure that any interpretation has also received the

concurrence of a balance of interests. For this reason, Accellera and the members of its Technical

Committees are not able to provide an instant response to interpretation requests except in those cases

where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of

membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a

proposed change of text, together with appropriate supporting comments. Comments on standards and

requests for interpretations should be addressed to:

Accellera Systems Initiative

8698 Elk Grove Blvd Suite 1, #114

Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of

subject matter covered by patent rights. By publication of this standard, no position is taken with

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

respect to the existence or validity of any patent rights in connection therewith. Accellera shall not be

responsible for identifying patents for which a license may be required by an Accellera standard or for

conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or

trademarks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted

by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To

arrange for authorization please contact Lynn Bannister, Accellera Systems Initiative, 8698 Elk Grove Blvd

Suite 1, #114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to

photocopy portions of any individual standard for educational classroom use can also be obtained from

Accellera. Suggestions for improvements to this standard are welcome and should be sent to the email

reflector ipsa@lists.accellera.org.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

v

Participants

At the time this draft standard was completed, the Accellera IPSA Working Group had the following

membership:

Brent Sherman, Intel Corp, Chair

Mike Borza, Synopsys, Vice Chair

Sohrab Aftabjahani, Intel Corp.

Adam Cron, Synopsys

Monica Farkash, AMD

Nicole Fern, Tortuga Logic

Dave Graubart, Allied Member

John Hallman, OneSpin

Solutions

Kathy Hayashi, Qualcomm, Inc.

Nathan Mandelke, Cadence

Design Systems, Inc.

Jean-Philippe Martin, Intel Corp.

Steven McNeil, Xilinx, Inc.

Michael Munsey, Methodics,

Inc.

Anders Nordstrom, Tortuga

Logic

James Pangburn, Cadence

Design Systems, Inc.

Ambar Sarkar, NVIDIA Corp.

Yaron Schiller, Cadence Design

Systems, Inc.

Adam Sherer, Cadence Design

Systems, Inc.

Ireneusz Sobanski, Intel Corp.

Badhri Uppiliappan, Analog

Devices, Inc.

Jesse Wyant, Intel Corp.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

vi

Introduction

A System on Chip (SoC) or Application Specific Integrated Circuit (ASIC) is comprised of multiple

components referred to as Intellectual Property (IP) blocks or just IP. These blocks come from multiple

sources such as internal development teams, IP suppliers, tools to generate IP, etc. Typically, the

SoC/ASIC owner integrates multiple IPs from multiple sources, which raises concerns about security risk.

This standard addresses these concerns by introducing a methodology and formalized data objects that

identify security risks an Integrator might inherit. These concerns may be addressed by an Integrator to

make an informed decision at the time of IP integration. The options may be to select another IP with less

risk, implement mitigations to address the concerns, or simply decide the risks are out of scope for the

product.

The methodology uses two approaches to identify security concerns. One is to identify attack points that

can be used to compromise the security of the IP block. These attack points are what an adversary would

use to perform a malicious act on the design. By presenting this information, the Integrator can decide how

to manage the associated risks. The other approach is to identify and associate known security concerns to

an IP block. These concerns have been discovered, classified and published by fellow travelers in the

industry, academia, or security researchers. Anyone researching security may be able to contribute to a

knowledge base.

The standard is primarily directed towards IP developers and integrators. It is design, product, and tool

independent. Users of this standard will be able to provide consistent security collateral in a uniform

format.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

vii

Contents
Notices ... 3

1. Overview .. 1
1.1 Scope ... 1
1.2 Purpose .. 1
1.3 Word usage .. 2

2. Normative references .. 2

3. Definitions, acronyms, and abbreviations .. 2
3.1 Definitions ... 2
3.2 Acronyms and abbreviations ... 3

4. Background .. 5

5. SA-EDI Methodology .. 6
5.1 IP Bundle ... 7

6. Security Weakness Knowledge Base .. 8
6.1 Format...10
6.2 Specifications..11

7. Data Objects ..11
7.1 Data Object Language ..12
7.2 Asset Definition ..12

7.2.1 Specifications ... 13
7.3 Database ...13

7.3.1 Specifications ... 14
7.4 Element ...14

7.4.1 Specifications ... 15
7.5 Attack Points Security Objective (APSO) ..15

7.5.1 Specifications ... 16

8. Threat Model ...17

9. Workflow Compliance ..17

Annex A : Data Object JSON Schema ..19
A.1 Asset Definition ...19
A.2 Database ...19
A.3 Element ..19
A.4 Attack Points Security Objective ...19
A.5 SA-EDI Data Object ..20

Annex B : Use-case Example ..22
B.1 Watchdog IP...22

B.1.1 Registers .. 23
B.2 Workflow Steps ...24

B.2.1 WDIP Security Evaluation .. 29

Annex C : WDIP Source Code ..31

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

viii

C.1 wd_top.v ..31
C.2 wd_control.v ..32
C.3 wd_count.v ...34

Bibliography ..36

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

1

Security Annotation for Electronic
Design Integration Standard

1. Overview

The SA-EDI standard defines a specification that documents security concerns for hardware IP and its

associated components when integrated into an Integrated Circuit. With the standard, IP Providers can

identify security concerns to either: 1) mitigate in their IP; or 2) disclose to the Integrator to address at their

level.

The standard is structured as follows: Section 4 introduces a background on the existing IP development

process; Section 5 describes the proposed methodology to support the SA-EDI standard; Section 6

introduces the concept of a security weakness knowledge base which is comprised of known security

concerns; Section 7 outlines the data objects in the standard; Section 8 is the threat model which is the end

result; and Section 9 provides guidelines for compliance to the standard. The Annex sections provide

additional information to help use the standard: Annex A outlines the JSON schema for the data objects;

Annex B provides an example application to an IP; and Annex C contains the source code of the example

IP.

The standard is completely contained in this document and any references to whitepapers such as [B1] are

for background information only and are not considered part of the standard.

1.1 Scope

The standard defines data objects to identify critical elements in a digital hardware IP design and their

associated security concerns. It defines the format and relationship of data objects that may be generated

by tools during the hardware development process. Since the standard is external to the IP design, it can be

applied to existing designs even if the hardware source (e.g., RTL) is encrypted.

The standard assumes the relationship between the IP Provider and Integrator is trusted. The standard does

not address issues such as supplier credentialing; it simply provides a mechanism for an IP Provider to

identify security concerns to an Integrator. Secure integration requires (among other things) that IP

suppliers act in good faith by providing complete collateral.

1.2 Purpose

The intent of the standard is to identify known security concerns, documented in a knowledge base,

associated with an asset and/or family type during IP integration. The IP Provider uses the standard to

identify assets in the design that require a security objective (e.g., Confidentiality, Integrity, Availability)

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

2

and elements (e.g., ports, parameters, etc.) that can compromise the objective. The Integrator uses the

collateral to create a threat model with identified mitigations to support the security objective. The

methodology provides the means to validate security assurance collateral to an IP design.

1.3 Word usage

The word shall indicates mandatory requirements strictly to be followed in order to conform to the standard

and from which no deviation is permitted (shall equals is required to).

The word should indicates that among several possibilities one is recommended as particularly suitable,

without mentioning or excluding others; or that a certain course of action is preferred but not necessarily

required (should equals is recommended that).

The word may is used to indicate a course of action permissible within the limits of the standard (may

equals is permitted to).

The word can is used for statements of possibility and capability, whether material, physical, or causal (can

equals is able to).

2. Normative references

The following referenced documents, if any are listed in this section, are indispensable for the application

of this document (i.e., they must be understood and used, so each referenced document is cited in text and

its relationship to this document is explained). For dated references, only the edition cited applies. For

undated references, the latest edition of the referenced document (including any amendments or corrigenda)

applies.

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this document, the following terms and definitions apply.

Adversary: A malicious entity that prevents security objectives from being achieved

Asset: Anything of value or importance that is used, produced, or protected within the IP

Attack Point: An access location or means through which a threat can be realized against an asset

Attack Surface: A set of attack points (can be applied to multiple assets).

Concern (Consequence): The potential harm that a threat poses to an asset

Fully Qualified Name: In Verilog, a design element with its module name. Format:

<module_name>.<asset_name>. In VHDL, a design element with its component name. Format:

<component_name>.<asset_name>. Other languages may have corresponding notations.

Integrated Circuit: An electronic design (e.g. SoC, ASIC, etc.) that consists of multiple IPs

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

3

Integrator: The entity that integrates IP into an electronic design

IP: Intellectual Property – The RTL or other design representation that is the subject of this standard

IP Bundle: The collateral that is supplied by the IP Provider which contains everything an Integrator needs

to incorporate the IP

IP Provider: The entity that supplies an IP

Mitigation: A solution that reduces the risk or consequence of an attack

RTL: Register-Transfer Level – A design abstraction that models a digital circuit

Security Objective: A measurable way to achieve a security goal. For example, a security goal may be

“protect an asset”. A security objective would be “Confidentiality” on that asset as a means of protection.

This standard identifies Confidentiality, Integrity, and Availability [B3] as security objectives.

Threat (Attack): Anything that can potentially adversely affect an asset

Threat Model: A collection of threats that are in scope for an electronic design

Vulnerability: A weakness in the IP that could be exploited

Weakness: A way in which an IP fails to protect an asset

3.2 Acronyms and abbreviations

ADC Analog-Digital Converter

AES Advanced Encryption Standard

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

APSO Attack Points Security Objective

ASIC Application Specific Integrated Circuit

BIST Built-In Self-Test

CDMA/GSM Code Division Multiple Access / Global System for Mobile

CIA Confidentiality, Integrity, Availability

CISC Complex Instruction Set Computer

CPU Central Processing Unit

CWE Common Weakness Enumeration

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

4

DAC Digital-Analog Converter

DDR Double Data Rate

DRAM/SRAM Dynamic Random-Access Memory / Static Random-Access Memory

DSP Digital Signal Processor

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable ROM

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPIO General Purpose Input/Output

GPS Global Positioning System

GPU General Processing Unit

HDL Hardware Description Language

HMAC Keyed-Hash Message Authentication Code

I2C Inter-IC bus

IC Integrated Circuit

IP Intellectual Property

IPSA IP Security Assurance (Workgroup)

JSON JavaScript Object Notation

JTAG Joint Test Action Group

LSB Least Significant Bit

MMC Memory Management Controller

MSB Most Significant Bit

NoC Network on Chip

NVRAM Non-Volatile RAM

OTP One-Time Programmable

PCIe Peripheral Component Interconnect Express

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

5

PHY Physical layer

RISC Reduced Instruction Set Computer

RNG Random Number Generator

ROM Read-Only Memory

RSA Rivest, Shamir, and Adelman

RTL Register-Transfer Level

SA-EDI Security Annotation for Electronic Design Integration

SHA Secure Hash Algorithm

SoC System on Chip

SWKB Security Weakness Knowledge Base

TPU Tensor Processing Unit

URI Uniform Resource Identifier

USB Universal Serial Bus

VHDL Very High Speed Integrated Circuit Hardware Description Language

4. Background

In today’s IP development and delivery process, there’s no standard guidance in security assurance. At the

basic level, an IP is defined based on standards such as Verilog, VHDL, etc. that are compiled and

synthesized using EDA tools to produce outputs such as netlists, place & route databases, etc. As it

pertains to the standard in this document, the focus of discussion is the IP design (i.e. RTL), gate-level

netlist, and any testbench that’s produced. At a high level, the workflow is shown in Figure 1.

IP Standards VerificationIP Design Netlist

IP Bundle

*.v *.vg *.vt

EDA Tools

Figure 1, Existing IP Workflow

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

6

The file extensions shown are examples only to establish the context of what is contained in an IP Bundle.

Additionally, the “bundle” may contain files such as documentation, executables, configuration files, etc.

This bundle is what is being offered as an IP for the Integrator to incorporate into their product (e.g. SoC),

as shown in Figure 2.

IP Provider

IP1 Bundle

Integrator

IP1

IP

IP

IP

SoC

Figure 2, IP Delivery

The Integrator will unpack the IP Bundle to extract its contents and execute simulation tests to prove it is

functionally sound. After performing initial sanity checks or functional verification, the Integrator

incorporates the IP into the SoC. Once integrated, additional tests are performed to verify the IP is

behaving properly with other IPs in the product. The process is repeated for each IP that is integrated into

the SoC.

There is a notable gap in the IP development and delivery workflow, which does not include a statement of

security concerns that an Integrator inherits or introduces when accepting an IP from a provider. This

standard will provide guidance as to what IP security assurance collateral is needed and how the collateral

should be consumed to close this gap.

5. SA-EDI Methodology

The standard introduces new collateral into the IP bundle which is shown in Figure 3. This collateral

includes data objects that represent assets, database, elements, and attack points and security objectives.

These objects are discussed in detail in section 7. As additions, they can be added to an existing workflow

without modification to the IP design.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

7

IP Standards

Verification

IP Design

Netlist

IP Bundle

Asset

Defintion
Element APSO

EDA Tools

*.json

Security
Weakness
Knowledge

Base

Database SA-EDI Objects

Figure 3, SA-EDI IP Bundle

The Asset Definition data object identifies critical or valued material within the IP. It also contains a

Database data object that provides information about a Security Weakness Knowledge Base. These data

objects are inputs into EDA tools that create Element data objects. The Element data objects contain ports

and parameters that influence the behavior of the asset and include potential security weaknesses that are

associated with the asset and/or IP type. The Element data objects are used to create Attack Points Security

Objective (APSO) data objects. APSO data objects associate a security objective such as confidentiality,

integrity, availability, to a list of ports or parameters thus creating an attack surface. These APSO data

objects eventually build the threat model for the IP Integrator to use. The details of these objects are in

later sections of this document.

The data objects in Figure 3 are shown as JSON format. This is detailed later in section 7.1.

It is also worth noting that the Element objects can be created manually without an EDA tool.

The database labeled “Security Weakness Knowledge Base” contains security weaknesses that are known

due to industry experience and/or security researchers. The standard allows the use of multiple databases

from multiple sources. The details of how such a knowledge base can be utilized are listed in a later

section.

5.1 IP Bundle

Upon receiving the IP Bundle, the Integrator will use the new data objects to create a threat model that is

specific to the integrated circuit with respect to the IP. This is shown in Figure 4. The Integrator will

repeat some of the steps that the IP Provider performed in order to verify that the SA-EDI data objects were

indeed derived from the IP definition. Performing this verification is optional, however highly

recommended by the standard.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

8

Mitigation

Verification
IP Design

IP Bundle

Element APSO

EDA Tools

Element* Threat Model

Asset

Defintion

Database Security
Weakness
Knowledge

Base

Figure 4, SA-EDI Integrator

The Integrator, using the Asset Definition and Database in the bundle and the same Security Weakness

Knowledge Base, generates an Element data object. This object is labeled “Element*” in Figure 4 and

should correspond to the same assets that were defined in the IP bundle. Once generated, the Integrator

compares the contents of the Element* object to the contents of the Element object in the bundle. This

comparison can be done by visual inspection or by using a tool. If the contents are the same, then the

Integrator knows the security assurance collateral corresponds to the RTL and can proceed with integration.

If the contents are not the same, then the Integrator and the IP Provider need to resolve the differences

before integrating the IP into the IC. Mismatches may be caused by RTL changes after the Element object

was generated or that there was an error in the generation of the Element object itself.

The Integrator then reviews the Attack Point Security Objective (APSO) data objects in the bundle to

determine which ones are in scope for the IC. This will become the threat model which contains

mitigations to be verified. The Integrator may also create additional APSO objects that are product specific

for this IP. These additions become part of the IC’s threat model for verification.

6. Security Weakness Knowledge Base

The Security Weakness Knowledge Base (SWKB) is a database or repository that contains security

concerns that are associated with hardware IP and its integration. The term SWKB is generic and does not

represent a specific database. It is instead used to reference existing databases such as the Common

Weakness Enumeration (CWE) [B2] or even a proprietary database. The standard allows for the use of

multiple databases in multiple locations. Additionally, the SWKB should support an API that allows for

software queries in order to aid in automation.

The standard requires that a SWKB support searchability on IP and asset categories or types. This

requirement makes it possible for security weaknesses to be associated with a specific IP or asset. The IP

family types are listed in Table 1. Along with the types are definitions and examples to help provide more

clarification about the IP family. This table has the capability to support additional IP family types, which

can then be shared with Integrators to preserve the associations and methodology workflow.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

9

The family types defined in Table 1 are intended to be high-level, generic classifications. They should not

be used as detailed descriptions of the IP itself. Therefore, an IP may be classified by several family types

and the standard does not prohibit assigning multiple family types to a single IP.

Table 1, IP Family Types

Name Definition Examples

1 Accelerator IP dedicated to offload a specific workload to enhance

performance

DSP, TPU, packet processing,

mathematical, compression

2 Analog & Mixed-

Signal

IP that controls or senses the electricals for

communication, which receives or transmits signals

conditioned outside of a system’s digital domain

PHY, ADC, DAC

3 Audio/Video IP designed to manipulate audio/video data Coders/Decoders, speech

recognition, format converters

4 Bus/Interface IP implementing an interconnect among elements in

and/or within a computing system

I2C, PCIe, DDR, MMC, USB,

GPIO, AXI

5 Communications IP designed to transmit/receive information Modulator/Demodulator,

802.11, Bluetooth,

CDMA/GSM

6 Controllers A circuit hard-wired (e.g. Finite State Machine) to

react in a closed-loop control system or other limited

context, to control another entity

Arbiter, APIC, USB, Peripheral,

Memory, Storage

7 Counter/Timer IP reflecting the passage of time in oscillations or

human units

Real Time Clock, Watchdog,

Monotonic Counter

8 Memories Volatile (transient) data storage DRAM, SRAM

9 Microcontroller A specialized processor acting as a programmable

controller

8051, Nios

10 Power Management IP which controls and/or monitors the power state of a

system

Voltage regulators, power

controllers or monitors

11 Processors A programmable computing engine CPU, GPU, TPU

12 Security IP designed to protect assets Cryptography, authorization,

tamper detection, access

controls, RNG

13 Storage non-volatile (permanent) data storage EEPROM, eFuse, flash, ROM,

OTP, NVRAM

14 Test/Debug IP designed to verify functionality and identify root

cause of defects

JTAG, BIST, boundary scan,

pattern generator

15 Transducers IP which converts energy from one form to another,

such as physical to electrical

sensors, actuators

16 <User Defined> This type is used to accommodate families that have

not been defined in this table (e.g. proprietary IP). To

add a family, the value should have the prefix “UD:”.

UD: CustomIP

Table 2 shows the classification types for assets. These types provide more information about the asset

(e.g., what makes it an asset) and can be used to associate additional security weaknesses to the IP itself.

Similar to the IP family types, the asset types are intended to be high-level, generic classifications in which

several may be used to describe a single asset.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

10

Table 2, Asset Type

Name Definition Examples

1 Critical Material that is critical for proper functionality.

Without this asset, the IP would not be able to

function.

Timers/Counters, clock generators

2 Secret Material that requires confidentiality and should

not be accessible outside the IP

Password, cryptographic keys

3 Sensitive Material that requires integrity but not

necessarily confidentiality.

Root of Trust (e.g. Asymmetric public

key), fuse/OTP

4 Control Material used to alter and/or control the state of

the IP. This material can also setup or

configure the IP.

FSM, control register

5 Cryptographic Material that is part of a cryptographic

operation

AES, RSA, SHA, HMAC, RNG

6 Code/Data Material that contains information which can

alter the behavior of the IP

Storage (Volatile/Non-volatile)

7 Compute Material that is part of an execution engine that

operates on opcodes or instructions

CISC, RISC, CPU, GPU

8 <User Defined> This type is used to accommodate asset types

that have not been defined in this table (e.g.

proprietary IP). To add an asset type, the value

shall have the prefix “UD:”.

UD: CustomIP

6.1 Format

To support the standard, a SWKB shall provide the following attributes for each entry:

a) Title: A brief and high-level description about the weakness, normally a single sentence or

phrase.

b) Reference number: A unique identifier within the knowledge base. It will be used in the

Element data object (Section 7.4) to reference a specific entry.

c) Description: A detailed description of why the weakness is a problem or concern. It may include

possible unwanted behaviors, affected resources, etc.

d) Consequence: A classification of the risk(s) due to the weakness as confidentiality, integrity,

and/or availability. The impact of the consequence should be captured as well.

e) Applicability: A list of IP families (Table 1) and/or asset types (Table 2) that may be impacted by

the security weakness.

f) Modes of Introduction: A list of lifecycle phases in which the weakness could have been

introduced. Some examples are architecture, design, implementation, integration, manufacturing

or provisioning, etc.

g) Mitigations: This attribute lists techniques that are intended to minimize the severity of the

weakness. The attribute should include relevant lifecycle phases in which mitigations can be

introduced. See reference f) above.

Table 1 and Table 2 are used alone or in combination to associate security weaknesses to an Asset

Definition data object. In addition, the standard allows the use of any keywords or text in the data fields of

an entry.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

11

6.2 Specifications

The rules are as follows:

a) The SWKB database should reference IP Family types as shown in Table 1, column “Name” into

the appropriate entries by string value.

b) The SWKB database should reference Asset Functionality types as shown in Table 2, column

“Name” into the appropriate entries by string value.

7. Data Objects

The data objects (Asset Definition, Database, Element, and Attack Points Security Objective) and SWKB

are linked via attributes as shown in Figure 5. Please note that the associated attributes between the data

objects are shown and not the complete list of attributes in each object. The variable n in the diagram

represents one or more objects and not equivalence or a specific value. The Asset Definition object uses

the attribute Database_ID to reference a SWKB(s). This reference is linked to the attribute ID of the

Database object. The Database object defines the properties of a SWKB. The Asset Definition object uses

Family and Type attributes to identify entries in the SWKB that match the values in (e) in section 6.1. The

Element object uses Security Weakness Reference attribute to link to those entries in the SWKB. This

attribute matches the values in (b) in section 6.1. The Asset Definition and Element objects are linked by

the Name attribute as defined in the Asset Definition object.

The Element object is used to create the Attack Points Security Objective (APSO) data object and the

attributes Asset Name, Ports, Parameters, and Security Weakness Reference are the associations between

them. The value in the Asset Name attribute matches the Name attribute of the Asset Definition object.

The value(s) in the Ports attribute correlates (may not be 1:1) to the value(s) in the Attack Points attribute

of the APSO object.

There may be circumstances in which an Element object is not created, however there is still a need to

create an APSO object to identify a security objective to an asset. In this case, the APSO object may be

created from the Asset Definition object and the attribute Asset Name will be associated to Name,

respectively.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

12

Asset Definition Element

Security
Weakness
Knowledge

Base

(1 : 2)

Name

(n : 1)

(n : 2)

Family,
Type (2 : n)

SA-EDI Standard

APSO

Database

(n : 1) ID

(1 : n)

Name

Family

Type

Name

Parameters

Ports

Asset Name

Security Weakness Reference

Security Weakness
Reference

Asset Name,
Ports,
Parameters,
Security Weakness
Reference

Parameters

Attack Points

Asset Name

Security Weakness Reference

ID

Database_ID

Figure 5, SA-EDI Associations

7.1 Data Object Language

Data objects shall be machine readable and should be human readable. The standard uses JavaScript

Object Notation (JSON)[B4] as its data modeling language. JSON was chosen due to its adaptability and

small footprint for easier documentation. The examples use JSON 2019-09. However, any version greater

than or equal to Draft 4 can be used since required field capabilities were introduced in Draft 4, which is

needed to support attributes that are required by the standard.

The JSON schema for each of the data objects are defined in section Annex A. The schema may be

extended to support future attributes and/or specific use-cases. For simplicity, data objects and objects are

equivalent throughout the standard.

7.2 Asset Definition

The Asset Definition data object is the critical dependency in the standard. All other data objects are

derived from this object. Therefore, defining assets correctly is crucial to completing a proper threat

model.

The Asset Definition object is used to identify assets within the IP. An asset is anything of value or

importance that is critical to proper behavior which require security objective protections. An asset can be

identified as a port, module, register, or another object in the design. The paper [B1] provides more

information, along with examples, about how to possibly identify assets within an IP. In addition, there’s a

use-case example in Annex B that highlights the complete methodology.

Once an asset is identified, its definition is comprised of the attributes defined in Table 3. The attribute

Name is used to reference the asset in RTL and shall match its corresponding text in the source. Each asset

will have its own Asset Definition data object. The attributes are provided by the IP Developer and will be

used later to create the Element data object.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

13

Table 3, Asset Definition Data Object

Attribute Required Type Definition

Name Yes
String

(case-sensitive1)

Full hierarchical path name of the asset as defined in the RTL

source

Description No String

Brief description about the asset (e.g., what makes it an asset, its

purpose, etc.). This is not a required field however it is strongly

recommended since it provides useful information to the IP

Integrator.

Family Yes Array of Strings

Describes the IP type or family. The values are listed in Table 1.

The value may be the numeric string or string name. There may

be more than one type that is applicable.

Type Yes Array of Strings

Describes the asset type. The values are listed in Table 2. The

value may be the numeric string or string name. There may be

more than one type that is applicable.

Database_ID No Array of Strings

Reference to a SWKB. The string should match the attribute

value of ID in Table 4. This is an array to support multiple

databases.

7.2.1 Specifications

The rules are as follows:

a) An IP may have multiple assets.

b) An Asset Definition object shall reference a single asset.

c) If the asset is an array, it is assumed the entire array is the asset unless a specified range is

included in the Name attribute.

d) If an asset is in several ranges of an array, then each range shall have its own Asset Definition

object.

7.3 Database

The Database data object is used to provide details about a security weaknesses database that is to be used

in the methodology flow. A Database object is associated to an Asset Definition object via the ID attribute

in Table 4. Since the methodology supports the use of multiple databases, there may be many Database

objects associated to an Asset Definition object.

The Database object is not required if a security weaknesses database is not used.

1 Case-sensitivity may be dependent on the language of the RTL source.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

14

Table 4, Database Data Object

Attribute Required Type Definition

ID Yes String

A unique identifier that is associated to a SWKB. This may be the

name of the database. This attribute is referenced in the Asset

Definition object in the Database_ID attribute (Table 3)

Description No String
Brief description about the database (e.g. how to use it, types of

weaknesses, etc.)

URI Yes String URI locator of the security weaknesses database

Version Yes String Version identifier of the security weaknesses database

7.3.1 Specifications

The rules are as follows:

a) Every SWKB version shall have at least one Database object associated with it.

b) A Database object may be associated with one or more Asset Definition objects.

7.4 Element

The Element data object is created when Asset Definition object(s) are defined. An Asset Definition object

provides enough information for a tool (e.g., EDA) to generate Element objects. An Element object defines

the top module influencers (i.e., elements) of the IP that can affect and/or observe the behavior of the asset.

These elements may include input/output ports and/or configuration parameters in the RTL. These are

access points that either: 1) an adversary can use to affect the asset’s behavior, or 2) an Integrator needs to

take into consideration to ensure proper protections are in place.

An Element object is associated with an Asset Definition object via the Asset Identifier, which is defined in

section 7.2. Every Asset Definition object shall have at least one associated Element object. Element

objects are categorized by the attribute Direction shown in Table 5. This attribute represents the direction

of influence for the Ports attribute. Therefore, the signals listed in Ports shall all be in one direction. If a

port is bidirectional, it may be listed in both the “Input” and “Output” Element objects.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

15

Table 5, Element Data Object

Attribute Required Type Definition

Asset Name Yes String Reference to the attribute Name as defined in Table 3

Direction Yes Enumeration

Defines the direction of the Ports attribute:

1. Input

2. Output

Security

Weakness

Reference

No Array of Strings
Security weakness reference(s) from the SWKB. The format is

dependent on the format of the entries in the database.

Ports Yes
Array of Strings

(case-sensitive2)

Ports exposed at the integration level that influence or observe the

behavior of an asset

Parameters No
Array of Strings

(case-sensitive2)

Configuration parameters in the RTL that are associated with the

asset. Since parameters are language dependent, the text should

match the syntax of the language.

7.4.1 Specifications

The rules are as follows:

a) An Element object shall reference only one Asset Definition object.

b) No more than one “Input” Element object shall reference the same Asset Definition object.

c) No more than one “Output” Element object shall reference the same Asset Definition object.

d) The Asset Name attribute must match the text, including case, in the attribute Name in the Asset

Definition object.

e) If multiple Database objects are defined in the Asset Definition object then each entry in the

attribute Security Weakness Reference shall include the value of ID in Table 4.

7.5 Attack Points Security Objective (APSO)

The Attack Points Security Objective (APSO) data object is the starting point for the Integrator to

understand the inherited security concerns and objectives. The intent of the APSO object is to assign a

security objective to an attack surface of an asset and any conditions that may violate that objective. It may

be derived directly from Element objects or an Asset Definition object if there are side-channel concerns to

address. The supported security objectives are Confidentiality, Integrity, and Availability which are

aligned with the definitions in the NIST SP 800-100 handbook[B3]. The APSO object may include

applicable security weakness references identified in the Element object(s).

An APSO object may be created without an association to an Element object. An asset may lack a fan-in

and/or fan-out that reaches the IP boundary. In this case, there will be no need for an Element object, but

there may be security objectives pertaining to the asset, for which an APSO object is required.

An example could be the entropy source of a random number generator (RNG) integrated in the IP. This

entropy source might not be exposed to the integration layer via a port, so there will be no Element object

associated to the Asset Definition object. However, the asset may still require a security objective (e.g.,

Integrity), therefore an APSO object may be created with the Attack Points attribute empty. These types of

2 Case-sensitivity may be dependent on the language of the RTL source.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

16

APSO objects are used to identify implicit security concerns such as side-channel or injection attack points

associated with a particular asset.

An IP Provider may create APSO objects that address security objectives external to the IP. These objects

are intended to provide additional integration guidance. For example, an asset’s port may have

requirements to support a security objective, such as Availability. In this case, the Description attribute

could recommend that “this port should be directly connected to the IC’s reset logic and not gated by any

logic”. This object provides additional guidance on how the IP should be integrated.

Table 6, APSO Data Object

Attribute Required Type Definition

Name Yes String
Unique identifier for the security objective that is associated with this

Asset Name. The Name need not be unique across multiple assets.

Asset Name Yes String Reference to the Name attribute in Table 3

Security

Objective
Yes Enumeration

Describes the security objective required for the asset. There should

only be one security objective identified per APSO object.

1. Confidentiality

2. Integrity

3. Availability

Description No String Additional information about the security objective

Condition No SVA expression

Condition under which the security objective is violated, expressed in

SystemVerilog Assertion (SVA) syntax. An example may be a lock

bit, which protects the integrity of a register, not being enabled. All

RTL signals used in the expression should be qualified such that it can

be evaluated at the IP top level.

Security

Weakness

Reference

No Array of Strings
Reference to Security Weaknesses Reference attribute identified in

Table 5.

Additional

Security

Weaknesses

No Array of Strings

Additional weaknesses that were not identified in attribute Security

Weakness Reference. These can be newly discovered or use-

case/customer specific weaknesses.

Attack Points No Array of Strings Ports listed in Table 5 that are associated with this security objective

Parameters No Array of Strings
Configuration parameters listed in Table 5 that are associated with this

security objective

7.5.1 Specifications

The rules are as follows:

a) The combination of Name and Asset Name shall be unique.

b) An APSO object shall have exactly one Security Objective defined.

c) An APSO object shall apply to exactly one Asset Definition object.

d) An APSO object may have no associated Element objects, in which case the attribute Attack

Points shall be empty.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

17

8. Threat Model

The next step in the methodology is the creation of a threat model for the IC. This is performed by the

Integrator and may be created from applicable APSO objects. The APSO objects may come from both the

IP Provider and the Integrator.

APSO objects are based on the architecture and design of the IP as a standalone component. Additionally,

the IP Provider may have created APSO objects based on potential use-cases of the IP in an integrated

circuit such as an SoC. When the Integrator examines the APSO objects, some may not be relevant to the

IC. For example, there may be an APSO object that addresses confidentiality concerns on the counter of a

watchdog timer, the counter being the asset. The concern is that by leaking the count value, an attacker

could gain an advantage (e.g. the length of time remaining to launch an exploit). This may not be relevant

to the security of the IC. If the watchdog is being used for boot ROM execution and gets disabled when

this execution is finished, confidentiality is probably not an objective due to the limited agents that are out

of reset at the time. Therefore, this APSO object would not apply to the use-case of the IC.

Once the Integrator has evaluated which IP level APSO objects are in scope for the IC, the next step is to

identify which IC level APSO objects are relevant to the integration of the IP. Using the watchdog

example, the Integrator may add an APSO object that pertains to the availability of the watchdog’s reset

assertion due to a timeout. The object would have the security objective Availability to ensure that there is

no gating logic on the watchdog reset.

When the IC level APSO objects have been created, the integration Threat Model is complete for the IP.

The standard does not define the format of a threat model beyond the APSO data object definition. This

allows the flexibility of converting APSO objects into other formats that align with an industry or

company-specific verification process.

9. Workflow Compliance

The intent of this section is to state the responsibilities of both the IP Provider and Integrator in the

workflow. A compliant IP Bundle includes the applicable Asset Definition, Database, Element, and APSO

data objects. See section 7.5 for cases where an Element object is not required. See section 7.3 for cases

where a Database object is not required. Table 7 shows the steps of the workflow. Steps #1-5 can be

followed by an IP Provider to create a compliant IP Bundle. Steps #6-11 can be followed by an Integrator

to integrate and verify a compliant IP Bundle.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

18

Table 7, Workflow

Step# Owner Details Output

1 IP Provider Identify a database of known weaknesses and create a Database object(s) Table 4,

Database Data

Object

2 IP Provider Identify asset(s) in the IP and create an Asset Definition object(s) for each

asset

Table 3, Asset

Definition Data

Object

3 IP Provider Using the output of step #1 and #2, generate the Element object(s) using an

EDA tool. This step may also be done manually.

Table 5,

Element Data

Object

4 IP Provider Using the output of step #3, create Attack Points Security Objective object(s) Table 6, APSO

Data Object

5 IP Provider Bundle all the data objects created in steps #1-4 in the IP delivery package IP Bundle

6 Integrator Using the output of step #5, repeat step #3 to regenerate the Element object(s)

in a file for comparison. This requires that the Integrator has access to the

RTL source. If the Integrator is using an EDA tool, it should be functionally

equivalent to the tool used in step #3. The output of this step will be used to

verify the accuracy of the Element objects with respect to the RTL source.

Table 5,

Element Data

Object

7 Integrator Using the output of steps #5-6, the Integrator compares the locally generated

Element objects to those from the IP Bundle. This compare can be done by

visual inspection or by a tool. If the contents of objects are the same, then

report SUCCESS. This means the Element objects are consistent with those

in the IP Bundle. Otherwise, report FAILURE and stop the workflow.

SUCCESS or

FAILURE3

8 Integrator Using the output of step #5, determine which APSO objects are in scope for

the IC.

Threat Model

9 Integrator Using the output of step #5, create any additional APSO objects from the

Element objects that have security objectives at the IC level as it pertains to

the IP. Additional security weaknesses may be identified also.

Table 6, APSO

Data Object

10 Integrator If there are any APSO objects created in step #9, add them to the IC threat

model

Threat Model

11 Integrator Using the output of step #10, verify the security objectives are met and the

security weaknesses are properly addressed during integration of the IP into

the IC.

Verification

3 If FAILURE, the Integrator can either choose an equivalent IP from a different supplier or have a

discussion with the IP Provider to address the discrepancies.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

19

Annex A : Data Object JSON Schema

This section contains JSON schemas for the data objects defined in this standard, validated against the

referenced JSON schema standard.

A.1 Asset Definition

{

"$schema": "http://json-schema.org/draft/2019-09/schema",

"title": "Asset Definition",

"description": "An asset is something that's critical for proper IP operation",

"type": "object",

"properties": {

"Name" : { "type" : "string" },

"Description" : { "type" : "string" },

"Family" : { "type" : "array", "items" : {"type" : "string"} },

"Type" : { "type" : "array", "items" : {"type" : "string"} },

"Database_ID" : { "type" : "array", "items" : {"type" : "string"} }

},

"required" : ["Name", "Family", "Type"]

}

A.2 Database

{

"$schema": "http://json-schema.org/draft/2019-09/schema",

"title": "Database",

"description": "Information that defines a security weaknesses database",

"type": "object",

"properties": {

"ID" : { "type" : "string" },

"Description" : { "type" : "string" },

"URI" : { "type" : "string" },

"Version" : { "type": "string" }

},

"required" : ["ID", "URI", "Version"]

}

A.3 Element

{

"$schema": "http://json-schema.org/draft/2019-09/schema",

"title": "Element",

"description": "An element is a relationship to the asset, directly or indirectly",

"type": "object",

"properties": {

"Asset Name" : { "type" : "string" },

"Direction" : { "type" : "string", "enum": ["Input", "Output", "None"] },

"Security Weakness Reference" : { "type" : "array", "items" : {"type" : "string"} },

"Ports" : { "type" : "array", "items" : {"type" : "string"} },

"Parameters" : { "type" : "array", "items" : {"type" : "string"} }

},

"required" : ["Asset Name", "Direction", "Ports"]

}

A.4 Attack Points Security Objective

{

"$schema": "http://json-schema.org/draft/2019-09/schema",

"title": "Attack Points Security Objective",

"description": "Attack points with associated security objective",

"type": "object",

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

20

"properties": {

"Name" : { "type" : "string" },

"Asset Name" : { "type" : "string" },

"Security Objective" : { "type" : "string",

 "enum": [

"Confidentiality",

"Integrity",

"Availability"

] },

"Description" : { "type" : "string" },

"Condition" : { "type" : "string" },

"Security Weakness Reference" : {"type" : "array", "items" : {"type" : "string"} },

"Additional Security Weaknesses": {"type" : "array", "items" : {"type" : "string"} },

"Attack Points" : {"type" : "array", "items" : {"type" : "string"} },

"Parameters" : { "type" : "array", "items" : {"type" : "string"} }

},

"required" : ["Name", "Asset Name", "Security Objective"]

}

A.5 SA-EDI Data Object

The SA-EDI data object may be used to collect the standard’s data objects into a single JSON file. This is

optional, however if provided in the IP Bundle this schema shall be used.

{

"$schema": "http://json-schema.org/draft/2019-09/schema",

"definitions" : {

 "ASSET" : {

"title": "Asset Definition",

"description": "An asset is something of importance",

"type": "object",

"properties": {

"Name" : { "type" : "string" },

"Description" : { "type" : "string" },

"Family" : { "type" : "array", "items" : {"type" : "string"} },

"Type" : { "type" : "array", "items" : {"type" : "string"} },

"Database_ID" : { "type" : "array", "items" : {"type" : "string"} }

},

"required" : ["Name", "Family", "Type"]

},

"DATABASE" : {
"title": "Database",

"description": "Information that defines a security weaknesses database",

"type": "object",

"properties": {

"ID" : { "type" : "string" },

"Description" : { "type" : "string" },

"URI" : { "type" : "string" },

"Version" : { "type": "string" }

},

"required" : ["ID", "URI", "Version"]

},

"ELEMENT" : {

"title": "Element",

"description": "An element is a relationship to the asset",

"type": "object",

"properties": {

"Asset Name" : { "type" : "string" },

"Direction" :{ "type" : "string", "enum": ["Input", "Output", "None"] },

"Security Weakness Reference" : { "type" : "array", "items" : {"type" :

"string"} },

"Ports" : { "type" : "array", "items" : {"type" : "string"} },

"Parameters" : { "type" : "array", "items" : {"type" : "string"} }

},

"required" : ["Asset Name", "Direction", "Ports"]

},

"APSO" : {

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

21

"title": "Attack Points Security Objective",

"description": "Attack points with associated security objective",

"type": "object",

"properties": {

"Name" : { "type" : "string" },

"Asset Name" : { "type" : "string" },

"Security Objective" : { "type" : "string",

 "enum": [

"Confidentiality",

"Integrity",

"Availability"

] },

"Description" : { "type" : "string" },

"Condition" : { "type" : "string" },

"Security Weakness Reference" : {"type" : "array", "items" : {"type" :

"string"} },

"Additional Security Weaknesses": {"type" : "array", "items" : {"type" :

"string"} },

"Attack Points" : {"type" : "array", "items" : {"type" : "string"} },

"Parameters" : { "type" : "array", "items" : {"type" : "string"} }

},

"required" : ["Name", "Asset Name", "Security Objective"]

}

},
"title": "SA-EDI Group Object",

"description": "Used to save all SA-EDI data objects in a single .json file",

"type": "object",

"properties": {

"Asset Definition" : {"type" : "array", "items" : {"$ref" : "#/definitions/ASSET"} },

"Database" : {"type" : "array", "items" : {"$ref" : "#/definitions/DATABASE"} },

"Element" : {"type" : "array", "items" : {"$ref" : "#/definitions/ELEMENT"} },

"Attack Points Security Objective":{"type" : "array", "items" : {"$ref" :

"#/definitions/APSO"} }

},

"required" : ["Asset Definition", "Attack Points Security Objective"]

}

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

22

Annex B : Use-case Example

The intention of this section is to demonstrate how the standard can be applied to an example IP. The IP

was crafted to be simple and minimalistic for easy comprehension. The IP is not intended to be

functionally complete or optimal. The source code can be referenced in section Annex C.

B.1 Watchdog IP

The Watchdog IP (WDIP) is a simple timer that when it expires, will assert an output signal that can be

used to put an IC into a known good state. The timer counts down from an initial value that is the

concatenation of the REG_COUNT_HIGH and REG_COUNT_LOW registers. The block diagram of the

WDIP is shown in Figure 6.

WD Ctrl

Counter

o_wd_reset

debug_sigs

WDIP
i_clk
i_rst

i_wen
i_addr
i_data

Com Bus

o_data

i_ren

Figure 6, Watchdog Block Diagram

The WDIP consists of two basic blocks:

1. WD Ctrl: This controller is used to configure the watchdog settings, which includes enabling,

disabling, and servicing the timer. The source for this block is provided in section C.2. The block

supports a parallel bus that is sampled on a single clock cycle for both writes and reads. The bus

consists of the following signals:

a) i_ren: When asserted, enables read access to the register space in the WD Ctrl block.

b) i_wen: When asserted, enables write access to the register space in the WD Ctrl block. If asserted

during an i_ren assertion, a read will take place, (i.e., reads take precedence).

c) i_addr: This is an 8-bit bus [7:0]. Represents the register address space inside the controller.

d) i_data: This is an 8-bit bus [7:0]. It contains data to write to the targeted register on i_addr when

i_wen is asserted.

e) o_data: This is an 8-bit bus [7:0]. It contains the data read from the targeted register on i_addr

when i_ren is asserted.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

23

2. Counter: This block is the actual timer of the watchdog and communicates to the WD Ctrl block

through the parallel “Com Bus”. The source for this block is provided in section C.3. The “Com Bus”

is internal to the watchdog IP and is defined as follows.

a) count_val: This is a 16-bit input [15:0] that is used as the initial value of the timer.

b) wd_start: Used to start the timer.

c) wd_service: Used to service the timer (i.e. reset the count).

d) wd_pause: Used to pause the timer.

e) wd_timer: This is a 16-bit output [15:0] that represents the current timer value.

f) wd_timout: Counter has reached zero.

g) clk: Clock. It is connected to i_clk.

The Counter block also supports the following input debug signals on the “debug_sigs” interface

which are exposed to the top module. During debug mode, the debug signals override the WD Ctrl

block signals.

a) i_dbg_enable: Used to put the WDIP into debug mode.

b) i_dbg_clk_en: Once asserted, the debug clock will be used instead of i_clk.

c) i_dbg_clk: Debug clock.

d) i_dbg_cnt_val: This is a 16-bit input [15:0] that is used as the initial value of the timer.

e) i_dbg_timout: Asserts the timeout.

f) i_dbg_pause: Used to pause the timer.

g) i_dbg_start: When asserted, the timer is running.

h) i_dbg_service: Services the timer to reset the count.

B.1.1 Registers

The WD Ctrl block supports the following register interface to the top module.

1. REG_CONTROL (Address: 0x1)
Bit # Access Description

0 RW Lock bit. Once set, REG_CONTROL,

REG_COUNT_LOW, and REG_COUNT_HIGH

can not be altered until either i_rst or o_wd_reset is

asserted.

• 0 – unlocked

• 1 – locked

1 RW Start. Once set, the timer will start counting down

from the initial value.

• 0 – disabled. The timer is cleared.

• 1 – starts the timer

2 RW Pause. Once set, the timer will pause. All state

information is preserved.

• 0 – continue timer

• 1 – pause timer

3-7 - Reserved

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

24

2. REG_SERVICE (Address: 0x2)
Bit # Access Description

0 W Service bit. Once set, the timer will be reloaded

from the initial values in REG_COUNT_LOW and

REG_COUNT_HIGH registers.

• 0 – nothing

• 1 – serviced. This will be cleared on the

next clock cycle.

1-7 - Reserved

3. REG_COUNT_LOW (Address: 0x3)
Bit # Access Description

0-7 W The lower byte of the initial value of the timer.

4. REG_COUNT_HIGH (Address: 0x4)
Bit # Access Description

0-7 W The upper byte of the initial value of the timer.

5. REG_TIMER_LOW (Address: 0x5)
Bit # Access Description

0-7 R The lower byte of the timer value

6. REG_TIMER_HIGH (Address: 0x6)
Bit # Access Description

0-7 R The upper byte of the timer value

B.2 Workflow Steps

Using the WDIP as an example, the methodology outlined in Table 7 is as follows:

Step #1. Identify a database of known security weaknesses. In this example, the CWE database is

used and the Database data object will be as such:

{

 "ID" : "CWE VIEW: Hardware Design",

 "Description" : "A community developed list of hardware weakness types",

 "URI" : "https://cwe.mitre.org/data/definitions/1194.html",

 "Version" : "4.3"

}

Step #2. Identify the asset(s). Inside the counter block (wd_count.v), the register wd_timer holds

the timeout value of the watchdog. The watchdog functionality may be used to detect an

undesirable condition in the IC. Therefore, an adversary would want to prevent this timeout from

happening and may want to modify the value of the counter (e.g., increase or reset its value). This

makes the wd_timer an asset to the IP. The Asset Definition data object is defined as such:

{

 "Name" : " wd_top.count_block.wd_count.wd_timer",

 "Description" : "Timer count status. Critical for proper operation",

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

25

 "Family" : ["Counter/Timer", "Test/Debug"],

 "Type" : ["Control", "Critical"],

"Database_ID" : ["CWE VIEW: Hardware Design"]

}

To clarify, “Test/Debug” was included in the Family attribute because the IP supports a debug

interface. This value will help associate security concerns around debug from the CWE database.

Once a timeout occurs, it is critical that the indication (i.e., system reset) gets propagated out to the

top module without any modification. This timeout is in the counter block and is a register

defined as wd_assert_timeout. An adversary who gains control of or influence over this register

can modify the behavior of the watchdog IP (e.g., block the assertion of output signal o_wd_reset

or assert constantly to create a denial of service). Therefore, wd_assert_timeout is critical for

proper operation which makes it an asset. The Asset Definition data object for this asset is as

follows:

{

 "Name" : " wd_top.count_block.wd_count.wd_assert_timeout",

 "Description" : "Timeout assertion signal. Critical for proper operation",

 "Family" : ["Counter/Timer","Test/Debug"],

 "Type" : ["Control", "Critical"],

"Database_ID" : ["CWE VIEW: Hardware Design"]

}

Step #3. Generate the Element data objects. For the WDIP, there are four objects generated: two

are associated with the wd_timer asset and two are associated with the wd_assert_timeout asset.

The Element data objects are as follows.

{

 "Asset Name" : "wd_top.count_block.wd_count.wd_timer",

 "Direction" : "Input",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

 "Ports" : [

"wd_top.i_rst",

"wd_top.i_clk",

"wd_top.i_ren",

"wd_top.i_wen",

"wd_top.i_data",

"wd_top.i_addr",

"wd_top.i_dbg_enable",

"wd_top.i_dbg_clk_en",

"wd_top.i_dbg_clk",

"wd_top.i_dbg_pause",

"wd_top.i_dbg_start",

"wd_top.i_dbg_service",

"wd_top.i_dbg_timeout",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

{

 "Asset Name" : "wd_top.count_block.wd_count.wd_timer",

 "Direction" : "Output",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : ["wd_top.o_data"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

{

 "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",

 "Direction" : "Input",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : [

"wd_top.i_rst",

"wd_top.i_clk",

"wd_top.i_ren",

"wd_top.i_wen",

"wd_top.i_data",

"wd_top.i_addr",

"wd_top.i_dbg_enable",

"wd_top.i_dbg_clk_en",

"wd_top.i_dbg_clk",

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

26

"wd_top.i_dbg_pause",

"wd_top.i_dbg_start",

"wd_top.i_dbg_service",

"wd_top.i_dbg_timeout",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

{

 "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",

 "Direction" : "Output",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : ["wd_top.o_wd_reset "]

}

Step #4. Create the APSO data objects. For the wd_timer asset, the Integrity security objective

needs to be upheld since this is what an adversary would want to alter. To protect the integrity of

the timer value, the IP provides a locking mechanism. Only when the lock is not asserted, can the

timer be manipulated, which is captured in the Condition attribute. The APSO data objects for

wd_timer are as follows:

{

 "Name" : "SO_1",

 "Asset Name" : "wd_top.count_block.wd_count.wd_timer",

 "Security Objective" : "Integrity",

 "Description" : "If the lock bit is not enabled then the counter can be altered",

 "Condition" : "(wd_top.i_wen=1) && (wd_top.i_addr=REG_CONTROL) && (wd_top.i_data[0]=0)",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

 "Attack Points" : [

"wd_top.i_wd_rst",

"wd_top.i_wd_clk",

"wd_top.i_enb",

"wd_top.i_wen",

"wd_top.i_addr",

"wd_top.i_data"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

APSO object “SO_2” requires the Condition of debug mode to be enabled to violate the security

objective.

{

 "Name" : "SO_2",

 "Asset Name" : "wd_top.count_block.wd_count.wd_timer",

 "Security Objective" : "Integrity",

 "Description" : "Debug signals can alter the counter",

 "Condition" : "wd_top.i_dbg_enable == 1",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

 "Attack Points" : [

"wd_top.i_dbg_enable",

"wd_top.i_dbg_clk_en",

"wd_top.i_dbg_clk",

"wd_top.i_dbg_pause",

"wd_top.i_dbg_start",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

The wd_assert_timeout asset requires the Integrity security objective. If the integrity was

compromised, a spurious timeout action will be taken, which may cause unwanted behavior such

as extend the timeout or cause a DoS. This can be done when the IP is in debug mode. The

APSO data objects for the wd_assert_timeout are as follows:

{

 "Name" : "SO_3",

 "Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",

 "Security Objective" : "Integrity",

 "Description" : "Debug can assert a timeout at any time",

 "Condition" : "wd_top.i_dbg_enable == 1",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

 "Attack Points" : [

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

27

"wd_top.i_dbg_enable",

"wd_top.i_dbg_timeout"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

{

 "Name" : "SO_4",

 "Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",

 "Security Objective" : "Integrity",

 "Description" : "Debug can assert a timeout by setting count value to 0",

 "Condition" : "wd_top.i_dbg_enable == 1",

 "Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

 "Attack Points" : [

"wd_top.i_dbg_enable",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

In this example, the Output Element object that is associated with the “wd_timer” was not used in

the creation of the APSO objects. This is because there were no identified security objectives on

the asset that are associated with the Ports in this object. This does not violate compliance to the

standard.

Step #5. Create the IP Bundle. This will include the source code in Annex C, netlist and

testbenches, and the SA-EDI data objects produced in Steps #1-4. The SA-EDI data objects may

be organized into a JSON object as shown below by using the schema defined in section A.5. The

IP Bundle is then delivered to the Integrator.

{

"Asset Definition" : [

{

"Name" : " wd_top.count_block.wd_count.wd_timer",

"Description" : "Timer count status. Critical for proper operation",

"Family" : ["Counter/Timer","Test/Debug"],

"Type" : ["Control", "Critical"],

"Database_ID" : ["CWE VIEW: Hardware Design"]

},

{

"Name" : " wd_top.count_block.wd_count.wd_assert_timeout",

"Description" : "Timeout assertion signal. Critical for proper operation",

"Family" : ["Counter/Timer","Test/Debug"],

"Type" : ["Control", "Critical"],

"Database_ID" : ["CWE VIEW: Hardware Design"]

}],

"Database" : [

{

"ID" : "CWE VIEW: Hardware Design",

"Description" : "A community developed list of hardware weakness types",

"URI" : "https://cwe.mitre.org/data/definitions/1194.html",

"Version" : "4.3"

}],

"Element" : [

{

"Asset Name" : "wd_top.count_block.wd_count.wd_timer",

"Direction" : "Input",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : [

"wd_top.i_rst",

"wd_top.i_clk",

"wd_top.i_ren",

"wd_top.i_wen",

"wd_top.i_data",

"wd_top.i_addr",

"wd_top.i_dbg_enable",

"wd_top.i_dbg_clk_en",

"wd_top.i_dbg_clk",

"wd_top.i_dbg_pause",

"wd_top.i_dbg_start",

"wd_top.i_dbg_service",

"wd_top.i_dbg_timeout",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

},

{

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

28

"Asset Name" : "wd_top.count_block.wd_count.wd_timer",

"Direction" : "Output",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : ["wd_top.o_data"],

"Parameters" : ["wd_top.COUNT_SIZE"]

},

{

"Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",

"Direction" : "Input",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : [

"wd_top.i_rst",

"wd_top.i_clk",

"wd_top.i_ren",

"wd_top.i_wen",

"wd_top.i_data",

"wd_top.i_addr",

"wd_top.i_dbg_enable",

"wd_top.i_dbg_clk_en",

"wd_top.i_dbg_clk",

"wd_top.i_dbg_pause",

"wd_top.i_dbg_start",

"wd_top.i_dbg_service",

"wd_top.i_dbg_timeout",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

},

{

"Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",

"Direction" : "Output",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Ports" : ["wd_top.o_wd_reset "]

}],

"Attack Points Security Objective": [

{

"Name" : "SO_1",

"Asset Name" : "wd_top.count_block.wd_count.wd_timer",

"Security Objective" : "Integrity",

"Description" : "If the lock bit is not enabled then the counter can be altered",

"Condition":"(wd_top.i_wen=1)&&(wd_top.i_addr=REG_CONTROL)&&(wd_top.i_data[0]=0)",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Attack Points" : [

"wd_top.i_wd_rst",

"wd_top.i_wd_clk",

"wd_top.i_enb",

"wd_top.i_wen",

"wd_top.i_addr",

"wd_top.i_data"],

"Parameters" : ["wd_top.COUNT_SIZE"]

},

{

"Name" : "SO_2",

"Asset Name" : "wd_top.count_block.wd_count.wd_timer",

"Security Objective" : "Integrity",

"Description" : "Debug signals can alter the counter",

"Condition" : "wd_top.i_dbg_enable == 1",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Attack Points" : [

"wd_top.i_dbg_enable",

"wd_top.i_dbg_clk_en",

"wd_top.i_dbg_clk",

"wd_top.i_dbg_pause",

"wd_top.i_dbg_start",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

},

{

"Name" : "SO_3",

"Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",

"Security Objective" : "Integrity",

"Description" : "Debug can assert a timeout at any time",

"Condition" : "wd_top.i_dbg_enable == 1",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Attack Points" : [

"wd_top.i_dbg_enable",

"wd_top.i_dbg_timeout"],

"Parameters" : ["wd_top.COUNT_SIZE"]

},

{

"Name" : "SO_4",

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

29

"Asset Name" : "wd_top.count_block.wd_count.wd_assert_timeout",

"Security Objective" : "Integrity",

"Description" : "Debug can assert a timeout by setting count value to 0",

"Condition" : "wd_top.i_dbg_enable == 1",

"Security Weakness Reference" : ["CWE-1244","CWE-1191","CWE-1234"],

"Attack Points" : [

"wd_top.i_dbg_enable",

"wd_top.i_dbg_cnt_val"],

"Parameters" : ["wd_top.COUNT_SIZE"]

}

]

}

Step #6. Regenerate the Element objects. The Integrator extracts the Asset Definition objects

from the IP Bundle. Using these objects, the Integrator repeats Step #3 to regenerate the Element

objects.

Step #7. Verify the Element objects. The Integrator performs a file compare between the locally

generated Element objects and the Element objects from the IP Bundle. If the objects do not

match, the process stops with a report of FAILURE. In the case where they match, the Integrator

has verified that the SA-EDI collateral in the IP Bundle corresponds with the provided RTL,

yielding SUCCESS.

Step #8. Scope the Threat Model. The Integrator reviews the APSO objects that were included in

the IP Bundle to see which ones are in scope for the IC. For example, the APSO object labeled

“SO_2” may not be a concern if the debug ports are tied off to be disabled in the IC. However, if

the debug ports are to be connected, then this object would be in scope.

Step #9. Create the Threat Model. There may be some specific security objectives relevant to

integration of the WDIP block in the IC. As an example, the o_wd_reset signal should not be

gated, and therefore requires the security objective Availability. The Integrator could add the

following APSO object to the Threat Model. Notice that some of the optional attributes are not

included in the object because their values are not needed.

{

 "Name" : "SO_5",

 "Asset Name" : "wd_top.count_block.wd_control.wd_assert_timeout",

 "Security Objective" : "Availability",

 "Description" : "The timeout assertion should never be gated",

 "Attack Points" : ["wd_top.o_wd_reset"]

}

Step #10. Complete the Threat Model. Add the five created APSO objects to the threat model for

the IC. Since this is just an example, the IC threat model is not shown for simplicity reasons.

Step #11. Verify the Threat Model. The last step is to verify that the security objectives in the

threat model are upheld in the architecture and design of the IC. For example, verify “SO_1” is

true by trying to prevent a timeout assertion via the WD Ctrl block interface once the lock bit is

set. Another example may be to verify that deprivileged agents in the IC do not have access to the

debug signals for “SO_2”. Other examples may exist, however, the verification process is out of

scope of the standard.

B.2.1 WDIP Security Evaluation

The WDIP block functions as expected, meaning there are no identified security vulnerabilities in the

module. However, the SA-EDI methodology did identify security concerns that could be potential issues in

an IC. The IP implemented a protection mechanism that can be circumvented by the debug interface. The

lock bit in the REG_CONTROL register prevents modifications to the counter once set. However, the

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

30

protection logic does not extend to the debug interface. Therefore, if not addressed in the IC, this concern

could lead to multiple vulnerabilities in the IC.

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

31

Annex C : WDIP Source Code

This section includes the source code for the watchdog IP architecture detailed in B.1. The source files are

written in Verilog and are as follows:

• wd_top.v – top module

• wd_control.v – logic which manages the registers and the counter block. It also controls the

assertion of the watchdog timeout signal.

• wd_count.v – logic which manages the timer itself and its debug signals

C.1 wd_top.v

module wd_top #(parameter COUNT_SIZE = 16) // top module

 (

 output o_wd_reset, //wd timeout, active high

 input i_rst, //reset, active low

 input i_clk, //sys clk

 input i_wen, //write enable

 input i_ren, //read enable

 input [7:0] i_data, //input data to register

 output [7:0] o_data, //output data from register

 input [7:0] i_addr, //register address

 input i_dbg_enable, //debug enable

 input i_dbg_clk_en, //debug clk enable

 input i_dbg_clk, //debug clk override

 input i_dbg_timeout, //debug timeout assertion

 input i_dbg_pause, //debug temporarily stops timer

 input i_dbg_start, //debug starts/stops timer

 input i_dbg_service, //debug services timer

 input[COUNT_SIZE-1:0] i_dbg_cnt_val //debug sets timer count

);

 wire wd_timeout; //wd timout

 wire [COUNT_SIZE-1:0] timer_status; //status of timer count

 wire [COUNT_SIZE-1:0] count_val; //timer count value

 wire wd_start; //starts timer

 wire wd_service; //services timer

 wire wd_pause; //pauses timer

 wd_control #(.COUNT_SIZE(COUNT_SIZE))

 control_block(

 .clk (i_clk), //in

 .i_wd_rst (i_rst), //in

 .reg_address (i_addr), //address

 .reg_data_i (i_data), //write data

 .reg_data_o (o_data), //read data

 .reg_wr_enb (i_wen), //write enable

 .reg_rd_enb (i_ren), //read enable

 .wd_timeout (wd_timeout), //in

 .timer_status(timer_status),//in

 .count_val (count_val), //out

 .wd_start (wd_start), //out

 .wd_service (wd_service), //out

 .wd_pause (wd_pause), //out

 .o_wd_reset (o_wd_reset) //out

);

 wd_count #(.COUNT_SIZE(COUNT_SIZE))

 count_block(

 .clk (i_clk), //in

 .rst_n (i_rst), //in

 .wd_timer (timer_status), //out

 .wd_timeout (wd_timeout), //out

 .count_val (count_val), //in

 .wd_start (wd_start), //in

 .wd_service (wd_service), //in

 .wd_pause (wd_pause), //in

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

32

 .i_dbg_enable (i_dbg_enable), //in

 .i_dbg_clk_en (i_dbg_clk_en), //in

 .i_dbg_clk (i_dbg_clk), //in

 .i_dbg_timeout (i_dbg_timeout), //in

 .i_dbg_pause (i_dbg_pause), //in

 .i_dbg_start (i_dbg_start), //in

 .i_dbg_service (i_dbg_service), //in

 .i_dbg_cnt_val (i_dbg_cnt_val) //in

);

endmodule

C.2 wd_control.v

module wd_control #(parameter COUNT_SIZE = 16)

 (

 input clk, //clock

 input i_wd_rst, //reset

 input [7:0] reg_address, //address

 input [7:0] reg_data_i, //data

 output [7:0] reg_data_o,

 input reg_rd_enb, //read enable

 input reg_wr_enb, //write enabl0065

 input [COUNT_SIZE-1:0] timer_status, //timer cnt status

 output reg [COUNT_SIZE-1:0] count_val, //timer cnt value

 input wd_timeout, //timeout assertion

 output wd_start, //starts/stops timer

 output wd_service, //services timer (reset)

 output wd_pause, //temporarily pauses timer

 output o_wd_reset //timeout assertion reset

);

 parameter REG_CONTROL = 'd1;

 parameter REG_SERVICE = 'd2;

 parameter REG_COUNT_LOW = 'd3;

 parameter REG_COUNT_HIGH = 'd4;

 parameter REG_TIMER_LOW = 'd5;

 parameter REG_TIMER_HIGH = 'd6;

 reg [7:0] reg_data;

 reg [7:0] reg_control;

 reg [7:0] reg_service;

 reg reg_pause;

 wire reg_read;

 wire reg_write;

 wire lock_flag; //lock bit

 wire start_flag; //start bit

 wire pause_flag; //pause

 wire service_flag; //service bit

 assign o_wd_reset = wd_timeout; //timeout assertion

 assign lock_flag = reg_control[0];

 assign start_flag = reg_control[1];

 assign pause_flag = reg_control[2];

 assign wd_start = start_flag; //start to cnt blk

 assign wd_pause = reg_pause; //pause to cnt blk

 assign service_flag = reg_service[0];

 assign wd_service = service_flag; //service to cnt blk

 assign reg_data_o = reg_data;

 assign reg_write = reg_wr_enb && ~reg_rd_enb;

 assign reg_read = reg_rd_enb;

 reg [7:0] reg_count_low;

 reg [7:0] reg_count_high;

 reg reg_count_low_set; //flag when count[7:0] is set

 reg reg_count_high_set; //flag when count[15:8] is set

 reg reg_timer_done; //flag when timer status is ready

 //

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

33

 always @(posedge clk)

 if (~i_wd_rst)

 begin

 reg_data <= 8'b0;

 reg_control <= 8'b0;

 reg_service <= 8'b0;

 reg_count_low <= 8'b0;

 reg_count_high <= 8'b0;

 reg_timer_done <= 1'b0;

 reg_count_low_set <= 1'b0;

 reg_count_high_set <= 1'b0;

 reg_pause <= 1'b0;

 end

 else

 begin

 if (reg_write || reg_read)

 begin

 reg_data <= 8'd0;

 case (reg_address)

 REG_CONTROL: //RW

 if (reg_read)

 reg_data <= reg_control;

 else if (reg_write && !lock_flag)

 reg_control <= reg_data_i;

 REG_SERVICE: //WO

 if (reg_write)

 reg_service = reg_data_i;

 REG_COUNT_LOW: //WO

 if (reg_write && !lock_flag) begin

 reg_count_low <= reg_data_i;

 reg_count_low_set <= 1'b1;

 end

 REG_COUNT_HIGH: //WO

 if (reg_write && !lock_flag) begin

 reg_count_high <= reg_data_i;

 reg_count_high_set <= 1'b1;

 end

 REG_TIMER_LOW: //RO

 if (reg_read) begin

 reg_pause <= 1'b1; //pause for 8bit reads

 reg_data <= timer_status[7:0];

 if (!reg_timer_done)

 reg_timer_done <= 1'b1;

 else begin

 reg_pause <= 1'b0; //all 16bits availabe, continue

 reg_timer_done <= 1'b0;

 end

 end

 REG_TIMER_HIGH: //RO

 if (reg_read) begin

 reg_pause <= 1'b1; //pause for 8bit reads

 reg_data <= timer_status[15:8];

 if (!reg_timer_done)

 reg_timer_done <= 1'b1;

 else begin

 reg_pause <= 1'b0; //all 16bits avail, continue

 reg_timer_done <= 1'b0;

 end

 end

 default:

 ; //do nothing

 endcase

 end

 if (reg_count_low_set && reg_count_high_set) begin

 reg_count_low_set <= 1'b0; //clear the flags

 reg_count_high_set <= 1'b0;

 end

 if (service_flag) begin

 reg_service[0] <= 8'b0;

 end

 if (wd_timeout) begin

 reg_control <= 8'b0; //timeout so clear cntrl settings

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

34

 end

 end

 //send timer cnt to counter block

 always @(posedge clk)

 if (~i_wd_rst)

 begin

 count_val <= {COUNT_SIZE{1'b1}};

 end

 else

 begin

 if (reg_count_low_set && reg_count_high_set)

 begin

 count_val[7:0] <= reg_count_low;

 count_val[15:8] <= reg_count_high;

 end

 end

endmodule

C.3 wd_count.v

module wd_count #(parameter COUNT_SIZE = 16)

 (

 input clk, //clock

 input rst_n, //reset

 output reg [COUNT_SIZE-1:0] wd_timer, //timer count status

 output wd_timeout, //timeout assertion

 input [COUNT_SIZE-1:0] count_val, //timer start count

 input wd_start, //starts/stops timer

 input wd_service, //services timer

 input wd_pause, //temporarily pauses timer

 input i_dbg_enable, //enables debug mode

 input i_dbg_clk_en, //enables debug clk override

 input i_dbg_clk, //debug clk

 input i_dbg_timeout, //asserts timeout

 input i_dbg_pause, //temporarily pauses timer

 input i_dbg_start, //starts/stops timer

 input i_dbg_service, //services the timer

 input [COUNT_SIZE-1:0] i_dbg_cnt_val //timer start value

);

 reg wd_assert_timeout;

 //debug interface insertion

 wire wd_clk_w = (i_dbg_enable && i_dbg_clk_en) ? i_dbg_clk : clk;

 wire wd_start_w = (i_dbg_enable) ? i_dbg_start : wd_start;

 wire wd_service_w = (i_dbg_enable) ? i_dbg_service : wd_service;

 wire wd_pause_w = (i_dbg_enable) ? i_dbg_pause : wd_pause;

 wire [COUNT_SIZE-1:0] count_val_w = (i_dbg_enable) ? i_dbg_cnt_val : count_val;

 assign wd_timeout = (i_dbg_enable) ? i_dbg_timeout : wd_assert_timeout;

 //timer/counter

 always @(posedge wd_clk_w)

 if (~rst_n)

 begin

 wd_timer <= 16'hFFFF;

 end

 else

 begin

 //watchdog setup

 case ({wd_start_w, wd_service_w, wd_pause_w})

 3'b100:

 if (wd_timer > 0)

 wd_timer <= wd_timer - 1'b1; //timer count

 3'b110:

 wd_timer <= count_val_w; //reload timer (service)

 default:

 wd_timer <= wd_timer; //pause

 endcase

 end

 //timeout detection

 always @(posedge wd_clk_w)

 if (~rst_n)

 begin

 wd_assert_timeout <= 1'b0;

 end

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

35

 else

 begin

 if (!wd_start_w) begin

 //watchdog is disabled, initialize

 wd_assert_timeout <= 1'b0;

 end else if (wd_timer==0) begin

 //assert timeout, if not reload timer (service)

 wd_assert_timeout <= ~wd_service_w;

 end

 end

endmodule // wd_count

July 2021
Security Annotation for Electronic Design Integration Standard v1.0

Copyright © 2021 Accellera. All rights reserved.

This is an approved Accellera Standards Release

36

Bibliography

Bibliographical references are resources that provide additional or helpful material but do not need to be

understood or used to implement this standard. Reference to these resources is made for informational use

only.

[B1] Sherman, B., et al. IP Security Assurance Standard Whitepaper, Accellera, 2019.

https://www.accellera.org/images/activities/working-groups/ipsa-wg/Whitepaper_IPSA_Sept_4_2019.pdf

[B2] Common Weakness Enumeration, https://cwe.mitre.org

[B3] FIPS 199: Standards for Security Categorization of Federal Information and Information Systems, NIST, 2004,

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.199.pdf

[B4] JSON Schema. The home of JSON Schema, https://json-schema.org/

https://www.accellera.org/images/activities/working-groups/ipsa-wg/Whitepaper_IPSA_Sept_4_2019.pdf
https://cwe.mitre.org/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.199.pdf
https://json-schema.org/

