
Lessons from the Trenches: Migrating Legacy
Verification Environments to UVM™

Tutorial presented by members of the VIP TSC

Agenda
 Anecdotes From Hundreds of

UVM Adopters
- John Aynsley, Doulos

 Migrating from OVM to UVM
A Case Study
- Hassan Shehab, Intel

 A Reusable Verification
Testbench Architecture
Supporting C/UVM Mixed Tests
- Richard Tseng, Qualcomm

 UVM to Rescue – Path to Robust
Verification
- Asad Khan, Texas Instruments

 OVM to UVM Migration
There and Back Again, a Consultant’s
Tale
- Mark Litterick, Verilab

 IBM Recommendations
for OVM  UVM Migration
- Wes Queen, IBM

 FPGA chip verification using
UVM
- Charles Zhang & Ravi Ram, Paradigm

 Please ask questions
during/end of each talk

 Fill out survey questionnaire

Page  2

Anecdotes From Hundreds of UVM
Adopters

John Aynsley

Page  3

General Comments

Page  4

 Underestimating the learning curve

 Directed tests versus constrained random verification

 Reuse and OOP expertise

 UVM only gets you so far

Especially managers and self-teachers

OVM to UVM

Page  5

 There exists plenty of guidance on migrating from OVM to UVM

 www.uvmworld.org

 ovm2uvm_migration.pdf

 verificationacademy.com/verification-methodology

 http://www.doulos.com/knowhow/sysverilog/uvm/ovm-to-uvm

General Issues with UVM

Page  6

 Certain UVM concepts are not straightforward

 SV/UVM terminology can be a barrier

 The sheer size of the UVM BCL

 Too much choice

 Lack of recommended practice and naming conventions

Studying the documentation is not enough!

Backward compatibility with legacy

Top UVM Time-Wasters

Page  7

 Field macros

 `uvm_do macros

 Deprecated OVM sequence mechanisms

 Confusion over the config db (and the OVM legacy)

Those Evil Field Macros?

Page  8

class basic_transaction extends uvm_sequence_item;

 rand bit[7:0] addr, data;

 function new (string name = "");

 super.new(name);

 endfunction: new

 `uvm_object_utils_begin(basic_transaction)

 `uvm_field_int(addr, UVM_DEFAULT)

 `uvm_field_int(data, UVM_BIN | UVM_NOCOPY)

 `uvm_object_utils_end

endclass : basic_transaction

Field Macro Flags

Page  9

UVM_DEFAULT

UVM_COPY
UVM_COMPARE
UVM_PRINT
UVM_RECORD
UVM_PACK

UVM_NOCOPY
UVM_NOCOMPARE
UVM_NOPRINT
UVM_NORECORD
UVM_NOPACK

UVM_READONLY

all on

default

need to set explicitly

not configured

Inclusion in operations

Overriding do_compare

Page  10

class bus_xact extends uvm_sequence_item;
 ...
 function bit do_compare(uvm_object rhs, uvm_comparer comparer);
 bus_xact t;
 bit result = 1;
 $cast(t, rhs);

 result &= comparer.compare_field("op", op, t.op, $bits(op));
 if (op != NOP)
 result &= comparer.compare_field("addr", addr, t.addr,
 $bits(addr));
 ...
 return result;
 endfunction

 `uvm_object_utils_begin(bus_xact)
 `uvm_field_int(op, UVM_NOCOMPARE)
 `uvm_field_int(addr, UVM_NOCOMPARE)
 ...
 `uvm_object_utils_end
endclass

tx1.compare(tx2)

Turn off default comparison

Also uvm_packer, uvm_recorder, ...

Collects mismatches

Field Macros and Overridden Methods

Page  11

begin

 bit result = 1;

 result &= tx1.field_automation(tx2);

 result &= tx1.do_compare(tx2);

 output_mismatch_report;

 return result;

end

Pseudo-code

UVM_COMPARE

UVM_NOCOMPARE

UVM_REFERENCE

tx1.compare(tx2);

uvm_comparer comparer = new;

comparer.show_max = 999;

tx1.compare(tx2, comparer);

uvm_comparer comparer = new;

comparer.policy = UVM_SHALLOW;

comparer.show_max = 999;

tx1.compare(tx2, comparer);

Stop Faffing Around!

Page  12

class basic_transaction extends uvm_sequence_item;

 `uvm_object_utils(basic_transaction)

 ...

 function bit do_compare(uvm_object rhs,
 uvm_comparer comparer);
 bit result = 1;
 basic_transaction tx;
 $cast(tx, rhs);

 result &= (addr == tx.addr);
 result &= (data == tx.data);

 return result;
 endfunction

endclass : basic_transaction

The Dreaded super.build_phase

Page  13

uvm_config_db#(int)::set(this, "m_env.m_driv", "count", 999);

int count;

`uvm_component_utils_begin(my_component)

 `uvm_field_int(count, UVM_DEFAULT)

`uvm_component_utils_end

function void build_phase(uvm_phase phase);

 super.build_phase(phase);

endfunction
Calls apply_config_settings

Sets count = 999

The Moderately Evil `uvm_do

Page  14

`uvm_do(req)

req = tx_type::type_id::create("req");

start_item(req);

if(!req.randomize()) `uvm_error(...)

finish_item(req);

Equivalent?

Expanded Invocation of `uvm_do

Page  15

 begin

 uvm_sequence_base __seq;

 begin

 uvm_object_wrapper w_;

 w_ = SEQ_OR_ITEM.get_type();

 $cast(SEQ_OR_ITEM , create_item(w_, m_sequencer, `"SEQ_OR_ITEM`"));

 end

 if (!$cast(__seq,SEQ_OR_ITEM)) start_item(SEQ_OR_ITEM, -1);

 if ((__seq == null || !__seq.do_not_randomize) && !SEQ_OR_ITEM.randomize()

with {}) begin

 `uvm_warning("RNDFLD", "Randomization failed in uvm_do_with action")

 end

 if (!$cast(__seq,SEQ_OR_ITEM)) finish_item(SEQ_OR_ITEM, -1);

 else __seq.start(m_sequencer, this, -1, 0);

 end

`uvm_do(SEQ_OR_ITEM)

The OVM Sequencer Library

Page  16

class my_sequencer extends ovm_sequencer #(basic_transaction);

 `ovm_sequencer_utils(my_sequencer)

 function new(string name, ovm_component parent);

 super.new(name,parent);

 `ovm_update_sequence_lib_and_item(basic_transaction)

 endfunction : new

endclass: my_sequencer

Populates sequence lib with simple, random, & exhaustive sequences

Deprecated in UVM

The OVM Sequence

Page  17

class my_sequence extends ovm_sequence #(instruction);

 ...

 function new(string name = "");

 super.new(name);

 endfunction: new

 task body;

 ...

 endtask

 `ovm_sequence_utils(my_sequence, my_sequencer)

endclass: my_sequence Deprecated in UVM

Selecting a Sequence in OVM

Page  18

set_config_string("*.m_seqr", "default_sequence", "my_sequence2");

set_config_string("*.m_seqr", "count", 10);

All firmly deprecated in UVM

Starting a Sequence in UVM

Page  19

sequence.start(sequencer, parent_sequence, priority);

Draft UVM Sequence Library

Page  20

class my_seq_lib extends uvm_sequence_library #(my_tx);

 `uvm_object_utils(my_seq_lib)

 `uvm_sequence_library_utils(my_seq_lib)

 function new(string name = "");

 super.new(name);

 init_sequence_library();

 endfunction

endclass
my_seq_lib lib = my_seq_lib::type_id::create();

lib.add_sequence(seq1::get_type());

lib.add_sequence(seq2::get_type());

lib.selection_mode = UVM_SEQ_LIB_RAND;

if (!lib.randomize()) ...

lib.start(m_env.m_seqr);

Other Detailed UVM Issues

Session 8: Hardcore UVM - I , Weds 10:30am – 12:00pm

The Finer Points of UVM: Tasting Tips for the Connoisseur (myself)

Beyond UVM: Creating Truly Reusable Protocol Layering (Janick)

Page  21

 Need for run-time phasing

 Confusion over when to raise/drop objections

 Register layer seems hard

 How to handle layered sequencers and agents

 Confusion over the semantics of lock/grab

Things Missing from UVM

Page  22

 Mixed language support (RTL)

 Mixed language support (TLM)

 Using UVM with analog/AMS

Migrating from OVM to UVM
A Case Study

Hassan Shehab

Technical Validation Lead

Intel Corporation

Page  23

Agenda

• We present a OVM compatibility layer on top of UVM
that allows the use of OVM based IPs on UVM source
code

• We look at the results of using the compatibility layer
by migrating a SoC consisting of 25+ OVM VIPs

Page  24

Introduction
• We present a case study of migrating a SoC environment fully developed

on OVM to UVM
– UVM recommends running a converter script on the source code to replace the ovm_*

symbols with uvm_* symbols
– This mandates either abandoning the OVM code base of the VIPs or maintaining two

repositories
– With heavy OVM in use, this is NOT practical as VIPs needs to go into SoCs with OVM

base and UVM base running in parallel.

• Enhanced the OVM compatibility layer developed originally by Mark
Glasser part of UVM EA
• https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-

contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-
compatibility-kit

• Enhanced the compatibility layer to work with UVM 1.1 release
• This layer sits on top of UVM and allows the migration to UVM w/o having to modify the

OVM IPs

Page  25

https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�
https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-compatibility-kit�

OVM Compatibility Layer
• The compatibility layer is done in a way that the existing OVM based

environment can use it just as an OVM version change
• The code below shows the ovm_pkg content which is derived from the UVM

code base (green), the compatibility layer code are split into the files (red) as
shown below

package ovm_pkg;
`include "ovm_macros.svh"
 typedef class ovm_seq_item_pull_imp;
 typedef class ovm_seq_item_pull_port;
 `include "dpi/uvm_dpi.svh"
 `include "base/base.svh"
 `include "tlm1/uvm_tlm.svh"
 `include "comps/comps.svh"
 `include "seq/seq.svh"
 `include "tlm2/tlm2.svh"
 `include "reg/uvm_reg_model.svh"
 `include "compatibility/ovm_compatibility.svh"
 `include "compatibility/urm_message.sv"
 `include "compatibility/legacy_compatibility.svh"

endpackage

Page  26

Mapping macros `uvm_* to `ovm_*
`include "uvm_macros.svh"

`define ovm_do_callbacks(CB,T,METHOD_CALL)
`uvm_do_callbacks(T,CB,METHOD_CALL)

`define ovm_do_callbacks_exit_on(CB,T,METHOD_CALL,VAL)
`uvm_do_callbacks_exit_on(T,CB,METHOD_CALL,VAL)

`define ovm_do_task_callbacks(CB,T,METHOD_CALL)
`uvm_do_task_callbacks(T,CB,METHOD_CALL)

`define ovm_do_obj_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_obj_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_do_obj_callbacks_exit_on(CB,T,OBJ,METHOD_CALL,VAL)
`uvm_do_callbacks(T,CB,METHOD_CALL)

`define ovm_do_obj_task_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_obj_task_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_do_ext_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_ext_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_do_ext_callbacks_exit_on(CB,T,OBJ,METHOD_CALL,VAL)
`uvm_do_ext_callbacks_exit_on(T,CB,OBJ,METHOD_CALL,VAL)

`define ovm_do_ext_task_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_ext_task_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_cb_trace(OBJ,CB,OPER)

 `uvm_cb_trace(OBJ,CB,OPER)

Page  27

Mapping classes uvm_* to ovm_*
// Typedefs: UVM->OVM

//

// Non-parameterized UVM classes can be simply typedefed to corresponding

// OVM types.

//--

typedef uvm_void ovm_void;

typedef uvm_root ovm_root;

typedef uvm_factory ovm_factory;

typedef uvm_object ovm_object;

typedef uvm_transaction ovm_transaction;

typedef uvm_component ovm_component;

// Parameterized UVM classes cannot be simply typedefed to corresponding

// OVM types, have to extend from uvm equivalents and pass the right parameters

class ovm_analysis_port #(type T=int) extends uvm_analysis_port#(T);

 function new(string name, uvm_component parent=null);

 super.new(name, parent);

 endfunction

endclass

Page  28

Mapping Enumerated Types

typedef uvm_active_passive_enum ovm_active_passive_enum;

uvm_active_passive_enum OVM_PASSIVE = UVM_PASSIVE;

uvm_active_passive_enum OVM_ACTIVE = UVM_ACTIVE;

typedef uvm_verbosity ovm_verbosity;

parameter uvm_verbosity OVM_NONE = UVM_NONE;

parameter uvm_verbosity OVM_LOW = UVM_LOW;

parameter uvm_verbosity OVM_MEDIUM = UVM_MEDIUM;

parameter uvm_verbosity OVM_HIGH = UVM_HIGH;

parameter uvm_verbosity OVM_FULL = UVM_FULL;

parameter uvm_verbosity OVM_DEBUG = UVM_DEBUG;

typedef uvm_severity ovm_severity;

uvm_severity OVM_INFO = UVM_INFO;

uvm_severity OVM_WARNING = UVM_WARNING;

uvm_severity OVM_ERROR = UVM_ERROR;

uvm_severity OVM_FATAL = UVM_FATAL;

…….

Page  29

UVM Source Code Change
• With the compatibility layer we can get majority of the OVM based

VIPs and environments to compile clean

• But there were still few UVM files we have to change to make it 100%
back-ward compatible to our OVM usage

1. uvm_final/src/base/uvm_component.svh
2. uvm_final/src/base/uvm_factory.svh
3. uvm_final/src/base/uvm_globals.svh
4. uvm_final/src/base/uvm_root.svh
5. uvm_final/src/comps/uvm_driver.svh
6. uvm_final/src/seq/uvm_sequencer.svh
7. uvm_final/src/seq/uvm_sequencer_param_base.svh
8. uvm_final/src/tlm1/sqr_connections.svh

Page  30

uvm_component

• Have to add pre_run() and call it from start_of_simulation phase
function void uvm_component::start_of_simulation(); `ifdef OVM pre_run(); `endif

return; endfunction

• Have to add the ovm_report_* functions into the uvm_component
`ifdef OVM
 function void uvm_component::ovm_report_info(string id,

 string message,

 int verbosity = UVM_MEDIUM,

 string filename = "",

 int line = 0);

 m_rh.report(UVM_INFO, get_full_name(), id, message, verbosity,

 filename, line, this);

 endfunction

 `endif

 Page  31

uvm_factory

• Have to add create_object() function into uvm_factory
`ifdef OVM

static function uvm_object create_object (string requested_type_name,

 string parent_inst_path="",

 string name="");

 …

endfunction

`endif

• Have to add set_inst_override function into uvm_factory
`ifdef OVM

static function void set_inst_override (string full_inst_path,

 string original_type_name,

 string override_type_name);

 …

endfunction

`endif

Page  32

uvm_globals and uvm_root

 Have to add ovm_test_top to uvm_globals.svh


`ifdef OVM

// This is set by run_test()

uvm_component ovm_test_top;

`endif

• Have to set ovm_test_top in uvm_root.svh


 `ifdef OVM

 ovm_test_top = uvm_test_top;

 `endif

Page  33

Results

• Successfully migrated a OVM based SoC to UVM using the OVM
compatibility layer

- There were 25+ VIPs with complex bus interfaces like OCP/AHB/AXI and several I/Os
like PCIE/USB/SDIO etc.

- Have to add more code in the compatibility layer as few of the legacy IPs are even
dependent on AVM compatibility layer in OVM
- Ideally would be better to clean the IP source code to remove that legacy, but

preferred to add support in compatibility layer as proof-of-concept
- Managed to get all level-0 regressions containing 100+ tests passing

- Took ~3 person weeks to enhance the compatibility layer
- Took ~2 person weeks to run regressions and achieve same results as the reference

- Filed several Mantis items on UVM source code based on the issues/bugs observed
- e.g. print_topology() was crawling in UVM compared to OVM, simulator

enhancements were needed to match OVM performance

Page  34

Summary

• Ideally, it would be nice to start from a clean code and not create a compatibility layer

• In our case this is not possible because of:
• The amount of OVM code that we have which needs to be converted and tested
• The IPs that we get from all over the place internally and externally.

• It will takes us years to use the clean code approach. Huge impact on
• Our resources
• Execution schedule

• Having the compatibility layer enables a SoC project to move to UVM when they
decide and therefore without any effort or impact on execution schedule.

• This way a SoC can start developing new code in UVM and take opportunistic
approach in converting old code as intercepts permit.

Page  35

A Reusable Verification Testbench
Architecture Supporting C and UVM

Mixed Tests

Richard Tseng

Qualcomm, Boulder CO

Page  36

Agenda

Introduction

Testbench Features

Testbench Architecture Overview

Challenges & Solutions

Summary

Q&A

 Page  37

Introduction

Page  38

Introduction
 UVM would be the ultimate methodology for design verification

- It’s the latest and greatest technology
- Strong EDA vendor supports
- VIPs and test sequences can be reusable

 In many applications, C was primarily used for testing legacy
designs
- Many scripts were written to support C tests
- Thousand lines of C code have been evolved from many product generations
- They are recognized as “golden regression suite”

 The goal is to build an UVM testbench
- To re-use verification components
- To re-use existing C and UVM test sequences

Page  39

Testbench Features

Page  40

Testbench Features

The UVM testbench architecture allows
us:
- To reuse C and UVM tests in various platforms
- To run C/UVM tests simultaneously
- To reuse UVM verification components
- To easily integrate UVM register layer

Page  41

Testbench Architecture

Overview

Page  42

Testbench Architecture Overview

Page  43

Challenges & Solutions

Page  44

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page  45

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page  46

Creating UVM sequences with API tasks

The C tests are usually programmed with API tasks

Typically in an UVM SVTB, UVM macros are used to
create a test sequence,
- ie, `uvm_do(),`uvm_do_with(), and `uvm_do_on_with()

UVM “do” macros don’t match the legacy C tests,
using the API task is more consistent

To reuse the C tests in an UVM testbench, C API
tasks need to be mapped to UVM “do” macros
- Constraints can be specified in API task arguments
- Default constraints can be specified within the API task

Page  47

UVM “do” macro V.S. API task

// axi_master_write(address, data)
axi_master_write(‘h1000, ‘h1234_5678);

`uvm_do_with(req, axi_mst_sqr,{req.addr == ‘h1000;
 req_data == ‘h1234_5678;
 req.cmd_type == AXI_WR_INC;
 req.burst_length == 1;
 req.burst_size == 4;
 req.bready_delay == 1;
 req.avalid_delay == 0;
 …})

Transaction generated with “do” macro:

• Equivalent API task being called:

Page  48

Create Bus Transaction with API task
task axi_master_base_seq::axi_mst_write(input bit [31:0] addr,
 input bit [31:0] data);

 `uvm_create(req)

 assert (req.randomize() with {
 req.cmd_type == AXI_WR_INC;
 req.address == addr;
 req.data == data
 req.burst_length == 1;
 req.burst_size == 4;
 req.bready_delay == 1;
 req.avalid_delay == 0;
 }) else begin
 `uvm_fatal(…..)
 end

 `uvm_send(req)

endtask: axi_mst_write

Create a sequence item

Randomize with address,
data, and default
constraints

Send to sequencer

Page  49

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page  50

Map generic transactions to bus
interface specific API tasks
Portable tests are composed of generic API tasks

GPB (Generic Primary Bus) tasks
- Mapped to front-door register interface/primary interface

transactions:
- gpb_write() => axi_master_write()
- gpb_read() => axi_master_read()

GST (Generic Slave Transaction) tasks
- Mapped to slave device’s back-door transactions

- gst_bkdr_write() => axi_slave_bkdr_write()
- gst_bkdr_read() => axi_slave_bkdr_read()

Page  51

Map generic transactions to bus
interface specific API tasks (cont’ed)

//bus interface specific sequence
task my_test_seq::body():
 axi_master_write(reg1, data);
 axi_master_read(reg2, data);
 axi_master_nop(10); // idle for 10 clocks
 axi_slave_bkdr_write(32’h0, 32’h1234_5678);
 axi_slave_bkdr_read(32’h5555_aaaa, read_data);
endtask

// generic test sequence
task my_test_seq::body():
 gpb_write(reg1, data);
 gpb_read(reg2, data);
 gpb_nop(10); // idle for 10 clocks
 gst_bkdr_write(32’h0, 32’h1234_5678);
 gst_bkdr_read(32’h5555_aaaa, read_data);
endtask

Page  52

 Make C and UVM tests identical!
class sv_main_seq extends prj_base_seq;
 task body();
 bit[31:0] read_data;
 `uvm_info(get_type_name(), “Test starts”, UVM_MEDIUM)
 gpb_write(control_reg, 32’h0000_3204);
 gpb_read(status_reg, read_data);
 gst_bkdr_write(‘h400, 32’hA5);
 gst_bkdr_read(‘h400, read_data);
 endtask: body
endclass: sv_main_seq

void c_main_seq(void) {
 unsigned int read_data; // 32 bit unsigned integer
 uvm_info(__func__, “Test starts”, UVM_MEDIUM)
 gpb_write(control_reg, 0x00003204);
 gpb_read(status_reg, &read_data);
 gst_bkdr_write(0x400, 0x000000A5);
 gst_bkdr_read(0x400, &read_data);
 …
}

Same UVM macro

Page  53

Using UVM reporting macros in C

UVM has a good reporting service
- Can specify the message verbosity level and
severity

- Generate messages which show where and when
they are called during simulation

Macros include `uvm_info(), `uvm_warning(),
`uvm_error(), `uvm_fatal()

 Page  54

Implement UVM reporting macros in C

// In SV file, define uvm_rpt_info() function
function uvm_rpt_info(string id, string message,
 int verbosity = UVM_MEDIUM);
 `uvm_info(id, message, verbosity)
endfunction: uvm_rpt_info

// In C file, define verbosity level just as UVM definitions
#define UVM_LOW 100
#define UVM_MEDIUM 200
#define UVM_HIGH 300

// export uvm_rpt_info function
export "DPI-C" function uvm_rpt_info;

// define C macros
#define uvm_info(id, message, verbosity) \
 uvm_rpt_info(id, message, verbosity);

Page  55

 Reuse high-level VIPs

For different deign, replace:
• UVM Agent Layer
• Translation sequences in

GTTL

Reusable!

Page  56

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page  57

Register models are auto generated by customized scripts
or EDA vendor provided tools

Explicit prediction mechanism is used in our example
 It’s recommended prediction mechanism

 Register model will be updated
- Register sequences issued from register sequencer (auto prediction)
- Bus transactions issued from all other bus agents (passive prediction)

Required additional verification components to be added,
so that the followings can be reused across different
platforms:
- Register sequences
- Predictor

UVM Register Layer integration

Page  58

UVM Register Layer Integration

 AXI Master
Agent

gpb_sequencer

gpb2axi_mst_xl_vseq

gpb2axi_mst

Sequencer

Driver

UVM
Agent
Layer

Generic
Transaction
Translation

Layer

Test Sequences

gpb_monitor

Monitor

reg2gpb_predictor

reg2gpb_adapter

reg2bus()

UVM Reg Model

bus2reg()

UVM Register
Test Sequences

DUT DUT

UVM
Register

Layer

Project Virtual Sequencer
Project Virtual

Sequencer

Page  59

Summary

Page  60

Summary
 In our applications, test sequences and the VIPs

were reused in multiple testbenches
- Modem core–level testbench

- GPB => QSB AXI master
- GST => QSB AXI salve

- Modem block-level testbenches
- GPB, GST => proprietary bus interfaces

- Modem emulation platform testbench
- GPB => AHB Master
- GST => Off-chip ZBT memory

- Regressions have been run with multiple simulators

The testbench architecture extends the reusability
beyond the scope of the UVM technology, and
across the C and SV language boundary

Page  61

Q&A

Page  62

UVM to the Rescue – Path to Robust
Verification

Asad Khan

Design Verification Lead

Texas Instruments, Inc.

Company Logo

Page  63

Agenda

Adopted Solutions and Roadblocks

UVM to the Rescue – Key Issues Addressed

Issues Detailed & UVM Solution

UVM in AMS Simulation

1

2

3

4

5

Conclusions 6

Our Challenges Before…

Q/A 7

Page  64

Our Challenges Before…

Page  65

Lack of block level to
top level test back

compatibility

Lack of constrained
random stimulus

Lack of provisioning
for verification IP (VIP)
support

Lack of functional
coverage driven
methodology

Lack structured
methodology and

aspects of reusability

Bulky in nature with directed test
overload – a management nightmare

Looks of several verification
environments patched together

Lack automated
checking aspects

Adopted Solutions and Roadblocks

Page  66

Lack of Phases and
Several Roadblocks in

Methodology

Simulator Dependent –
Compatibility issues with
Major Options

Needed Wrapper
Development to build a
Test Environment

Language Specific –
Needing Expertise

Lack of Base Class
Functions – A lot of

coding e.g. deep copy etc

VIP Solutions Lacking Standardization – Everyone
Seemed to have their own methodology

Lack of Full LRM
Support – Not all
features supported

Not Open Source –
Requiring Support,

Licenses and
Customizations

VERILOG Specman e VMM OVM

UVM to the Rescue – Key Issues Addressed

Page  67

Stimulus Control Issues Controlling multiple DUT Interfaces through Verification Components
resulted in complex and non reusable scheme due to Callbacks

End of Test Issues

Lack of Debug Messaging Support

Miscellaneous Testbench Issues

BFM/Monitor Reuse Issues

Waiting for pending items & drain time/delays caused end of test issues

Lack of or Non reusable custom environment printers during runtime
caused environment debug issues including complex simulation logs

Issues in writing more tasks to process channel data , repetitive and non-
reusable, lack of phasing options, and extensive coding of register models

Lack of schemes to reuse BFMs/Monitors from legacy test environments

Packet Class Issues

Inconsistency in Test Development

Issues due to rewrite of the entire task/function for enhancing it for
the newly added data member of the packet class – no automation

Issues e.g. errors, directed test overload due to lack of base test class

Packet Class Issues

Page  68

 class ahb_master_trans extends vmm_data;
 //DATA members

 rand integer unsigned NumBytes = 0;
 rand integer unsigned NumBeats = 1;
 rand integer busy;

 rand byte data [$];
 rand bit [(`AHB_HADDR_WIDTH -1):0] address = 'h0;
 …

 function vmm_data copy(vmm_data to = null);
 ahb_master_trans cpy;
 super.copy_data(cpy);
 cpy.NumBytes = this.NumBytes;
 cpy.NumBeats = this.NumBeats;
 cpy.busy = this.busy;
 cpy.address = this.address;

 for(int i = 0; i<this.NumBytes ; i++) begin
 cpy.data[i] = this.data[i];
 end

 copy = cpy;
 endfunction:copy
endclass

Example: Copy Function Issue

 class ahb_master_trans extends uvm_transaction;
 //DATA members

 rand integer unsigned NumBytes = 0;
 rand integer unsigned NumBeats = 1;
 rand integer busy;

 rand byte data [$];
 rand bit [(`AHB_HADDR_WIDTH -1):0] address = 'h0;
 …

 `uvm_object_utils_begin(ahb_transfer)
 `uvm_field_int(NumBytes , UVM_ALL)
 `uvm_field_int(NumBeats , UVM_ALL)
 //Similarly for other fields
 …….
 …….
 `uvm_object_utils_end
 ….
endclass

UVM: Built-in Automation

From Issue
to Solution

 We have faced issues in rewriting functions/tasks to override/cast
e.g. for copy, display and all others, however, using UVM
object_utils the data item automation is built in with field level flags

UVM_NOCOMPARE, UVM_NOPRINT etc
Data Item Automation in Place!!

End-of-Test Issues

Page  69

• Using several techniques in UVM we were
able to achieve uniform and highly
reusable end of test solution:

• Inside tests, sequences/virtual
sequences & uvm components:

• uvm_test_done.raise_objection
(this);

• uvm_test_done.drop_objection
(this);

• Inside particular phase
• phase.raise_objection(this);
• phase.drop_objection(this);

• Inside run_phase

• global_stop_request()
• For debug and status of objections:

• phase.phase_done.display_obj
ections();

UVM: uvm_test_done

From Issue
to Solution

 We have always struggled with the issue on how to achieve “end of test”.
Logically when all activity completes should be the end of test, however,
checkers could still be checking or testbench components can be busy - how
do we reach true end-of-test?

• In cases where simulation had to be stopped based on

multiple interacting components, custom approaches
were used e.g. detecting occurrence of a condition
and using events – This was complex, cumbersome
and not reusable.

• Callbacks were used in VMM for specific end of test
conditions such as monitor observing pass/fail
condition. Several times debug time had to be put in
when the callback was missed from vmm_env::build(),
and this approach made env non-reusable since test
conditions changed per test scenarios.

• A crude “drain time” implementation was used to
terminate tests after a certain delay but this resulted in
different end of test times for sims at different
corners/conditions.

Problematic End-of-Test Approaches

RTL GATE AMS

Inconsistency in Test Development

Page  70

From Issue
to Solution

 Tests created as program blocks always resulted in inconsistent DUT
initializations, redundant code with a test becoming a testbench, and in
some cases incorrect sequences because of multiple test writers using
independent approach – Test Maintenance Nightmare!

class test_base extends uvm_test;
 top_env env;
 `uvm_component_utils(test_base)
 ….
 virtual function void end_of_elaboration_phase(uvm_phase phase);
 dut_register_base = 12’hAAA;
 endfunction:end_of_elaboration_phase
 …..
endclass

class my_test extends test_base;
 `uvm_component_utils(my_test)
 ….
 task run_phase(uvm_phase phase);
 send_link_pkt();
 while (state!==0) begin // Wait For Complete
 read32(dut_register_base), tmp_data[31:0]);
 state = tmp_data[11:8];
 end
 $display(“Device has reached U0 successfully\n");
 $display("Test Passed \n");
 endtask:run_phase
endclass

UVM: uvm_test Class
program my_test(myInterface.TxRx my_host_if);
 `include “my_vmm_include.sv"
 vmm_log log = new(“My Env", "main-class");
 my_env env;
 ……
 initial begin
 // I don’t know but I am configuring wrong
 dut_register_base = 12’hBAD;
 // I am sending good packets to wrong place
 send_link_pkt();
 while (state!==0) begin // Wait For Complete
 read32(dut_register_base), tmp_data[31:0]);
 state = tmp_data[11:8];
 end
 $display(“Device has reached U0 successfully\n");
 $display("Test Passed \n");
 end
endprogram

program block test issues

False Pass since “state” for this bad address is
non-zero by default where expectation was that

after sending link packet the correct address
would have become non zero

Stimulus Control Issues

Page  71

Issue at
Hand?

 DUT with multiple interfaces needed interactive and interdependent
control of stimulus and response to incorporate feedback from the
simulation to direct the transaction generation. This was implemented
using Callbacks and became a critical issue from test to test.

• Four interfaces A, B, C and D that need to be
exercised.

• Interface A configures whereas B, C and D can
either be used to read or write.

• Interfaces B, C and D have to wait until
configuration is complete.

• Testing full and empty conditions involve
coordination between individual interfaces.

• Reconfiguration on A can happen anytime
making B, C and D read or write or vice versa.

Verification Challenge

Callback #6

Callback #5

Callback #4

Callback #3

Callback #2
 Callback #1

Callbacks

Issue reads to I/F C
or D for DUT empty

Wait for DUT Full?

Stimulus Control Issues (Cont.)

Page  72

Interface
A

Interface
B

Interface
C

Interface
D

Configuration

Write

Read/Write

Read/Write

Interface A
Scenario

Generator and
Driver

Interface B
Scenario

Generator and
Driver

Interface C
Scenario

Generator and
Driver

Interface D
Scenario

Generator and
Driver

Issue writes to I/F B
for DUT full

Wait for DUT
empty?

Per configuration,
issue reads to C or D
to make DUT empty.

Wait for DUT full?

Based on configuration,
issue writes from C or D
to make the DUT full.

Configure DUT
through Interface A,
report done?

Configuration

Config: Wr Only

Config: Wr/Rd

Config: Wr/Rd

Example
Case 1

o Configure DUT using interface A so interface C and D can both Read & Write
o Configure Interface B to be Write only
o Using interface B, C and D make two iterations of DUT Full to Empty

Read from B to
make DUT empty

Wait for DUT full?

Per reconfiguration,
issue writes from D
to make DUT full.

Reconfigure from A
for B to read and D
write only, done?

Wait DUT empty?

Stimulus Control Issues (Cont.)

Page  73

Interface
A

Interface
B

Interface
C

Interface
D

Configuration

Write, Read

Write

Read, Write

Interface A
Scenario

Generator and
Driver

Interface B
Scenario

Generator and
Driver

Interface C
Scenario

Generator and
Driver

Interface D
Scenario

Generator and
Driver

Per configuration,
issue reads to D to
make DUT empty.

Wait for DUT full?

Based on configuration,
issue writes from C to
make DUT full.

Configure DUT
through Interface A,
report done?
 Configuration

Config: Wr, Rd

Config: Wr

Config: Rd, Wr

Example
Case 2

o Configure DUT through interface A so that interface C is write, D
is read, and B is write only

o Reconfigure from A to make B read and D write only

Stimulus Control Issues (Cont.)

Page  74

From Issue
to Solution

 Using virtual sequences and nested sequences in UVM we were able to
create a randomized approach to configure interface B, C and D as either
read, write or both and also do full and empty sequencing.

class intf_sequence extends virtual_sequence_base;
…..
 `uvm_object_utils(intf_sequence)
 ….
 virtual task body();
 super.body();
 …
 `uvm_do(cfg_init) // Configure using intf A per cfg_init_intf_*
 for(int i = 1;i<=iterations;i++)
 `uvm_do_on_with(intf_seq, intf_sequencer, {
 recfg == `INT.reconfigure;
 tr1init == `INT.tr1init_order;
 ….})
 endtask
endclass

constraint int_config::test_specific {
 reconfigure == TRUE; iterations == 1;
 tr1_init_order == C_FULL; tr1_final_order == C_EMPTY;
 tr2_init_order == D_EMPTY; tr2_final_order == D_FULL;
 tr3_init_order == B_FULL; tr3_final_order == B_EMPTY;
 cfg_init_intf_B == RD_OR_WR; cfg_final_intf_B == RD_ONLY;
 cfg_init_intf_C == RD_OR_WR; cfg_final_intf_C == RD_ONLY;
 cfg_init_intf_D == RD_ONLY; cfg_final_intf_D == WR_ONLY; }

UVM: Nested and Virtual Sequences

program dut_test(..); //beginning of testcase
 //callback for controlling and generating transfers
 class write_read extends int_master_callback;

 virtual task write(master_trans transaction = null);
 begin

 if(transaction.int == `INTF_A) begin
 //wait for the configuration write to complete
 end else begin
 if(transaction.int == `INTF_B && env.DIR == 1'b0)
 env.chan.put(wr_trans); end
 endtask
 virtual task read(master_trans transaction = null);
 env.intf_cl_chan.put(rd_trans); endtask

 endclass
initial begin

env.build();
env.intf_a_xactor.append_callback(w0_full_clbk);
env.intf_c_xactor.append_callback(w0_full_clbk);
env.intf_d_xactor.append_callback(w0_full_clbk);
env.run();

end endprogram //end of testcase

Example Code Snippet of Issue

BFM/Monitor Reuse Issues

Page  75

From Issue
to Solution

 Our BFM/Monitor reuse from project to project has always resulted
in to a non-structured code with several redundancies. This always
involved re-structuring and recode on every project – time wasted!

BFM
(Customized For

Each Project)

TESTS
(Monitor Code

Scattered in Tests)

CFG

SEQUENCER DRIVER

PROJECT UVM ENV

MASTER_AGENT

ENV

CONFIG
CFG MONITOR

SLAVE_AGENT

!
Every project TB development
needed BFM code and monitor code
cleanup scattered in Tests (modules
or program blocks).

Plug-n-Play
TB for
Every

Project

Lack of Debug Messaging Support

Page  76

From Issue
to Solution

 We have always faced issues because our test environment lacked
debug friendly features. Additional code had to be written to make logs
meaningful, print more info on the test environment components and
configurations.

Case-1:
 if (condition_happens)
 $display(“Print Details”);

 `vmm_note(this.log,$psprintf(“ADDR: %h",address));

Case-2:
`define WARNING $write(“WRN: %t %m",$time); $display
`define ERROR $write("ERR: %t %m",$time); $display
`define DEBUG
 if(debug) $write("DBG: %t %m",$time);
 if(debug) $display

Case-3:
 `ifdef DEBUG
 $display(“Print Details”);
 if($test$plusargs("DEBUG")) debug = 1;

Legacy TB Debug Support

Compile with +DEBUG

`vmm_fatal(this.log,"Data Mismatch");

`WARNING(“Issue a Warning");
`ERROR(“Issue an Error");
`DEBUG(“Debug Debug Debug");

function void end_of_elaboration_phase(uvm_phase phase);
 env.assertions_inst.set_report_verbosity_level(UVM_MEDIUM);
 env.scbd.set_report_verbosity_level(UVM_LOW);
 env.monitor.set_report_verbosity_level(UVM_HIGH);
endfunction : end_of_elaboration_phase

`uvm_info(get_type_name(),$psprintf(“%d",val), UVM_LOW);
`uvm_info(get_type_name(),$sformatf(“%d",$time),UVM_NONE)
`uvm_info(“INFO1”,”Print This..”,UVM_HIGH)
`uvm_info(“INFO2”,”More Print..”,UVM_MEDIUM)

Compile with +UVM_VERBOSITY=UVM_FULL | UVM_LOW
 | UVM_MEDIUM

 `uvm_warning(“WARNING”, “Issue a Warning”)

 `uvm_error(“ERROR”, string message)
 `uvm_fatal(string id, string message)

UVM: Built-in Messaging

Lack of Debug Messaging Support (Cont.)

Page  77

Hierarchy Print &
Report Server

 Using UVM messaging support we were able to print the TB hierarchy and
also customize the report server per our requirements.

class custom_report_server extends uvm_report_server;
 virtual function string compose_message(uvm_severity severity,
 string name, string id, string message, string filename, int line);
 uvm_severity_type severity_type = uvm_severity_type'(severity);
 if(severity_type == UVM_INFO)
 return $psprintf("%0t | %s | %s", $time, id, message);
 else
 return $psprintf("%s | %0t | %s | %s | %s",
 severity_type.name(), $time, name, id, message);
 endfunction: compose_message
endclass: custom_report_server

function void start_of_simulation();
 custom_report_server custom_server = new;
 uvm_report_server::set_server(custom_server);
endfunction: start_of_simulation

uvm_report_server my_rpt;
virtual function void report_phase(uvm_phase phase);
 int error_cnt, fatal_cnt, warning_cnt;
 my_rpt = _global_reporter.get_report_server();
 error_cnt = my_rpt.get_severity_count(UVM_ERROR);
 fatal_cnt = my_rpt.get_severity_count(UVM_FATAL);
 warning_cnt = my_rpt.get_severity_count(UVM_WARNING);
 if(error_cnt != 0 || fatal_cnt != 0) begin
 `uvm_info(get_type_name(), "\n SIM FAILED \n", UVM_NONE);
 end else begin
 `uvm_info(get_type_name(), "\n SIM PASSED \n",UVM_NONE);
 end
endfunction: report_phase

task run_phase(uvm_phase phase);
 printer.knobs.depth = 5;
 `uvm_info("ENV_TOP",
 $psprintf("\n\n\nPrinting the test topology:"), UVM_HIGH)
 `uvm_info("ENV_TOP",
 $psprintf("Printing...\n\n %s",this.sprint(printer)), UVM_HIGH)
endtask: run_phase

Global Control on TB
Hierarchy printing

Customizing report_server

SINK

Miscellaneous Testbench Issues

Page  78

Issue at
Hand?

 We saw several problems in implementation using data channels where
additional code had to be written for data handling, and also in cases
where various simulation phases had to be handled.

VIP1

VIP3

VIP2

DUT

BEFORE AFTER Synchronizing Verification Components
Events were used to synch and control

Reset

Reset

Reset

Configure

Configure

Configure

Reset

Reset

Reset

Configure

Configure

Configure

Phasing support in UVM supported synchronization

SOURCE CHANNEL

BEFORE

Data Transactions Between Blocks
AFTER

SINK

SOURCE

Needed to write tasks for data processing from vmm_channel TLMs were reusable, available functions, and simplified implementation

Comp

Comp

Leaf
Port Export

Miscellaneous Testbench Issues (Cont.)

Page  79

Issue to
Solution

 We were always manually writing our configuration register models that
was time consuming and full of errors. Using SPIRIT (IPXACT) scripts
we were able to automate our register model code generation for UVM.

perl gen_spirit_from_excel.pl project_reg_map.xls

java -jar $UVM_RGM_HOME/builder/ipxact/uvmrgm_ipxact2sv_parser.jar -input project_reg_map.spirit -ov -ve internal

BEFORE: A LOT OF MANUAL CODING!!!

AFTER

UVM Usage in AMS Simulations

Page  80

Before
 We faced problems using constrained-random top-level testbench

in AMS environment because of compile problems and inconsistent
methodologies, and had to rely on non-standard and non-reusable
verification.

A
SCHEMATIC

A
SCHEMATIC

D

A
MODEL

D

A
MODEL

D
TEST1.vams

TEST2.vams

TESTn.vams

OUTPUT.log

Manual processing of logs for
errors, extraction, and visual

checking of waves –
Extremely inefficient and slow

process

Directed Test
Overload!

UVM Usage in AMS Simulations (Cont.)

Page  81

After
 Using UVM infrastructure we were able to re-use the same

testbench and test suite that was created for RTL/GATE level also
for AMS simulation allowing us to run an end-to-end simulation with
packet traffic and protocol.

CFG

DRIVER SEQUENCER

TOP-LEVEL SIM ENV

MASTER_AGENT

ENV CONFIG

CFG
MONITOR

DIG &

ANALOG

SLAVE_AGENT

A
SCHEMATIC

A
SCHEMATIC

D

A
MODEL

D

A
MODEL

D

TESTS

Logic to Electrical

Electrical to Logic

SCOREBOARDS

ASSERTIONS
ANALOG NODES

GLUE LOGIC

Symbols in Top-level AMS Env
PARAMETER
GENERATOR

Technical Contributors
Paul Howard

Ravi Makam

 Jim Skidmore

Chuck Branch

Shyam Narayan

Arun Mohan

Pradeep Hanumansetty

Ronnie Koh

Page  82

Conclusions

 UVM cleanly addressed our critical issues that were causing
significant slowdown and down time due to code re-write

 UVM development goals align with our verification strategy/roadmap

 We did see some conversion effort in going from UVMEA1.0 to
UVM1.1 but this effort was minimal

 We found UVM helpful in following ways:
- Getting started with UVM was easy – lots of trainings and guidance
- We were able to develop complex test environments quickly
- We found that available VIPs following UVM make integration and usability

easier

 We are today using UVM actively in our Digital and Mixed signal
verification, and plan to use in Analog verification also

Page  83

Q/A

Page  84

OVM to UVM Migration
or There and Back Again, a Consultant’s Tale

Mark Litterick

Verification Consultant

Verilab GmbH, Munich, Germany

Page  85

http://www.verilab.com/�

Transition from OVM to UVM

Page  86

Born UVC

OVM

UVM

~Years -2 -1 Now +1

Born OVC
Projects

V
IP

O-to-U

U-to-O

uvm_reg

support ongoing OVM provide OVCs to UVM enable new UVM projects

Two Stage Evaluation

 Starting point
- clean OVM-2.1.2 OVCs
- no AVM or URM legacy
- different protocols but common style & development team
- => scripts are more effective, but less general purpose!

 First attempt – early UVM translation
- similar to Mentor Graphics’ Verification Academy flow
- goal : check for gotcha’s in code, proof of concept, project running in UVM

 Second attempt – late UVM translation
- optimized flow to do most effort in live OVM project
- automatic and repeatable translation for delivery to UVM

Page  87

Early UVM Translation

Audit
• audit OVM code

• remove deprecated OVM
• replace non-recommended OVM

O-to-U
• translate OVM to UVM

• execute ovm2uvm script
• update regression & test scripts

Convert

• convert to UVM style
• convert phases to UVM
• convert *stop to objections
• convert objection raise/drop to UVM
• convert set/get to config_db
• convert virtual interfaces to config_db

New

• use new UVM features
• remove deprecated UVM
• use improved UVM message macros
• use improved UVM command args
• use UVM register model

O
VM

U

VM

flow works!
since our VIP from
live OVM projects too many changes after translation

 Automatic?
Find Fix
 
 

 
 

 
 
 
 
 




 
 
 ☐

Page  88

Push Back to OVM

 Features already in OVM-2.1.2 source:
- only objection handling used for end-of-test
- improved message macros used instead of methods
- using back-ported uvm_reg in OVM environments

 Key improvements that can be done in OVM:
- virtual interface configuration
- deprecate sequence utils and OVM sequence library

Page  89

Example: Interface Configuration

 Improve virtual interface configuration
- better interface container – specifically to help OVM to UVM translation
- container set and get methods similar to uvm_config_db

Page  90

AGENT

S

OVC

D V
IF

M V
IF

ENV

BASE-TEST

DUT

IN
TE

R
FA

C
E

TESTBENCH MODULE

config db

container::set container::get
container

CIF

OVM

AGENT

S

UVC

D V
IF

M V
IF

ENV

BASE-TEST

DUT

IN
TE

R
FA

C
E

TESTBENCH MODULE

config db

CIF config_db::set config_db::get

UVM

Example: Interface Configuration

 Improve virtual interface configuration
- better interface container – specifically to help OVM to UVM translation
- container set and get methods similar to uvm_config_db

Page  91

AGENT

S

OVC

D V
IF

M V
IF

ENV

BASE-TEST

DUT

IN
TE

R
FA

C
E

TESTBENCH MODULE

config db

container::set container::get
container

CIF

OVM

AGENT

S

UVC

D V
IF

M V
IF

ENV

BASE-TEST

DUT

IN
TE

R
FA

C
E

TESTBENCH MODULE

config db

CIF config_db::set config_db::get

UVM

// example set in OVM testbench module
my_container#(virtual my_if)::set("*", "cif", mif);

// example get in OVM agent or test class
if (!my_container#(virtual my_if)::get(this, "cif", vif))
 `ovm_fatal("NOVIF","...")

// example set in UVM testbench module
uvm_config_db#(virtual my_if)::set(null, "*", "cif", mif);

// example get in UVM agent or test class
if (!uvm_config_db#(virtual my_if)::get(this, "", "cif", vif))
 `uvm_fatal("NOVIF","...")

easy
translation

Example: Deprecated UVM

 Sequencer & sequence utils deprecated in UVM
- OVM sequence library not required in UVM or OVM
- automatic script & manual repair (for reactive slaves)

Page  92

class my_seq extends ovm_sequence #(my_seq_item);
 `ovm_sequence_utils(my_seq, my_sequencer)

class my_sequencer extends ovm_sequencer #(my_seq_item);
 `ovm_sequencer_utils(my_sequencer)
 `ovm_update_sequence_lib_and_item(my_seq_item)

class my_env extends ovm_env;
 set_config_int("*.my_sequencer", "count", 0);
 set_config_string("*.my_sequencer","default_sequence","my_seq");

`ovm_do_on(my_seq, my_env.my_sequencer)
my_seq.start(my_env.my_sequencer);

Example: Deprecated UVM

 Sequencer & sequence utils deprecated in UVM
- OVM sequence library not required in UVM or OVM
- automatic script & manual repair (for reactive slaves)

Page  93

class my_seq extends ovm_sequence #(my_seq_item);
 `ovm_sequence_utils(my_seq, my_sequencer)

class my_sequencer extends ovm_sequencer #(my_seq_item);
 `ovm_sequencer_utils(my_sequencer)
 `ovm_update_sequence_lib_and_item(my_seq_item)

class my_env extends ovm_env;
 set_config_int("*.my_sequencer", "count", 0);
 set_config_string("*.my_sequencer","default_sequence","my_seq");

`ovm_do_on(my_seq, my_env.my_sequencer)
my_seq.start(my_env.my_sequencer);

class my_seq extends ovm_sequence #(my_seq_item);
 `ovm_object_utils(my_seq)
 `ovm_declare_p_sequencer(my_sequencer)

class my_sequencer extends ovm_sequencer #(my_seq_item);
 `ovm_component_utils(my_sequencer)

class my_env extends ovm_env;

`ovm_do_on(my_seq, my_env.my_sequencer)
my_seq.start(my_env.my_sequencer);

can be done in OVM or UVM

do once in OVM

Late UVM Translation

Audit

• audit OVM code
• remove deprecated OVM
• delete non-recommended OVM
• convert *stop to objections
• convert virtual interfaces to container
• remove deprecated OVM seq* utils
• use improved OVM message macros
• use UVM register model (back-ported)

O-to-U
• translate OVM to UVM

• execute ovm2uvm script
• update regression & test scripts (once)

Convert

• convert to UVM style
• convert phases to UVM
• convert objection raise/drop to UVM
• convert set/get to config_db
• convert virtual interfaces to config_db

New • use new UVM features
• use improved UVM command args

O
VM

U

VM

done
once

done for
each VC
release

 Automatic?
Find Fix
 
 
 
 
 
 
 ☐

 
 

 
 
 
 

 

Page  94

Final Translation Process

 Prepare source OVC for translation – once

 Continue development of OVC in live OVM project

 Release OVC versions to UVM when appropriate

 Automatic translate to UVM as part of VIP release

Audit
• audit OVM code

• execute audit script

O-to-U
• translate OVM to UVM

• execute ovm2uvm script

Convert • convert to UVM style
• execute convert script

New • use new UVM features
• use improved UVM command args

O
VM

U

VM

 

 

 

 

 Automatic?
Find Fix

Page  95

UVM to OVM Back-Porting

 Slim OVM to UVM conversion supports reverse translation

 Valid when UVM transition period expected to endure

 Translate new UVC to OVC for ongoing OVM projects

 UVM limitations (hard to back-port)
- avoid run-time phases
- avoid TLM-2.0

 Other considerations (easier to back-port)
- modified objection handling
- updated phase methods
- config_db changes
- command line processor

Page  96

still no industry consensus

use sequence-based phasing

localize TLM2 if really required

OK if no run-time phases

goal is not to cripple UVM
but enable reuse in OVM

normally OK

Conclusion

 Goal is move to UVM
- transition period could endure for some time
- considerable OVM legacy and many ongoing projects
- new UVM projects need OVC libraries
- ongoing OVM projects may need new UVCs

 Presented an overview of migration process
- prepare OVM for easier translation
- slim automatic translation process
- translation process is reversible

 Developed on family of OVCs, several projects
- applied to multiple projects @ different clients

Page  97

mark.litterick@verilab.com

IBM Recommendations
for OVM  UVM Migration

Wes Queen

Verification Manager, IBM

Page  98

Migrating from OVM to UVM

 Motivation: UVM API beginning to diverge from OVM as new features
are added to UVM

 Challenge: large code base in multiple projects

 General approach: Convert code base using scripts

Page  99

OVM Development Started in 2009

 Open source ran on multiple simulators

 Methodology met verification team requirements for reuse

 Initial development followed user guide

 OVM_RGM register package adopted

 OVM use rapidly spread to multiple groups worldwide

Page  100

Block Diagram HSS OVM Environment

Page  101

Monitor

Driver Register Seq Seq Lib

Link Monitor

State
Monitor

DUT

Interface

Register OVC

Link Monitor
Link Monitor

Link Monitor

VSEQ_LIB

Config

State Config

Sub Config

Sub Config

I/O Control OVC

Monitor

Driver Seq Lib

Interface

Prepare Register Package

 Install updated parser from Cadence
- Allows for OVM_RGM, UVM_RGM, and UVM_REG generation
- OVM_RGM and UVM_RGM usage is identical
- UVM_REG targets the Accellera package

 Generate OVM and UVM register models
- Internal script used to generate file names and headers for new parser to match

previous parser version

 Install OVM_RGM 2.5 to align with new UVM parser
- Rerun OVM environment to be sure results match before proceeding

Page  102

Run UVM Conversion Script

 Download conversion guide from UVMWorld
- http://www.uvmworld.org/contributions-

details.php?id=107&keywords=Appnote:_Migrating_from_OVM_to_UVM-1.0
- Posted by John Rose on May 9, 2011 if you are navigating to find it

 Install UVM conversion script
- Available within latest UVM kits on Accellera.org or within Cadence installation’

 Move any directories out of code tree that should not be converted
- OVM_RGM directory and/or legacy code

 Run conversion script

Page  103

http://www.uvmworld.org/contributions-details.php?id=107&keywords=Appnote:_Migrating_from_OVM_to_UVM-1.0�
http://www.uvmworld.org/contributions-details.php?id=107&keywords=Appnote:_Migrating_from_OVM_to_UVM-1.0�

Remove Deprecated Code and
Compile DPI

 Change any deprecated code which wouldn’t compile (OVM 1.0,
typically)
- Add_seq_cons_if – artifact code from OVM 1.0 that needs to be removed
- Review conversion guide for other deprecated code

 Compile uvm_dpi.cc (libdpi.so) in 32 bit or 64 bit
- New requirement for UVM

Page  104

Golden Test and Further Updates

 Run simulations to test conversion
- Include +UVM_USE_OVM_RUN_SEMANTIC in simulation command

 On-going clean-up
- Remove other deprecated OVM calls (mostly super.build or straight build calls)

 Adopt new UVM features
- Phases, sequences, UVM_REG, etc.

Page  105

Results

 Conversion process has been used successfully in multiple groups
- Current 4 projects have converted over the last year.

 Effort was relatively low
- Lowest risk is to do the conversion between projects
- Effort to convert took one day by single resource. 100K lines of code on single

project.

 Motivation to be on UVM is real
- New UVM features are valuable – UVM_REG, phasing, sequences, etc.
- New UVM features can impact backward compatibility

Page  106

FPGA chip verification using UVM

Charles Zhang

Verification Architect

Paradigm Works

Ravi Ram

Principal Verification
Engineer

Altera Corp

Page  107

Outline
Overview

- Verilog based verification environment
- Why UVM?
- New UVM based verification environment
- FPGA chip verification flow

Some of the challenges and solutions
- Generic programmable logic
- Legacy code integration.
- Programmable core & IO connection
- VIP integration(external and internal)

 Page  108

Verilog based Verification Env
Traditional Verilog based verification environment

Multiple test benches for multiple modes of operation
- PP, PS, SPI, USERMODE, etc.

Recompilation for each test

No object oriented programming (reuse = copy and
change)

Maintainability and scalability are poor (large number of
tests, etc.)

Easier for designer to understand and modify

Page  109

Why UVM?
Supported and released by Accellera

Supported by all major EDA vendors

Object orient programming

Reusability (vertical and horizontal)

Well defined base class library

 Industry standard makes integration of third party or
home grown VIP easier

Good online documentation + UVM forums etc

Little bit harder for designer to understand

Page  110

UVM based Verification Env Overview

PP_PS Config UVC

Globa &PR Config UVC

Avalon
slave

vi

AS Config UVC vi

vi

Jtag UVC
vi

Control
Block

BFM1Avalon UVC
vi

CORE

IP

P
M
A

P
C
S

Memory VIP’s

IO

Memory Controller

IP

P
M
A

P
C
S

UVM VIP
Configurator

VIP1

IO

Core logic VC

vi

UVM VIP
Configurator

VIP1

int
er

fac
e

int
er

fac
e

Flash
memory
modelint

er
fac

e

interface

Clock UVC
vi

interface

interface interface

VIP2

VIP3

VIP4

VIP2

VIP3

BFM2

interface interface

BFM3

interface

Vermeer
model/
other

models int
er

fac
e

UVM REG UVC vi
SCOREBOARD1

SCOREBOARD2

CONFIG
DATABASE

Config
Data

Image

Page  111

UVM-based verification Env overview
Architected from scratch

One environment supports multiple operating mode
- PP, PS, SPI, USERMODE, etc.

Significantly reduced number of tests by inheritance,
configuration setting, etc
- The current UVM based tests is about 1/3 of the tests of Module

based ENV

Simulation performance improved by compile once and
run multiple tests

 Improved compile, run and regression flow
- With UVM, cmd line processor is built-in and free

 Page  112

FPGA Verification Flow
 Configuration (Programming the FPGA).

- Support multiple programming interfaces
- Data compression and encryption
- Front door and back door loading configuration
- Verification goal: make sure the programmed image matches the

expected image

 User Mode (Running programmed user logic)
- Tests include testing all core logic blocks and all the IO systems
- Considerable effort is on creating configurable verification

environment
- Verification goal: verify all the core blocks and I/O systems to be

functioning and connected properly

Page  113

Generic programmable logic
 Programmable nature of FPGA calls for

programmable verification environment

 Core logic interface UVC is a highly
programmable verification component.
 Allows user to decide on which pins to

drive using UVM configuration

 The monitor extended by user to
implement any checking mechanism
using UVM factory override.

 Test based on sequences and
transactions without worry about pin
connection and toggling.

 Compile once and run all tests.

 Used by the software group to verify
real customer design.

Page  114

Legacy code integration

 Still need Verilog based verification environment to coexist with UVM
verification environment

 Interface file used as bridge between UVM verification environment and
module based verification environment

 Interfaces bound to its physical interface signals

 Virtual interface in UVC set by getting the instance from resource database

 Assertions implemented in interface binds to module or physical interface
signals

 Page  115

Programmable core & IO connection
 FPGA core is programmable

 All hard IP is configurable

 Lots of different interfaces and VIPs

 Register access from reg UVC to configure FPGA
- Thousands of configurations in FPGA. UVM Reg model is already > 20G

for handling 30 to 40% of the FPGA configurations. So this is not scalable
and not practical to use

 Hundreds of configurable registers which UVM reg based testing
cannot handle
- Use home grown resource allocator plus configuration settings

 Register access from reg UVC to configure FPGA

 Seamless integration of resource allocator(internal tool) with internal
developed tools for unidirectional and bidirectional connections

Page  116

VIP integration
 Lots of VIPs to address hard IP in FPGA(1G/10G…, PCIe plus other

serial protocols, Altera Avalon VIP, different memory VIP for different
memory protocols)

 Flexibility to configure and select VIPs in UVM test

 Use constraints to select the connections and VIPs

 Use on the fly point-to-point connections to connect VIP to the fabric
- Turn off unused VIPs

 Same environment for integrating different vendor VIPs

 Environment setup for proliferation products for same FPGA family

 VIP interface easily portable to future FPGA families

Page  117

Avalon VIP Integration

 Integrate Avalon BFM in UVM environment

 Use of the existing bfm with a wrapper on top to make it a UVC

 VIP developed internally in Altera and is made available for use
by all groups

 The configuration object generated for each instance of the VIP
with a unique hdl Path which has a reference of the interface.

 The user provides the parameters for the VIP and the hdl Path in
his test-bench hierarchy

Page  118

Avalon Common module

Avalon Master interface

Avalon BFM

Avalon
UVC

Avalon Common module

Avalon Slave interface

Avalon BFM To
External
DUT

To
External
DUT

Summary
 Altera’s first verification project adopting UVM

 Addressed critical challenges

 Programmable user logic and io

 Explosive configuration spaces, etc.

 Adopted pragmatic view of the methodology

 Re-architected the whole environment using UVM

 Reused and integrated both internal and external VIPs

 UVM provides ideal way to create configurable, reusable verification
components and environment

Page  119

Q & A

Contributor: Manish Mahajan

Thank You!

Page  120

	Lessons from the Trenches: Migrating Legacy Verification Environments to UVM™
	Agenda
	Anecdotes From Hundreds of UVM Adopters
	General Comments
	OVM to UVM
	General Issues with UVM
	Top UVM Time-Wasters
	Those Evil Field Macros?
	Field Macro Flags
	Overriding do_compare
	Field Macros and Overridden Methods
	Stop Faffing Around!
	The Dreaded super.build_phase
	The Moderately Evil `uvm_do
	Expanded Invocation of `uvm_do
	The OVM Sequencer Library
	The OVM Sequence
	Selecting a Sequence in OVM
	Starting a Sequence in UVM
	Draft UVM Sequence Library
	Other Detailed UVM Issues
	Things Missing from UVM
	Migrating from OVM to UVM�A Case Study
	Agenda
	Introduction
	OVM Compatibility Layer
	Mapping macros `uvm_* to `ovm_*
	Mapping classes uvm_* to ovm_*
	Mapping Enumerated Types
	UVM Source Code Change
	uvm_component
	uvm_factory
	uvm_globals and uvm_root
	Results
	Summary
	A Reusable Verification Testbench Architecture Supporting C and UVM Mixed Tests
	Agenda
	Slide Number 38
	Introduction
	Slide Number 40
	Testbench Features
	Slide Number 42
	Testbench Architecture Overview
	Slide Number 44
	Challenges & Solutions
	Challenges & Solutions
	Creating UVM sequences with API tasks
	UVM “do” macro V.S. API task
	Create Bus Transaction with API task
	Challenges & Solutions
	Map generic transactions to bus interface specific API tasks
	Map generic transactions to bus �interface specific API tasks (cont’ed)
	 Make C and UVM tests identical!
	Using UVM reporting macros in C
	Implement UVM reporting macros in C
	 Reuse high-level VIPs
	Challenges & Solutions
	UVM Register Layer integration
	UVM Register Layer Integration
	Slide Number 60
	Summary
	Slide Number 62
	UVM to the Rescue – Path to Robust Verification
	Agenda
	Our Challenges Before…
	Adopted Solutions and Roadblocks
	UVM to the Rescue – Key Issues Addressed
	Packet Class Issues
	End-of-Test Issues
	Inconsistency in Test Development
	Stimulus Control Issues
	Stimulus Control Issues (Cont.)
	Stimulus Control Issues (Cont.)
	Stimulus Control Issues (Cont.)
	BFM/Monitor Reuse Issues
	Lack of Debug Messaging Support
	Lack of Debug Messaging Support (Cont.)
	Miscellaneous Testbench Issues
	Miscellaneous Testbench Issues (Cont.)
	UVM Usage in AMS Simulations
	UVM Usage in AMS Simulations (Cont.)
	Technical Contributors
	Conclusions
	Slide Number 84
	OVM to UVM Migration�or There and Back Again, a Consultant’s Tale
	Transition from OVM to UVM
	Two Stage Evaluation
	Early UVM Translation
	Push Back to OVM
	Example: Interface Configuration
	Example: Interface Configuration
	Example: Deprecated UVM
	Example: Deprecated UVM
	Late UVM Translation
	Final Translation Process
	UVM to OVM Back-Porting
	Conclusion
	IBM Recommendations�for OVM  UVM Migration
	Migrating from OVM to UVM
	OVM Development Started in 2009
	Block Diagram HSS OVM Environment
	Prepare Register Package
	Run UVM Conversion Script
	Remove Deprecated Code and Compile DPI
	Golden Test and Further Updates
	Results
	FPGA chip verification using UVM
	Outline
	Verilog based Verification Env
	Why UVM?
	UVM based Verification Env Overview
	UVM-based verification Env overview
	FPGA Verification Flow
	Generic programmable logic
	Legacy code integration
	Programmable core & IO connection
	VIP integration
	Avalon VIP Integration
	Summary
	Q & A

