

SystemC Synthesizable Subset
Version 1.4 Draft

January 2015

Copyright© 2015 Accellera Systems Initiative Inc. All rights reserved.

Accellera Systems Initiative, 1370 Trancas Street #163, Napa, CA 94558, USA.

- ii -

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera by the

Technical Committee and its Working Groups. Accellera develops its standards through a consensus

development process, approved by its members and board of directors, which brings together volunteers

representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members

of Accellera and serve without compensation. While Accellera administers the process and establishes rules to

promote fairness in the consensus development process, Accellera does not independently evaluate, test, or

verify the accuracy of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property

or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or

indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly

disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a

specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera

Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,

purchase, market, or provide other goods and services related to the scope of an Accellera Standard.

Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due to

developments in the state of the art and comments received from users of the standard. Every Accellera Standard

is subjected to review periodically for revision and update. Users are cautioned to check to determine that they

have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other

services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any

other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should

rely upon the advice of a competent professional in determining the exercise of reasonable care in any given

circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to

specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will

initiate reasonable action to prepare appropriate responses. Since Accellera Standards represent a consensus of

concerned interests, it is important to ensure that any interpretation has also received the concurrence of a

balance of interests. For this reason, Accellera and the members of the Technical Committee and its Working

Groups are not able to provide an instant response to interpretation requests except in those cases where the

matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership

affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of

text, together with appropriate supporting comments. Comments on standards and requests for interpretations

should be addressed to:

Accellera Systems Initiative

1370 Trancas Street #163

Napa, CA 94558

USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by

patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights

in connection therewith. Accellera Systems Initiative shall not be responsible for identifying patents for which a license may

be required by an Accellera Systems Initiative standard or for conducting inquiries into the legal validity or scope of those

patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks

to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by

Accellera Systems Initiative Inc., provided that permission is obtained from and any required fee, if any, is paid

- iii -

to Accellera. To arrange for authorization please contact Lynn Bannister, Accellera Systems Initiative, 1370

Trancas Street #163, Napa, CA 94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to

photocopy portions of any individual standard for educational classroom use can also be obtained from

Accellera.

Suggestions for improvements to the SystemC Synthesizable Subset are welcome. They should be sent to the

Working Group’s email reflector:

swg@lists.accellera.org

The current Working Group web page is:

www.accellera.org/activities/committees/systemc-synthesis

- iv -

Introduction

The growing popularity of SystemC for system and hardware design has spurred significant

growth in the high-level synthesis (HLS) industry in the recent past. While there are multiple

commercially available HLS tools that accept SystemC as an input language, the inherent

difference between the description of a simulation model and that of a synthesis model

presents the question of which constructs and semantics of SystemC should be supported by

these tools and how.

This standard addresses this issue by defining a subset of SystemC that will be suitable for

input to HLS tools. It is intended for use by hardware designers and HLS tool developers in a

manner that allows hardware designers to create HLS models in SystemC that will be portable

among all conforming HLS tools.

It should be noted that the intent of this version of the standard is to define a minimum subset

of SystemC for synthesis, it is not meant to restrict HLS tools’ support for syntax beyond this

subset, including additional vendor-specific design/library components, e.g., point-to-point

handshaking channels. This standard also does not define any set of tool-directives that may

be required to instruct an HLS tool on how to perform synthesis on certain constructs.

This standard is defined within the existing ISO C++ and IEEE 1666 SystemC specifications.

Hence, familiarity with these standards is presumed. Familiarity with various levels of

abstraction and their relationship with ESL (Electronic System Level) synthesis may also be

helpful in understanding this standard. A separate discussion on this topic is added as an

Annex of this standard.

This standard was defined by the Synthesis Working Group of the Accellera Systems

Initiative with participation from various HLS tool vendors and users. Below is the list of

individuals who contributed to this standard.

Participants

The following team members drove the Draft 1.4 effort:

Ashfaq Khan

Jos Verhaegh

Tony Kirke

Mike Meredith

Benjamin Carrion Schafer

Bob Condon

Alan P. Su

Andres Takach, Chair

Stuart Swan

Lucien Murray-Pitts

Yusuke Iguchi

Masachika Hamabe

Mark Johnstone

The following team members drove the Draft 1.1 ~ 1.3 effort:

Mike Meredith

Benjamin Carrion Schafer

Alan P. Su

- v -

Andres Takach, Chair

Jos Verhaegh

The following team members drove the Draft 1.0 effort:

Eike Grimpe

Rocco Jonack

Masamichi Kawarabayashi, past Chair

Mike Meredith

Fumiaki Nagao

Andres Takach

Yutaka Tamiya

Minoru Tomobe

- vi -

Contents

INTRODUCTION .. IV

1 OVERVIEW .. 1

1.1 PURPOSE .. 1

1.2 SCOPE ... 1

1.3 TERMINOLOGY .. 1

1.4 CONVENTIONS .. 3

1.5 ISOC++ IMPLEMENTATION COMPLIANCE (ISOC++ 1.4) 3

1.6 SYSTEMC LRM COMPLIANCE ... 4

2 TRANSLATION UNITS ... 5

2.1 TRANSLATION UNITS AND THEIR ANALYSIS.. 5

2.2 PRE-PROCESSING DIRECTIVES ... 5

3 MODULES .. 6

3.1 MODULE DEFINITIONS .. 6

3.2 DERIVING MODULES .. 8

3.3 MODULE HIERARCHY .. 9

4 PROCESSES ... 10

4.1 SC_METHOD .. 10

4.2 SC_THREAD AND SC_CTHREAD ... 10

5 PREDEFINED CHANNELS, INTERFACE PROPER AND PORTS 14

5.1 PREDEFINED CHANNELS ... 14

5.2 PORTS ... 14

5.3 SC_EVENT ... 15

6 TYPES ... 16

6.1 FUNDAMENTAL TYPES .. 16

6.2 COMPOUND TYPES .. 19

6.3 SYSTEMC DATATYPES ... 19

7 DECLARATIONS ... 29

7.1 SPECIFIERS ... 29

8 DECLARATORS ... 31

8.1 TYPE NAMES ... 31

8.2 AMBIGUITY RESOLUTION ... 31

8.3 KINDS OF DECLARATORS ... 31

8.4 FUNCTION DEFINITION ... 31

8.5 INITIALIZERS... 32

9 EXPRESSIONS ... 33

9.1 FUNCTION CALL .. 33

9.2 EXPLICIT TYPE CONVERSION ... 33

9.3 TYPEID .. 34

9.4 UNARY EXPRESSIONS AND OPERATORS ... 34

- vii -

9.5 POINTER-TO-MEMBER OPERATORS .. 35

9.6 MULTIPLICATIVE, ADDITIVE, SHIFT, RELATIONAL, EQUALITY, AND

ASSIGNMENT OPERATORS .. 35

9.7 BITWISE AND LOGICAL AND/OR/XOR OPERATORS 35

9.8 CONDITIONAL OPERATOR.. 35

9.9 COMMA OPERATOR .. 35

10 STATEMENTS .. 36

10.1 LABELED STATEMENT ... 36

10.2 COMPOUND STATEMENT ... 36

10.3 SELECTION STATEMENTS .. 36

10.4 ITERATION STATEMENTS ... 36

10.5 JUMP STATEMENTS ... 36

10.6 DECLARATION STATEMENT ... 36

10.7 EXCEPTION HANDLING STATEMENTS ... 37

11 NAMESPACES .. 38

11.1 NAMESPACE DEFINITION ... 38

11.2 NAMESPACE ALIAS .. 38

11.3 THE USING DECLARATION ... 38

11.4 USING DIRECTIVE ... 38

12 CLASSES .. 39

12.1 CLASS NAMES ... 39

12.2 CLASS MEMBERS ... 39

12.3 MEMBER FUNCTIONS .. 39

12.4 STATIC MEMBERS .. 39

12.5 UNIONS .. 39

12.6 BIT-FIELDS ... 39

12.7 NESTED CLASS DECLARATIONS .. 39

12.8 LOCAL CLASS DECLARATIONS .. 39

12.9 NESTED TYPE NAMES .. 39

12.10 DERIVED CLASSES ... 39

12.11 MEMBER ACCESS CONTROL ... 40

12.12 SPECIAL MEMBER FUNCTIONS ... 40

13 OVERLOADING .. 42

13.1 OVERLOADABLE DECLARATIONS ... 42

13.2 DECLARATION MATCHING ... 42

13.3 OVERLOAD RESOLUTION ... 42

13.4 ADDRESS OF OVERLOADED FUNCTION ... 43

13.5 OVERLOADED OPERATORS ... 43

13.6 BUILT-IN OPERATORS .. 43

14 TEMPLATES ... 44

14.1 TEMPLATE PARAMETERS ... 44

14.2 NAMES OF TEMPLATE SPECIALIZATIONS .. 44

14.3 TEMPLATE ARGUMENTS .. 44

14.4 TYPE EQUIVALENCE .. 44

- viii -

14.5 TEMPLATE DECLARATIONS .. 44

14.6 NAME RESOLUTION ... 45

14.7 TEMPLATE INSTANTIATION AND SPECIALIZATION .. 46

14.8 FUNCTION TEMPLATE SPECIALIZATIONS .. 46

15 LIBRARIES ... 47

15.1 STANDARD C AND C++ LIBRARIES .. 47

15.2 SYSTEMC FUNCTIONS AND TYPES ... 47

ANNEX A LEVELS OF ABSTRACTION IN SYSTEMC DESIGN AND

INTRODUCTION TO HIGH-LEVEL SYNTHESIS (INFORMATIVE) 49

A.1 INTRODUCTION TO ABSTRACTION LEVELS ... 49

A.2 INTRODUCTION TO HIGH-LEVEL SYNTHESIS... 50

A.3 VISION FOR HIGH-LEVEL DESIGN ... 51

A.4 ABSTRACTION LEVEL DETAILS .. 53

A.4.1 FUNCTION LEVEL .. 53

A.4.1.1 FUNCTION LEVEL: ALGORITHM SPECIFICATION 53

A.4.1.2 FUNCTION LEVEL: PARTITIONING INTO COMMUNICATING TASKS 54

A.4.2 ARCHITECTURE LEVEL .. 56

A.4.3 TRANSACTION LEVEL MODELING .. 56

A.4.4 IMPLEMENTATION LEVEL .. 57

A.4.4.1 IMPLEMENTATION GATE LEVEL ... 57

A.4.4.2 IMPLEMENTATION RT LEVEL ... 57

A.4.4.3 IMPLEMENTATION BEHAVIORAL-LEVEL ... 58

ANNEX B GLOSSARY (INFORMATIVE) .. 60

ANNEX C REFERENCES .. 62

- 1 -

1 Overview

1.1 Purpose

In this standard document, the Synthesis Working Group (SWG) of the Accellera Systems

Initiative has defined a subset of SystemC that is appropriate for synthesis. This is intended to

be useful for hardware designers to accelerate the modeling process with SystemC and for

EDA tool developers to develop SystemC compliant high-level synthesis (HLS) tools. The

synthesizable subset of SystemC will be defined within the existing ISO C++ and IEEE Std

1666 SystemC specifications. Hence, familiarity with these standards is presumed.

There are a wide variety of resources available to assist users in modeling with SystemC,

including the IEEE Std 1666 Language Reference Manual (LRM), user guides of the HLS

tools, and a number of books on SystemC modeling. This document is intended to fill a gap

by defining a standard for creating synthesizable hardware description in SystemC, allowing a

smooth transition between abstract modeling in SystemC and synthesizable description.

1.2 Scope

The synthesizable subset defines the syntactic elements in ISO C++, as described in ISO/IEC

14882:2003 [1] and SystemC, as described in IEEE Std 1666-2011 [2], that are appropriate

for use in SystemC code intended for input to HLS tools. In some cases, there are references

to ISO/IEC 14882:2011 [3] for very specific items that were widely available before they

were standardized in 2011. For example, the type long long and the behavior that division

truncates towards zero (0). The intent of this version of the standard document is to describe a

minimum initial subset which can be supported by tools. It is not meant to restrict synthesis

support for syntax beyond this subset.

The synthesizable subset of SystemC currently covers the register transfer level (RTL) and

the behavioral level. More abstraction levels are also discussed in this document to provide

context.

1.3 Terminology

1.3.1 Base Standards

The following standards contain provisions which, through reference in this text, are included

in this standard. At the time of publication, the editions indicated were valid.

 ISO/IEC 14882:2003, Programming languages – C++, hereinafter called ISOC++.

 ISO/IEC 14882:2011, Programming languages – C++, hereinafter called ISOC++11.

- IEEE Std1666-2011, SystemC, hereinafter called the SystemC LRM.

1.3.2 Word usage

The word shall indicates mandatory requirements strictly to be followed to conform to the

standard and from which no deviation is permitted (shall equals is required to; shall not

equals is not permitted to).

- 2 -

The word should indicates a certain course of action is preferred, but is not a mandatory

requirement; or (in the negative form, should not) that a certain course of action is permitted,

but such usage is discouraged (should equals is recommended that).

The word may indicates a course of action permissible within the limits of the standard (may

equals is permitted).

The word application is a C++ program written by an end user that uses the SystemC, TLM-1,

and TLM-2.0 class libraries, i.e., it uses classes, functions, or macros defined in the SystemC

LRM.

The word implementation means any specific implementation of the full SystemC, TLM-1,

and TLM-2.0 class libraries, as defined in the SystemC LRM, of which only the public

interface need be exposed to the application.

The word design is used to mean a SystemC design written by an end user that describes

hardware in conformance with this standard.

A synthesis tool is said to accept a SystemC construct if it allows that construct to be a legal

input; it is said to interpret the construct (or to provide an interpretation of the construct) if it

accepts that construct and produces a corresponding synthesis result.

The word tool is used to mean a high-level synthesis tool that accepts and interprets a design

in conformance with this standard.

The term call is taken to mean call directly or indirectly. Call indirectly means call an

intermediate function that in turn calls the function in question, where the chain of function

calls may be extended indefinitely. Similarly, called from means called from directly or

indirectly.

The term class is used to cover the C++ keywords class or struct.

Except where explicitly qualified, the term derived from (or inherited from) is taken to mean

derived directly or indirectly from a class. Derived indirectly from means derived from one or

more intermediate base classes.

A synthesis refinement in this document imposes a restriction or alteration upon some other

standard (e.g., the SystemC LRM or the ISOC++ standard) in order to subset the otherwise

supported methods to describe behavior to a set that can be implemented in hardware.

The word deprecated is used to describe a feature that is superseded by a better, safer, easier

to use alternative. Use of the deprecated feature is strongly discouraged and future standards

may make such use illegal.

1.3.3 Construct Categories

The constructs in this standard shall be categorized as:

Supported: A tool shall interpret the construct.

- 3 -

Ignored: A tool shall accept the construct, but may choose not to interpret the construct. The

mechanism, if any, by which a tool notifies (warns) the user of such constructs is not defined

in this standard.

Not Supported: A tool may choose not to accept the construct. The behavior of the tool upon

encountering such a construct is not defined in this standard. For example, a tool may choose

to fail upon encountering such a construct; alternatively, it may choose to accept/interpret

such a construct. It should be noted that even if a tool accepts/interprets some of the

constructs that are Not Supported, a design that uses such constructs runs the risk of losing

portability. However, it is also possible that, in a future revision of this standard, some of the

constructs that are Not Supported now will be Supported.

Supported with Restrictions: A tool shall interpret the construct with certain restrictions. This

means, instances of the construct which are within the restrictions, as set forth by this

standard, are Supported; while instances that violate these restrictions are either Ignored or

Not Supported. Unless explicitly categorized as Ignored, the violating instances are Not

Supported. A construct that is Supported with Restrictions is also said to have Restricted

Support.

1.4 Conventions

This document uses the following conventions:

a) The body of the text of this standard uses italics to denote SystemC or C++ reserved

words (e.g., sensitive and SC_MODULE).

b) The body of the text of this standard also uses italics underlined to highlight

definitions (e.g., application or design) or to visually reinforce key terms (e.g., shall,

should not, and synthesis refinement).

c) The body of the text of this standard uses bold italics to visually reinforce construct

categories (e.g., Supported and Ignored).

d) The text of the SystemC examples and code fragments is represented in a fixed-

width font.

e) An outlining box with the title “NOTE” provides an informative expansion of certain

key concepts. They are intended to assist in understanding of a construct, but are not

intended as a restriction or enhancement of a synthesis tool

f) The examples that appear in this document under "Example:" are for the sole purpose

of demonstrating the syntax and semantics of SystemC for synthesis. It is not the

intent of this standard to demonstrate, recommend, or emphasize coding styles that are

more (or less) efficient in generating an equivalent hardware representation. In

addition, it is not the intent of this standard to present examples that represent a

compliance test suite or a performance benchmark, even though these examples are

compliant to this standard (except as noted otherwise).

1.5 ISOC++ Implementation Compliance (ISOC++ 1.4)

The ISOC++ Section 1.4 Implementation Compliance applies to the synthesis subset.

1.5.1 Implementation-defined behavior (ISOC++ 1.3.5)

Simulation of the design is based on C++ compilers on specific computer platforms. In most

cases, such platforms have converged on certain default implementation-defined behaviors

- 4 -

and synthesis tools are required to either adhere to those behaviors or provide warnings to the

effect that a different implementation-defined behavior is being followed.

An example of an implementation-defined behavior is the bit-width of fundamental integer

types.

1.5.2 Undefined behavior (ISOC++ 1.3.12)

The presence of undefined behavior may lead to differences between simulation and synthesis

and differences in results from different synthesis tools. Unless this standard provides a

synthesis refinement that provides a definition, such undefined behavior is Not Supported

In some cases, undefined behavior is assumed to be not present in the design. One specific

example is division by zero (0). Synthesis tools may assume that such a condition will not be

present during simulation of the design and treat such a condition as a don’t care.

1.5.3 Unspecified behavior (ISOC++ 1.3.13)

The presence of unspecified behavior may lead to differences between simulation and

synthesis results and differences in results from different synthesis tools. An example is the

order of evaluation of arguments to a function is not specified. In ISOC++, the

implementation is not required to document which behavior occurs.

1.6 SystemC LRM Compliance

This section describes some general terms that are used in the SystemC LRM that have some

similarities with terms used in ISOC++ as described in Section 1.5.

1.6.1 Implementation-defined (SystemC LRM 3.2.1)

The description in Section 1.5.1 applies. In general, most of the implementation-defined items

in the SystemC LRM do not affect synthesis. One item that does affect synthesis is the type

for limited precision (SystemC LRM 7.2.2). In that case, this standard only supports one

implementation as specified in Section 6.3.

1.6.2 Undefined

The description in Section 1.5.2 applies when the word undefined is used in the context of the

behavior not being defined.

1.6.3 Error

The word error is sometimes used interchangeably with the word undefined in the SystemC

LRM. In many cases, an error refers to a compilation or simulation error. Synthesis tools

assume that such conditions will not be present and treat such condition as a don’t care, unless

the tools are able to prove that the error is present, in which case they may issue an error

appropriately.

- 5 -

2 Translation units

2.1 Translation units and their analysis

The text of a design is, as described by ISOC++ Section 2, kept in units called source files. A

source file together with all included sources, less any lines skipped through preprocessor

macros, is known as a translation unit.

A translation unit shall be specified using the basic source character set, as described by

ISOC++ Section 2. However, the trigraph sequences and alternative tokens are Not

Supported. Furthermore, instance names using Universal-Character-Name as described in

ISOC++ Section 2 and ISOC++ Annex E are tool-dependent and, therefore, Not Supported.

Using multiple translation units to describe a design is Supported. This standard, however,

does not specify how a user will provide the translation-unit information to the tool.

The use of the keyword extern to refer to a declaration in a different scope within the same

translation unit or in a different translation unit is Supported. However, the use of libraries

(pre-compiled binary files) is Not Supported, and a design shall contain all the source files

required for synthesis (with the exception of SystemC implementation and C/C++ native

library files).

The use of extern string-literals for linkage specification (e.g., extern "C", extern

"C++") is Not Supported (ISOC++ 7.5).

The functions main and sc_main are Ignored.

2.2 Pre-processing directives

The full set of C/C++ preprocessing directives is Supported (refer to Clause 16 in [3]).

A synthesis tool shall recognize pragma directives (#pragma). It may ignore or process

pragma directives.

A Synthesis tool shall predefine the following macro names:

1. __STDC__ : The value is implementation-dependent.

2. __cplusplus : The value is implementation-dependent.

3. SC_SYNTHESIS : The version of the synthesis subset, in a year and month

format such as 201502L.

4. __SYNTHESIS__: The value is implementation-dependent.

- 6 -

3 Modules
This section specifies the core SystemC language subset used in a design for modeling a

hardware element. A single hardware element is represented by a module and a system is

described by creating a hierarchy of modules stemming from a parent module.

This section does not limit the optimizations that can be performed on the model, the scope of

which depends on the tool itself. Irrespective of the level of optimizations performed, the

result of the synthesis should have the same functionality as the input model, but may have

different sequential timed behavior.

3.1 Module definitions

A SystemC module, as defined in the SystemC LRM definition, may contain the port-level

interfaces, any required internal storage elements, and any required behavior for that module.

The Supported possibilities for module definition are as follows.

 Use of the SC_MODULE macro;

 Derivation of a class from sc_module.

In addition to the above, templated module definition has Restricted Support. The restriction

is that, for the top-level module, only modules that have been instantiated (as defined in

ISOC++ 14.7.1 and 14.7.2) or have been explicitly specialized (as defined in ISOC++ 14.7.3)

are Supported. For non-top-level modules, templated module definition is Supported.

Template specialization and partial-specialization of modules is also Supported.

NOTE

In C++, template classes and functions are not instantiated until they are implicitly

instantiated (as defined in ISOC++14.7.1) or are explicitly instantiated (as defined in ISOC++

14.7.2).

In C++, template classes and functions can be explicitly specialized (as defined in ISOC++

14.7.3) using the “template <>” declaration (i.e., the class is fully specialized).

Examples of implicit and explicit instantiations and explicit specialization are shown below.

The most common form for synthesis is the use of implicit instantiation for submodules and

implicit instantiation of the template top-level module in the testbench (from main or

sc_main). If the testbench is not present or is excluded from analysis, the use of an explicit

instantiation would be indicated. Note that explicit specializations are less common and only

indicated when there is an advantage in providing a specialized version of the module (the

example below is not an illustration of such a case).

template <int N>

SC_MODULE (design) {

 sc_in<int> a;

 sc_out<int> c;

 void add() { c = a + N;}

- 7 -

3.1.1 Selecting the top of a design hierarchy

This standard does not define any method for specifying the top-level module(s) of a design.

This will be a tool-dependent feature.

3.1.2 Module member specification

The module member specification contains a set of member declarations and definitions.

Any valid and legal SystemC macros are Supported.

3.1.3 Module declarative items

Module constructors are Supported, while destructors are Ignored. The other two special

member functions, namely the Copy Constructor and the Assignment Operator, as defined in

ISO C++ Section 12, are disabled by the SystemC LRM, hence, they are irrelevant for this

standard.

Access from a process to a member variable (other than the signals and ports) of an

SC_MODULE written in another process is Not Supported. Calling the binding function for a

port from the body of the module constructor is Supported. It is also Supported in the case of

a channel that is explicitly exported via sc_export. Other cases of access to a member of a

module from another module are Not Supported even if they are declared public.

3.1.3.1 sc_port, sc_export, sc_signal, and other channels

 Instantiation of a sc_port or directly deriving from sc_port in a design is Not

Supported.

 Instantiation of a sc_export or directly deriving from sc_export in a design is Not

Supported.

 SC_CTOR(design) : a("a"), c("c") {

 SC_METHOD(add);

 sensitive << a;

 }

};

template class design<5>; // EXPLICIT INSTANTIATION

int main() {

 design<7> x; // IMPLICIT INSTANTIATION

}

template<> SC_MODULE(design<3>) { // EXPLICIT SPECIALIZATION

 sc_in<int> a;

 sc_out<int> c;

 void add() { c = a + 3; }

 SC_CTOR(design) : a("a"), c("c") {

 SC_METHOD(add);

 sensitive << a;

 }

};

- 8 -

The specialized ports and channels are described in Section 5 of this standard.

NOTE

Ports represent the externally visible interface to a module and are used to transfer data into

and out of the module and are defined using sc_port, sc_in, or sc_out constructs.

Exports represent the externally visible interface to a module and are used to transfer data into

and out of the module. Exports are declared using the sc_export construct.

Signals can be used to keep values and to interface between processes and modules. Signals

are declared using the sc_signal construct.

Specialized ports are used to describe a pin level description at the module boundary.

Specialized ports are declared using the sc_in, sc_inout, and sc_out constructs.

3.1.3.2 Module constructor

Module constructor declaration through the use of the SC_CTOR macro or explicit declaration

of a constructor special function either with no argument or a single argument for the module

name are Supported. Explicit declaration of a constructor special function with more than

one argument or an argument that is not a module name is Not Supported.

Every module declaration shall contain at least one declaration or definition of a constructor

method. Multiple constructor definitions are Not Supported.

Within a constructor of an SC_MODULE and functions called from the constructor, the

following operations are Supported to construct module hierarchy:

 Constructor calls of sc_in/sc_out/sc_signal/SC_MODULE.

 Initialization of pointers to SC_MODULEs with SC_MODULE objects allocated using

the new operator.

 Port bindings between sc_signal/sc_in/sc_out using bind() and operator().

 Creation of processes using SC_THREAD/SC_CTHREAD/SC_METHOD and

sensitivity specification as described in Section 4.

In addition, initialization of references and constant data members in the constructor is

Supported.

In contrast to normal C++ practice, writing to data members other than initialization of

SC_MODULE pointers, signals, or ports of a module from inside the SC_MODULE

constructor are Not Supported. Overwriting a pointer of SC_MODULE after initialization is

Not Supported.

3.2 Deriving modules

Deriving modules, as defined in SystemC LRM 4.1.1, is Supported.

Examples:

- 9 -

 // Deriving a module:
SC_MODULE(BaseModule) {

 sc_in< bool > reset;

 sc_in_clk clock;

 BaseModule (const sc_module_name& name_)

 : sc_module(name_)

 {}

};

class DerivedModule : public BaseModule {

void newProcess();

SC_HAS_PROCESS(DerivedModule);

DerivedModule(sc_module_name name_)

: BaseModule(name_) {

 SC_CTHREAD(newProcess, clock.pos());

 reset_signal_is(reset, true) ;

}

};

3.3 Module hierarchy

Module hierarchy, as defined in SystemC LRM 5.3.4, is Supported.

Port binding, as described in SystemC LRM 4.1.3 is Supported. Note that positional binding

(as described in SystemC LRM Annex C as a deprecated feature) is Not Supported.

- 10 -

4 Processes
SystemC has three different mechanisms (unspawned processes) for specifying concurrent

behavior, SC_THREAD, SC_CTHREAD, and SC_METHOD. These mechanisms are

Supported with Restrictions.

Any construct to spawn a process dynamically is not synthesizable and therefore is Not

Supported (e.g., SC_FORK and sc_spawn()).

None of the uses of sc_process_handle are synthesizable, hence such usage is Not Supported.

Consequently, the use of suspend(), resume(), enable(), disable(), kill(), reset(), and throw_it()

is also Not Supported.

4.1 SC_METHOD

In a SystemC design, the body of an SC_METHOD is executed whenever its sensitivity

condition is met. The logic inferred by a tool for an SC_METHOD depends on both the

sensitivity condition and the form of the SC_METHOD body. While it is possible to simulate

the behavior of a sequential circuit using SC_METHOD (using signal edges in the sensitivity

list), such usage is Not Supported. Only an SC_METHOD that describes a combinational

circuit is Supported. Such an SC_METHOD is sensitive to any change in the signals in its

sensitivity list (as opposed to being sensitive to the positive or negative edge of a signal).

As a synthesis refinement, the sensitivity list here shall be static and include all signals that

are read in the body of the method (this is done to avoid accidental latching which would lead

to synthesis and simulation mismatches). For such an SC_METHOD, reset_signal_is and

async_reset_signal_is are Ignored.

4.2 SC_THREAD and SC_CTHREAD

SystemC allows the usage of the SC_THREAD and SC_CTHREAD macros to create

unspawned processes which runs from the start of simulation until the end of simulation. In

earlier versions of SystemC, these constructs differed in their reset behavior. Currently, there

are minor syntax differences between the two but, for synthesis purposes, they have the same

expressiveness.

SC_CTHREAD and SC_THREAD are Supported with Restrictions. They are Supported, as

specified in the SystemC LRM, when the following restrictions regarding the process

sensitivity and process body are met (in addition to the other restrictions mentioned

throughout this standard, e.g., regarding break/continue/goto statements).

4.2.1 Clock and Reset

The sensitivity of the process shall be specified in the constructor of the SC_MODULE

enclosing the process. A process shall be statically sensitive to exactly one clock edge and

shall have at least one reset specification. A process may have at most one synchronous reset

specification and at most one asynchronous reset specification. Different SC_(C)THREADs

may be sensitive to different clocks and resets, i.e., an SC_MODULE may contain multiple

clocks.

As in the SystemC LRM, clock sensitivity is specified using the sc_signal .pos() or .neg()

member functions on a bool port. The syntax is slightly different depending on whether

SC_CTHREAD or SC_THREAD is used.

- 11 -

SC_CTHREAD: Clock is specified as the second argument to the SC_CTHREAD.

SC_THREAD: Clock is specified using a “sensitive <<” statement.

The reset sensitivity is specified by a reset statement following the SC_THREAD or

SC_CTHREAD macro as in SystemC LRM 5.2.13.

reset_signal_is(port, polarity)

async_reset_signal_is(port, polarity), where polarity is a Boolean constant.

Example: The following two invocations of thread_process are identical.

SC_THREAD(thread_process);

sensitive << clk.pos());

 async_reset_signal_is(rst, false);// active low asynchronous reset

SC_CTHREAD(thread_process, clk.pos());

 async_reset_signal_is(rst, false);// active low asynchronous reset

4.2.2 Thread process body

In a SystemC application, it is a common coding idiom to include an infinite loop containing

a call to the wait() function within a thread process in order to prevent the process from

terminating prematurely, at the same time allowing co-operative pre-emption during

simulation by suspending the process. The thread process body of a design shall also follow

this structure. Among the available constructs to suspend a process, a design shall only use a

call to wait(), where the wait condition is the clock edge that is specified in the module

constructor. That is, the only Supported waits are the following.

 wait()

 wait(int): where integer argument is statically determinable.

Other forms of suspending a thread process are Not Supported.

The body of the thread process in a design shall follow the form:

[<optional reset prologue>]

[<optional operational behavior>]

<infinite loop>

The reset and operational behavior shall be separated by a call to the wait() function. Any

behavior encountered in the thread process prior to encountering the first call to the wait()
function shall be considered by the tool as reset behavior. Any behavior encountered in the

thread process after encountering the first call to the wait() function shall be considered by the

tool as operational behavior. Multiple calls to the wait() function may occur before the infinite

loop (the behavior encountered before the first wait() will still be the reset behavior; any

behavior encountered after the first wait() statement will be the operational behavior).

The following forms of infinite loop are Supported, others are Not Supported.

while(1) { }

while(true) { }

- 12 -

do { } while (1);

do { } while (true);

for (; ;) { }

NOTE
Example of SC_THREAD/SC_CTHREAD body:

void dut::thread_process(){

 //Reset behavior goes here

 wait(); //this wait separates reset behavior from operational

behavior

 //You may have operational behavior here

 while(1){ //this loop prevents the process from termination

 //operational behavior

 wait();//this wait allows suspension of the process

 }

 return;

}

void dut::thread_process(){

 //reset behavior goes here

 //You cannot have operational behavior here, because there is no

wait to separate them from reset behavior

 while(1){ //this loop prevents the process from termination

 wait(); //this wait separates reset behavior from operational

behavior and also allows suspension of the process

 //operational behavior

 }

 return;

}

NOTE

Reset behavior is behavior that is exercisable when reset is asserted. As Section 3.1.3.2

indicates, writing to data members, signals, or ports of a module from inside the

SC_MODULE constructor is not supported since that behavior is not reset behavior (it could

be viewed as power-on reset). Default constructors of data members of the SC_MODULE

may initialize the data members (e.g., the default constructor for sc_int initializes the value to

0), but such initializations are not part of the reset behavior. If the behavior of the design

depends on those non-reset initial values, then synthesis results might not match simulation

results.

Example:

class X {

public:

 X() {

 m_1 = 0;

 }

private:

 int m_1;

- 13 -

};

class XChild : public X {

};

SC_MODULE(Module) {

 sc_signal< X > xSig;

 sc_signal< XChild > xChildSig;

 sc_in_clk clk;

 sc_in<bool> rst;

 SC_CTOR(Module)

 : xSig("xSig"), // Warning! Synthesis will Not invoke default constructor for X.

 xChildSig("xChildSig") // Warning! Synthesis will Not invoke

 / / default constructor for XChild.
 {

 SC_CTHREAD(proc, clk.pos());

 reset_signal_is(rst, true);

 }

 void proc() {

 // Reset clause

 X x_tmp; // OK. Invoke default constructor for X.

 xSig = x_tmp; // OK. Initialize xSig with x_tmp.

 xChildSig = XChild(); // OK. Initialize xChildSig by the

 / / default constructor.
 wait();

 // Main loop

 while (true) {

 ...

 }

 }

};

- 14 -

5 Predefined channels, interface proper and ports

5.1 Predefined Channels

5.1.1 sc_signal

sc_signal has Restricted Support. Use of a sc_signal with the WRITER_POLICY defaulted or

explicitly set to SC_ONE_WRITER is Supported. Use of a sc_signal with the

SC_MANY_WRITERS policy is Not Supported.

Furthermore, only the following member methods are Supported.

void write(const T&)

const T& read()

sc_signal(), sc_signal(string), and sc_signal(signal)

operator= (const T&)

operator= (const sc_signal<T,WRITER_POLICY>&)

5.1.2 Resolved Channels

Resolved types are Not Supported. This includes sc_signal_resolved, sc_in_resolved,

sc_inout_resolved, sc_out_resolved, sc_signal_rv, sc_in_rv, sc_inout_rv, and sc_out_rv.

5.1.3 Other Primitive Channels

The following list of pre-defined primitive SystemC channels are also Not Supported:

sc_buffer, sc_clock, sc_mutex, sc_semaphore, sc_fifo, and sc_event_queue.

5.2 Ports

The pre-defined specialized port classes are Supported so blocks in a SystemC hierarchy can

communicate through convenient access to member functions of the pre-defined SystemC

primitive channels.

5.2.1 sc_in, sc_out, and sc_inout

sc_in<T>, sc_out<T>, and sc_inout<T> for T being any synthesizable type are Supported.

sc_in<bool>, sc_inout<bool>, and sc_clk_in are all Supported.

sc_in<sc_dt::sc_logic> and sc_inout<sc_dt::sc_logic> are Not Supported.

Furthermore, for sc_in<T>, only the following member methods are Supported.

sc_in() and sc_in(const char*)

const T& read() const

operator const T& () const

void bind(const sc_signal_in_if<T>&)

void operator() (const sc_signal_in_if<T> &)

void bind(sc_port< sc_signal_in_if<T>, 1> &)

void operator() (sc_port< sc_signal_in_if<T>, 1> &)

void bind(sc_port< sc_signal_inout_if<T>, 1> &)

void operator() (sc_port< sc_signal_inout_if<T>, 1> &)

For sc_in<bool>, in addition to the above, the following further methods are Supported.

- 15 -

sc_event_finder& pos() const

sc_event_finder& neg() const

Furthermore, for sc_inout<T>, only the following member methods are Supported.

sc_inout() and sc_inout(const char*)

const T& read() const

operator const T& () const

void write(const T&)

operator= (const T&)

operator= (const sc_signal_in_if<T >&)

operator= (const sc_port< sc_signal_in_if<T >, 1> &)

operator= (const sc_port< sc_signal_inout_if<T >, 1> &)

operator= (const sc_inout< T> &)

void bind(const sc_signal_inout_if<T>&)

void operator() (const sc_signal_inout_if<T> &)

For sc_inout<bool>, in addition to the above, the following further methods are Supported.

sc_event_finder& pos() const

sc_event_finder& neg() const

Since sc_out<T> is derived from sc_inout<T>, it is identical to class sc_inout<T> and the

same member methods as above are Supported.

Arrays of ports are Supported.

Inheriting from the specialized port types is Not Supported.

5.3 sc_event

sc_event in a design is Not Supported.

- 16 -

6 Types
SystemC types are comprised of both the native C++ types and the additional SystemC types.

There are two kinds of native C++ types: fundamental types and compound types. Types

describe objects, references, or functions.

NOTE

Alignment requirements mentioned in ISOC++ 3.9 are not relevant for synthesis.

Synthesis may choose alternative data representations for internal objects (not part of the

interface of the design) provided the I/O behavior of the design is unchanged. For example,

the bit-width of an integer variable could be reduced based on the range of the variable or its

representation could be changed from two’s complement to sign-magnitude.

6.1 Fundamental Types

Fundamental types are comprised of integer types, floating-point types, and void.

6.1.1 Integer Types

The following integer types, as specified in ISOC++ and ISOC++11 3.9.1, are Supported:

 bool

 unsigned char, signed char, char

 unsigned short, signed short

 unsigned int, signed int

 unsigned long, signed long

 unsigned long long, signed long long (ISOC++ 11)

The integer type wchar_t is Not Supported.

NOTE

ISOC++ 3.9.1 specifies char may take for example values for either signed char or unsigned

char and that this is implementation-defined; GNU G++ can support either mode through use

of the “-fsigned_char/unsigned_char” switch. The synthesis tool vendor is likely to choose

the mode that best meets the architecture for which their simulation model was built in order

to achieve consistent results between simulation and synthesis models.

6.1.1.1 Literals

Integer and Boolean literals, as specified in ISOC++ 2.13.1 and 2.13.5, are Supported.

Character literals as described in ISOC++ 2.13.2 have Restricted Support. The L prefix

denoting wide character support is Not Supported.

For synthesis, if the numerical value of the char literal has an effect on functionality (the

exception being comparing chars for equality), characters shall be assumed to be encoded in

the ASCII character set. This is a synthesis refinement over ISOC++ 2.13.2 and 2.13.4, which

allows alternative execution character sets (ISOC++ Section 2.2, Paragraph 3).

- 17 -

6.1.1.2 Representation and Bit Sizes

Two’s complement integer representations are Supported. One’s complement and sign

magnitude integer representations are Not Supported.

A tool shall have mechanisms to support the I/O observable behavior implied by bit-widths

and representation for the computer platforms as indicated in the last column of the table

below. It shall warn in case the choice of bit-width or the representation is not consistent with

the definition for the computer platform.

Table 1: Bit Sizes for Integer Types

Integer

Type

Relative

Requirement

Current Compilers

Signed

Representation

Bit Width

(un)signed char, char two’s complement 8

(un)signed short bits(short)  bits(char) two’s complement 16

(un)signed int bits(int)  bits(short) two’s complement 32

(un)signed long bits(long)  bits(int) two’s complement 32/64

(un)signed long long bits(long long)  bits(long) two’s complement 64

NOTE

1: The representation and the bitwidth of an integer type determines its numerical range and

its overflow behavior.

2: The ISOC++ and ISOC++11 standards set minimum requirements for the bit widths of

integer types, but leave bit widths and the representation implementation-dependent.

3: ISOC++ 3.9.1 specifies unsigned integers shall obey the laws of arithmetic module 2
n
,

where n is the number of bits. Signed integers are of a pure binary numeration system and the

representations allowed are two’s complement, one’s complement, and sign magnitude.

4: Table 1 provides an overview of the ISOC++ 3.9.1 requirements and bits sizes for integer

types used on most compilers for popular computer platforms. It constrains the relative sizes

of the different integer types, and also requires the signed and unsigned (and plain in the case

of characters) versions of integer types to have the same storage. The last column in the table

shows the bit widths for current platforms. As the table indicates, there is only a difference for

the (un)signed long types in current platforms.

5: ISOC++11 provides typedefs for "exact-width" integer types. These are intN_t and uintN_t,

where N can be 8, 16, 32, or 64. The typedefs are defined in the std namespace in the

include <cstdint> header. For example, int64_t is defined as long on platforms where long

is 64-bits wide and as long long on platforms where long is 32-bits wide.

6.1.2 Type Conversions

Type conversions are Supported as specified in the sections below.

NOTE

ISOC++ defines two kinds of conversions between integer types that are applied in the

evaluation of expressions: integer promotions and usual arithmetic conversions.

- 18 -

An example of an integer promotion is when a short is promoted to an int in the unary minus

expression “-a” (variable “a” is of type short).

The usual arithmetic conversions are defined by the C++ language to yield a common type for

many binary operators that expect operands of arithmetic or enumeration type.

An example of a usual arithmetic conversion is when an operand of type short is converted to

long long in the expression “a+b” where “a” is of type short and “b” is of type long long. In

that case, “a” is first promoted to type int (integer promotion that is performed as part of the

usual arithmetic conversion) and then converted to long long.

6.1.2.1 Integer Promotions

Integer (Integral) Promotions (as defined in ISOC++ 4.5) are Supported.

6.1.2.2 Usual Arithmetic Conversions

Usual Arithmetic Conversions (as defined in ISOC++ Section 5 and ISOC++11 4.5

corresponding to the addition of the long long types) are Supported.

6.1.3 Operators

The following operators are Supported.

1. Unary operators (+, -, ~, and!) that apply to the integer types.

2. Arithmetic binary operators (+, - , *, /, and %) and the corresponding assign

operators (+=, -=, *=, /=, and %=). The result of division is truncated towards zero

(0) as specified in ISOC++11.

3. Relational and Equality operators (>, >=, <, <=, ==, and!=).

4. Bitwise binary operators (&, |, and ^) and the corresponding assign operators (&=, |=,

and ^=).

5. The Conditional Operator (?:).

The following operators have Restricted Support.

1. Shift and shift assign operators (<<, >>, <<=, and >>=). Considering E1 and E2 as

the two operands (as in “E1 shift_op E2”), the support is as follows.

a. ISOC++ 5.8 specifies that valid ranges for E2is 0 to

length(promoted_type(E1))-1 and that otherwise the behavior is undefined

(Section 1.5.2). Shifts are Supported for valid ranges and Not Supported

otherwise.

b. For right shifts, if E1 has a signed type, the sign bit shall be shifted in. This is

a synthesis refinement on ISOC++ and ISOC++11, since these standards leave

the behavior implementation-defined when E1 is negative.

c. For left shifts, the behavior specified in ISOC++ with the natural implications

due to the addition of the long long types are presumed in this standard.

2. The prefix and postfix increment and decrement operators (++x, --x, x++, and x--)

have Restricted Support. The restriction is that the prefix and postfix increment

operators on a bool operand are Not Supported as they are deprecated by ISOC++.

- 19 -

6.1.4 Floating Point Types

Floating literals (as specified in ISOC++ 2.13.2) are Supported for initializing synthesizable

datatypes. If the floating literal is used to initialize an integer type (a floating-integral

conversion is involved as specified in ISOC++ 4.9) and the truncated value is not

representable in the integer type, then the behavior is undefined (see Section 1.5.2).

Otherwise, floating-point types (specified in ISOC++ 3.9.1 as float, double, and long double)

are Not Supported.

NOTE

The bit accurate behavior of floating point arithmetic is dependent on implementations and

compiler options used [6].

6.1.5 The void type

The void type (ISOC++ 3.9.1) is Supported.

6.2 Compound Types

Compound types in C++, as described in ISOC++ 3.9.2, have Restricted Support determined

by the support restrictions of the constituent types.

6.3 SystemC Datatypes

SystemC provides a number of datatypes that are useful for hardware design. These datatypes

are implemented as C++ classes.

The following SystemC types have Restricted Supported as described in the sections below:

 Limited Precision Integer Types: sc_int and sc_uint (Section 6.3.1)

 Finite Precision Integer Types: sc_bigint and sc_biguint (Section 6.3.2)

 Finite Precision Fixed-point Types: sc_fixed and sc_ufixed (Section 6.3.3)

 Finite Word-Length Bit Vector Type: sc_bv (Section 6.3.4.1)

 Finite Word-Length Logic Vector Types (4-valued): sc_lv (Section 6.3.4.2)

 Single Bit Logic (4-valued): sc_logic (Section 6.3.4.2)

The explicit use of SystemC datatypes that are not in the list above is Not Supported. The

implicit use of other related types that arise as return types from operators on the types listed

above has Restricted Support. The restriction is that the bitwidth of a return type needs to be

statically determinable.

NOTE

1: All datatypes supported for synthesis have vector length/precision that is specified by

template parameters. Thus, their vector length/precision is statically determinable during

compilation.

2: Underlying classes, such as sc_signed and sc_unsigned, can appear as the result of

expression on supported types, but are not directly synthesizable. Their length/precision is

dynamic. Some base and helper classes are specifically denoted in SystemC LRM 3.2.4 as

classes that should not be used explicitly. The SystemC LRM annotates those classes with a

superscript dagger (
†
).

- 20 -

6.3.1 Limited Precision Integer Types

SystemC LRM 7.5.2 and 7.5.3 state that the finite precision sc_int/sc_uint shall be held in an

implementation-dependent native C++ integer which shall have a minimum representation

size of 64 bits. For synthesis, representation sizes greater than 64-bits are Not Supported.

In summary, the following types have Restricted Supported.

 sc_int<W>: limited precision signed integer (W  64).

 sc_uint<W>: limited precision unsigned integer (W  64).

Support restrictions on operators and methods are covered in Section 6.3.5. Many operators

are available through implicit conversions to int_type and uint_type and their support is

determined by the support of those native C++ types.

6.3.2 Finite Precision Integer Types

The following Finite Precision Integer types have Restricted Support.

 sc_bigint<W>: finite precision signed integer.

 sc_biguint<W>: finite precision unsigned integer.

The support restrictions of common operators and methods are covered in Section 6.3.5.

6.3.3 Finite Precision Fixed-point Types

The fixed-point types sc_fixed and sc_ufixed have Restricted Support as listed below.

1. Overflow modes have Restricted Support as specified in Table 2 below as a function

of the two template parameters that determine the overflow mode: o_mode and n_bits.

2. All Quantization modes are Supported as specified in Table 3 below as a function of

the template parameter that determines the quantization mode: q_mode.

3. Common operators/methods: see Section 6.3.5.

4. Specific methods:

a. Query of parameters: wl, iwl, q_mode, o_mode, and n_bits are Supported.

b. Query of value: is_neg, is_zero, and value are Not Supported.

c. Other methods such as overflow_flag, quantization_flag, type_params, and

cast_switch are Not Supported.

5. Simulation specific functionality such as sc_fxtype_param, sc_fxcast_switch, and

SC_OFF are Not Supported.

Table 2: Overflow Modes

Overflow Mode Parameters Support

o_mode n_bits

Wrap-around Basic (default) SC_WRAP 0 Supported

Saturation SC_SAT - Supported

Symmetrical Saturation SC_SAT_SYM - Supported

Saturation to Zero SC_SAT_ZERO - Supported

Wrap-around Advanced SC_WRAP > 0 Not Supported

Sign Magnitude Wrap-Around SC_WRAP_SM  0 Not Supported

- 21 -

Table 3: Quantization Modes

Quantization Mode Parameter (q_mode) Support

Truncation (default) SC_TRN Supported

Rounding to plus Infinity SC_RND Supported

Truncation to zero SC_TRN_ZERO Supported

Rounding to zero SC_RND_ZERO Supported

Rounding to minus infinity SC_RND_MIN_INF Supported

Rounding to infinity SC_RND_INF Supported

Convergent rounding SC_RND_CONV Supported

6.3.4 Logic and Vector Types

6.3.4.1 Finite Word-Length Bit Vectors (sc_bv)

The finite word-length bit vector sc_bv has Restricted Support. The restrictions on common

operators/methods are outlined in Section 6.3.5.

6.3.4.2 Single-Bit Logic (sc_logic) and Finite Word-Length Logic Vectors (sc_lv)

The single-bit logic sc_logic and the finite world-length logic vector sc_lv have Restricted

Support. The restriction on common operators/methods are outlined in Section 6.3.5.

In addition, the following restrictions apply.

 The unknown logic constant (sc_logic ("X"), SC_LOGIC_X) is Not Supported.

 The high-impedance logic constant (sc_logic ("Z"), SC_LOGIC_Z) has Restricted

Support. It is synthesizable if and only if it appears in an expression assigned to a

port variable directly. This expression should not include conditional expressions that

contain equality operators for logic constant.

6.3.5 Common Operators and Methods

6.3.5.1 Bit Select Operator

The bit select operators as specified by SystemC LRM 7.2.5 have Restricted Support. The

restriction is that index is within the bounds of the object being accessed.

NOTE

An out-of-bound access will be treated as an error by synthesis as defined in Section 1.6.3.

The bit select operator[i] allows the selection of a bit of a variable either as an rvalue or an

lvalue.

As defined by SystemC LRM 7.5.4.6, sc_int/sc_uint temporary values cannot have bit-select

applied.

As defined by SystemC LRM 7.7 and 7.5.7, the bit select on concatenations or subreferences

also cannot be performed.

Example:
sc_int< 8 > x ;

sc_bigint< 8 > y ;

x[3] = y[2] // Legal

(x+x)[3] = 0 ; // Illegal, as x+x is promoted to a native C++ type

- 22 -

(y+y)[3] = 0 ; // Legal as y+y is still a sc_bigint

(y,y)[3] = 0 ; // Illegal as concatenation doesn’t support bitref

6.3.5.2 Part Select Operator

The part select operators (operator(l,r) and range(l,r)), as specified by SystemC LRM 7.2.6,

have Restricted Support. The first restriction is both the left and the right index positions lie

within the bounds of the object. The second restriction is the range of the part select has a

statically determinable length. The third restriction is the left hand index is greater or equal to

the right hand index.

Out-of-bound access shall be treated as an error (Section 1.6.3), as specified in the SystemC

LRM.

NOTE

The third restriction implies bit-reversal using part selects is not supported. Given the second

restriction, the third restriction becomes trivial to check.

The bit-reversal behavior is specified for fixed-point types, as specified in SystemC LRM

7.10.5. It is also implied for vector types in the specification of reversed in SystemC LRM

7.9.8.7. Part select is not allowed to reverse bit-order for limited-precision integers, as stated

in NOTE1 in SystemC LRM 7.2.6. The SystemC LRM does not explicitly mention whether

part selects are allowed to reverse bit-order for finite-precision integers.

Example of statically determinable range length:
x(i+5,i+3) = y(k+4,k+2); // range length = 3

NOTE

As defined by SystemC LRM 7.5.4.6, sc_int/sc_uint temporary values cannot have part-select

applied.

Part select is not available for concatenations and subrefs of integer types. Part select is

available for concatenations and subrefs of vector types (sc_bv and sc_lv).

Example:

sc_int< 8 > x ;

sc_bigint< 8 > y ;

x(5,3) = y(4,2); // Legal

(x+x)(5,3) = 0 ; // Illegal: x+x is promoted to native C++ type

(y+y)(5,3) = 0 ; // Legal as y+y is still a sc_bigint

(y,y)(5,3) = 0 ; // Illegal: concatenation of bitref not allowed

The result of a part select cannot be directly assigned to a fixed point variable, but it can be

assigned to a range.

6.3.5.3 Function concat(C1,C2) and operator,(C1,C2)

Concatenation methods and operators are Supported.

NOTE

The SystemC datatype package defines concatenation functionality via a template specialized

- 23 -

function concat(C1,C2) and operator,(C1,C2).

The concatenation operation (op1,op2) may be used as an rvalue or an lvalue.

Example:

 (x, y) = (z, w);

Because of the difference in return types for operators for sc_bigint/sc_biguint and

sc_int/sc_uint, using expressions (unless they are cast) may give different results for arbitrary

precision integers than for finite precision integers. Using uncast expressions other than

concatenation, bit select, and part select as arguments of the concatenate operation is not

recommended. For example, using the Accellera Open Source simulator:

sc_int<4> t = 1; sc_bigint<4> tb = 1;

sc_int<4> x = 2; sc_bigint<4> xb = 2;

cout << (t, t*x) << endl; // result = 3

cout << (t, tb*xb) << endl; // result = 258

cout << (t, x >> 1) << endl; // result = 3

cout << (t, xb >> 1) << endl; // result = 17

6.3.5.4 Reduction Operators

The reduction operators specified in SystemC LRM 7.2.8 are Supported.

NOTE

The reduce operators (methods) are: and_reduce, or_reduce, xor_reduce, nand_reduce,

nor_reduce, and xnor_reduce.

The reduction operators are not available for the fixed-point datatypes.

6.3.5.5 Arithmetic Operators

The arithmetic operators for limited and finite precision integers, as defined in the SystemC

LRM, are Supported.

The arithmetic operators for the finite precision fixed-point types, as defined in the SystemC

LRM, have Restricted Support. The implementation-dependent behavior described in

SystemC LRM 7.10.6 (variable-precision fixed-point value limits) is Not Supported. A

consequence is that the division operator is Not Supported.

NOTE

Examples of implementation-dependent behavior described the SystemC LRM 7.10.6 can be

found in the Accellera open source simulator in the form of the following compiler flags:

 SC_FIXDIV_WL: bounds the number of bits that are computed for division. Division

can require an infinite number of bits to represent.

 SC_FXMAX_WL: is the maximum width of a fixed-point type. It is presumed

precision is set high enough so it does not change the behavior of the design.

- 24 -

Synthesis presumes these limits are not present.

The behavior of operators ++ and – for fixed-point datatypes, while using the standard

increment/decrement by 1, is in effect a NOP whenever iwl > wl and in some cases of iwl < 1.

The arithmetic operators are defined for the numeric types (integer and fixed-point types).

The arithmetic operators include:

 Unary operators + and –

 Binary operators +, -, *, /, and %; assign operators +=, -=, *=, /=, and %=. The

operators % and %= are not available for fixed-point types.

 Prefix and Postfix increment and decrement operators ++ and --.

6.3.5.6 Bitwise Complement Operator

The unary bitwise complement operator ~ specified in the SystemC LRM is Supported.

NOTE

The unary ~ operator complements its argument bitwise. For vector types, the width of the

return type is identical to the width of the operand. This is consistent with the vector types not

having an arithmetic view (no signed/unsigned treatment). The integer and fixed-point types

(these are referred to in SystemC LRM 8.1 as numeric types) are intended to have an

arithmetic treatment. In an arithmetic context, ~x is equal to (-x-1). However, the unary

operators ~ for the SystemC integer and fixed-point types are not consistent with an

arithmetic treatment and are in fact inconsistent amount themselves:

cout << ~((sc_uint<8>) 128) << endl;

 // 18446744073709551487

cout << ~((sc_biguint<8>) 128) << endl; // 383

cout << ~((sc_ufixed<8,8>) 128) << endl; // 127

cout << ~((unsigned char) 128) << endl;

 // -129, correct ~x = (-x-1)

6.3.5.7 Bitwise Logical Operators

The binary bitwise logical operators (&, |, and ^) and bitwise assignment operators (&=, |=,

and ^=) specified in the SystemC LRM are Supported.

NOTE

The binary operations &, |, ^ compute the bitwise and, or and xor operation respectively.

The mixing of signed an unsigned operands is not allowed for fixed-point types (a difference

compared to SystemC integer types).

6.3.5.8 Logical Negation

The logical negation operator ! specified in the SystemC LRM is Supported.

NOTE

The operator ! is available for sc_int_bitref, sc_uint_bitref, sc_signed_bitref_r, and

sc_unsigned_bitref_r. Using the operator ! on fixed-point types leads to implicit conversions,

so there may be unexpected truncation involved. The operator ! is available on limited

- 25 -

precision types through implicit conversions to int_type (C++ native type).

6.3.5.9 Relational Operators

Relational Operators, as defined in the SystemC LRM, are Supported.

NOTE

The relational operators compare the two operands as in C++ and return a value of type bool.

The comparison is done arithmetically for integer and fixed-point types. The relational

operators == and != operators are available for vector types.

Mixing signed and unsigned limited precision integers can lead to unexpected results. For

example:
(sc_uint<8>) 1 > (sc_int<8>) -1 // incorrectly returns false

6.3.5.10 Shift Operators

6.3.5.10.1 Limited Precision Integers

The shift operators (<< and >>) and shift assign operators (<<= and >>=) have Restricted

Support. The restriction is the second operand needs to be in the range 0 to 63.

NOTE

The restriction is inherited from the implicit conversion to the native C++ 64-bit integers in its

implementation (see Section 6.1.3 and SystemC LRM 7.5.4.6). This restriction is also tied to

the restriction in Section 6.3.2 on the maximum bitwidth for limited precision integers.

Outside the range 0 – 63, the behavior is undefined (see Section 1.5.2).

6.3.5.10.2 Finite Precision Integers

The shift operators (<< and >>) and shift assign operators (<<= and >>=) have Restricted

Support. The first restriction is the second operand has to have a non-negative value. The

support for the left shift operator (<<) is also restricted to have a statically determinable return

bit-width, which implies the value of second operand is statically determinable.

The restrictions above also apply to the said operators applied on the base types

(sc_value_base, sc_signed, and sc_unsigned), and the types resulting from part selects

(sc_signed_subref_r, sc_signed_subref, sc_unsigned_subref_r, and sc_unsigned_subref) and

concatenations (sc_concatref).

NOTE

SystemC LRM 7.6.3.7 specifies the behavior is undefined (see Section 1.6.2) if the second

operand is negative.

6.3.5.10.3 Finite Precision Fixed-Point Types

The shift operators (<<= and >>=) have Restricted Support. The restriction is the length and

integer length of the return type have to be statically determinable, which implies the value of

the second operand is statically determinable.

The shift assign operators (<<= and >>=) have Restricted Support. The restriction is the

value of the second operand is statically determinable for all cases other than when the first

- 26 -

operand has qmode=SC_TRN, omode=SC_WRAP, and n_bits=0. This restriction guarantees

no hardware is required for handling rounding and/or saturation.

The restrictions above also apply to the said operators applied on the base types (sc_fxval,

sc_fixnum, sc_fix, and sc_ufix) and types resulting from part selects (sc_fxnum_subref).

NOTE

Fixed-point shifts are bidirectional (though this is not explicitly stated in the SystemC LRM)

as the second argument is a C++ int. The hardware cost can be minimized if the range of the

second argument can be reduced. For example, if the range analysis of the synthesis tool can

determine that the second argument is non-negative, then a unidirectional shift suffices.

6.3.5.10.4 Finite Word-Length Vector Types

The shift operators (<< and >>) and shift assign operators (<<= and >>=) have Restricted

Support. The first restriction is the second operand has to have a non-negative value. The

support for the left shift operator (<<) is also restricted to have a statically determinable return

bit-width, which implies the value of second operand is statically determinable.

The restrictions above also apply to the said operators applied on the base types (sc_lv_base

and sc_bv_base), and the types resulting from part selects (sc_subref_r and sc_subref) and

concatenations (sc_concref_r and sc_concref).

NOTE

SystemC LRM 7.9.3.7, 7.9.4.7, and 7.9.8.6 specify it is an error (Section 1.6.3) if the second

operand is negative. The SystemC LRM is silent on what happens when the second operand is

negative for the classes resulting from concatenation (sc_conref_r and sc_conref).

6.3.5.11 Rotate Operators

The rotate operators lrotate and rrotate have Restricted Support. The first restriction is the

argument (amount what which to rotate) is not negative. The second restriction is the value of

the argument is statically determinable.

NOTE

The rotate operators are available for the vector types (sc_lv and sc_bv), their base classes

(sc_lv_base and sc_bv_base), and the types resulting from part select (sc_subref) and

concatenations (sc_concref) of vector classes.

The SystemC LRM does not explicitly define the behavior for negative values. The Accellera

Open Source simulator errors out for such cases.

6.3.5.12 Explicit Conversions

Explicit conversions have Restricted Support as outlined below.

 Conversions to_int, to_uint, to_long, to_ulong, to_int64, and to_uint64 are Supported.

 The following conversions are Not Supported:

o to_float and to_double;

o to_char (conversion to character for sc_logic and bit select for vector types);

o to_string (and its shortcut variants to_dec, to_hex, to_oct, and to_bin).

- 27 -

 Conversion to_bool are

o Not Supported for types sc_logic and vector types;

o Supported for bit-select for the limited and finite precision integers.

 Method is_01 (the SystemC LRM labels this as a explicit conversion function) is Not

Supported.

 Method value (for sc_logic and vector types) is Not Supported.

6.3.5.13 Conversion Operators

The conversion operators have Restricted Support. The restriction is the implicit conversion

operator is to a supported type.

NOTE

The following conversion operators are defined in the SystemC LRM, along with the classes

that define them.

 operator int_type(): limited precision integers.

 operator uint_type(): limited precision integers.

 operator uint64(): sc_int_bitref_r, sc_uint_bitref_r, sc_signed_bitref_r,

sc_unsigned_bitref_r, and sc_concatref.

 operator sc_unsigned(): sc_signed_subref_r, sc_unsigned_subref_r, and sc_concatref.

 operator sc_logic(): sc_bitref_r.

 operator double(): sc_fxnum and sc_fxval.

 operator bool(): sc_fxnum_bitref.

 operator sc_bv_base(): sc_fxnum_subref.

6.3.5.14 Assignment Operators and Constructors

Assignment operators and constructors have Restricted Supported as described below.

Initialization through String Literals, as specified in SystemC LRM 7.3, has Restricted

Support. Initialization of numeric or vector type object with a string literal as a parameter of

the copy constructor is Supported, but an initialization through a variable of char or

std::string type is Not Supported. The sc_numrep of SC_NOBASE (implementation-defined

prefix or missing prefix) is Not Supported.

NOTE

In accordance with the SystemC definition of string literals, SystemC LRM 7.3, a literal

representation may be used as the value of a SystemC numeric or vector type object. It shall

consist of a standard prefix, followed by a magnitude expressed as one or more digits.

sc_numrep Prefix *1 Magnitude format *1

SC_NOBASE Implementation-

defined

Implementation-defined

SC_DEC 0d Decimal Number, digits 0-9

SC_BIN 0b Binary Number, digits 0-1

SC_BIN_US 0bus Binary Unsigned

SC_BIN_SM 0bsm Binary Sign & Magnitude

SC_OCT 0o Octal Number, digits 0-7

SC_OCT_US 0ous Octal Unsigned

SC_OCT_SM 0osm Octal Signed & Magnitude

SC_HEX 0x Hexadecimal Number, digits 0-9, A-F

- 28 -

SC_HEX_US 0xus Hexadecimal Unsigned

SC_HEX_SM 0xsm Hexadecimal Sign & Magnitude

SC_CSD 0csd Canonical Signed Digit

*1 The SystemC LRM introduces the concept of case insensitivity to the prefix and

magnitude representations. These are supported.

6.3.5.15 String input and output

 Not Supported for dump(), print(), and scan(). See SystemC LRM 7.2.10 and 7.2.11.

 Not Supported for to_string(). See SystemC LRM 7.3.

 Not Supported for String Shortcut Methods (to_dec(), to_bin(), and so on). See

SystemC LRM 7.10.8.1.

6.3.5.16 Length

The length methods is Supported.

6.3.5.17 Reversed

The member function reversed is Not Supported.

NOTE

This is consistent with the restriction on bit-reversal in Section 6.3.5.2.

- 29 -

7 Declarations
Declarations, as defined for ISOC++ Section 7, have Restricted Support and those specific

restrictions and coding guidelines are listed in the subsequent sections and chapters.

7.1 Specifiers

 Specifiers (ISOC++ 7.1) have Restricted Support.

7.1.1 Storage class specifiers

Storage class specifiers (ISOC++ 7.1.1) have Restricted Support.

1. The auto and register specifiers are hints to a C++ compiler and are Ignored.

2. The mutable specifier is Supported.

3. The extern specifier has Restricted Support, as specified in Section 2.1.

4. The static specifier has Restricted Support.

a. Static class definitions are Supported.

b. Static variables have Restricted Support. Only const static variables are supported.

c. Static functions and static member functions are Supported.

d. Static data members of class have Restricted Support. Only const static data

members of class are Supported.

Examples:

static class my_class c ; // Static class definition,

supported

static void my_func(void) { } // Static function definition,

supported

static int var; // Non-const, not supported

static const int const_var = 5; // Const, supported

struct my_struct {

 static int member; // Non-const, not supported

 static const int const_member; // Const, supported

 static void my_member_func(void) { }

 // Static member function

};

7.1.2 Function specifiers

The function specifiers, as defined in ISOC++ 7.1.2, have Restricted Support.

 The inline specifier is Supported as defined in ISOC++.

 The explicit specifier is Supported as defined in ISOC++.

 The virtual specifier is Supported. Virtual functions are supported with the limitations

described in Section 12.10.3.

7.1.3 The typedef specifier

Supported as defined in ISOC++ 7.1.3.

7.1.4 The friend specifier

Supported as defined in ISOC++ 7.1.4.

7.1.5 Type specifiers

- 30 -

Type specifiers (ISOC++ 7.1.5) have Restricted Support.

7.1.5.1 cv-qualifiers

The cv-qualifiers (ISOC++ 7.1.5.1) have Restricted Supported.

1. The cv-qualifier const is Supported

2. The cv-qualifier volatile is Not Supported.

7.1.5.2 Simple type specifiers

Simple type specifiers (ISOC++ 7.1.5.2) have Restricted Support. They are Supported for

types that are Supported as specified in Section 6.

7.1.5.3 Elaborated type specifiers

Elaborated type specifiers (ISOC++ 7.1.5.3) are Supported.

7.1.6 Enumerations

Supported as defined in ISOC++ 7.2.

7.1.7 The asm declaration

Not supported.

7.1.8 Linkage specifications

External linkage (as described in ISOC++7.5) is Not Supported. See Section 2.

- 31 -

8 Declarators
Declarators, as defined in ISOC++ Section 8, have Restricted Support.

8.1 Type names

Supported as defined in ISOC++ 8.1.

8.2 Ambiguity resolution

Supported as defined in ISOC++ 8.2.

8.3 Kinds of declarators

8.3.1 Pointers

Pointers have Restricted Support. Pointers that are statically determinable are Supported.

Otherwise, they are Not Supported. Statically determinable implies the tool is able to

determine the actual object whose address is contained by the pointer. If the pointer points to

an array, the size of the array shall also be statically determinable.

Using the value of a pointer as data is Not Supported. This includes, for instance, testing that

a pointer is zero (0) or hashing on a pointer.

8.3.2 References

Supported as defined in ISOC++ 8.3.2.

8.3.3 Pointers to Nonstatic Class Members

Pointers to members using::* and access via ->* and .* have Restricted Support. They are

Supported described in ISOC++ 8.3.3 and 5.5, subject to the restrictions described in Section

8.3.1 on pointers.

8.3.4 Arrays

The element type of an array shall be any of the types which are permitted by ISOC++ as

element types, excluding pointers, and which are Supported for synthesis; or any SystemC

data type which is Supported for synthesis and which conforms to the requirements on

element types stated in ISOC++. In addition, declaration of arrays of signals and arrays of

ports in any place where SystemC permits the declaration of signals and ports is Supported.

Any declaration of an array shall include the specification of its bound, either explicitly, if no

initializer is specified, or as an implication from the initializer, if such is specified.

8.3.5 Function parameters

Function parameters (ISOC++ 8.3.5) have Restricted Support. The restriction is ellipsis (…)

function parameters are Not Supported.

8.3.6 Default arguments

Default arguments (ISOC++ 8.3.6) are Supported.

8.4 Function definition

Function definitions (ISOC++ 8.4) are Supported.

- 32 -

8.5 Initializers

Initializers (ISOC++ 8.5) are Supported.

8.5.1.1 Aggregates

Initialization of aggregates (ISOC++ 8.5.1) is Supported.

8.5.1.2 Character arrays

Initialization of character arrays (ISOC++ 8.5.2) is Supported. Also see Section 6.1.1.1 for

character literals that are supported.

8.5.1.3 References

Initialization of references is Supported, as defined in ISOC++ 8.5.3.

- 33 -

9 Expressions
An expression is a sequence of operators and operands that can result in a value. Expressions

can cause side effects (ISOC++ Section 5). The order of evaluation of operands and the order

in which side effects take place are unspecified by ISOC++, except when noted. For example

the statement:

 i = x[i++];

has a behavior that is not specified in ISOC++. Expressions that are legal in ISOC++, but

whose behavior is unspecified due to order of evaluation or order of side effects, are

supported for synthesis. Synthesis tools are permitted to interpret such expressions in any way

that is compliant with the ISOC++ standard.

NOTE

User code should not use such expressions to avoid differences in the results between

simulation using a particular compiler and synthesis using a particular synthesis tool.

9.1 Function call

Recursive functions (a function which includes a call to itself either directly or indirectly) is

Not Supported.

9.2 Explicit type conversion

An explicit type conversion (ISOC++ 5.4) can be expressed using a type conversion operator,

a functional notation, or cast notation. An explicit type conversion of non-pointer type is

Supported. On the other hand, an explicit type conversion of pointer is Supported with

Restrictions.

9.2.1 Type conversion operators

9.2.1.1 Dynamic cast

The type conversion operator function dynamic_cast<T>(v) (ISOC++ 5.2.7) is Not

Supported.

9.2.1.2 Static cast

The type conversion operator function static_cast<T>(v) (ISOC++ 5.2.9) is Supported within

the limitations above.

9.2.1.3 Reinterpret cast

The type conversion operator function reinterpret_cast<T>(v) (ISOC++ 5.2.10) is Not

Supported.

9.2.1.4 Const cast

The type conversion operator function const_cast<T>(v) (ISOC++ 5.2.11) is Supported

within the limitations above.

9.2.2 Functional notation

- 34 -

An explicit type conversion of pointer type using functional notation is Supported with

Restrictions. Each type conversion of pointer type using functional notation can be mapped to

any of type conversion operators described in Section 9.2.1. The restriction is the same as

those of the type conversion operators.

9.2.3 Cast notation

An explicit type conversion using cast notation is Supported with Restrictions. Each type

conversion of pointer type using cast notation can be mapped to any of type conversion

operators described in Section 9.2.1. The restriction is the same as those of the type

conversion operators, which are equivalent to the given explicit type conversion using cast

notation.

9.3 typeid

The type identification function typeid (ISOC++ 5.2.8) is Not Supported.

9.4 Unary Expressions and Operators

9.4.1 Unary Operators

The unary operators (ISOC++ 5.3.1) of the form * & + - ! and ~ are Supported.

9.4.2 Increment and decrement

Supported (ISOC++ 5.3.2).

9.4.3 sizeof

The sizeof operator (ISOC++ 5.3.3) is Not Supported.

9.4.4 New and delete

The new operator (ISOC++ 5.3.4) has Restricted Support. It is Supported for the instantiation

of variable arrays and SC_MODULE, but not supported for the instantiation of types derived

from the sc_object type, other than SC_MODULE. new may appear in the constructor or

constructor initializer list within SC_MODULE only and that use of new is Not Supported

anywhere within the behavioral description, such as inside SC_METHOD, SC_THREAD, or

SC_CTHREAD. When allocating an array of objects using new, the number of elements shall

be statically determinable.

The delete operator (ISOC++ 5.3.5) is Not Supported.

The use of set_new_handler() shall be Ignored.

Overloading the new or delete operators are Not Supported. The placement new construct is

Not Supported.

Example:

 SC_MODULE(MyModule) {

sc_in_clk CLK;

sc_in<bool> RST;

sc_in<int> a;

sc_in<int> b;

sc_out<int> c;

- 35 -

sc_out<bool> RDY;

sc_signal<int> tmp;

Adder add;

GCD *gcd;

unsigned int *mem ;

SC_CTOR(MyModule): add("add"), mem(new unsigned[128]) {

add(a,b,tmp);

gcd = new GCD("GCD");

gcd->CLK(CLK);

gcd->RST(RST);

gcd->x(tmp);

gcd->y(b);

gcd->z(c)

gcd->RDY(RDY);

}

 };

9.5 Pointer-to-member operators

The pointer-to-member operators ->* and .* have Restricted Support (ISOC++ 5.5).

The restrictions are based on the Restricted Support of pointers as defined in Section 8.3.1.

9.6 Multiplicative, Additive, Shift, Relational, Equality, and Assignment

operators

Supported (ISOC++ 5.6, 5.7, 5.8, 5.9, 5.10, and 5.17).

9.7 Bitwise and Logical AND/OR/XOR operators

Supported (ISOC++ 5.11 thru 5.15).

9.8 Conditional Operator

Supported (ISOC++ 5.16).

9.9 Comma operator

Supported (ISOC++ 5.18).

- 36 -

10 Statements
Statements (as defined in ISOC++ Section 6) have Restricted Support.

10.1 Labeled statement

Labels are Supported as defined in ISOC++ 6.1.

10.2 Compound statement

The compound statement (also, and equivalently, called block) is supported, as defined in

ISOC++ 6.3, to group sets of statements together.

10.3 Selection statements

Selection statements include if, if-else, and switch statements.

Selection statements are Supported as defined in ISOC++ 6.4.

10.3.1 The if statement

Supported as defined in ISOC++ 6.4.1.

10.3.2 The switch statement

Supported as defined in ISOC++ 6.4.2;

10.4 Iteration statements

The iteration statements while, do, and for are Supported as defined in ISOC++ 6.5.

10.5 Jump statements

Supported as defined in ISOC++ 6.6.

10.5.1 The break statement

The break statement (as defined in ISOC++ 6.6.1) has Restricted Support.

The restriction is specified in Section 4: a break that exits the infinite loop of an

SC_CTHREAD or SC_THREAD process is Not Supported.

10.5.2 The continue statement

The continue statement (as defined in ISOC++ 6.6.2) is Supported.

10.5.3 The return statement

The return statement (as defined in ISOC++ 6.6.3) has Restricted Support.

The restriction is specified in Section 4: a return statement that occurs within the function

defining an SC_CTHREAD or SC_THREAD process is Not Supported.

10.5.4 The goto statement

The goto statement (as defined in ISOC++ 6.6.4) is Not Supported.

10.6 Declaration statement

Declaration statements are Supported as defined in ISOC++ Section 7.

- 37 -

10.7 Exception handling statements

The exception handling mechanisms (as defined in ISOC++ Section 15) are Not Supported.

These include the try, catch(), and throw statements, and the special functions terminate(),

unexpected(), and uncaught_exception().

- 38 -

11 Namespaces
namespaces (as defined in ISOC++ 7.3) are Supported. Non-const global variables are Not

Supported for synthesis. Within a function body, only those names of variables shall be used,

which are declared previously in the function body or passed as parameters. Global constants

are Supported for synthesis.

Examples:

 // Example Namespace

namespace NSP {

 int var;
 const int CNST = 42;

}

void foo(const int val) {

 using namespace NSP;

 int dummy = CNST; // OK. Note that the occurrence of name CNST

 // may be replaced by the value ‘42’ by a synthesis

// tool.

dummy = var; // error. The name of a variable being declared in

// another namespace must not be used within a

// function body.

var = val; // error. The name of a variable being declared in

// another namespace must not be used within a

// function body.

11.1 Namespace definition

Supported as defined in ISOC++ 7.3.1.

11.1.1 Unnamed namespaces

Supported as defined in ISOC++ 7.3.1.1.

11.1.2 Namespace member definitions

Supported as defined in ISOC++ 7.3.1.2.

11.2 Namespace alias

Supported as defined in ISOC++ 7.3.2.

11.3 The using declaration

Supported as defined in ISOC++ 7.3.3.

11.4 Using directive

Supported as defined in ISOC++ 7.3.4.

- 39 -

12 Classes
Restricted Support as described below (ISOC++ Section 9).

12.1 Class names

Supported as defined in ISOC++ 9.1.

12.2 Class members

Supported as defined in ISOC++ 9.2.

12.3 Member functions

Supported as defined in ISOC++ 9.3.

12.3.1 Nonstatic member functions

Supported as defined in ISOC++ 9.3.1.

12.3.2 The this pointer

Supported as defined in ISOC++ 9.3.2.

12.4 Static members

Restricted Support.

12.4.1 Static member functions

Supported (ISOC++ 9.4.1) as specified in Section 7.1.1.

12.4.2 Static data members

Static data members (ISOC++ 9.4.2) have Restricted Support as specified in Section 7.1.1.

12.5 Unions

Not supported (ISOC++ 9.5).

12.6 Bit-fields

Bit-fields, as defined in ISOC++ 9.6, are Not Supported.

12.7 Nested class declarations

Supported as defined in ISOC++ 9.7.

12.8 Local class declarations

Supported as defined in ISOC++ 9.8.

12.9 Nested type names

Supported as defined in ISOC++ 9.9.

12.10 Derived classes

Supported as defined in ISOC++ Section 10.

12.10.1 Multiple base classes

- 40 -

Supported as defined in ISOC++ 10.1.

12.10.2 Member name lookup

Supported as defined in ISOC++ 10.2.

12.10.3 Virtual functions

Virtual functions, as defined in ISOC++ 10.3, have Restricted Support provided that when

such functions are called, the type of the "this" object can be statically determined.

12.10.4 Abstract classes

Supported as defined in ISOC++ 10.4.

12.11 Member access control

Supported as defined in ISOC++ Section 11.

12.11.1 Access specifiers

Supported as defined in ISOC++ 11.1.

12.11.2 Accessibility of base classes and base class members

Supported as defined in ISOC++ 11.2.

12.11.3 Access declarations

Supported as defined in ISOC++ 11.3.

12.11.4 Friends

Supported as defined in ISOC++ 11.4.

12.11.5 Protected member access

Supported as defined in ISOC++ 11.5.

12.11.6 Access to virtual functions

Supported as defined in ISOC++ 11.6.

12.11.7 Multiple access

Supported as defined in ISOC++ 11.7.

12.11.8 Nested classes

Supported as defined in ISOC++ 11.8.

12.12 Special member functions

Restricted Support as described below (ISOC++ Section 12).

12.12.1 Constructors

Constructors of user defined classes (as defined in ISOC++ 12.1) are Supported.

12.12.2 Temporary objects

Supported as defined in ISOC++ 12.2.

12.12.3 Conversions

- 41 -

Supported as defined in ISOC++ 12.3.

12.12.3.1 Conversion by constructor

Supported as defined in ISOC++ 12.3.1.

12.12.3.2 Conversion functions

Supported as defined in ISOC++ 12.3.2.

12.12.4 Destructors

Supported as defined in ISOC++ 12.4.

12.12.5 Free store

Not supported (ISOC++ 12.5).

12.12.6 Initialization

Restricted Support (ISOC++ 12.6).

As a synthesis refinement, non-const members of modules shall not be initialized by means of

mem-initializers.

12.12.6.1 Explicit initialization

Explicit initialization (as defined in ISOC++ 12.6.1) is Supported.

12.12.6.2 Initializing bases and members

Supported as defined in ISOC++ 12.6.2.

12.12.7 Copying class objects

Supported as defined in ISOC++ 12.8.

- 42 -

13 Overloading
Restricted Support as described below (ISOC++ Section 13).

13.1 Overloadable declarations

Supported as defined in ISOC++ 13.1.

13.2 Declaration matching

Supported as defined in ISOC++ 13.2.

13.3 Overload resolution

Supported as defined in ISOC++ 13.3.

13.3.1 Candidate functions and argument lists

Supported as defined in ISOC++ 13.3.1.

13.3.1.1 Function call syntax

Supported as defined in ISOC++ 13.3.1.1.

13.3.1.1.1 Call to named function

Supported as defined in ISOC++ 13.3.1.1.1.

13.3.1.1.2 Call to object of class type

Supported as defined in ISOC++ 13.3.1.1.2.

13.3.1.2 Operators in expressions

Supported as defined in ISOC++ 13.3.1.2.

13.3.1.3 Initialization by constructor

Supported as defined in ISOC++ 13.3.1.3.

13.3.1.4 Copy-initialization of class by user-defined conversion

Supported as defined in ISOC++ 13.3.1.4.

13.3.1.5 Initialization by conversion function

Supported as defined in ISOC++ 13.3.1.5.

13.3.1.6 Initialization by conversion function for direct reference binding

Supported as defined in ISOC++ 13.3.1.6.

13.3.2 Viable functions

Supported as defined in ISOC++ 13.3.2.

13.3.3 Best Viable Function

Supported as defined in ISOC++ 13.3.3.

13.3.3.1 Implicit conversion sequences

Supported as defined in ISOC++ 13.3.3.1.

- 43 -

13.3.3.1.1 Standard conversion sequences

Supported as defined in ISOC++ 13.3.3.1.1.

13.3.3.1.2 User-defined conversion sequences

Supported as defined in ISOC++ 13.3.3.1.2.

13.3.3.1.3 Ellipsis conversion sequences

Not Supported (ISOC++ 13.3.3.1.3).

13.3.3.1.4 Reference Binding

Supported as defined in ISOC++ 13.3.3.1.4.

13.3.3.2 Ranking implicit conversion sequences

Supported as defined in ISOC++ 13.3.3.2.

13.4 Address of overloaded function

Address operations are Not Supported (ISOC++ 13.4).

13.5 Overloaded operators

Supported as defined in ISOC++ 13.5.

13.5.1 Unary operators

Supported as defined in ISOC++ 13.5.1.

13.5.2 Binary operators

Supported as defined in ISOC++ 13.5.2.

13.5.3 Assignment

Supported as defined in ISOC++ 13.5.3.

13.5.4 Function call

Supported as defined in ISOC++ 13.5.4.

13.5.5 Subscripting

Supported as defined in ISOC++ 13.5.5.

13.5.6 Class member access

Supported as defined in ISOC++ 13.5.6.

13.5.7 Increment and decrement

Supported as defined in ISOC++ 13.5.7.

13.6 Built-in operators

Supported as defined in ISOC++ 13.6.

- 44 -

14 Templates
Supported as described below (ISOC++ Section 14).

14.1 Template parameters

Supported (ISOC++ 14.1).

14.2 Names of template specializations

Supported as defined in ISOC++ 14.2.

14.3 Template arguments

Supported as defined in ISOC++ 14.3.

14.3.1 Template type arguments

Supported as defined in ISOC++ 14.3.1.

14.3.2 Template non-type arguments

Supported as defined in ISOC++ 14.3.2.

14.3.3 Template template arguments

Supported as defined in ISOC++ 14.3.3.

14.4 Type equivalence

Supported as defined in ISOC++ 14.4.

14.5 Template declarations

Supported as defined in ISOC++ 14.5.

14.5.1 Class Templates

Supported as defined in ISOC++ 14.5.1.

14.5.1.1 Member functions of class templates

Supported as defined in ISOC++ 14.5.1.1.

14.5.1.2 Member classes of class templates

Supported as defined in ISOC++ 14.5.1.2.

14.5.1.3 Static data members of class templates

Restricted Support (ISOC++ 14.5.1.3). See Section 12.4.2 for static data members of classes

and Section 7.1.1 for the static storage class specifier.

14.5.2 Member templates

Supported as defined in ISOC++ 14.5.2.

14.5.3 Friends

Supported as defined in ISOC++ 14.5.3.

- 45 -

14.5.4 Class template partial specializations

Supported as defined in ISOC++ 14.5.4.

14.5.4.1 Matching of class template partial specializations

Supported as defined in ISOC++ 14.5.4.1.

14.5.4.2 Partial ordering of class template specializations

Supported as defined in ISOC++ 14.5.4.2.

14.5.4.3 Members of class template specializations

Supported as defined in ISOC++ 14.5.4.3.

14.5.5 Function templates

Supported as defined in ISOC++ 14.5.5.

14.5.5.1 Function template overloading

Supported as defined in ISOC++ 14.5.5.1.

14.5.5.2 Partial ordering of function templates

Supported as defined in ISOC++ 14.5.5.2.

14.6 Name resolution

Supported as defined in ISOC++ 14.6.

14.6.1 Locally declared names

Supported as defined in ISOC++ 14.6.1.

14.6.2 Dependent names

Supported as defined in ISOC++ 14.6.2.

14.6.2.1 Dependent types

Supported as defined in ISOC++ 14.6.2.1.

14.6.2.2 Type-dependent expressions

Supported as defined in ISOC++ 14.6.2.2.

14.6.2.3 Value-dependent expressions

Supported as defined in ISOC++ 14.6.2.3.

14.6.2.4 Dependent template arguments

Supported as defined in ISOC++ 14.6.2.4.

14.6.3 Non-dependent names

Supported as defined in ISOC++ 14.6.3.

14.6.4 Dependent name resolution

Supported as defined in ISOC++ 14.6.4.

- 46 -

14.6.4.1 Point of instantiation

Supported as defined in ISOC++ 14.6.4.1.

14.6.4.2 Candidate functions

Supported as defined in ISOC++ 14.6.4.2.

14.6.5 Friend names declared within a class template

Supported as defined in ISOC++ 14.6.5.

14.7 Template instantiation and specialization

Supported as defined in ISOC++ 14.7.

14.7.1 Implicit instantiation

Supported as defined in ISOC++ 14.7.1.

14.7.2 Explicit instantiation

Supported as defined in ISOC++ 14.7.2.

14.7.3 Explicit specialization

Supported as defined in ISOC++ 14.7.3.

14.8 Function template specializations

Supported as defined in ISOC++ 14.8.

14.8.1 Explicit template argument specification

Supported as defined in ISOC++ 14.8.1.

14.8.2 Template argument deduction

Supported as defined in ISOC++ 14.8.2.

14.8.2.1 Deducing template arguments from a function call

Supported as defined in ISOC++ 14.8.2.1.

14.8.2.2 Deducing template arguments taking the address of a function template

Supported as defined in ISOC++ 14.8.2.2.

14.8.2.3 Deducing conversion function template arguments

Supported as defined in ISOC++ 14.8.2.3.

14.8.2.4 Deducing template arguments from a type

Supported as defined in ISOC++ 14.8.2.4.

14.8.3 Overloaded resolution

Supported as defined in ISOC++ 14.8.3.

- 47 -

15 Libraries
This section outlines support for external C++ or SystemC libraries.

15.1 Standard C and C++ Libraries

 Library functions from C/C++ have Restricted Support. Most of them are Not Supported,

while some are Ignored as described below. Note that side effects of calls to generate the

arguments to an ignored function are Not Supported.

15.1.1 Outputting messages to stdout, stderr, cout and/or cerr

 The following constructs are Ignored:

printf and fprintf functions, and

using operator << to cout or cerr.

NOTE

The functions/operators called to produce the arguments to an ignored function are not part of

the ignored construct.

 printf(”x = %d”, x); // Ignored
printf(”y = %d”, ++y);

 // Side effect ++y Not Supported

cout << ”z = ” << z << endl; // Ignored

15.2 SystemC Functions and Types

15.2.1 Tracing

The following tracing constructs are Ignored:

declaration of a variable of type sc_trace_file*,

assignment to a variable of type sc_trace_file*,

calls to sc_close_isdb_trace_file, sc_close_wif_trace_file, and

sc_close_vcd_trace_file,

declaration or definition of any function named sc_trace, and

calls to any function named sc_trace.

15.2.2 set_stack_size

Ignored.

15.2.3 sc_gen_unique_name

Ignored.

15.2.4 before_end_of_elaboration and end_of_elaboration

Not Supported.

15.2.5 start_of_simulation and end_of_simulation

Not Supported.

- 48 -

15.2.6 dont_initialize

Supported.

15.2.7 next_trigger

Not Supported.

15.2.8 print and dump

The SystemC functions print and dump are Ignored.

15.2.9 kind

Ignored.

- 49 -

Annex A Levels of Abstraction in SystemC Design and

Introduction to High-level Synthesis (Informative)

A.1 Introduction to Abstraction Levels

How abstraction levels support design activities

The complexity of modern systems does not allow us to design such systems directly without

modeling at a number of abstraction levels. Furthermore, it is difficult to create derivative

implementations with different functions or different architectures, because functions and

architectures cannot be extracted easily from implementations for re-use.

System designers utilize a separation of function, architecture, and implementation to manage

these issues, with design activities at each level of abstraction. It is possible to distinguish

three main levels of abstraction: function level, architecture level, and implementation level.

Each level has its own standards and methodologies. The SystemC synthesizable subset

defines a standard set of language constructs for describing a System at the implementation

level.

Figure A.1 shows one representation of the abstraction levels in a System Design Flow.

 Figure A.1 Abstraction levels in a System Design Flow

The abstraction levels include:

1. The Function level in which the algorithms are defined and the system is partitioned

into communicating tasks.

2. The Architecture level in which the tasks are assigned to execution units,

communication mechanisms between the execution units are defined, and

implementation metrics, such as performance, are modeled and estimated.

F
u
n
c
ti
o
n
a
l
v
e
ri
fi
c
a
ti
o
n

System

Specification

& Design

Virtual

Prototyping

S
y
s
te

m
 V

e
ri

fi
c
a
ti

o
n

 &
 V

a
li

d
a
ti

o
n

High Level

Synthesis

High level executable spec

Specification capture

HW/SW partitioning

Architecture selection

HW model

(TLM)

Early SW

(low level)

SW (code)HW (RTL)

Compile
& Optimize

Synthesize &

Optimize

Synthesize
& Optimize

Function

Architecture
(TLM)

Implementation

HW design SW design

- 50 -

3. The Implementation level in which the precise method of implementation of the

execution units is defined.

The Implementation level is further subdivided:

A. The Implementation Behavior level in which the implementation is specified in terms

of an algorithm embodied in an implicit state machine.

B. The Implementation Register Transfer Level in which the implementation is specified

in terms of a combination of combinatorial logic and an explicit state machine.

C. The Implementation Gate Level in which the implementation is specified in terms of

technology leaf cells

A.2 Introduction to high-level synthesis

This section is focused on synthesis solutions that generate non-programmable register

transfer level (RTL) cores from high-level descriptions.

High-Level Synthesis (HLS), also known as Behavioral Synthesis, allows designing at a level

of abstraction higher than the register-transfer level by automating the translation and

optimization of a behavioral description, or a high-level model, into an RTL implementation.

It also transforms un-timed or partially timed functional models into fully timed RTL

implementations.

Because a micro-architecture is generated automatically, designers can focus on designing

and verifying the module functionality. Design teams create and verify their designs in less

time because it eliminates the need to fully schedule and allocate design resources, as done

with existing RTL methods. This behavioral design flow increases design productivity,

reduces errors, and speeds up verification. Figure A.2 shows an abstract view of a

representative design flow involving High-Level synthesis and Logic synthesis.

 Figure A.2 Abstract view of design flow involving High-Level and Logic synthesis

- 51 -

A typical high-level synthesis process incorporates a number of complex stages. This process

starts with a high-level language description of a module's behavior, including I/O actions and

computational functionality. Several algorithmic optimizations are performed to reduce the

complexity of a result and then the description is analyzed to determine the essential

operations and the dataflow dependencies between them.

The other inputs to the high-level synthesis process typically include a target technology

library and a set of directives that will influence the resulting architecture. These directives

include, for example, timing constraints used by the algorithms of a tool as they create a

cycle-by-cycle schedule of the required operations. In some flows, a set of low-level

components is characterized at a target frequency for the selected fabrication process. This

characterized library is used when allocation and binding occurs, in order to assign these

operations to specific functional units, such as adders, multipliers, comparators, etc.

Finally, a state machine is generated that will control the resulting datapath to implement the

desired functionality. The datapath and state machine outputs are RTL code optimized for use

with conventional simulation and logic synthesis or physical synthesis tools.

To be useful to system designers, SystemC-based HLS typically needs to accommodate two

different semantics of timing.

 Portions of a design shall be described in a time-independent manner - allowing the

synthesis tool to schedule operations for specific clock cycles.

 Portions of a design shall be described in a timing accurate matter - allowing the user to

specify the cycle-accurate protocol a portion of a system uses to communicate with the

rest of the design.

These two competing requirements pose challenges for verification. The SystemC language

has no constructs to distinguish where cycle-accuracy is intended and where a synthesis tool

has degrees of freedom to re-order operations. The practical implication of this is there is no

guarantee the pre-synthesis simulation of a design will match the post-synthesis simulation of

the resulting RTL. The large body of existing techniques in testbench design and verification

methodology which experienced designers use to validate functional correctness is beyond the

scope of this document.

 In practice, existing synthesis tools have adopted tool-specific methodologies for expressing

when a segment of code is intended to be treated as cycle-accurate. Standardizing how these

blocks of code should be specified is beyond the current scope of this standard, but is a fertile

area for future standardization efforts.

A.3 Vision for high-level design

Easier management of system complexity, accelerated design verification and implementation,

increased opportunity for design reuse, and a wider selection of implementation options, these

are just a few reasons why project teams are moving to high-level design. However, by

moving to the higher levels of abstraction, a design gap between HLS and RTL has come into

existence.

For each algorithm modelled at abstract level, there are numerous ways it can be realized in

hardware. However, with tight schedules and increasing complexity, there simply is not

enough time to create more than one RTL implementation by hand after an algorithm and

- 52 -

architecture choice is made. This way, alternative hardware implementation options that could

significantly impact performance, area, or power are seldom created or evaluated.

With the availability of a general-purpose language based on C++, like SystemC, and the

maturity of high-level synthesis and verification tools, high-level models can be leveraged to

help evaluate trade-offs in architectures and algorithms in ways not previously possible.

Figure A.3 shows the vision for synthesizing from architecture to RTL. Components in the

architecture are described in synthesizable SystemC and interfaced and connected using the

TLM library.

Figure A.3 The vision from architecture (TLM) to implementation (RTL)

Figure A.4 shows a possible implementation flow from Electronic System Level (ESL) down

to GDSII. Based on this diagram, a wish list of requirements (beyond the scope of this

standard) for ESL Synthesis solutions based on C/C++/SystemC can be defined:

 Automate the RTL implementation from behavioral C/C++/SystemC (TLM) models

 Support a fast design time (implementation & Verification)

– At least a 2x improvement compared to hand coded design

 Support optimization for Performance, Area, and Power

– On par or better area results for a required performance compared to hand

coded

– Automatic timing closure based on back-annotated static timing analysis

– Automatic power optimization based on dynamic power simulation

 Support the generation of behavioral SystemC TLM models with timing annotation

(LT/AT) and SystemC CA models

 Automate reuse of high-level test environment for verification of RTL implementation,

netlist, and generated SystemC TLM views

– Support of assertions

– Support for functional equivalence checking

 Support synthesis from and generation of TLM 2.0 SystemC compliant models

 Full integration of high-level synthesis methodology in a System Level Design

Environment

- 53 -

Figure A.4 Abstract view of possible implementation flow from ESL down to GDSII

A.4 Abstraction Level Details

A.4.1 Function Level

The motivation for introducing this level of abstraction is to quickly obtain a function to

determine what the system is supposed to do, without making architecture assumptions.

Hence, there is the potential to re-use functions either to create derivative functions or to

synthesize different implementations with different architectures.

An example of a view at this level is a function modelled as a process network which can be

analyzed through simulation.

At the Function Level of abstraction, two design steps can be identified:

 Algorithm Specification

 Partitioning into communicating tasks

A.4.1.1 Function Level: Algorithm Specification

In this design step, an executable functional specification of the algorithm is created (e.g., in

C/C++/Matlab code). This executable specification is used to check the validity of the

algorithm. The simulation in this design step is sequential, it has no timing information, and it

T0

- 54 -

has a single thread of control. The simulation speed is high due to lack of timing and

architecture details.

 Profiling techniques are used to obtain an initial estimate of the computational load of

the different functions and the amount of data transfer between them.

 Code inspection is used to estimate the amount of flexibility required for each of the

functions. The results of both, code inspection and profiling, are used as input for task

partitioning and, in a later stage, as input for hardware/software partitioning.

 Next to algorithm verification, the executable functional specification generated in this

step is also used as a golden reference model throughout the whole flow.

A.4.1.2 Function Level: Partitioning into communicating tasks

With the design constraints and requirements, a suitable architecture template in mind, and

the results from the previous algorithm design step, the system is partitioned into tasks that

perform processing functions and channels through which data is communicated between

these tasks.

The processes in such a network are concurrent and are connected by communication

channels. Processes produce data elements and send them along a unidirectional

communication channel where they are stored in a first-in-first-out order until the destination

process consumes them. Such a network is also referred to as a Kahn Process Network (KPN)

(Kahn, 1974).

In KPN, parallelism and communication are explicitly modeled, which is essential for the

mapping onto multi-processor systems. Another property of KPN is that an application

designer can combine processes into networks without specifying their order of execution.

This property stimulates the modular construction and reuse of applications (functional IP),

since it is easier to compose new applications using existing ones.

Using a multi-threaded simulation, the communication load on the channels and the

computation load on the tasks are analyzed. If necessary, the system can be repartitioned to

meet the constraints and requirements. Also, the functional correctness of the partitioning is

checked during the multi-threaded simulation.

To model signal processing applications as Kahn Processing Networks, YAPI (Erwin de

Kock, Proposal for Modeling Kahn Process Networks and Synchronous Dataflow in SystemC)

(Erwin de Kock, YAPI: Application Modeling for Signal Processsing Systems, 2000) can be

used. The purpose of YAPI is to enable the reuse of signal processing applications and the

mapping of signal processing applications onto heterogeneous systems that contain hardware

and software components.

YAPI has also been embedded in SystemC. YAPI embedded in SystemC is developed as a

SystemC class library with a set of rules that can be used to model stream processing

applications as a process network. As mentioned above, the model of computation in YAPI is

based on KPN.

Function level is also known as behavioral architectural-level, as called in [De Micheli 94,

Knapp 96]. At this level, for the equation Y = P(X), both X and Y contain no time. As soon as

any xi of X changes value, then P computes Y at exactly the same instance. A virtual clock can

- 55 -

be the only one or one of the xi of X. When the virtual clock triggers the process, P computes

Y based on X at exactly the same instance.

This can be modeled in SystemC using SC_METHODs, SC_THREADs, or SC_CTHREADs.

Example 1 using SC_METHOD:

SC_MODULE(AddMul_2) {

sc_in< sc_uint<16> > a, b, c;

 sc_out< sc_uint<32> > result;

 void addmul_2() {

 result = a.read() + (b.read() * c.read());

 }

 SC_CTOR(AddMul_2) {

 SC_METHOD(addmul_2);

 sensitive << a << b << c;
 }

};

In the above example, the process function P is addmul_2(); the input set is X = {x1, x2, x3

}, where x1 = a, x2 = b and x3 = c; the output set is Y = {y1}, where y1 = result.

 Example 2 using SC_CTHREAD:

SC_MODULE(AddMul_3) {

 sc_in< bool > clk;

 sc_in< bool > rst;

sc_in< sc_uint<16> > a, b, c;

 sc_out< sc_uint<32> > result;

 void addmul_3() {

 result = 0;

 wait();

 while (1) {

 result = a.read() + (b.read() * c.read());

 wait();

 }

 }

 SC_CTOR(AddMul_3) {

 SC_CTHREAD(addmul_3, clk.pos());

 reset_signal_is(rst, false);

 }

};

In the above example, the process function P is the combination of void addmul_3() and

the semantics of SC_CTHREAD and reset_signal_is(). Furthermore, clk and rst ports are

identified as sensitive events, and clk is the clock port and rst the reset port. The input set

is X = {x1, x2, v1, v2, v3}, where x1 = clk, x2 = rst, v1 = a, v2 = b and v3 = c. The output set is Y

= {y1}, where y1 = result.

- 56 -

A.4.2 Architecture Level

The motivation for introducing this level of abstraction into a design flow is to quickly find an

efficient implementation. Efficiency can be defined in terms of power, timing, area, etc. To be

able to quickly evaluate the efficiency of alternative implementations, it is desirable to avoid

the effort of making them in detail. For example, the decision to base an implementation on a

message passing or a shared memory architecture leads to two alternative implementations.

Transaction Level Modeling (TLM) was developed for abstract modeling of (SoC) systems at

the architecture level, allowing efficient system exploration. Literally, a transaction is the

exchange of goods, services or funds; or a communicative action or activity involving two

parties or things that reciprocally affect or influence each other (Merriam-Webster Online

Dictionary). Both meanings have two ingredients, exchange/communication and

goods/influence.

In an electronic system, the goods or influence can be considered as the computation (goods)

or the effect of the computation (influence). There have been many discussions regarding

TLM over the years; here, the definitions, terminologies, and libraries developed by the OSCI

TLM Working Group (TLM WG) are used.

A.4.3 Transaction Level Modeling

Although TLM includes computation and communication, TLM-1 and TLM-2.0 in the

SystemC LRM only describes the communication part. In TLM-1 and TLM-2.0, a transaction

is a payload, the data structure that passed between modules. The SystemC LRM considers

the following coding styles for transaction-level modelling:

1. Un-Timed (UT): A modeling style in which there is no explicit mention of time or cycles,

but which includes concurrency and sequencing of operations. In the absence of any

explicit notion of time as such, the sequencing of operations across multiple concurrent

threads shall be accomplished using synchronization primitives such as events, mutexes,

and blocking FIFOs. Some users adopt the practice of inserting random delays into

untimed descriptions to test the robustness of their protocols, but this practice does not

change the basic characteristics of the modeling style.

2. Loosely Timed (LT): A modeling style that represents minimal timing information,

sufficient only to support the features necessary to boot an operating system and manage

multiple threads in the absence of explicit synchronization between those threads. A

loosely timed model may include timer models and a notional arbitration interval or

execution slot length. Some users adopt the practice of inserting random delays into

loosely timed descriptions to test the robustness of their protocols, but this practice does

not change the basic characteristics of the modeling style.

3. Approximately Timed (AT): A modeling style for which there exists a one-to-one

mapping between the externally observable states of the model and the states of some

corresponding detailed reference model such that the mapping preserves the sequence of

state transitions, but not their precise timing. The degree of timing accuracy is undefined.

4. Cycle Accurate (CA): A modeling style in which it is possible to predict the state of the

model in any given cycle at the external boundary of the model and, thus, establish a one-

to-one correspondence between the states of the model and the externally observable

states of a corresponding RTL model in each cycle, but which is not required to explicitly

re-evaluate the state of the entire model in every cycle or explicitly represent the state of

every boundary pin or internal register. This term is only applicable to models that have a

notion of cycles.

- 57 -

In this document, UT modules represent an abstraction that aligns well with the synthesizable

subset described herein. LT modules use absolute time for timing information and, thus, are

not synthesizable (e.g., it is infeasible to synthesize sc_time(10, SC_NS), which is used

to represent the latency to execute a certain function). AT modules are not synthesizable as

well, because states and state transitions modelled using AT are not precise in timing. The CA

modeling style is not addressed in detail in the SystemC LRM.

A.4.4 Implementation Level

This abstraction level captures the details of the interfaces and the I/O functionality, including

a full or partial specification/modelling of their timing. The communication among blocks is

carried out at the signal-level. The specification of the interface is pin-accurate and should be

preserved by synthesis for the top-level module. Implementation levels include Register-

Transfer Level (RTL), Gate Level, and Behavioral-Level. RTL and Gate Level are widely

used and have traditionally been written in hardware description languages, such as

Verilog/VHDL and SystemVerilog. The abstraction level below Gate Level is expressed in

the GDSII format. SystemC is not suitable for this abstraction level.

A.4.4.1 Implementation Gate Level

The Gate Level consists of interconnection of instantiations of technology leaf cells. The

specification is structural. The behavior of each cell is written for simulation and is generally

quite simple. For example, combinational gates are typically written in the form of concurrent

statements. Sequential gates, including registers and memories, are usually written in the

same form as it is done at the RTL level.

SystemC is not generally used to represent gate-level constructs.

A.4.4.2 Implementation RT Level

Register Transfer Level (RTL), as the name suggests, describes functions and signals from

registers to registers. The basic elements of this level are combinational and sequential

functional/logic units, registers, and signals.

An RTL module has a Finite State Machine (FSM) which describes cycle-by-cycle behavior

of the target module. The functional behavior of each state can be described inside the FSM.

This kind of FSM can be called an FSM with Datapath (FSMD). Or the functional behavior

can be described using a separate datapath which is then controlled by the FSM.

The RT level allows the specification of both structural and more behavioral constructs.

 In addition to bit-wise logic, word-level arithmetic, such as a * b can be specified

and synthesized.

 Loops with constant number of iterations can be specified. Such loops are fully

unrolled.

 An FSM can be specified in such a way that synthesis can recognize it as an FSM and

perform optimizations, such as state encoding, etc. The computation of the next-state

and the output is done with behavioral constructs, such as if-then-else and case

statements.

 An FSM, where states and transitions may contain complex logic and arithmetic

behavior (not just simple constant assignments to outputs), is constructed as an

- 58 -

explicit-state machine. Registers may be specified either inside or outside the explicit-

state machine.

The interface of RTL sub-blocks may be changed by synthesis (boundary optimization), but

the top-level interface is preserved. Clock, reset and enable behavior is explicitly specified.

Internal cycle timing of operations may be changed in limited ways (retiming) under user

control.

The verification methodology of the output from RTL synthesis against the reference RTL

specification is well defined for both combinational and sequential hardware. For instance,

IEEE Standard 1076-2004 defines this for VHDL and the same methodology is applicable for

SystemC RTL specifications.

Example:

SC_MODULE(AddMul_1) {

 sc_in< bool > clk;

sc_in< sc_uint<16> > a, b, c;

 sc_out< sc_uint<32> > result;

 void addmul_1() {

 result = a.read() + (b.read() * c.read());

 }

 SC_CTOR(AddMul_1) {

 SC_METHOD(addmul_1);

 sensitive << clk.pos();

 }

};

In the above example, P is the function void addmul_1(); X = {x1, v1, v2, v3}, where x1 =

clk, v1 = a, v2 = b and v3 = c; Y = {y1}, where y1 = result.

A.4.4.3 Implementation Behavioral-Level

The behavioral-level introduces some freedom in how operations and I/O are scheduled by

only partially constraining the cycle-by-cycle behavior of the I/O. Registers are not explicitly

defined, but instead are determined by synthesis. Storage requirements are dependent on how

operations are scheduled: registers are used to store values that are used one or more cycles

after the cycle in which they are generated. Storage of arrays may be mapped to memories or

registers.

The specification of behavior is in the form of an implicit-state machine rather than the

explicit-state machine generally used for RTL. In an implicit-state machine, there is no

explicit state variable that is used to select what behavior is executed next. Instead, the

behavior consists of a process that is sensitive to the clock and possibly a reset signal (for

asynchronous resets). The process uses language constructs, such as loops, constructs to

continue and exit loops, and constructs to specify conditional behavior (if-then-else and case

constructs) and wait statements that specify cycle timing among sets of output assignments.

The output from behavioral synthesis is a synthesizable RTL description and/or a Gate-Level

description. The verification methodology of the generated specifications against the

behavioral (source) specification is more complex (than the RTL level vs. Gate-Level

specification) since the cycle-by-cycle behavior may be changed by synthesis.

- 59 -

- 60 -

Annex B Glossary (informative)
behavioral level: A design level which has no detail of hardware resources and and how they

are scheduled. One clock is used as an event trigger. Ports are used as the module interface

and untimed algorithm code implements the behavior.

behavioral synthesis: A synthesis from a behavioral level design to RTL level design or gate

level design. A behavioral synthesis tool works for resource sharing and scheduling. Resource

means hardware which are memories, registers, combinational circuits, and so on. Scheduling

means resource assignment of each operation to each clock cycle and hardware.

class: The same term as the one used in C++. In SystemC, the class mechanism is used for

module definition and the object types defined for SystemC. The class except module is

limited the usage for synthesis.

constructor: The same term as the one used in C++.

clock: A basic signal which triggers hardware events which occurs every fixed period.

cycle: A period of clock.

datatype: A type of signal.

function: The same term as the one used in C++.

initializer: The same term as the one used in C++.

initializer-list: The same term as the one used in C++.

macro: A keyword which is defined in preprocessor.

member: The same term as the one used in C++.

method: It is a term of object oriented design. C++ realized it as a member function.

module: A capsulated block which has ports for interface.

named mapping: A way that all ports of a module are binding to signals by their names.

namespace: The same term as the one used in C++.

operator: The same term as the one used in C++.

overload: The same term as the one used in C++.

pointer: The same term as the one used in C++.

port: A interface signal which connects between inside and outside of module.

positional mapping: A way that all ports of a module are binding to signals by their

describing positions.

reset: A signal which indicates that registers have to become initial value.

- 61 -

process: A special function which is triggered by sensitivity signals in module. There are

three kind of process in SystemC, which are SC_METHOD, SC_THREAD, and

SC_CTHREAD.

register transfer level(RTL): A design level which has the description of register and

combination logic. The design should be cleared the schedule of each cycle operation and

register resources.

RTL synthesis: A synthesis from a RTL level design to a gate level design. A RTL synthesis

tool works for logic synthesis which is mainly solving of Boolean algebra.

signal: A object which is declared as sc_signal.

submodule: A module which is called in a module. The submodule works as the part of the

calling module.

template: The same term as the one used in C++.

- 62 -

Annex C References

[1] “ISO/IEC 14882:2003, Programming Languages - C++,” 2003.

[2] IEEE, “IEEE 1666 SystemC Standard Language Reference Manual,” 2011.

[3] “ISO/IEC 14882:2011, Programming languages - C++,” 2011.

[4] G. Kahn, “The semantics of a simple language for parallel programming,” in Information

Processing, Proceedings of IFIP Congress, Stockholm, 1974.

[5] e. a. Erwin de Kock, “Proposal for Modeling Kahn Process Networks and Synchronous

Dataflow in SystemC,” NXP Lab white paper.

[6] e. a. Erwin de Kock, “YAPI: Application Modeling for Signal Processsing Systems,” in

Proc. of DAC, 2000.

[7] OSCI Synthesis Working Group, “Advanced Requirements of SystemC Subset for

Synthesis”.

[8] OSCI Synthesis Working Group, “Basic Requirements of SystemC Subset for Synthesis,”

2000a.

[9] Sun Microsystems Inc, “What Every Computer Scientist Should Know About Floating-

Point Arithmetic,” in Numerical Computation Guide, 2004.

	Introduction
	1 Overview
	1.1 Purpose
	1.2 Scope
	1.3 Terminology
	1.3.1 Base Standards
	1.3.2 Word usage
	1.3.3 Construct Categories

	1.4 Conventions
	1.5 ISOC++ Implementation Compliance (ISOC++ 1.4)
	1.5.1 Implementation-defined behavior (ISOC++ 1.3.5)
	1.5.2 Undefined behavior (ISOC++ 1.3.12)
	1.5.3 Unspecified behavior (ISOC++ 1.3.13)

	1.6 SystemC LRM Compliance
	1.6.1 Implementation-defined (SystemC LRM 3.2.1)
	1.6.2 Undefined
	1.6.3 Error

	2 Translation units
	2.1 Translation units and their analysis
	2.2 Pre-processing directives

	3 Modules
	3.1 Module definitions
	3.1.1 Selecting the top of a design hierarchy
	3.1.2 Module member specification
	3.1.3 Module declarative items
	3.1.3.1 sc_port, sc_export, sc_signal, and other channels
	3.1.3.2 Module constructor

	3.2 Deriving modules
	3.3 Module hierarchy

	4 Processes
	4.1 SC_METHOD
	4.2 SC_THREAD and SC_CTHREAD
	4.2.1 Clock and Reset
	4.2.2 Thread process body

	5 Predefined channels, interface proper and ports
	5.1 Predefined Channels
	5.1.1 sc_signal
	5.1.2 Resolved Channels
	5.1.3 Other Primitive Channels

	5.2 Ports
	5.2.1 sc_in, sc_out, and sc_inout

	5.3 sc_event

	6 Types
	6.1 Fundamental Types
	6.1.1 Integer Types
	6.1.1.1 Literals
	6.1.1.2 Representation and Bit Sizes

	6.1.2 Type Conversions
	6.1.2.1 Integer Promotions
	6.1.2.2 Usual Arithmetic Conversions

	6.1.3 Operators
	6.1.4 Floating Point Types
	6.1.5 The void type

	6.2 Compound Types
	6.3 SystemC Datatypes
	6.3.1 Limited Precision Integer Types
	6.3.2 Finite Precision Integer Types
	6.3.3 Finite Precision Fixed-point Types
	6.3.4 Logic and Vector Types
	6.3.4.1 Finite Word-Length Bit Vectors (sc_bv)
	6.3.4.2 Single-Bit Logic (sc_logic) and Finite Word-Length Logic Vectors (sc_lv)

	6.3.5 Common Operators and Methods
	6.3.5.1 Bit Select Operator
	6.3.5.2 Part Select Operator
	6.3.5.3 Function concat(C1,C2) and operator,(C1,C2)
	6.3.5.4 Reduction Operators
	6.3.5.5 Arithmetic Operators
	6.3.5.6 Bitwise Complement Operator
	6.3.5.7 Bitwise Logical Operators
	6.3.5.8 Logical Negation
	6.3.5.9 Relational Operators
	6.3.5.10 Shift Operators
	6.3.5.10.1 Limited Precision Integers
	6.3.5.10.2 Finite Precision Integers
	6.3.5.10.3 Finite Precision Fixed-Point Types
	6.3.5.10.4 Finite Word-Length Vector Types

	6.3.5.11 Rotate Operators
	6.3.5.12 Explicit Conversions
	6.3.5.13 Conversion Operators
	6.3.5.14 Assignment Operators and Constructors
	6.3.5.15 String input and output
	6.3.5.16 Length
	6.3.5.17 Reversed

	7 Declarations
	7.1 Specifiers
	7.1.1 Storage class specifiers
	7.1.2 Function specifiers
	7.1.3 The typedef specifier
	7.1.4 The friend specifier
	7.1.5 Type specifiers
	Type specifiers (ISOC++ 7.1.5) have Restricted Support.
	7.1.5.1 cv-qualifiers
	7.1.5.2 Simple type specifiers
	7.1.5.3 Elaborated type specifiers

	7.1.6 Enumerations
	7.1.7 The asm declaration
	7.1.8 Linkage specifications

	8 Declarators
	8.1 Type names
	8.2 Ambiguity resolution
	8.3 Kinds of declarators
	8.3.1 Pointers
	8.3.2 References
	8.3.3 Pointers to Nonstatic Class Members
	8.3.4 Arrays
	8.3.5 Function parameters
	8.3.6 Default arguments

	8.4 Function definition
	8.5 Initializers
	8.5.1.1 Aggregates
	8.5.1.2 Character arrays
	8.5.1.3 References

	9 Expressions
	9.1 Function call
	9.2 Explicit type conversion
	9.2.1 Type conversion operators
	9.2.1.1 Dynamic cast
	9.2.1.2 Static cast
	9.2.1.3 Reinterpret cast
	9.2.1.4 Const cast

	9.2.2 Functional notation
	9.2.3 Cast notation

	9.3 typeid
	9.4 Unary Expressions and Operators
	9.4.1 Unary Operators
	9.4.2 Increment and decrement
	9.4.3 sizeof
	9.4.4 New and delete

	9.5 Pointer-to-member operators
	9.6 Multiplicative, Additive, Shift, Relational, Equality, and Assignment operators
	9.7 Bitwise and Logical AND/OR/XOR operators
	9.8 Conditional Operator
	9.9 Comma operator

	10 Statements
	10.1 Labeled statement
	10.2 Compound statement
	10.3 Selection statements
	10.3.1 The if statement
	10.3.2 The switch statement

	10.4 Iteration statements
	10.5 Jump statements
	10.5.1 The break statement
	10.5.2 The continue statement
	10.5.3 The return statement
	10.5.4 The goto statement

	10.6 Declaration statement
	10.7 Exception handling statements

	11 Namespaces
	11.1 Namespace definition
	11.1.1 Unnamed namespaces
	11.1.2 Namespace member definitions

	11.2 Namespace alias
	11.3 The using declaration
	11.4 Using directive

	12 Classes
	12.1 Class names
	12.2 Class members
	12.3 Member functions
	12.3.1 Nonstatic member functions
	12.3.2 The this pointer

	12.4 Static members
	12.4.1 Static member functions
	12.4.2 Static data members

	12.5 Unions
	12.6 Bit-fields
	12.7 Nested class declarations
	12.8 Local class declarations
	12.9 Nested type names
	12.10 Derived classes
	12.10.1 Multiple base classes
	12.10.2 Member name lookup
	12.10.3 Virtual functions
	12.10.4 Abstract classes

	12.11 Member access control
	12.11.1 Access specifiers
	12.11.2 Accessibility of base classes and base class members
	12.11.3 Access declarations
	12.11.4 Friends
	12.11.5 Protected member access
	12.11.6 Access to virtual functions
	12.11.7 Multiple access
	12.11.8 Nested classes

	12.12 Special member functions
	12.12.1 Constructors
	12.12.2 Temporary objects
	12.12.3 Conversions
	12.12.3.1 Conversion by constructor
	12.12.3.2 Conversion functions

	12.12.4 Destructors
	12.12.5 Free store
	12.12.6 Initialization
	12.12.6.1 Explicit initialization
	12.12.6.2 Initializing bases and members

	12.12.7 Copying class objects

	13 Overloading
	13.1 Overloadable declarations
	13.2 Declaration matching
	13.3 Overload resolution
	13.3.1 Candidate functions and argument lists
	13.3.1.1 Function call syntax
	13.3.1.1.1 Call to named function
	13.3.1.1.2 Call to object of class type

	13.3.1.2 Operators in expressions
	13.3.1.3 Initialization by constructor
	13.3.1.4 Copy-initialization of class by user-defined conversion
	13.3.1.5 Initialization by conversion function
	13.3.1.6 Initialization by conversion function for direct reference binding

	13.3.2 Viable functions
	13.3.3 Best Viable Function
	13.3.3.1 Implicit conversion sequences
	13.3.3.1.1 Standard conversion sequences
	13.3.3.1.2 User-defined conversion sequences
	13.3.3.1.3 Ellipsis conversion sequences
	13.3.3.1.4 Reference Binding

	13.3.3.2 Ranking implicit conversion sequences

	13.4 Address of overloaded function
	13.5 Overloaded operators
	13.5.1 Unary operators
	13.5.2 Binary operators
	13.5.3 Assignment
	13.5.4 Function call
	13.5.5 Subscripting
	13.5.6 Class member access
	13.5.7 Increment and decrement

	13.6 Built-in operators

	14 Templates
	14.1 Template parameters
	14.2 Names of template specializations
	14.3 Template arguments
	14.3.1 Template type arguments
	14.3.2 Template non-type arguments
	14.3.3 Template template arguments

	14.4 Type equivalence
	14.5 Template declarations
	14.5.1 Class Templates
	14.5.1.1 Member functions of class templates
	14.5.1.2 Member classes of class templates
	14.5.1.3 Static data members of class templates

	14.5.2 Member templates
	14.5.3 Friends
	14.5.4 Class template partial specializations
	14.5.4.1 Matching of class template partial specializations
	14.5.4.2 Partial ordering of class template specializations
	14.5.4.3 Members of class template specializations

	14.5.5 Function templates
	14.5.5.1 Function template overloading
	14.5.5.2 Partial ordering of function templates

	14.6 Name resolution
	14.6.1 Locally declared names
	14.6.2 Dependent names
	14.6.2.1 Dependent types
	14.6.2.2 Type-dependent expressions
	14.6.2.3 Value-dependent expressions
	14.6.2.4 Dependent template arguments

	14.6.3 Non-dependent names
	14.6.4 Dependent name resolution
	14.6.4.1 Point of instantiation
	14.6.4.2 Candidate functions

	14.6.5 Friend names declared within a class template

	14.7 Template instantiation and specialization
	14.7.1 Implicit instantiation
	14.7.2 Explicit instantiation
	14.7.3 Explicit specialization

	14.8 Function template specializations
	14.8.1 Explicit template argument specification
	14.8.2 Template argument deduction
	14.8.2.1 Deducing template arguments from a function call
	14.8.2.2 Deducing template arguments taking the address of a function template
	14.8.2.3 Deducing conversion function template arguments
	14.8.2.4 Deducing template arguments from a type

	14.8.3 Overloaded resolution

	15 Libraries
	15.1 Standard C and C++ Libraries
	15.1.1 Outputting messages to stdout, stderr, cout and/or cerr

	15.2 SystemC Functions and Types
	15.2.1 Tracing
	15.2.2 set_stack_size
	15.2.3 sc_gen_unique_name
	15.2.4 before_end_of_elaboration and end_of_elaboration
	15.2.5 start_of_simulation and end_of_simulation
	15.2.6 dont_initialize
	15.2.7 next_trigger
	15.2.8 print and dump
	15.2.9 kind

	Annex A Levels of Abstraction in SystemC Design and Introduction to High-level Synthesis (Informative)
	A.1 Introduction to Abstraction Levels
	A.2 Introduction to high-level synthesis
	A.3 Vision for high-level design
	A.4 Abstraction Level Details
	A.4.1 Function Level
	A.4.1.1 Function Level: Algorithm Specification
	A.4.1.2 Function Level: Partitioning into communicating tasks
	SC_MODULE(AddMul_2) {
	sc_in< sc_uint<16> > a, b, c;
	sc_out< sc_uint<32> > result;
	void addmul_2() {
	result = a.read() + (b.read() * c.read());
	}
	SC_CTOR(AddMul_2) {
	SC_METHOD(addmul_2);
	sensitive << a << b << c;
	}
	};
	SC_MODULE(AddMul_3) {
	sc_in< bool > clk;
	sc_in< bool > rst;
	sc_in< sc_uint<16> > a, b, c;
	sc_out< sc_uint<32> > result;
	void addmul_3() {
	result = 0;
	wait();
	while (1) {
	result = a.read() + (b.read() * c.read());
	wait();
	}
	}
	SC_CTOR(AddMul_3) {
	SC_CTHREAD(addmul_3, clk.pos());
	reset_signal_is(rst, false);
	}
	};

	A.4.2 Architecture Level
	A.4.3 Transaction Level Modeling
	A.4.4 Implementation Level
	A.4.4.1 Implementation Gate Level
	A.4.4.2 Implementation RT Level
	SC_MODULE(AddMul_1) {
	sc_in< bool > clk;
	sc_in< sc_uint<16> > a, b, c;
	sc_out< sc_uint<32> > result;
	void addmul_1() {
	result = a.read() + (b.read() * c.read());
	}
	SC_CTOR(AddMul_1) {
	SC_METHOD(addmul_1);
	sensitive << clk.pos();
	}
	};
	In the above example, P is the function void addmul_1(); X = {x1, v1, v2, v3}, where x1 = clk, v1 = a, v2 = b and v3 = c; Y = {y1}, where y1 = result.

	A.4.4.3 Implementation Behavioral-Level

	Annex B Glossary (informative)
	Annex C References

