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1 Abstract: The definition of the language syntax and accompanying semantics for the specification of
2 verification intent and behaviors reusable across multiple target platforms and allowing for the automation of
3 test generation is provided. This standard provides a declarative environment designed for abstract behavioral
4 description using actions, their inputs, outputs, and resource dependencies, and their composition into use
5 cases including data and control flows. These use cases capture verification intent that can be analyzed to
6 produce a wide range of possible legal scenarios for multiple execution platforms. It also includes a
7 preliminary mechanism to capture the programmer’s view of a peripheral device, independent of the

g underlying platform, further enhancing portability.

9 Keywords: behavioral model, constrained randomization, functional verification, hardware-software inter-

10 face, portability, PSS, test generation.
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1 Notices

2 Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
3 Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
4 cess, approved by its members and board of directors, which brings together volunteers representing varied
5 viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve without
6 compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
7 sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
8 of the information contained in its standards.

9 Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-

10 erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
1 directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
12 Standard document.

13 Accellera does not warrant or represent the accuracy or content of the material contained herein, and
14 expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
15 suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
16 ment. Accellera Standards documents are supplied "AS IS."

17 The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
18 purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
19 more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
20 developments in the state of the art and comments received from users of the standard. Every Accellera
21 Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
22 mine that they have the latest edition of any Accellera Standard.

23 In publishing and making this document available, Accellera is not suggesting or rendering professional or
24 other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
25 owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
26 document, should rely upon the advice of a competent professional in determining the exercise of reasonable
27 care in any given circumstances.

28 Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
29 relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
30 Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
31sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
32 of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
33 able to provide an instant response to interpretation requests except in those cases where the matter has pre-
34 viously received formal consideration.

35 Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
36 bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
37 change of text, together with appropriate supporting comments. Comments on standards and requests for
38 interpretations should be addressed to:

39 Accellera Systems Initiative.

40 8698 Elk Grove Blvd Suite 1, #114

41 Elk Grove, CA 95624

42 USA

43 Note: Attention is called to the possibility that implementation of this standard may require use of
44 subject matter covered by patent rights. By publication of this standard, no position is taken with
45 respect to the existence or validity of any patent rights in connection therewith. Accellera shall not
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1 be responsible for identifying patents for which a license may be required by an Accellera standard
2 or for conducting inquiries into the legal validity or scope of those patents that are brought to its
3 attention.

4 Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
5 marks to indicate compliance with the materials set forth herein.

6 Authorization to photocopy portions of any individual standard for internal or personal use must be granted
7 by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
8 for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1,
9#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
10 portions of any individual standard for educational classroom use can also be obtained from Accellera.

11 Suggestions for improvements to the Portable Test and Stimulus Standard 3.0 Draft for Public Review are
12 welcome. They should be posted to the PSS Community Forum at:

13 https://forums.accellera.org/forum/44-portable-stimulus-discussion/

14 The current Working Group web page is:

15 http://www.accellera.org/activities/working-groups/portable-stimulus
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1Introduction

2 The definition of a Portable Test and Stimulus Standard (PSS) will enable user companies to select the best
3tool(s) from competing vendors to meet their verification needs. Creation of a specification language for
4 abstract use-cases is required. The goal is to allow stimulus and tests, including coverage and results
s checking, to be specified at a high level of abstraction, suitable for tools to interpret and create scenarios and
6 generate implementations in a variety of languages and tool environments, with consistent behavior across
7 multiple implementations.

8 This revision adds new features, corrects errors, clarifies aspects of the language and semantic
9 definitions, removes some features, and reorganizes some sections relative to version 2.1 of the Portable
10 Test and Stimulus Standard (October 2023). The most substantial feature added to version 3.0 is the
11 behavioral coverage support.

12 The new features include (by section number):

Section(s) Description

7.6 Added support for “sub-string operator” and string methods

7.10.1 Added support to allow collection of reference types

7.10.2

19 Added “Behavioral coverage” clause

22 Added support to allow platform qualifiers on function prototype declarations
22.2.3 Clarified static const semantics

2254 Added support for comments in template blocks

22.7.14 Added support for yielding control with cooperative multitasking

24.9 Added address space group

D55 Added PSS-SystemVerilog mapping for PSS lists

Annex F | Added “Formal semantics of behavioral coverage” annex
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1Participants

2 The Portable Stimulus Working Group (PSWGQG) is entity-based. At the time this standard was developed, the
3 PSWG had the following active participants:

4
5
6
7

8

9
10
11
12
13
14

15
16

7
18
19
20
21
22

Matthew Ballance, AMD, Chair
Tom Fitzpatrick, Siemens EDA, Vice-Chair
Tom Anderson, AMIQ EDA, Secretary
Shalom Bresticker, Technical Editor

Advantest Europe GmbH: Maximilian Suckert

Agnisys, Inc.: Sudhir Bisht

AMD: Matthew Ballance, Prabhat Gupta

AMIQ EDA: Tom Anderson, Adrian Simionescu

Analog Devices, Inc.: David Brownell

Arteris, Inc.: Jamsheed Agahi

Breker Verification Systems, Inc.: Leigh Brady, Adnan Hamid, David Kelf

Cadence Design Systems, Inc.: Sergey Khaikin, Rodion Melnikov, Angelina Silver, Yuri Tsoglin,
Matan Vax

Intel Corporation: Jonathan Edwards, Faris Khundakjie

Qualcomm Incorporated: Tommy Brunansky, Santosh Kumar, Arjun Ashok Vazhayil
Siemens EDA: Tom Fitzpatrick

Synopsys, Inc.: Dmitry Korchemny, Hillel Miller

Vayavya Labs Pvt. Ltd.: Mohan G, Karthick Gururaj

Western Digital Corporation: Kuntal Nanshi

23 At the time of standardization, the PSWG had the following eligible voters:

24

Agnisys, Inc. Intel Corporation

AMD Qualcomm Incorporated
AMIQ EDA Siemens EDA

Arteris, Inc. Synopsys, Inc.

Breker Verification Systems, Inc. Vayavya Labs Pvt. Ltd.

Cadence Design Systems, Inc. Western Digital Corporation
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.Portable Test and Stimulus Standard
.Version 3.0 Draft for Public Review

4+1. Overview

5 This clause explains the purpose of this standard, describes its key concepts and considerations, details the
6 conventions used, and summarizes its contents.

7 The Portable Test and Stimulus Standard syntax is specified using Backus-Naur Form (BNF). The rest of
g this standard is intended to be consistent with the BNF description. If any discrepancies between the two
9 occur, the BNF formal syntax in Annex B shall take precedence.

101.1 Purpose

11 The Portable Test and Stimulus Standard defines a specification for creating a single representation of
12 stimulus and test scenarios, usable by a variety of users across different levels of integration under different
13 configurations, enabling the generation of different implementations of a scenario that run on a variety of
14 execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA prototyping, and
15 post-silicon. With this standard, users can specify a set of behaviors once, from which multiple
16 implementations may be derived.

171.2 Language design considerations

18 The Portable Test and Stimulus Standard (PSS) describes a declarative domain-specific language (DSL),
19 intended for modeling scenario spaces of systems, generating test cases, and analyzing test runs. Scenario
20 elements and formation rules are captured in a way that abstracts from implementation details and is thus
21reusable, portable, and adaptable. The portable stimulus specification captured in the DSL is herein referred
22to as PSS.

23 PSS borrows its core concepts from object-oriented programming languages, hardware-verification
24 languages, and behavioral modeling languages. PSS features native constructs for system notions, such as
25 data/control flow, concurrency and synchronization, resource requirements, and states and transitions. It also
26 includes native constructs for mapping these to target implementation artifacts.

27 Introducing a new language has major benefits insofar as it expresses user intention that would be lost in
28 other languages. However, user tasks that can be handled well enough in existing languages should be left to
29 the language of choice, so as to leverage existing skill, tools, flows, and code bases. Thus, PSS focuses on
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1the essential domain-specific semantic layer and links with other languages to achieve other related
2 purposes. This eases adoption and facilitates project efficiency and productivity.

3 Finally, PSS builds on prevailing linguistic intuitions in its constructs. In particular, its lexical and syntactic
4 conventions come from the C/C++ family, and its constraint and coverage language uses SystemVerilog
s (IEEE Std 1800)1 as a reference.

61.3 Modeling basics

7 A PSS model is a representation of some view of a system’s behavior, along with a set of abstract flows. It is
g essentially a set of class definitions augmented with rules constraining their legal instantiation. A model
9 consists of two types of class definitions: elements of behavior, called actions; and passive entities used by
10 actions, such as resources, states, and data flow items, collectively called objects. The behaviors associated
11 with an action are specified as activities. Actions and object definitions may be encapsulated in components
12 to form reusable model pieces. All of these elements may also be encapsulated and extended in a package to
13 allow for additional reuse and customization.

14 A particular instantiation of a given PSS model is a called a scenario. Each scenario consists of a set of
15 action instances and data object instances, as well as scheduling constraints and rules defining the
16 relationships between them. The scheduling rules define a partial-order dependency relation over the
17 included actions, which determines the execution semantics. A consistent scenario is one that conforms to
18 model rules and satisfies all constraints.

19 Actions constitute the main abstraction mechanism in PSS. An action represents an element in the space of
20 modeled behavior. Actions may correspond directly to operations of the underlying system under test (SUT)
21and test environment, in which case they are called atomic actions. Actions also use activities to encapsulate
22 flows of simpler actions, constituting some joint activity or scenario intention. As such, actions can be used
23 as top-level test intent or reusable test specification elements. Actions and objects have data attributes and
24 data constraints over them.

25 Actions define the rules for legal combinations in general, not relative to a specific scenario. These are stated
26 in terms of references to objects, having some role from the action’s perspective. Objects thus serve as data,
27 and control inputs and outputs of actions, or they are exclusively used as resources. Assembling actions and
28 objects together, along with the scheduling and arithmetic constraints defined for them, produces a model
29 that captures the full state-space of possible scenarios. A scenario is a particular solution of the constraints
30 described by the model to produce an implementation consistent with the described intent.

311.4 Test realization

32 A key purpose of PSS is to automate the generation of test cases and test suites. Tests for electronic systems
33 often involve code running on embedded controllers, exercising the underlying hardware and software
34 layers. Tests may involve code in hardware-verification languages (HVLs) controlling bus functional
3smodels, as well as scripts, command files, data files, and other related artifacts. From the PSS model
36 perspective, these are called target files, and target languages, which jointly implement the test case for a
37 target platform.

38 The execution of a consistent scenario essentially consists of invoking its actions’ implementations, if any,

39in their respective scheduling order. An action is invoked immediately after all its dependencies have
40 completed, and subsequent actions wait for it to complete. Thus, actions that have the same set of

nformation on references can be found in Clause 2.
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1dependencies are logically invoked at the same time. Mapping atomic actions to their respective
2 implementation for a target platform is captured in several ways, defined in Clause 22.

3 PSS features a native mechanism for referring to the actual state of the system under test (SUT) and the
4 environment. Runtime values accessible to the generated test can be sampled and fed back into the model as
s part of an action’s execution. These external values are sampled and, in turn, affect subsequent generation,
6 which can be checked against model constraints and/or collected as coverage. The system/environment state
7 can also be sampled during pre-run processing utilizing models and during post-run processing, given a run
8 trace.

9 Similarly, the generation of a specific test-case from a given scenario may require further refinement or
10 annotations, such as the external computation of expected results, memory modeling, and/or allocation
11 policies. For these, external models, software libraries, or dedicated algorithmic code in other languages or

12 tools may need to be employed. In PSS, the execution of these pre-run computations is defined using the
13 same scheme as described above, with the results linked in the target language of choice.

141.5 Conventions used
15 The conventions used throughout the document are included here.
16 1.5.1 Visual cues (meta-syntax)

17 The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate keywords and punctuation, text that shall be typed exactly as
it appears. For example, in the following line, the keyword “state”” and special characters “{”
and “}” shall be typed exactly as they appear:

state identifier [ template param_decl list ] [ struct_super_spec | { { struct_body item } }

plain text The normal or plain text font indicates syntactic categories. For example, an identifier shall be
specified in the following line (after the “state” keyword):

state identifier [ template param_decl list ] [ struct super_spec | { { struct_body item } }

italics The italics font in running text indicates a definition. For example, the following line shows
the definition of “activities™:

The behaviors associated with an action are specified as activities.

The italics font in syntax definitions depicts a meta-identifier, ¢.g., action_identifier.
See also 4.2.
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Table 1—Document conventions (Continued)

Visual cue Represents

courier The courier font in running text indicates PSS code. For example, the following line indi-
cates PSS code (for a state):

state power state s { int in [0..4] val; };

{ } curly braces Curly braces ({ }) indicate a set of action traversals. For example, the following sentence
shows that “{start, write,, read}” and “{start, write,, read}” are action traversals.

The top-level scenarios of ¢5 and c6 have the same realization for each trace:
{start, write, read} for the trace in Figure 31 and {start, write,, read} for the trace in

Figure 32.

See also 19.3.1.

11.5.2 BNF syntax conventions

2 The BNF syntax conventions are shown in Table 2.

Table 2—BNF syntax conventions

Visual cue Represents

[ ]square brackets | Square brackets indicate optional items. For example, the struct_super spec is optional in the
following line:

state identifier [ template_param_decl list ] [ struct_super_spec | { { struct_body item } }

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example, the
following line shows that zero or more struct_body_items can be specified in this declaration:

state identifier [ template_param_decl list ] [ struct_super_spec | { { struct_body item } }

| separator bar The separator bar (| ) character indicates alternative choices. For example, the following line
shows that the "input" or "output” keywords are possible values in a flow object reference:

flow ref field declaration ::=
(input | output ) flow_object_type object ref field {, object ref field } ;

() parentheses Parentheses ( () ) group together alternative choices. For example, the following line shows
that a flow object reference begins with either an "input™ or an "output" keyword:

flow_ref field declaration ::=
(input | output ) flow_object type object ref field {, object ref field } ;

31.5.3 Notational conventions

4 The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
5 in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.
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11.5.4 Examples

2 Any examples shown in this standard are for information only and are only intended to illustrate the use of
3 PSS.

4 Many of the examples use “. . .” to indicate code omitted for brevity.

51.6 Use of color in this standard

6 This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
7 not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
g are the following:

9
10

1
12

Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

131.7 Contents of this standard

14 The organization of the remainder of this standard is as follows:

15
16

7
18

19
20
21
22

23
24

25
26
27

28
29

30

31

Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

Clause 4 defines the lexical conventions used in PSS.
Clause 5 defines the PSS modeling concepts.

Clause 6 defines the PSS execution semantic concepts.
Clause 7 highlights the PSS data types.

Clause 8 describes the operators and operands that can be used in expressions and how expressions
are evaluated.

Clause 9 - Clause 21 describe the PSS abstract modeling constructs.

Clause 22 describes the realization of PSS atomic actions.
Clause 23 describes the process for conditional code processing.

Clause 24 describes the PSS core library, which consists of portable functionality and utilities that
PSS tools must implement.

Annexes. Following Clause 24 is a series of annexes.
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12. References
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6 change (7-Bit ASCII)2 (ISO 646 International Reference Version)

7IEEE Std 1800™-2017, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Ver-
g ification Language.3 4

9 The IETF Best Practices Document (for notational conventions) is available from the IETF web site:
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12
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3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (https://standards.ieee.org/).
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www.ansi.org/).
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13. Definitions, acronyms, and abbreviations

2 For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
3 of IEEE Standards Terms [B1]° should be referenced for terms not defined in this clause.

4 3.1 Definitions
5 action: An element of behavior.

6 activity: An abstract, partial specification of a scenario that is used in a compound action or in a com-
7 pound monitor to determine the high-level intent and leaves all other details open.

g atomic action: An action that corresponds directly to operations of the underlying system under test (SUT)
9 and test environment.

10 component: A structural entity, defined per type and instantiated under other components.
11 compound action: An action that includes an activity to traverse one or more sub-actions.

12 constraint: An algebraic expression relating attributes of model entities used to limit the resulting scenario
13 space of the model.

14 coverage: A metric to measure the share of possible scenarios that have actually been processed for a given
15 model.

16 exec block: Specifies the mapping of PSS scenario entities to their non-PSS implementation.

17 field: A variable associated with an instance of a type.

18 inheritance: The process of deriving one model element from another of a similar type, but adding or mod-
19 ifying functionality as desired. It allows multiple types to share functionality that only needs to be specified
20 once, thereby maximizing reuse and portability.

21loop: A traversal region of an activity in which a set of sub-actions is repeatedly executed. Values for the
22 fields of the action are selected for each traversal of the loop, subject to the active constraints and resource
23 requirements present.

24 model: A representation of some view of a system’s behavior, along with a set of abstract flows.

25 monitor: An observed element of behavior.

26 object: A passive entity used by an action, such as resources, states, and data flow items.

27 override: To replace one or all instances of an element of a given type with an element of a compatible type
28 inherited from the original type.

29 package: A way to group, encapsulate, and identify sets of related definitions, namely type declarations and
30 type extensions.

31resource: A computational element available in the target environment that may be claimed by an action for
32 the duration of its execution.

The numbers in brackets correspond to those of the bibliography in Annex A.
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1root action: An action designated explicitly as the entry point for the generation of a specific scenario. Any
2 action in a model can serve as the root action of some scenario.

3scenario: A particular instantiation of a given PSS model.

4 solve platform: The platform on which the test scenario is solved and, where applicable, target test code is
5 generated. In some generation flows, the solve and target platforms may be the same.

6 target file: Contains textual content to be used in realizing the test intent.

7 target language: The language used to realize a specific unit of test intent, e.g., ANSI C, assembly lan-
8 guage, Perl.

9 target platform: The execution platform on which test intent is executed.

10 type extension: The process of adding additional functionality to a model element of a given type, thereby
11 maximizing reuse and portability. As opposed to inheritance, extension does not create a new type.

12 3.2 Acronyms and abbreviations

13 API Application Programming Interface
14 P1 Procedural Interface

15 PSS Portable Test and Stimulus Standard
16 SUT  System Under Test

177UVM  Universal Verification Methodology

18
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14. Lexical conventions

2 PSS borrows its lexical conventions from the C language family.

34,1 Comments
4 The token /* introduces a comment, which terminates with the first occurrence of the token * /. The C++

scomment delimiter // is also supported and introduces a comment which terminates at the end of the
6 current line.

74.2 ldentifiers

8 An identifier is a sequence of letters, digits, and underscores; it is used to give an object a unique name so
9 that it can be referenced. In a given namespace, identifiers shall be unique. Identifiers are case-sensitive.

10 A meta-identifier can appear in syntax definitions using the form: construct name identifier, e.g.,
1 action_identifier. See also B.19.

124.3 Escaped identifiers
13 Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab,
14 newline). They provide a means of including any of the printable non-whitespace ASCII characters in an

15 identifier (the decimal values 33 through 126, or 0x21 through Ox7E in hexadecimal).

16 Neither the leading backslash character nor the terminating white space is considered to be part of the
17 identifier. Therefore, an escaped identifier \ cpu3 is treated the same as a non-escaped identifier cpu3.

18 Some examples of legal escaped identifiers are shown here:

19 \busa+index
20 \-clock
21 \***error—-condition***

22 \netl/\net2
23 \{a,b}
24 \a* (b+c)
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2 PSS reserves the keywords listed in Table 3.

Table 3—PSS keywords

abstract action activity array as assert
atomic bind bins bit body bool
break buffer chandle class compile component
concat const constraint continue cover covergroup
coverpoint Cross declaration default disable dist
do dynamic else enum eventually exec
export extend false file float32 float64
forall foreach function has header if
iff ignore_bins illegal_bins import in init
init_down init_up inout input instance int
join_branch join_first join_none join_select list lock
map match monitor null output override
package parallel pool post_solve pre_body pre_solve
private protected public pure rand randomize
ref repeat replicate resource return run_end
run_start schedule select sequence set share
solve state static stream string struct
super symbol target this true type
typedef unique void while with yield

34.5 Operators

4 Operators are single-, double-, and triple-character sequences and are used in expressions. Unary operators
s appear to the left of their operand. Binary operators appear between their operands. A conditional operator

6 has two operator characters that separate three operands.
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14.6 Numbers

2 Constant numbers are specified as integer constants (see 4.6.1) or floating-point constants (see 4.6.2). The
3 formal syntax for numbers is shown in Syntax 1.

4
number ::=
integer number
| floating_point number
integer number ::=
bin_number
| oct_number
| dec_number
| hex_number
| based_bin_number
| based_oct_number
| based _dec_number
| based_hex_number
bin_digit ::=[0-1]
oct_digit ::= [0-7]
dec_digit ::=[0-9]
hex_digit ::=[0-9] | [a-f] | [A-F]
bin_number ::= 0[b|B] bin_digit { bin_digit| _}
oct number ::=0 { oct_digit| _}
dec_number ::=[1-9] { dec_digit| }
hex number ::= 0[x|X] hex_digit { hex_digit| }
BASED BIN LITERAL ::= '[s|S]b|B bin_digit { bin_digit| }
BASED OCT LITERAL ::="[s|S]o|O oct_digit { oct digit| _}
BASED DEC LITERAL ::="[s|S]d|D dec_digit { dec_digit| }
BASED HEX LITERAL ::="'[s|S]Th/H hex_digit { hex digit| }
based bin_number ::=[ dec_number ]| BASED BIN LITERAL
based_oct number ::=[ dec_number | BASED OCT_ LITERAL
based dec_number ::=[ dec_number ]| BASED DEC LITERAL
based_hex_number ::=[ dec_number | BASED HEX LITERAL
floating_point_number ::=
floating_point_dec_number
| floating_point_sci_number
unsigned number ::=dec_digit { dec_digit|_}
floating_point_dec_number ::= unsigned number . unsigned number
floating_point_sci_number ::=
unsigned number [ . unsigned number | exp [ sign ] unsigned number
exp:=el|E
sign 1=+ -
5 Syntax 1T—Numeric constants
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14.6.1 Integer constants

2 Integer literal constants can be specified in decimal, hexadecimal, octal, or binary format.

3 Several forms may be used to express an integer literal constant. The first form is a simple unsized decimal
4number, which is specified as a sequence of digits starting with 1 though 9 and containing the digits 0

s through 9.

6 The second form is an unsized hexadecimal number, which is specified with a prefix of 0x or 0X followed
7 by a sequence of digits 0 through 9, a through £, and A through F.

8 The third form is an unsized octal number, which is specified as a sequence of digits starting with 0 and
9 containing the digits 0 through 7.

10 The fourth form is an unsized binary number, which is specified with a prefix of 0b or OB followed by a
11 sequence of digits 0 and 1.

12 The fifth form specifies a based literal constant, which is composed of up to three tokens:

13— An optional size constant
14— An apostrophe character (') followed by a base format character
15— Digits representing the value of the number.

16 The first token, a size constant, specifies the size of the integer literal constant in bits. This token shall be
17 specified as an unsigned non-zero decimal number.

18 The second token, a base format, is a case-insensitive letter specifying the base for the number. The base is
19 optionally preceded by the single character s (or S) to indicate a signed quantity. Legal base specifications
20are d, D, h, H, o, O, b, or B. These specify, respectively, decimal, hexadecimal, octal, and binary formats.
21The base format character and the optional sign character shall be preceded by an apostrophe. The
22 apostrophe character and the base format character shall not be separated by white space.

23 The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
24 unsigned number token immediately follows the base format, optionally separated by white space.

25 Simple decimal and octal numbers without the size and the base format shall be treated as signed integers.
26 Unsized unbased hexadecimal and binary numbers shall be treated as unsigned. Numbers specified with a
27 base format shall be treated as signed integers only if the s designator is included. If the s designator is not
28 included, the number shall be treated as an unsigned integer.

29 If the size of an unsigned number is smaller than the size specified for the literal constant, the unsigned
30 number shall be padded to the left with zeros. If the size of an unsigned number is larger than the size
31 specified for the literal constant, the unsigned number shall be truncated from the left.

32 The number of bits that compose an unsized number is tool-specific, but shall be at least 32. An unsized
33number that requires more than 32 bits shall have at least the minimum width needed to properly represent
34the value, including a sign bit if the number is signed. For example, 0x7 0000 0000, an unsigned
35 hexadecimal number, shall have at least 35 bits. 4294967296 (2**32), a positive signed integer, shall be
36 represented by at least 34 bits.

37 The underscore character (_) shall be legal anywhere in a number except as the first character. The
38 underscore character can be used to break up long integer literals to improve readability.
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14.6.1.1 Using integer literals in expressions

2 A negative value for an integer with no base specifier shall be interpreted differently from an integer with a
3 base specifier. An integer with no base specifier shall be interpreted as a signed value in two’s-complement
4 form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.

5 The following example shows four ways to write the expression “minus 12 divided by 3.” Note that =12 and
6 —'d12 both evaluate to the same two’s-complement bit pattern, but, in an expression, the —'d12 loses its
7 identity as a signed negative number.

8

9 int IntA;

10 IntA = -12 / 3; // The result is -4.

1 IntA = -'dl2 / 3; // The result is 1431655761.

12 IntA = -'sdl2 / 3; // The result is -4.

13 IntA = -4'sdl2 / 3; // =-4'sdl12 is the negative of the 4-bit quantity 1100,
14 // which is -4. -(-4) = 4. The result is 1.

154.6.2 Floating-point constants

16 Floating-point constant numbers can be specified either in decimal notation (e.g., 14 .72) or in scientific
17 notation (e.g., 39e8, which means 39 multiplied by 10 to the 8th power). Floating-point numbers expressed
18 with a decimal point shall have at least one digit on each side of the decimal point. Whitespace is not
19 permitted between the components of a floating-point constant.

20 Examples:
21

22 20.14 // Legal

23 20 .15 // Illegal. No whitespace is permitted between components.
24 2e6 // Legal, means 2 * 10**6

25 le-9 // Legal, means 1 * 10**-9

264.7 String literals

27 A string literal is a sequence of ASCII characters enclosed by a single pair of quotation marks (" ... "),
28 called a quoted string, or a triple pair of quotation marks (""" ... """), called a triple-quoted string.
29 There is no predefined limit to the length of a string literal. The formal syntax for string literals is shown in

30 Syntax 2.

31

string_literal ::=
QUOTED_STRING

| TRIPLE_ QUOTED_STRING
QUOTED_STRING ::=" { unescaped character | escaped_character } "
TRIPLE QUOTED_STRING ::="""{any ASCII_character}"""
unescaped character ::= any printable ASCII character
escaped_character ::=\("|""|?\|a|b|f|n|r|t|v|[0-7][0-7][0-7])
filename string ::= QUOTED STRING

32 Syntax 2—String literals

33 PSS also includes a string data type to which a string literal can be assigned or compared. Variables of type
34 string have arbitrary length; they are dynamically resized to hold any string. String literals are implicitly
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1converted to the string type when assigned to a string type or used in an expression involving string type
2 operands.

3 The empty string literal (" ") represents an empty, or null, string.
4 Quoted string literals may only contain printable ASCII characters (the decimal values 32 through 126, or
5 0x20 through 0x7E in hexadecimal). Certain characters can be used in quoted string literals when preceded

6 by an escape character (a backslash). Table 4 lists these characters, with the escape sequence that represents
7them. A quoted string shall be contained in a single line.

Table 4—Specifying special characters in string literals

quslclzg se AS‘ICa‘Ilflilex Character produced by escape sequence
\a 0x07 Alert (Beep, Bell)
\b 0x08 Backspace
\f 0x0C Formfeed
\n 0x0A Newline
\r 0x0D Carriage return
\t 0x09 Horizontal tab
\v 0x0B Vertical tab
\\ 0x5C \ character (backslash)
\" 0x22 " character (double quotation mark)
\' 0x27 ' character (apostrophe, single quotation mark)
\? 0x3F ? character (question mark)
\ddd any A character specified in 3 octal digits (see Syntax 1). Implementations may issue
an error if the character represented is greater than \377.

8 An escape sequence is considered a single character in the string literal. An escaped apostrophe or question
9mark is treated the same as an unescaped apostrophe or question mark, respectively, i.e., the backslash is
10 ignored. The other escaped characters in the table have different meanings from their unescaped versions. It
111s illegal for an escape character in a quoted string literal to be followed by any character not appearing in
12 the table above.

13 In contrast, a triple-quoted string literal may contain any ASCII character, printing or nonprinting. There is
14no escape character. All characters are passed as they are, unchanged. For example, triple-quoted strings
15 may contain both single and double quotation marks (except for three consecutive double quotation marks)
16 and newline characters.

17 Both quoted string literals and triple-quoted string literals may be used anywhere a string literal is desired or
18 required, except for filename strings (see target file exec block in Syntax 83), where a quoted string is
19 required.

20 In a string literal that appears in target-template code, mustache notation ({ {expression}}) can be used
21to reference PSS variables. See 22.5.3 and 22.6 for details. A token with a brace followed by a hash ({#)
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1denotes the start of a multi-line comment, and a hash followed by a brace (# } ) marks the end of it. A single-
2 line comment starts with a token brace-hash-brace ({#}) and continues to the end of the line. 22.5.4
3 captures the details.

44.7.1 Examples

5 The following string literals are equivalent:

6

7 " \"Humpty Dumpty sat on a wall.\nHumpty Dumpty had a great fall.\" "
8

9 """ "Humpty Dumpty sat on a wall.

10 Humpty Dumpty had a great fall.™ """

14.8 Aggregate literals
12 Aggregate literals are used to specify the content values of collections and structure types. The different
13types of aggregate literals are described in the following sections. The use of aggregate literals in

14 expressions is described in 8.4.2.

15

aggregate_literal ::=
empty aggregate literal
| value list_literal
| map_literal
| struct_literal

16 Syntax 3—Aggregate literals

17 4.8.1 Empty aggregate literal

18

empty aggregate literal ::={ }

19 Syntax 4—Empty aggregate literal

20 Aggregate literals with no values specify an empty collection (see 7.9) when used in the context of a
21 variable-sized collection type (list, set, map).

224.8.2 Value list literals

23

value_list_literal ::= { expression { , expression } }
24 Syntax 5—Value list literal

25 Aggregate literals for use with arrays, lists, and sets (see 7.9) use value list literals. Each element in the list
26 specifies an individual value. When used in the context of a variable-size data type (list, set), the number of
27 elements in the value list literal specifies the size as well as the values. However, when used in the context of
28 sets, each value is counted only once, even if it appears multiple times. When used in the context of arrays
29 and lists, the value list literal also specifies the order of elements, starting with element 0. The data types of
30 the values must match the data type specified in the collection declaration.
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1 When a value list literal is used in the context of an array, the value list literal must have the same number
2 of elements as the array. It is an error if the value list literal has more or fewer elements than the array.

int cl(4] = {1, 2, 3, 4}; // OK

int c2[4] = {1}; // Error: literal has fewer elements than array

int c3[(4] = {1, 2, 3, 4, 5, 6}; // Error: literal has more elements than array
4 Example 1—Value list literals

5 Values in value list literals may be non-constant expressions.

64.8.3 Map literals

7
map_literal ::= { map_literal item {, map_literal item } }
map_literal item ::= expression : expression

8 Syntax 6—Map literal

9 Aggregate literals for use with maps (see 7.9.4) use map literals. The first element in each colon-separated

10 pair is the key. The second element is the value to be associated with the key. The data types of the
11 expressions must match the data types specified in the map declaration. If the same key appears more than
12 once, the last value specified is used.

13 In Example 2, a map literal is used to set the value of a map with integer keys and Boolean values.

14
struct t {
map<int,bool> m = {l:true, 2:false, 4:true, 8:false};
constraint m[1]; // True, since the value "true" is associated with key "1"
}
15 Example 2—Map literals

16 Both keys and values in map literals may be non-constant expressions.
174.8.4 Structure literals

18

struct_literal ::= { struct_literal item {, struct_literal item } }
struct_literal item ::= . identifier = expression

19 Syntax 7—Structure literal

20 A structure literal explicitly specifies the name of the struct attribute that a given expression is associated
21 with. Struct attributes whose value is not specified are assigned the default value of the attribute’s data type.
22 The order of the attributes in the literal does not have to match their order in the struct declaration. It shall
23 be illegal to specify the same attribute more than once in the literal.

24 In Example 3, the initial value for the attributes of s1 is explicitly specified for all attributes. The initial
25 value for the attributes of s2 is specified for a subset of attributes. The resulting value of both s1 and s2 is
26 {.a=1, .b=2, .c=0, .d=0}. Consequently, the constraint s1==s2 holds.
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struct s {
int a, b, ¢, d;

}i

struct t {
s sl = {.a=1, .b=2, .c=0,.d=0};
s s2 = {.b=2,.a=1};
constraint sl == s2;

2 Example 3—Structure literals

3 Values in structure literals may be non-constant expressions.
44.8.5 Nesting aggregate literals

5 Aggregate literals may be nested to form the value of data structures formed from nesting of aggregate data
6 types.

7 In Example 4, an aggregate literal is used to form a list of struct values. Each structure literal specifies a
8 subset of the struct attributes.

struct s {
int a, b, ¢, d;
}i
struct t {
list<s> my 1 = {
{.a=1,.d=4},
{.b=2, .c=8}
}i

10 Example 4—Nesting aggregate literals
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15. Modeling concepts

2 A PSS model is made up of a number of elements (described briefly in 1.3) that define a set of possible
3 scenarios to be applied to the Design Under Test (DUT) via the associated test environment. Scenarios are
4 composed of behaviors—ultimately executed on some combination of components that make up the DUT or
5 on verification components that define the test environment—and the communication between them. This
6 clause introduces the elements of a PSS model and defines their relationships.

7 The primary behavior abstraction mechanism in PSS is an action, which represents a particular behavior or
8 set of behaviors. Actions combine to form the scenarios that represents the verification intent. Actions that
9 correspond directly to operations performed by the underlying DUT or test environment are referred to as
10 atomic actions, which contain an explicit mapping of the behavior to an implementation on the target
11 platform in one of several supported forms. Compound actions encapsulate flows of other actions using an
12 activity that defines the critical intent to be verified by specifying the relationships between specific actions.

13 The remainder of the PSS model describes a set of rules that are used by a PSS processing tool to create the
14 scenarios that implements the critical verification intent while satisfying the data flow, scheduling, and
15 resource constraints of the target DUT and associated test environment. In the case where the specification
16 of intent is incomplete (partial), the PSS processing tool shall infer the execution of additional actions and
17 other model elements necessary to make the partial specification complete and valid. In this way, a single
18 partial specification of verification intent may be expanded into a variety of actual scenarios that all
19 implement the critical intent, but might also include a wide range of other behaviors that may provide
20 greater coverage of the functionality of the DUT as demonstrated in the example in Figure 1.

21

-~ -

(i) (ii)

22 Figure 1—Partial specification of verification intent
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1In Figure 1, actions a, b, and c are specified to be traversed sequentially in an activity. Depending on the
2 data flow between them, and on other constraints in the model, this may describe a complete scenario
3 specification (see Figure 1(i)), or it may describe a partial specification, which may be expanded into
4multiple scenarios that infer other actions. All scenarios satisfy the critical intent defined by the activity,
swhere a will be traversed, followed sometime later by b, followed sometime later by c. Figure 1 shows
6 several possible scenarios that may be generated from the partial specification, depending on various factors
7 to be discussed later in this section.

8 An activity primarily specifies the set of actions to be executed and the scheduling relationships between
9them. Actions may be scheduled sequentially, in parallel, or in various combinations based on conditional
10 evaluation, looping, or randomization constructs. Activities may also include explicit data bindings between
11actions. An activity that traverses a compound action is evaluated hierarchically, i.e., when a compound sub-
12 action is traversed in an activity, the sub-action activity is traversed fully at that point in the parent activity
13 (see 5.3.2).

145.1 Modeling data flow

15 Actions may be declared to have inputs and/or outputs of a given data flow object type. The data flow object
16 types define scheduling semantics for the given action relative to those with which it shares the object. Data
17 flow objects may be declared directly or may inherit from user-defined data structures or other flow objects
18 of a compatible type. An action that outputs a flow object is said to produce that object and an action that
19 inputs a flow object is said to consume the object. Data flow objects are described in Clause 13.

20 5.1.1 Buffers

21 The first kind of data flow object is the buffer type. A buffer represents persistent data that can be written
22 (output) by a producing action and may be read (input) by any number of consuming actions. As such, a
23 buffer defines a strict scheduling dependency between the producer and the consumer that requires the
24 producing action to complete its execution—and, thus, complete writing the buffer object—before execution
25 of the consuming action may begin to read the buffer (see Figure 2). Note that other consuming actions may
26 also input the same buffer object. While there are no implied scheduling constraints between the consuming
27 actions, none of them may start until the producing action completes.

28
observed
behavior
prod_mem_a}%(l( cons_mem_a F
29 Figure 2—Buffer flow object semantics

30 Figure 2 illustrates the sequential scheduling semantics between the producer and consumer of a buffer flow
310bject.

32 In Figure 1(i), assume that action a produces a buffer of a particular type, and b inputs a buffer object of a
33 compatible type, In this case, we say that the buffer object is bound from the output of a to the input of b,
34 since the semantics of the buffer object support the activity. Similarly, in Figure 1(ii), if, instead of action a,
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1action d produced a buffer object of a compatible type for action b, action d could be inferred as the
2 producer of the buffer for action b to consume. The buffer scheduling semantics allow action d to be
3 inferred at any point in the schedule prior to the start of action b (shown in Figure 1(ii) as either d;, d, or
4 d5), while the activity requires only that action a completes before action b starts. In this case, there is no
5 explicit scheduling constraint between a and d.

65.1.2 Streams

7 The stream flow object type represents transient data exchanged between actions. The semantics of the
8 stream flow object require that the producing and consuming actions execute in parallel (i.e., both activities
9 shall begin execution when the same preceding actions complete; see Figure 3). In a stream object, there
10 shall be a one-to-one connection between the producer and consumer.

Il

observed
behavior
| \
N @__ —( prod_mem_a)
{ cons_mem_a >
2 Figure 3—Stream flow object semantics

13 Figure 3 illustrates the parallel scheduling semantics between the producer and the consumer of a stream
14 flow object.

15 In Figure 1(iii), the parallel execution of actions £ and g dictates that any data exchanged between these
16 actions shall be of the stream type. Again, assuming that action a does not output a compatible buffer for
17 action b to input, then action £ may be inferred to supply the buffer to action b . If action £ inputs or outputs
18 a stream object, then the one-to-one requirement of the stream object would require that action g, which has
19 a compatible stream type, also be inferred to execute in parallel with £. Action e may be inferred if it is
20 needed to supply a buffer input to either £ or g.

21 NOTE—Figure 1(iv) shows an alternate inferred scenario that also satisfies the base scenario of sequential execution of
22 actions a, b, and c, but in this case, the binding between a and b is legal, and action ¢ requires a buffer input that can
23 only be supplied by f or g.

245.1.3 States

25 The state flow object represents the state of some element in the DUT or test environment at a given time.
26 Multiple actions may read or write the state object, but only one write action may execute at a time. Any
27 number of read actions may execute in parallel, but read and write actions shall be sequential (see Figure 4).
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2 Figure 4—State flow object semantics

3 State flow objects have a built-in Boolean initial attribute that is automatically set to true initially and
4 automatically set to false on the first write operation to the state object. This attribute can be used in
5 constraint expressions to define the starting value for fields of the state object and then allow the values to be
6 modified on subsequent writes of the state object.

75.1.4 Data flow object pools

8 Data flow objects are grouped into pools, which can be used to limit the set of actions that can communicate
9 using objects of a given type. For buffer and stream types, the pool will contain the number of objects of the
10 given type needed to support the communication between actions sharing the pool. For state objects, the
11pool will only contain a single object of the state type at any given time. Thus, all actions sharing a state
12 object via a pool will see the same value for the state object at a given time. Pools are described in
13 Clause 15.

14 5.2 Modeling system resources
15 5.2.1 Resource objects

16 In addition to declaring inputs and outputs, actions may require system resources that must be accessible in
17 order to accomplish the specified behavior. The resource object is a user-defined data object that represents
18 this functionality. Similar to data flow objects, a resource may be declared directly or may inherit from a
19 user-defined data structure or another resource object. Resource objects are described in Clause 14.

205.2.2 Resource pools

21Resource objects are also grouped into pools to define the set of actions that have access to the resources. A
22 resource pool is defined to have an explicit number of resource objects in it (the default is 1), corresponding
23 to the available resources in the DUT and/or test environment. In addition to optionally randomizable data
24 fields, the resource has a built-in non-negative integer attribute called instance_id, which serves to
25 identify the resource and is unique for each resource in the given pool. Pools are described in Clause 15.

26 5.2.2.1 Locking resources

27 An action that requires exclusive access to a resource may lock the resource, which prevents any other action
28 that claims the same resource instance from executing until the locking action completes. For a given pool of
29 resource R, with size S, there may be S actions that lock a resource of type R executing at any given time.
30 Each action that locks a resource in a given pool at a given time shall have access to a unique instance of the
31resource, identified by the integer attribute instance_id. For example, if a DUT contains two DMA
32 channels, the PSS model would define a pool containing two instances of the DMA channel resource type.
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1In this case, no more than two actions that lock the DMA channel resource could be scheduled
2 concurrently.

35.2.2.2 Sharing resources

4 An action that requires non-exclusive access to a resource may share the resource. An action may not share
5 a resource instance that is locked by another action, but may share the resource instance with other actions
6 that also share the same resource instance. If all resources in a given pool are locked at a given time, then no
7 sharing actions can execute until at least one locking action completes to free a resource in that pool.

8 5.3 Basic building blocks
95.3.1 Components and binding

10 A critical aspect of portability is the ability to encapsulate elements of verification intent into “building
11blocks” that can be used to combine and compose PSS models. A component is a structural element of the
12 PSS model that serves to encapsulate other elements of the model for reuse. A component is typically
13 associated with a structural element of the DUT or testbench environment, such as hardware engines,
14 software packages, or testbench agents, and contains the actions that the element is intended to perform, as
15 well as the data and resource pools associated with those actions. Each component declaration defines a
16 unique type that can be instantiated inside other components. The component declaration also serves as a
17 type namespace in which other types may be declared.

18 A PSS model is composed of one or more component instantiations constituting a static hierarchy beginning
19with the top-level or root component, called pss_top by default, which is implicitly instantiated.
20 Components are identified uniquely by their hierarchical path. In addition to instantiating other components,
21a component may declare functions and class instances (see Clause 9).

22 When a component instantiates a pool of data flow or resource objects, it also shall bind the pool to a set of
23 actions and/or subcomponents to define who has access to the objects in the pool. Actions may only
24 communicate via an object pool with other actions that are bound to the same object pool. Object binding
25 may be specified hierarchically, so a given pool may be shared across subcomponents, allowing actions in
26 different components to communicate with each other via the pool.

27 5.3.2 Evaluation and inference

28 A PSS model is evaluated starting with the top-level root action, which shall be specified to a tool. The
29 component hierarchy, starting with pss_ top or a user-specified top-level component, provides the context
30 in which the model rules are defined. If the root action is a compound action, its activity forms the root of a
31 potentially hierarchical activity tree that includes all activities present in any sub-activities traversed in the
32 activity. Additional actions may be inferred as necessary to support the data flow and binding requirements
33 of all actions explicitly traversed in the activity, as well as those previously inferred. Resources add an
34 additional set of scheduling constraints that may limit which actions actually get inferred, but resources do
35 not cause additional actions to be inferred.

36 The semantics of data flow objects allow the tool to infer, for each action in the overall activity, connections
37 to other actions already instantiated in the activity; or to infer and connect new action instances to conform
38 to the scheduling constraints defined in the activity and/or by the data and resource requirements of the
39actions, including pool bindings. The model thus consists of a set of actions, with defined scheduling
40 dependencies, along with a set of data flow objects that may be explicitly bound or inferred to connect
41 between actions and a set of resources that may be claimed by the actions as each executes. Actions and flow
42 objects and their bindings may only be inferred as required to make the (partial) activity specification legal.
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1A PSS implementation shall not infer an action or object binding that is not required, either directly or
2 indirectly, to make the activity specification legal. Clause 17 describes action inferencing in more detail.

3 Figure 5 demonstrates how actions can be inferred to generate multiple scenarios from a single activity.
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5 Figure 5—Single activity, multiple scenarios

6 Looking at Figure 5, actions a, b, and c are scheduled sequentially in an activity. The data flow and
7 resource requirements specified in the model (which are not shown in Figure 5) allow for multiple scenarios
8 to be generated. If action a has a buffer or state input, then an action, £ in this case, is inferred to execute
9 sequentially before a in order to provide the buffer or state object. If a does not have a buffer or state input,
10 £ may still be inferred in order to supply an input to b or ¢, and may ultimately be scheduled before a as
11shown, although the only real scheduling constraint is that £ complete before the start of the action that
12 requires the input flow object.

13 Once inferred, if £ also has a buffer or state input, then another action shall be inferred to supply that object
14 and so on until an action is inferred that does not have an input (or the tool’s inferencing limit is exceeded, at
15 which point an error shall be generated). For the purposes of this example, action £ does not have an input.

16 In Figure 5(i), presume that action a produces (or consumes) a stream object. In this case, action d is
17 inferred in parallel with a since stream objects require a one-to-one connection between actions. Actions a
18 and d both start upon completion of action f. If action d also has a buffer input, then another action shall be
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1inferred to provide that input. For Figure 5(i), action £ can be presumed to have a second buffer output that
2 gets bound to action d, although a second buffer-providing action could also have been inferred.

3 If action a produces a buffer object, the buffer may be connected to another action with a compatible input
4type. In the case where a . out and b. in are incompatible, action e (or a series of actions) may be inferred
5 to receive the output of action a and produce the input to action b. If a. out and b . in are compatible, then
6 the direct connection between a.out and b. in would be inferred here, in which case no action would be
7 inferred between them, although an action inferred to supply the input to c (or for some other reason) could
8 be scheduled between them.

9 Similarly, in the absence of an explicit binding of b. out to c. in, and if they are incompatible, a series of

10 actions may be inferred prior to the start of action c in order to provide the input of action c. These inferred
11actions will be scheduled independent of b unless their data flow requirements create scheduling constraints
12 relative to b. As the terminal action in the activity, no action may be inferred after action ¢ however, even if
13 action c produces a buffer object as an output.

141f b.out and c. in are incompatible, it is possible to infer another action, j, to supply the buffer input to
15 ¢ . in, as shown in Figure 5(ii). In this case, there are two constraints on when the execution of action ¢ may
16 begin. The activity scheduling requires action b to complete before action c starts. The buffer object
17 semantics also require action j to complete before action c starts. If action j requires a buffer input, a series
18 of actions could be inferred to supply the buffer object. That inferred action chain could eventually be bound
19to a previously inferred action, such as action d as shown in Figure 5(ii), or it may infer an independent
20 series of actions until it infers an initial action that only produces an output or until the inferencing limit is
21reached. Since the output of action b is not bound to action c, action b is treated as a terminating action, so
22 no subsequent actions may be inferred after action b.

23 Finally, Figure 5(iii) shows the case where action ¢ produces or consumes a stream object. In this case, even
24 though action c is the terminating action of the activity, action p shall be inferred to satisfy the stream object
25 semantics for action c. Here, action p is also treated as a terminating action, so no subsequent actions may
26 be inferred. However, additional actions may be inferred either preceding or in parallel to action p to satisfy
27 its data flow requirements. Each action thus inferred is also treated as a terminating action. Similarly, since
28 action b is not bound to action c, b shall also be treated as a terminating action.

29 5.4 Constraints and inferencing

30 Data flow and resource objects may define constraint expressions on the values of their data fields
31(including instance_id in the case of resource objects). In addition, actions may also define constraint
32 expressions on the data fields of their input/output flow objects and locked/shared resource objects. For data
33 flow objects, all constraints defined in the object and in all actions that are bound to the object are combined
34 to define the legal set of values available for the object field. Similarly, the constraints defined for a resource
35 object shall be combined with the constraints defined in all actions that claim the resource. Inferred actions
36 or data flow objects that result in constraint contradictions are excluded from the legal scenario. At least one
37 valid solution must exist for the scenario model for that model to be considered valid.

38 5.5 Summary

39 In portable stimulus, a single PSS model may be used to generate a set of scenarios, each of which may have
40 different sets of inferred actions, data flow objects, and resources, while still implementing the critical
4 verification intent explicitly specified in the activity. Each resulting scenario may be generated as a test
42 implementation for the target platform by taking the behavior mapping implementation embedded in each
43resulting atomic action and generating output code that assembles the implementations and provides any
44 other required infrastructure to ensure the behaviors execute on the target platform according to the
45 scheduling semantics defined by the original PSS model.
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16. Execution semantic concepts

26.1 Overview

3 A PSS test scenario is identified given a PSS model and an action type designated as the root action. The
4 execution of the scenario consists essentially in executing a set of actions defined in the model, in some
5 (partial) order. In the case of atomic actions, the mapped behavior of any exec body clauses (see 22.1.2) is
6 invoked in the target execution environment, while for compound actions the behaviors specified by their
7 activity statements are executed.

8 All action executions observed in a test run either correspond to those explicitly called by traversed activities
9 or are implicitly introduced to establish flows that are correct with respect to the model rules. The order in
10 which actions are executed shall conform to the flow dictated by the activities, starting from the root action,
1and shall also be correct with respect to the model rules. Correctness involves consistent resolution of
12 actions’ inputs, outputs, and resource references, as well as satisfaction of scheduling constraints. Action
13 executions themselves shall reflect data attribute assignments that satisfy all constraints.

14 6.2 Assumptions of abstract scheduling

15 Guarantees provided by PSS are based on general capabilities that test realizations need to have in any target
16 execution environment. The following are assumptions and invariants from the abstract semantics
17 viewpoint.

18 6.2.1 Starting and ending action executions

19 PSS semantics assume that target-mapped behavior associated with atomic actions can be invoked in the
20 execution environment at arbitrary points in time, unless model rules (such as state or data dependencies)
21 restrict doing so. They also assume that target-mapped behavior of actions can be known to have completed.

22 PSS semantics make no assumptions on the duration of the execution of the behavior. They also make no
23 assumptions on the mechanism by which an implementation would monitor or be notified upon action
24 completion.

256.2.2 Concurrency

26 PSS semantics assume that actions can be invoked to execute concurrently, under restrictions of model rules
27 (such as resource contentions).

28 PSS semantics make no assumptions on the actual threading framework employed in the execution
29 environment. In particular, a target may have a native notion of concurrent tasks, as in SystemVerilog
30 simulation; it may provide native asynchronous execution threads and means for synchronizing them, such
31as embedded code running on multi-core processors; or it may implement time sharing of native execution
32 thread(s) in a preemptive or cooperative threading scheme, as is the case with a runtime operating system
33 kernel. PSS semantics do not distinguish between these.

34 6.2.3 Synchronized invocation

35 PSS semantics assume that action invocations can be synchronized, i.e., logically starting at the same time.
36 In practice there may be some delay between the invocations of synchronized actions. However, the “sync-
37 time” overhead is (at worse) relative to the number of actions that are synchronized and is constant with
3g respect to any other properties of the scenario or the duration of any specific action execution.
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1 PSS semantics make no assumptions on the actual runtime logic that synchronizes native execution threads
2 and put no absolute limit on the “sync-time” of synchronized action invocations.

36.3 Scheduling concepts

4 PSS execution semantics define the criteria for legal runs of scenarios. The criterion covered in this section
sis stated in terms of scheduling dependency—the fundamental scheduling relation between action
6 executions. Ultimately, scheduling is observed as the relative order of behaviors in the target environment
7 per the respective mapping of atomic actions. This section defines the basic concepts, leading up to the
g definition of sequential and parallel scheduling of action executions.

96.3.1 Preliminary definitions

10
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An action execution of an atomic action type is the execution of its exec-body block,” with values
assigned to all of its parameters (reachable attributes). The execution of a compound action consists
in executing the set of atomic actions it contains, directly or indirectly. For more on execution
semantics of compound actions and activities, see Clause 12.

An atomic action execution has a specific start-time—the time in which its exec-body block is
entered, and end-time—the time in which its exec-body block exits (the test itself does not complete
successfully until all actions that have started complete themselves). The start-time of an atomic
action execution is assumed to be under the direct control of the PSS implementation. In contrast,
the end-time of an atomic action execution, once started, depends on its implementation in the target
environment, if any (see 6.2.1).

The difference between end-time and start-time of an action execution is its duration.

A scheduling dependency is the relation between two action executions, by which one necessarily
starts after the other ends. Action execution b has a scheduling dependency on a if b’s start has to
wait for a’s end. The temporal order between action executions with a scheduling dependency
between them shall be guaranteed by the PSS implementation regardless of their actual duration or
that of any other action execution in the scenario. Taken as a whole, scheduling dependencies con-
stitute a partial order over action executions, which a PSS solver determines and a PSS scheduler
obeys.

Consequently, the lack of scheduling dependency between two action executions (direct or indirect)
means neither one must wait for the other. Having no scheduling dependency between two action
executions implies that they may (or may not) overlap in time.

Action executions are synchronized (scheduled to start at the same time) if they all have the exact
same scheduling dependencies. No delay shall be introduced between their invocations, except a
minimal constant delay (see 6.2.3).

Two or more sets of action executions are independent (scheduling-wise) if there is no scheduling
dependency between any two action executions across the sets. Note that within each set, there may
be scheduling dependencies.

Within a set of action executions, the initial ones are those without scheduling dependency on any
other action execution in the set. The final action executions within the set are those in which no
other action execution within the set depends.

7Throughout this section, exec-body block is referred to in the singular, although it may be the aggregate of multiple exec-body clauses
in different locations in PSS source code (e.g., multiple declarations in a given action type definition or in different extensions of the
same action type).
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16.3.2 Sequential scheduling

2 Action executions a and b are scheduled in sequence if b has a scheduling dependency on a. Two sets of
3action executions, S; and S5, are scheduled in sequence if every initial action execution in S, has a
4 scheduling dependency on every final action execution in S;. Generally, sequential scheduling of N action
s execution sets S; .. S, is the scheduling dependency of every initial action execution in S; on every final
6 action execution in S;_; for every i from 2 to N, inclusive.

7 For examples of sequential scheduling, see 12.3.3.2.

8 6.3.3 Parallel scheduling

9 N sets of action executions S; .. S,, are scheduled in parallel if the following two conditions hold:

10—  All initial action executions in all N sets are synchronized (i.e., all have the exact same set of sched-
1 uling dependencies).

12— §;.. 8, are all scheduled independently with respect to one another (i.e., there are no scheduling
13 dependencies across any two sets S; and ;).

14 For examples of parallel scheduling, see 12.3.4.2.
156.3.4 Concurrent scheduling

16 N sets of action executions S; .. S, are scheduled concurrently if S; .. S,, are all scheduled independently with
17 respect to one another (i.e., there are no scheduling dependencies across any two sets S; and ;).
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17. Data types

27.1 General

3 In this document, “scalar” means a single data item of type bit, int, bool, enum, string, float32, float64, or
4 chandle, unless otherwise specified. A struct (see 7.8) or collection (see 7.9) is not a scalar. A typedef (sce
57.11) of a scalar data type is also a scalar data type. A field of plain-data type may be declared as constant by
6 preceding its declaration with the const keyword. If the constant is of aggregate type, its elements are
7 constants too. The value of constant fields can be read but not modified. A constant cannot appear on the
8 left-hand side of the assignment operator.

9 The term “aggregate” refers both to collections and to structs. The term “aggregate” does not include
10 actions, components, monitors, flow objects, or resource objects. Aggregates may be nested. A typedef of

11an aggregate data type is also an aggregate data type.

12 A “plain-data type” is a scalar or an aggregate of scalars. Nested aggregates are also plain-data types. A
13 typedef of a plain-data type is also a plain-data type.

14 Fields of all scalar types except chandle, float32, and float64 are randomizable. Array and list collections
15 of randomizable types are also randomizable, but the map and set collection types are not randomizable.

16 A field of randomizable type may be declared as random by preceding its declaration with the rand
17 keyword. It shall be an error to declare a field of non-randomizable type as rand.

18 7.1.1 Syntax
19 The syntax for data types and data declarations is shown in Syntax 8.

20

data_type ::=
scalar_data_type
| collection_type
| reference_type
| type_identifier
scalar_data_type ::=
chandle type
| integer_type
| string_type
| bool type
| enum_type
| float_type
data_declaration ::= data_type data_instantiation { , data_instantiation } ;
data_instantiation ::= identifier [ array_dim ] [ = constant _expression |
array_dim ::= [ constant_expression |
attr_field ::=[ access_modifier | [ rand | static const ] data_declaration

access_modifier ::= public | protected | private

21 Syntax 8—Data types and data declarations
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1 Scalar data types are described in 7.2 through 7.7, structure data types are described in 7.8, and collection
2data types are described in 7.9. Reference types are described in 7.10. Access protection and access
3 modifiers are described in 20.4.

47.2 Integer types

5 PSS supports two 2-state integer data types. These fundamental integer data types are summarized in
6 Table 5, along with their default widths and value domains.

Table 5—Integer data types

Data type Default width Default domain | Signed/Unsigned

int 32 bits 23 23k Signed

bit 1 bit 0..1 Unsigned

7 4-state values are not supported. If 4-state values are passed into the PSS model via the foreign procedural
8 interface (see 22.4), any X or Z values are converted to 0.

97.2.1 Syntax
10 The syntax for integer types is shown in Syntax 9.

n

integer_type ::= integer atom_type
[ [ constant_expression [ :0]] ]
[in [ domain_open range list ] ]
integer _atom_type ::=
int
| bit
domain_open_range list ::= domain_open_range value {, domain_open range value }
domain_open_range value ::=
constant_expression [ .. constant_expression |
| constant_expression ..
| .. constant_expression

12 Syntax 9—Integer type declaration

13 The following also apply:

14 a) Integer values of bit type are unsigned. Integer values of int type are signed.

15 b)  The default value of the bit and int types is 0.

16 ¢)  Widths should be specified with a single expression with a constant positive integer value (e.g.,

17 bit[4]). A specification of [N] is equivalent to [N-1:0]. A type specified using dual bounds
18 shall use 0 as the lower bound and a constant non-negative integer value as the upper bound. Speci-
19 fying a width using dual bounds is considered deprecated in PSS 2.0, and may be removed in a
20 future version.
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1 d) A value domain may be specified for the type. The domain specification consists of a list of one or
2 more values and/or value ranges.

3 ¢) The width and value domain specifications are independent. A variable of the declared type can hold
4 values within the intersection of the possible values determined by the specified width (or the
5 default width, if not specified) and the explicit value domain specification, if present.

67.2.2 Examples
7 PSS integer data type examples are shown in-line in this section.

8 Declare a signed variable that is 32 bits wide.
9
10 int a;

11 Declare a signed variable that is 5 bits wide.
12
13 int [4:0] a;

14 Declare an unsigned variable that is 5 bits wide and has the valid values 0. . 31.
15
16 bit [5] in [0..31] b;

17 Declare an unsigned variable that is 5 bits wide and has the valid values 1, 2, and 4.
]2 bit [5] in [1,2,4] c;

20 Declare an unsigned variable that is 5 bits wide and has the valid values 0. . 10.

22; bit [5] in [..10] b; // 0 <= b <= 10

23 Declare an unsigned variable that is 5 bits wide and has the valid values 10. . 31.

24
25 bit [5] in [10..] b; // 10 <= b <= 31

26 7.3 Floating-point types

27 PSS supports two floating-point computation data types, as summarized by Table 6 below.

Table 6—Floating-point computation data types

Data type | Width Format

float32 32 bits | IEEE 754 binary32

float64 64 bits | IEEE 754 binary64

28 7.3.1 Syntax

29 The syntax for floating-point computation data types is shown in Syntax 10 below.
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scalar data_type ::=

| float_type
float type ::=
float32
| float64

2 Syntax 10—Floating-point type declaration

3 Variables of floating-point type may not be declared rand, and may not be randomized using the
4 randomize statement.

5 PSS also defines packed-struct storage types as part of the core library (see 24.10.1). These types support
6 various non-IEEE floating-point number formats.

7 Arithmetic operations may be performed on the computation data types. Arithmetic operations may not be
g performed directly on storage data types. Data held in a variable of floating-point storage type must first be
9 converted into a computation type.

10 7.3.2 Cross-platform results

11 Floating-point computation has platform dependencies, with different processors and algorithms
12 legitimately producing slightly different results. These differences may be apparent, for example, when
13 comparing the result of computations performed on the solve platform with those performed on the target

14 platform. The PSS LRM makes no attempt to force the result of floating-point computations to be identical
15 across platforms.

16 7.4 Booleans

17 The PSS language supports a built-in Boolean type, with the type name bool. The bool type has two
18 enumerated values true (=1) and false (=0). When not initialized, the default value of a bool type is false.

19 7.5 Enumeration types

20 An enumeration type is a distinct user-defined type whose value is restricted to a specified set of integral
21named constants. Enumeration data types also can be easily referenced or displayed using the enumeration
22 constant names as opposed to their numeric values.

237.5.1 Syntax

24 The syntax for declaration of enumeration types is shown in Syntax 11.
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enum_declaration ::= enum enum_identifier [ : data_type | { [ enum_item {, enum_item } | }
enum_identifier ::= identifier
enum_item ::= identifier [ = constant_expression ]

enum_type_identifier ::= type_identifier

enum_type ::= enum_type_identifier [ in [ domain_open_range list | ]

Syntax 11—enum declaration

3 An enumeration type declaration (enum_declaration) consists of the keyword enum followed by the name
4 of the type (enum_identifier), an optional base type name (data_type), and a list in curly braces of constant
snames (enum items) with optional constant integer value assignments.

6 The optional data_type denotes the base type. It must be the name of an integer type, which shall determine
7 the set of possible values to be assigned to enum_items, for example: int, or bit[16], or int[3]. In effect, it
8 shall determine the width and the signedness of the items. The base type shall not have a value domain (for
9 example, ‘int in [1..10]’ cannot be used as a base type).

10 The following also apply:

il
12

13
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h)
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k)

enum_items are considered static constant members of the enumeration type in which they are
declared.

The first enum_item in the list, if not explicitly assigned a value, is by default assigned the value 0.
Each following enum_item, if not explicitly assigned a value, is assigned a value of the previous
enum_item + 1.

If a base type (data_type) is specified, enum_item values are limited to the set of valid values of the
base type. It shall be an error to explicitly assign a value which does not belong to the base type (for
example, if the base type is unsigned, it shall be an error to assign a negative value). It shall also be
an error to declare an enum_item without an explicit value if the previous enum item has been
assigned the greatest possible value of the base type (for example, if the base type is bit[2], declar-
ing an item without an explicit value is illegal if the previous item has the value 3).

enum_item values need not be contiguous, nor need they be in ascending arithmetic order. An
enum_item may be assigned a negative value (unless the base type is unsigned).

Each enum_item must have a distinct integer value. No two enum_items may have the same value.
Enumeration types may be extended with the extend statement. See 20.2, particularly 20.2.4.

enum_item identifiers must be unique in the scope of the enumeration type across its initial defini-
tion and extensions, if any. However, they need not be unique across different enumeration types
declared in the same namespace.

enum_items can be referenced using their qualified name in the form 'enum-type-
name: :enum-item-name"'.

In expression contexts where the expected type is an enumeration type, enum_items of that type can
be referenced without qualification (see 8.4.3 for the definition of the expected type in expression
contexts).

An enum_declaration may contain an empty set of enum_items, and then have enum_items added in
extensions. It shall be illegal to declare an enumeration variable whose type contains no enum_items
across its initial definition and extensions.

When not initialized, the default value of an enum field shall be the first enum_item in the list. This
is not necessarily the value 0 nor the enum_item with the minimum value.
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1Like numeric types, an enumeration type can be restricted to a range of values specified by a
2domain_open_range list (see 7.2.1 and 7.2.2). The domain specification cannot be specified in the
3 enum_declaration itself. See examples of use in 7.5.2.

4 An enum attribute or enum_item may be used to assign values to an attribute of the same enumeration type
5or in an equality comparison.

6 An enum attribute or enum_item of one enumeration type may be cast to another enumeration type using the
7 cast operator (see 7.12). An enum attribute or enum_item may be cast to integer and Boolean data types
g using the cast operator. Similarly, an integer or Boolean value may be explicitly cast to an enumeration type.
97.5.2 Examples

10 Examples of enum usage are shown in Example 5.

1

enum config modes e {UNKNOWN, MODE A=10, MODE B=20, MODE C=35, MODE D=40};

component uart c {
action configure {
rand config modes e mode;
constraint {mode != UNKNOWN; }

1?2 Example 5—enum data type

13 See an example of extending an enumeration in 20.2.4.
14 Examples of domain specifications for enumeration types are shown below:

15 Declare an enum of type config modes e with values MODE A, MODE_B, or MODE_C.
16
17 rand config modes e in [MODE A..MODE C] mode ac;

18 Declare an enum of type config modes e with values MODE A or MODE_C.
19
20 rand config modes e in [MODE A, MODE C] mode ac;

21Declare an enum of type config modes e with values UNKNOWN, MODE_A, or MODE_B.
22
23 rand config modes e in [..MODE B] mode ub;

24 Declare an enum of type config modes e with values MODE B, MODE_C, or MODE_D.
25
26 rand config modes e in [MODE B..] mode bd;

27 Note that an open_range_list of enums may be used in set membership (in) expressions (see 8.5.9) and as a
28 match_choice expression in match statements (see 12.4.6 and 22.7.10).
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17.6 Strings

2 The PSS language supports a built-in string type with the type name string. When not initialized, the default
3 value of a string shall be the empty string literal ("").

47.6.1 Syntax

string_type ::=string [ in [ string_literal { , string_literal } | ]
6 Syntax 12—string declaration

7 Comma-separated domain specifications are allowed for string data types (see 7.2.1). The following applies
8 to the sub-string operator (see 7.6.2), all string methods (see 7.6.3), and string-related collection methods
9join() and str_from_chars() (see 7.9.2.2 and 7.9.3.2): in some environments (for example, certain embedded-
10 software environments), the usage of these operators and methods may be limited in context of target execs
1if the values of all parameters are not known at solve time. This is due to the target platform memory
12 requirements for the string operations or other considerations.

13 7.6.2 The sub-string operator

14 The sub-string operator is used to get a sub-string from a given string, given starting and/or ending character
15 positions within the string. See 8.6.3 for more information on the sub-string operator.

16 The sub-string operator shall not be used on the left-hand side of an assignment operator.

17 The sub-string operator is not randomizable. Therefore, it can be used in constraints only if neither the string
18 nor the slice indices are themselves randomized.

197.6.3 String methods

20 The following methods are defined for strings. In all methods, character positions are counted starting from
210, i.e., the position of the first character in the string is 0.

22
23 pure function int size();

24 Returns the size of the string, i.e., the number of characters it contains.

25
26 pure function int find(string sub_str, int first_pos = 0);

27 Returns the starting position of sub_str within the string, counting from first_pos (0 by default). If sub_str
28 appears within the string more than once, the starting position of the first occurrence is returned. If sub_str is
29 not found within str, -1 is returned. If sub_str is an empty string, 0 is returned, regardless of the string value.
30 Valid values of first_pos are between 0 and the string size.

31
32 pure function int find_last(string sub_str, int first_pos =-1);

33 Returns the starting position of the last occurrence of sub_str within the string, counting from first pos
34 backwards. If first_pos is -1 (the default), the backwards search is done from the end of the string. If sub_str
35 is not found within str, -1 is returned. If sub_str is an empty string, the size of the string is returned. Valid
36 values of first_pos are between -1 and the string size.

37
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1 pure function list<int> find_all(string sub_str);

2 Returns the list of starting positions of all occurrences of sub_str within the string, in increasing order. If
3sub_str is not found within str, an empty list is returned. If sub_str is an empty string, a list of all numbers
4 between 0 and the size of the string is returned.

5
6 pure function string lowen();

7 Converts all upper-case letters in the string to lower case, and returns the resulting string.

8
9 pure function string uppen();

10 Converts all lower-case letters in the string to upper case, and returns the resulting string.

1
12 pure function list<string> split(string sep);

13 Splits the string by the separator string sep, and returns a list of strings containing the separated sub-strings.

14 If sep occurs at the very beginning or end of the string, the resulting list has an empty string as the first or
15 last element, respectively. If two or more occurrences of sep within the string are adjacent, the relevant
16 elements of the resulting list are empty strings.

17 If the string is empty, the resulting list contains one element, which is an empty string, regardless of the
18 value of sep.

19 sep shall not be an empty string.
20
21 pure function list<bit[8]> chars();

22 Returns the list of 8-bit character (ASCII) codes of the characters in the string. If the string is empty, an
23 empty list is returned.

24 See also array and list methods join() and str_from chars() in 7.9.2.2 and 7.9.3.2.

257.6.4 Examples

26 The value of a random string-type field can be constrained with equality constraints and can be compared
27 using equality operators, as shown in Example 6.

28

struct string s {
rand bit a;
rand string s;

constraint {
if (a == 1) {
s == "FOO";
} else {
s == "BAR";
}

29 Example 6—String data type

30 Declare string with values "Hello", "Hallo",or "Ni Hao".
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2 rand string in ["Hello", "Hallo", "Ni Hao"] hello_s;
3Note that an open range list, composed solely of individual string literals, may also be used in set
4membership (in) expressions (see 8.5.9) and as a match_choice expression in match statements (see 12.4.6

sand 22.7.10). Ranges of string literals (e.g., "a" . . "b") are not permitted.

6 Example 7 shows the use of string operators and methods.

component pss_ top {
action string manipulations {
string hello str = "Hello, world, and good bye!";
int n=1, m=7, k=11;

string sl1, s2, s3, s4, s5, s6, s7, s8, s9, sl0, sll;
int str size, nl, n2, n3, n4, nb5;

list<int> int 1;

list<string> str 11, str 12, str 13;

list<bit[8]> char codesl, char codes2;

exec post solve {
sl = hello str[..4]; // sl = "Hello"
s2 = hello str[m..k]; // s2 = "world"
s3 = hello str[m..]; // s3 = "world, and good bye!"
s4 = helloistr[l], // s4 = "e"
// s5 = hello str[7..100]; // ERROR: too large ending position
// s6 = hello str[4..1]; // ERROR: starting larger than ending

str_size = hello_str.size(); // str_size = 27

nl = hello str.find("world"); // nl =7

n2 = hello str.find("earth"); // n3 = -1

n3 = hello_str.find("o") // n2 = 4

n4 = hello str.find("o", 6); // n2 = 8

n5 = hello str.find last("o") // n5 = 20

int 1 = hello str.find all("o"); // int 1 = {4,8,19,20}

s7 = hello str.lower(); // s7 = "hello, world, and good bye!"
s8 hello_str.upper(); // s8 = "HELLO, WORLD, AND GOOD BYE!"

str 11 = hello str.split (", ");

// str 11 = {"Hello", "world", "and good bye!"}
str 12 = "abcl23abcabc456".split ("abc");

// StrilZ - {ll", l|123", "", ll456ll}

str_l3 = {"ABC", "Xyz", "123"};
s9 = str_13.join("::"); // s9 = "ABC::XYZ::123"
s10 = str 13.join(""); // s10 = "ABCXYZ123"

char codesl = sl.chars(); // "Hello" -> {72,101,108,108,111}
char codes2 = {65,66,67,68,69};
sll = char codes2.str from chars(); // sll = "ABCDE"

8 Example 7—String operators and methods
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17.7 Chandles

2 The chandle type (pronounced “see-handle”) represents an opaque handle to a foreign language pointer as
3shown in Syntax 13. A chandle is used with the foreign procedural interface (see 22.4) to store foreign
4 language pointers in the PSS model and pass them to foreign language functions. See Annex D for more
s information about the foreign procedural interface.

6 A chandle has the following restrictions:

7 — The rand qualifier may not be applied to it.

8 — The only logical operators it may be used with are == and !=.

9 — The only literal value with which it may be compared is 0, which is equivalent to a null handle in the
10 foreign language.

11 When not initialized, the default value of a chandle shall be 0.
12 7.7.1 Syntax

13

chandle_type ::= chandle

14 Syntax 13—chandle declaration

157.7.2 Example

16 Example 8 shows a struct containing a chandle field that is initialized by the return of a foreign language
17 function.

18

function chandle do_init();

struct info s {
chandle ptr;

exec pre solve {
ptr = do_init();
}

19 Example 8—chandle data type
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17.8 Structs
2 A struct type is an aggregate of data items, as shown in Syntax 14.

37.8.1 Syntax

struct_declaration = struct kind  struct identifier [ template param decl list |
[ struct_super spec | { { struct_body item } }

struct_kind ::=
struct
| object kind
object_kind ::=
buffer
| stream
| state
| resource
struct_super_spec ::=: type_identifier
struct_body _item ::=
constraint_declaration
| attr field
| typedef declaration
| exec_block stmt
| attr_group
| compile_assert stmt
| covergroup declaration
| covergroup instantiation
| struct body compile if

| stmt_terminator

5 Syntax 14—struct declaration

6 A struct is a plain-data type (see 7.1). That is, a struct may contain scalar data items and aggregates thereof.
7 A struct declaration may specify a struct_super_spec, a previously defined struct type from which the new
8 type inherits its members, by using a colon (:), as in C++. In addition, structs may

9 — include constraints (see 16.1) and covergroups (see 18.1 and 18.2);

10— include exec blocks of any kind other than init_down, init_up, and body (see 22.1).

1 Data items in a struct shall be of plain-data types (whether randomizable or not). Declarations of
12 randomizable data items may optionally include the rand keyword to indicate that the element shall be
13 randomized when the overall struct is randomized (see Example 9). 16.4.1 describes struct randomization
14 in detail.
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17.8.2 Examples

2 A struct example is shown in Example 9.

struct axi4 trans reqg {
rand bit[31:0] axi addr;
rand bit[31:0] axi write data;
bit is write;
rand bit[3:0] prot;
rand bit[1:0] semad;

}

4 Example 9—Struct with rand qualifiers

57.9 Collections

6 Collection types are built-in data types. PSS supports fixed-size array and variable-size list, map, and set
7 collections of plain-data types (see 7.1). Each kind of collection has its own keyword, and its declaration
8 specifies the data type of the collection elements (and for maps, also the data type of the key).

9 PSS also has limited support for fixed-sized arrays of action handles, components, and flow and resource
10 object references, as described in 7.9.2. These are not considered plain-data types. All other collections are
11 plain-data types.

127.9.1 Syntax

13

collection_type ::=
array < data type, array size expression >
| list < data_type >
| map < data_type , data_type >
| set < data_type >

array size expression ::= constant expression
14 Syntax 15—Collection data types

15 In an array, each element is initialized to the default initial value of the element type, unless the array
16 declaration contains an initialization assignment. A list, map or set is initialized as an empty collection
17 unless the declaration contains an initialization assignment. A collection that is empty is as if it was assigned
18 an empty aggregate literal ({}). See 4.8 for more information on literal syntax and semantics used to
19 initialize collection types.

20 Collections store both scalar and aggregate elements by value. This means that an element’s value is
21 captured when it is added or assigned to a collection. Modifying the value of an element in a collection does
22 not modify the element originally added to the collection. In the example below, v1, a struct with two
23 integer values, is assigned as the first element of my 1ist. Modifying a in that element does not modify
24v1. (See 7.9.3 for more details on list operators and methods.)
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struct my_sl {
int a, b;

}

struct my s2 {
list<my sl1> my list;

exec pre solve ({

my sl vl = {.a=1,.b=2};

my list.push back(vl);

my list[0].a = 10; // my list == {{.a=10,.b=2}}, vl == {.a=1,.b=2}
}

2 Example 10—Modifying collection contents

3 Collection variables can be operated on with built-in operators using standard operator symbols (e.g., [], =,
4==, etc.) or with built-in methods using a method name and an argument list in parentheses.

5 Operators and methods that modify the contents of a collection shall not be used in activities, constraints, or
6 covergroups. These are allowed only in exec blocks (see 22.1) and native functions (see 22.3). Operators
7 and methods that do not modify collection contents may be used in activities, constraints, and covergroups.

8 Operators and methods that modify the contents of a collection shall not be used on collections declared with
9 the const qualifier. The following also apply on constant collections:

10 a) The Index operator [] returns constant.
1 b) They cannot appear on the left-hand side of the assignment operator.

12 ¢) The iterator variable of the foreach statement will be considered constant inside the loop.

13 Arrays and lists of randomizable types are randomizable. Maps and sets are non-randomizable. It is legal to
14 have a rand struct field that contains non-randomizable collection types.

15 Collection types may be nested to describe more complex collections.

16

struct my s {
list<map<string, int>> m list of maps;
map<string, list<int>> m map of lists;

}
17 Example 11—Nested collection types

18 7.9.2 Arrays

19 PSS supports fixed-sized arrays of plain-data types. Arrays may be declared with two different syntaxes, the
20 classical syntax where arrays are declared by adding square brackets with the array size
21([ constant_expression ]) after the array name, referred to as the square array syntax, and the syntax that is
22 aligned to the other collection types, using angle brackets, referred to as the template array syntax.

23
int my int arrl[20]; // Square array declaration syntax
array<int,20> my int arr2; // Template array declaration syntax
24 Example 12—Array declarations
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1The same operators and methods may be applied to arrays declared using both syntaxes. However, the
2 template array syntax may be used where a data_type is required, enabling such capabilities as use as a
3 function return type, nested array types, and more.

4 An array with N elements, is ordered, with the first element accessed using 0 as an index value with the []
5 operator, and the last element accessed using N-1 as an index value.

6 The square array syntax can also be used to declare fixed-size arrays of action or monitor handles,
7 components, and flow and resource object references. Individual elements of such arrays may be accessed
g using the [] operator. However, other operators and methods do not apply to these arrays, unless otherwise
9 specified. Action handle arrays are described in 12.3.1.1 and 12.3.2, monitor handle arrays are described in
10 20.4, component arrays are described in 9.4, and object reference arrays are described in 13.4 and 14.2. Note
11 that the elements of action and monitor handle arrays and object reference arrays have reference semantics
12 (see 7.10).

137.9.2.1 Array operators

14 The following operators are defined for arrays:
15
16 Index operator |]

17 Used to access a specific element of an array, given an index into the array. The index shall be an integral
18 value. See 8.6.2 for more information on the index operator.

19
20 Assignment operator =

21 Creates a copy of the array-type expression on the RHS and assigns it to the array on the LHS. See 8.3 for
22 more information on the assignment operator.

23
24 Equality operator ==

25 Evaluates to true if all elements with corresponding indexes are equal. Two arrays of different element types
26 or different sizes are incomparable. See 8.5.3 for more information on the equality operator.

27
28 Inequality operator !=

29 Evaluates to frue if not all elements with corresponding indexes are equal. Two arrays of different element
30 types or different sizes are incomparable. See 8.5.3 for more information on the inequality operator.

31
32 Set membership operator in

33 The set membership operator can be applied to an array to check whether a specific element is currently
34 within the array. It evaluates to true if the element specified on the left of the operator exists in the array
35 collection on the right of the operator. The type of the element shall be the same as the array’s element data
36 type. See 8.5.9 for more information on the set membership operator.

37
38 foreach statement

39 The foreach statement can be applied to an array to iterate over the array elements within an activity, a
40 constraint or native exec code. See 12.4.3, 16.1.7, and 22.7.8, respectively, for more information on the
41 foreach statements in these contexts.

427.9.2.2 Array methods

43 The following methods are defined for arrays:
44
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1 pure function int size();

2 Returns the number of elements in the array. Since arrays have fixed sizes, the returned value is considered a
3 constant expression. This function can also be used with arrays of action handles, components, and flow
4 and resource object references.

5
6 pure function <data_type> sum();

7 Returns the sum of all elements currently stored in the array. This function can only be used on arrays of a
g numeric data type (int, bit, or floating-point type). The method can be used in a constraint to constrain an
9 array of random int or bit elements to have a sum of a certain value.

10 The return type of this function is dependent on the type of the data element:

Table 7—Return type of sum() function

Data type Return type
int, bit int
float32, float64 float64

Other (e.g., string, struct) | Not applicable

1
12 pure function string join(string connector);

13 This method only applies to arrays of strings. It concatenates the strings from the array using connector as
14 the connector between them and returns the resulting string.

15 If connector is an empty string, join() concatenates the strings with no white space inserted.

16 If the array size is 1, the string value of this element itself is returned and connector is ignored.

17
18 pure function string str_from_chars();

19 This method only applies to arrays of integer types. It returns the string whose characters’ (ASCII) codes
20 appear in the array, in the same order. Depending on the specific type of the array elements, each value is
21implicitly cast to 8 bits that represent the character code.

22
23 pure function list<data type> to_list();

24 Returns a list containing the elements of the array. The list’s element data type is the same as the data type
25 of the array elements. The list elements are ordered in the same order as the array.

26
27 pure function set<data_type> to_set();

28 Returns a set containing the elements of the array. Each element value will appear once. The set’s element
29 data type is the same as the data type of the array elements. The set is unordered.

307.9.2.3 Examples

31 Examples of fixed-size array declarations are shown in Example 13.
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int fixed sized arr [16]; // array of 16 signed integers
array<bit[7:0],256> byte arr; // array of 256 bytes
array<route, 8> east routes; // array of 8 route structs

2 Example 13—Fixed-size arrays

3In Example 13, individual elements of the east routes array are accessed using the index operator [],
4ie., east routes[0],east routes[1],....

5 The following example shows use of array operators and methods. In this example, action type A is traversed
6 six times, once for each element in foo_arr, and once more since foo_arr [0] is greater than 3.

component pss_ top {
array<bit[15:0],5> foo arr;
set <bit[15:0]> foo_set;

exec init up {

foo arr = {1, 2, 3, 4, 4}; // Array initialization assignment
foo arr[0] = 5; // Use of [] to select an array element
foo set = foo arr.to_set(); // Use of to_set() method

}

action A{ rand bit[15:0] x; }
action B{}
action C{}

action traverse array a f{
// foo_arr has 5 elements and foo_set has 4
rand int in [1..] vy;
constraint y < comp.foo _arr.size(); // Use of size() method in constraint
activity {
foreach (elem: comp.foo arr) // "foreach" used on an array

do A with { x == elem; };

if (comp.foo arr([0] > 3)

do A;

else if (4 in comp.foo arr) // Use of "in" operator
do B;

else if (comp.foo arr.size() < 4) // Use of size () method
do C;

}
}
}
8 Example 14—Array operators and methods

97.9.2.4 Array properties

10 Arrays provide the properties size and sum, which may be used in expressions. These properties are
11 deprecated and have matching methods that should be used instead. They are used as follows:

12 int datal4];

13 ... data.size ... // same as data.size()

14 ... data.sum ... // same as data.sum()

Copyright © 2024 Accellera. All rights reserved.
73



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

17.9.3 Lists

2 The list collection type is used to declare a variable-sized ordered list of elements. Using an index, an
3 element in the list can be assigned or used in an expression. A list with N elements, is ordered, with the first
4 element accessed using 0 as an index value with the [] operator, and the last element accessed using N-1 as
s an index value.

6 A list is initialized as an empty collection unless the declaration contains an initialization assignment. A list
7 that is empty is as if it was assigned an empty aggregate literal ({}). List elements can be added or removed

8 in exec blocks; therefore the size of a list is not fixed like an array.

9 A list declaration consists of the keyword list, followed by the data type of the list elements between angle
10 brackets, followed by the name(s) of the list(s).

n

struct my s {
list<int> my list;

}
12 Example 15—Declaring a list in a struct

137.9.3.1 List operators

14 The following operators are defined for lists:
15
16 Index operator |]

17 Used to access a specific element of a list, given an index into the list. The index shall be an integral value.
18 See 8.6.2 for more information on the index operator.

19
20 Assignment operator =

21 Creates a copy of the list-type expression on the RHS and assigns it to the list on the LHS. See 8.3 for more
22 information on the assignment operator.

23
24 Equality operator ==

25 Evaluates to frue if the two lists are the same size and all elements with corresponding indexes are equal.
26 Two lists of different element types are incomparable. See 8.5.3 for more information on the equality
27 operator.

28
29 Inequality operator =

30 Evaluates to frue if the two lists are not the same size or not all elements with corresponding indexes are
31equal. Two lists of different element types are incomparable. See 8.5.3 for more information on the
32 inequality operator.

33
34 Set membership operator in

35 The set membership operator can be applied to a list to check whether a specific element is currently in the
36 list. It evaluates to true if the element specified on the left of the operator exists in the list collection on the
37 right of the operator. The type of the element shall be the same as the list’s element data type. See 8.5.9 for
38 more information on the set membership operator.

39
40 foreach statement
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1 The foreach statement can be applied to a list to iterate over the list elements within an activity, a constraint
2 or native exec code. See 12.4.3, 16.1.7, and 22.7.8, respectively, for more information on the foreach
3 statements in these contexts.

47.9.3.2 List methods

5 The following methods are defined for lists:

6
7 pure function int size();

8 Returns the number of elements in the list.

9
10 function void clear();

11 Removes all elements from the list.
12
13 function data_type delete(int index);

14 Removes an element at the specified index of type integer and returns the element value. The return value
15 data type is the same as the data type of the list elements. If the index is out of bounds, the operation is
16 illegal.

17
18 function void insert(int index, data_type element);

19 Adds an element to the list at the specified index of type integer. If the index is equal to the size of the list,
20 insert is equivalent to push_back(). If the index is less than the size of the list, then elements at and beyond
21the index are moved by one. If the index is greater than the size of the list, the operation is illegal. The
22 inserted element’s data type shall be the same as the data type of the list elements.

23
24 function data_type pop_front();

25 Removes the first element of the list and returns the element value. This is equivalent to delete(0).

26
27 function void push_front(data_type element);

28 Inserts an element at the beginning of the list. This is equivalent to insert(0, element).

29
30 function data_type pop_back();

31 Removes the last element of the list and returns the element value. This is equivalent to delete(size()-1).

32
33 function void push_back(data_type element);

34 Appends an element to the end of the list. This is equivalent to insert(size(), element).

35
36 pure function string join(string connector);

37 This method only applies to lists of strings. It concatenates the strings from the list using connector as the
38 connector between them, and returns the resulting string.

39 If connector is an empty string, join() concatenates the strings with no white space inserted.

40 If the list is empty, an empty string is returned. If the list has 1 element, the string value of this element itself
#11s returned and connector is ignored.

42
43 pure function string str_from_chars();
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1 This method only applies to lists of integer types. It returns the string whose characters’ (ASCII) codes
2 appear in the list, in the same order. Depending on the specific type of the list elements, each value is
3 implicitly cast to 8 bits that represent the character code.

4
s pure function set<data_type> to_set();

6 Returns a set containing the elements of the list. Each element value will appear once. The set’s element
7 data type is the same as the data type of the list elements. The set is unordered.

8
9 function void shuffle();

10 Randomly reorders the elements in the list.
117.9.3.3 Examples
12 The following example shows use of list operators and methods. In this example, an action of type B will be

13 traversed six times. There are six elements in foo 1list3, foo 1ist2[0] is 1 and 4 is in
14 comp.foo listl. Action A and action C are never traversed.
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component pss_top {
list<bit[15:0]> foo listl, foo list2;

exec init up {
foo 1listl = {1, 2, 3, 4}; // List initialization with aggregate literal
foo list2.push back(1l); // List initialization with push back
foo list2.push back(4);

}

action A{}
action B{}
action C{}

action traverse list a {
list <bit([15:0]> foo 1list3;
bit[15:0] deleted;

exec pre solve {
foo list3 = pss_top.foo listl; // foo 1list3 = {1,

-

~
~

2, 3, 4
foo list3.push front(0); // foo 1list3 = {0, 1, 2, 3, 4}
foo list3.push back(5); // foo 1list3 = {0, 1, 2, 3, 4, 5}
foo list3.insert (0, 1); // foo 1ist3 = {1, 0, 1, 2, 3, 4, 5}
foo 1ist3[0] = 6; // foo 1ist3 = {6, 0, 1, 2, 3, 4, 5}
deleted = foo list3.delete(0); // foo 1list3 = {0, 1, 2, 3, 4, 5}
}
activity {
if (comp.foo listl == comp.foo list2) // Use of == operator on list
do A;
else foreach (e: foo 1list3) // Use of "foreach" on list
if (comp.foo 1ist2[0] > 3) // Use of [] operator on list
do A;
else if (4 in comp.foo listl) // Use of "in" operator on list
do B;
else
do C;

exec post solve {
foo list3.clear(); // foo 1ist3 = {}
}

2 Example 16—List operators and methods

37.9.3.4 List randomization

4 When the context containing the list attribute is randomized, the elements of the list are randomized.
5 Random-size lists are not supported. Consequently, it is illegal to place a constraint on the size () method
6 of a list outside an iterative constraint on the same list. The list size is considered to be an invariant inside an
7 iterative constraint. Consequently, the size () method may be referenced in constraints within an iterative
g constraint. Example 17 shows declaration of a list with bit-type elements and illustrates valid and invalid
9 constraints on the size () method.
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struct S {
rand list<bit[8]> 1lst;

exec pre_solve ({ // Initialize the list
repeat (100) {
lst.push back(0);
}
}

constraint {

lst.size() in [4..100]; // Error: illegal constraint on size()
foreach (1lst[i]) {
1st[i] == i+1lst.size(); // OK: size() is an invariant in foreach
}
}
}
2 Example 17—List randomization

37.9.4 Maps

4 The map collection type is used to declare a variable-sized associative array that associates a key with an
s element (or value). The keys serve as indexes into the map collection. Using a key, an element in the map
6 can be assigned or used in an expression. A map is unordered.

7 A map is initialized as an empty collection unless the declaration contains an initialization assignment. A
g map that is empty is as if it was assigned an empty aggregate literal ({}). Map elements can be added or
9 removed within exec blocks.

10 A map declaration consists of the keyword map, followed by the data type of the map keys and the data
11type of map elements, between angle brackets, followed by the name(s) of the map(s). Both keys and

12 element values may be of any plain-data type. Maps are non-randomizable.

13

struct my s {
map<int, string> my map;

}
14 Example 18—Declaring a map in a struct

157.9.4.1 Map operators

16 The following operators are defined for maps:
17
18 Index operator |]

19 Used to access a specific element of a map, given a key of the specified data type. When used on the LHS in
20 an assignment, the index operator sets the element value associated with the specified key. If the key already
21 exists, the current value associated with the key is replaced with the value of the expression on the RHS. If
22 the key does not exist, then a new key is added to the map collection and the value of the expression on the
23 RHS is assigned to the new key’s associated map entry. Use of a key that does not exist in the map to
24 reference an element in the map is illegal. See 8.6.2 for more information on the index operator.

25
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1 Assignment operator =

2 Creates a copy of the map-type expression on the RHS and assigns it to the map on the LHS. If the same key
3 appears more than once in the expression on the RHS, the last value specified is used. See 8.3 for more
4 information on the assignment operator.

5
6 Equality operator ==

7 Evaluates to true if the two maps are the same size, have the same set of keys, and all elements with
g corresponding keys are equal. Two maps of different key or element types are incomparable. See 8.5.3 for
9 more information on the equality operator.

10
11 Inequality operator !=

12 Evaluates to #rue if the two maps are not the same size, do not have the same set of keys, or not all elements
13 with corresponding keys are equal. Two maps of different key or element types are incomparable. See 8.5.3
14 for more information on the inequality operator.

15
16 foreach statement

17 The foreach statement can be applied to a map to iterate over the map elements within an activity, a
18 constraint or native exec code. See 12.4.3, 16.1.7, and 22.7.8, respectively, for more information on the
19 foreach statements in these contexts.

20 The set membership operator (in) cannot be applied directly to a map. However, it may be applied to the set
210of keys or the list of values produced by the keys() and values() methods, respectively, described below.

227.9.4.2 Map methods

23 The following methods are defined for maps:

24
25 pure function int size();

26 Returns the number of elements in the map.
27
28 function void clear();

29 Removes all elements from the map.

30
31 function data_type delete(data_type key);

32 Removes the element associated with the specified key from the map and returns the element value. The
33 return value data type is the same as the data type of the map elements. The key argument shall have the
34 same type as specified in the map declaration. If the specified key does not exist in the map, the operation is
35 illegal.

36
37 function void insert(data_type key, data_type value);

38 Adds the specified key/value pair to the map. If the key currently exists in the map, then the current value is
39 replaced with the new value. The arguments shall have the same types as specified in the map declaration.

40
41 pure function set<data_type> keys();

42 Returns a set containing the map keys. The set’s element data type is the same as the data type of the map
43 keys. Since each key is unique and no order is defined on the keys, the method returns a set collection.
44
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1 pure function list<data_type> values();

2 Returns a list containing the map element values. The list’s element data type is the same as the data type of
3 the map elements. Since element values may not be unique, the method returns a list collection. However,
4 the order of the list elements is unspecified.

57.9.4.3 Example
6 The following example shows use of map operators and methods. In this example, an action of type B will

7be traversed four times: foo mapl is not equal to foo map2, foo map3 has four elements,
8 foo map2["a"] is 1 which is not greater than 3, and "b" exists in foo_mapl.
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component pss_t
list<bit[15:0

exec init up
foo mapl =

foo map2["a
foo map2["b
foo listl =
foreach (fo

action A{}
action B{}
action C{}

action traver
rand int lo
map <string
set <string

exec pre_ so
foo map3
foo map3.
foo map3.
foo map3.
foo setl
}
constraint
activity {
if (comp.
do A;
else fore

op {
1> foo listl;

{
{HaH:l,Hb":2’llcl|:3,"d":4};

"] 1;
ll] — 4;
foo mapl.values();

map<string, bit[15:0]> foo mapl, foo map2;

// Map initialization

// with key/value literal

o map2[i]) foo listl.push back(foo map2[i]);

se map a {

wer size;

, bit[15:0]> foo map3;
> foo_setl;

lve {

= pss_top.foo mapl; // foo map3 = {"a":1,"b":2,"c"

insert ("z",0); // foo map3
insert ("d",5); // foo map3
delete (“d”); // foo_map3
= foo map3.keys();

lower size < comp.foo map3

foo mapl == comp.foo map2)

ach (foo map3.values() [1])

if (comp.foo map2["a"] > 3)

= {u

{
— {u

ll:l’llbll:2’ "C":3, "y

.size() + comp.foo listl.size();
// Use of == operator on maps
// Use of "foreach" on a map

// converted to a list
// Usage of operator[]

do A;
else if ("b" in comp.foo mapl.keys()) // Check whether a
// is 1in the map
do B;
else
do C;

a":l,"b":Z, "C":3, "d":4, "Z":O}
"a":l, "b":2, "C":3, "d":5, "Z":O}
a

:3,"d":4)

":0}

of values
on a map

key

37.9.5 Sets

Example 19—Map operators and methods

4The set collection type is used to declare a variable-sized unordered set of unique elements of plain-data
s type. Sets can be created, modified, and queried using the operators and methods described below.

6 A set is initialized as an empty collection unless the declaration contains an initialization assignment. A set
7 that is empty is as if it was assigned an empty aggregate literal ({}). Set elements can be added or removed
g within exec blocks; therefore, the size of a set is not fixed like an array.
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1A set declaration consists of the keyword set, followed by the data type of the set elements between angle
2 brackets, followed by the name(s) of the set(s). Sets are non-randomizable.

struct my s {
set<int> my_ set;

}
4 Example 20—Declaring a set in a struct

57.9.5.1 Set operators

6 The following operators are defined for sets:
7
8 Assignment operator =

9 Creates a copy of the set-type expression on the RHS and assigns it to the set on the LHS. The same value
10 may appear more than once in the expression on the RHS, but it will appear only once in the set. See 8.3 for
11 more information on the assignment operator.

12
13 Equality operator ==

14 Evaluates to true if the two sets have exactly the same elements. Note that sets are unordered. Two sets of
15 different element types are incomparable. See 8.5.3 for more information on the equality operator.

16
17 Inequality operator !=

18 Evaluates to true if the two sets do not have exactly the same elements. Two sets of different element types
19 are incomparable. See 8.5.3 for more information on the inequality operator.

20
21 Set membership operator in

22 The set membership operator can be applied to a set to check whether a specific element is currently within
23 the set. It evaluates to frue if the element specified on the left of the operator exists in the set collection on
24 the right of the operator. The type of the element shall be the same as the set’s element data type. See 8.5.9
25 for more information on the set membership operator.

26
27 foreach statement

28 The foreach statement can be applied to a set to iterate over the set elements within an activity, a constraint
29 or native exec code. When applied to a set, the foreach statement shall specify an iterator variable and shall
30not specify an index variable. See 12.4.3, 16.1.7, and 22.7.8, respectively, for more information on the
31 foreach statements in these contexts.

327.9.5.2 Set methods

33 The following methods are defined for sets:

34
35 pure function int size();

36 Returns the number of elements in the set.
37
38 function void clear();

39 Removes all elements from the set.
40
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1 function void delete(data_type element);

2 Removes the specified element from the set. The element argument data type shall be the same as the data
3 type of the set elements. If the element does not exist in the set, the operation is illegal.

4
s function void insert(data_type element);

6 Adds the specified element to the set. The inserted element’s data type shall be the same as the data type of
7 the set elements. If the element already exists in the set, the method shall have no effect.

8
9 function list<data_type> to_list();

10 Returns a list containing the elements of the set in an arbitrary order. The list’s element data type is the same
11 as the data type of the set elements.

127.9.5.3 Examples
13 The following example shows use of set operators and methods. In this example, A is traversed two times

14and B is traversed three times: foo setl is not equal to foo set2, there are five elements in
15 foo_set3, two of the foo set3 elements are in foo _set?2,and "b" isin foo_ setl.
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component pss top {

set <string> foo setl,
list<string> foo listl;

foo set2;

exec init up {
foo setl = {"a","b","c","d"};
foo set2.insert ("a");
foo set2.insert ("b");
foo listl foo setl.to list();
foreach (e:foo _set2) foo listl.push back(e);

// Set initialization with aggregate literal

A{}
B{}

C{rand string character;}

action
action
action

action traverse set a {
rand int lower size;
set <string> foo set3;
list<string> foo list2;

exec pre solve ({
foo set3 pss_top.foo setl;
foo set3.insert ("z");
foo set3.insert ("e");
foo set3.delete("d");
foo list2 foo set3.to list();

constraint lower size < foo set3.size() + comp.foo listl.size();

activity {

if (comp.foo setl == comp.foo set2) // Use == operator on sets
do A;
else foreach (e:foo_set3) // Use "foreach" on set
if (e in comp.foo_set2) // Use [] operator on set
do A;
else if ("b" in comp.foo setl) // Use "in" operator on set
do B;
else
replicate (j:foo list2.size())
do C with {character == foo 1list2[]j];};

Example 21—Set operators and methods

37.10 Reference types

4PSS supports a limited form of reference types

for actions, monitors, components, and flow/resource

5 objects, but does not support references to plain-data types. References in PSS are similar in their semantics
6 to class variables in such languages as Java and SystemVerilog. Variables of reference types can be assigned

7 and compared (see more in 8.3 and 8.5.3).
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17.10.1 Syntax

reference_type ::=ref entity _type identifier
entity_type_identifier ::=
action_type_identifier
| monitor_type_identifier
| component_type_identifier
| flow_object_type
| resource_object_type

null_ref ::= null

Syntax 16—ref declaration

4 The following also apply:

16

a)

b)

d)

Reference types, declared with the ref modifier, and collections thereof can be used in the declara-
tion of local variables, function parameters, and function return values. In addition, component ref-
erence types only (but not action or flow/resource object reference types) and collections thereof can
be used to declare fields in the scope of components. Reference types shall not be used to declare
fields in the scope of actions, monitors, flow/resource objects, or structs. It shall be illegal to declare
static constants of reference types and collections thereof.

Fields and instance functions can be accessed through a reference expression in the same way as
through an instance path, using the dot (“.”) operator.

An expression of reference type may evaluate to the special value null, indicating that it does not
reference any entity. It shall be an error to access members of an entity through a null reference. See
also 8.3 and 8.5.3.

When not initialized, the default value of a reference variable is null.

17 Note that PSS supports special reference fields that are automatically resolved as part of the solving process.
18 They are:

19
20
21
22

The context component reference comp (see 9.5)
Action handles to sub-actions within compound actions (see 12.3.1.1)
Input and output reference fields of actions (see 13.4)

Resource claim reference fields (see 14.2)
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17.10.2 Examples

2 Example 22 demonstrates the use of a reference as a local variable and as a return type of a function. In the
3body of action call foo, a reference to A is stored in a local variable, and then used to call function
4 foo (). In addition, a reference to A is returned from function choose A (), and it is used in turn to call
5 foo () on the chosen instance of A.

component A {
function void foo();
}i

component B {
A a arr[5];

function ref A choose A(int code) {
return a arr[code % 5];

}

action call foo {
exec body {
ref A aref = comp.a arr[3];
aref.foo (),
comp.choose A(123).foo();

7 Example 22—Use of reference as local variable and function return value

8 Example 23 shows a component reference field close sibling declared under component my comp.
9In addition, a list of component references field all siblings is declared under my comp. After the
10 construction of the component instance tree, cl.close sibling is equal to null because it was not
1initialized, while c2.close sibling and c3.close sibling contain references to cl and c2,
12respectively. The all siblings list of each one of c1, ¢2, and c¢3 contains the references to the other
13two my comp instances, respectively. Consequently, the attribute close sibling data of cl is still
14 equal to its default value 0, and close sibling of c2 and c3 is equal to 10 and 20, respectively, having
15been assigned in the init down block through the close sibling reference field. The
6all siblings data lists of each of c1, ¢2, and ¢3 contain {20,30}, {10,30}, and {10,201},
17 respectively.
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import std pkg::*;

component my comp {
ref my comp close sibling;
int data, close sibling data;
list<ref my comp> all siblings;
list<int> all siblings data;

exec init down
if (close sibling != null) {
close sibling data = close sibling.data;
}
foreach (sibling: all siblings) {
all siblings data.push back(sibling.data);

component pss_top {

my comp cl, c2, c3;

exec init down
cl.data = 10;
cz2.data = 20;
c3.data = 30;
c2.close sibling = cl;
c3.close sibling c2;
cl.all siblings = {c2,c3};
c2.all siblings {cl,c3};
c3.all siblings = {cl,c2};

2 Example 23—Use of reference field and null value

37.11 User-defined data types

4 The typedef statement declares a user-defined type name in terms of an existing data type, as shown in
5 Syntax 17.

67.11.1 Syntax

typedef declaration ::= typedef data_type identifier ;

8 Syntax 17—User-defined type declaration

97.11.2 Examples
10 A typedef example is shown in Example 24.

Il

typedef bit[31:0] uint32 t;

12 Example 24—typedef
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17.12 Data type conversion

2 Expressions of types int, bit, bool, enum, or floating-point type can be changed to another type in this list
3by using a cast operator. In addition, an expression of a reference type can be changed to a compatible
4reference type.

57.12.1 Syntax

6 Syntax 18 defines the cast operator.

cast_expression ::= ( casting_type ) expression
casting_type ::=
integer type

| bool type

| enum_type

| float_type

| reference type

| type_identifier

Syntax 18—cast operation

9In a cast_expression, the expression to be cast shall be preceded by the casting data type enclosed in
10 parentheses. The cast shall return the value of the expression represented as the casting type. A
11 type_identifier specified as a casting_type shall refer to a numeric, Boolean, enumeration, or reference type.

12 The following also apply:

13
14

15
16
7

18
19
20
21

22
23
24

25
26

27
28

29
30
31

32
33
34

a)

b)

2

h)

A numeric, Boolean, or enumeration value can only be cast to another numeric, Boolean or enumer-
ation type. A reference value can only be cast to a compatible reference type.

Any non-zero value cast to a bool type shall evaluate to true. A zero value cast to a bool type shall
evaluate to false. When casting a bool type to another type, false evaluates to 0 and true evaluates to
1.

When casting a value to a bit type, the casting type shall include the width specification of the
resulting bit vector. The expression shall be converted to a bit vector of sufficient width to hold the
value of the expression, and then truncated or left-zero-padded as necessary to match the
casting_type.

When casting a value to a user-defined enum type, the value shall correspond to the result of an
implicit cast to the resulting underlying numeric type. When used in a constraint, the domain of a
field of enum type consists of the values of the enum type.

All integer expressions (int and bit types) are type compatible, so an explicit cast is not required
from one to another.

All floating-point expressions (float32 and float64 types) are type compatible, so an explicit cast is
not required from one to another.

Floating-point expressions are type-compatible with integer expressions, so an explicit cast is not
required from one to another. Conversion from floating-point to integer is performed by truncating
the fractional part of the floating-point expression.

A reference value cast to a (direct or indirect) supertype reference or to its own reference type
(upcast) shall evaluate to the same reference. An explicit cast is not required in this case; an upcast is
implicit.
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1 1) A reference value cast to a (direct or indirect) subtype reference (downcast) shall evaluate to the
2 same reference if the dynamic value of the reference belongs to the casting type, and shall evaluate
3 to null otherwise.

47.12.2 Examples

s Example 25 shows the overlap of possible enum values (from 7.12.1 (d)) when used in constraints.

import std pkg::*;

enum config modes e {UNKNOWN, MODE A=10, MODE B=20};
enum foo e {A=10, B, C};
function bit[32] get cfg mode() {return 30;}
// a new cfg mode that has not been added to the enum type yet

action my a {
config modes e top cfg;
rand config modes e cfg;
rand foo e foo;

constraint cfg == (config modes e)1ll;
// contradiction - no possible value
constraint cfg == (config modes e) foo;

// cfg==MODE_A, the only value in the
// numeric domain of both cfg and foo
exec pre solve ({

config modes e cfg mode = (config modes e)get cfg mode();
match (cfg mode) {
[MODE A,

MODE B] : top cfg = cfg mode;

[UNKNOWN] : print ("Unknown configuration mode\n");

default : print("Invalid configuration mode = %d\n",
(int)cfg mode);

7 Example 25—Overlap of possible enum values

8 Example 26 shows the casting of al from the align e enum type to a 4-bit vector to pass into the
9alloc_addr imported function.

10

package external fn pkg {

enum align e {byte aligned=1l, short aligned=2, word aligned=4};
function bit[31:0] alloc addr (bit[31:0] size, bit[3:0] align);
buffer mem seg s {

rand bit[31:0] size;

bit[31:0] addr;

align e al;

exec post solve {

addr = alloc_addr(size, (bit[3:0])al);
}

1 Example 26—Casting of variable to a bit vector
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1 Example 27 shows reference type casting on the comp field of an action.

component C {
action A {}

}
component sub C: C {
int a = 17;

}

extend action C::A {

int b;
exec post solve ({
if ((ref sub C)comp != null) {
b = ((ref sub C)comp).a;
}
}
}
3 Example 27—Casting of reference type
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18. Operators and expressions

2 This section describes the operators and operands available in PSS and how to use them to form expressions.
3 An expression is a construct that can be evaluated to determine a specific value. Expressions may be
4 primary expressions, consisting of a single term, or compound expressions, combining operators with sub-

5 expressions as their operands.

6 The various types of primary expressions are specified in 8.6.

78.1 Syntax

expression ::=
primary
| unary operator primary
| expression binary operator expression
| conditional expression

| in_expression

unary operator :=-|!|~|& ||| "
binary_operator ::=* [ /| % [+ |- | <<[>>|=|!=[<[<=[>[>=|||| &&[[[ " | & [ **
assign_op == |+=|-= | <<=|>>=||= | &=
primary ::=
number

| aggregate literal

| bool literal

| string_literal

| null_ref

| paren_expr

| cast_expression

| ref path

| compile has expr

paren_expr ::= ( expression )

cast_expression ::= ( casting_type ) expression

9 Syntax 19—EXxpressions and operators

10 8.2 Constant expressions

11 Some constructs require an expression to be a constant expression. The operands of a constant expression
12 consist of numeric and string literals, aggregate literals with constant values, named constants (e.g., static
13 const, template parameters), bit-selects and part-selects of named constants, enum items, and calls of pure
14 functions with constant arguments.
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18.3 Assignment operators
2 The assignment operators defined by the PSS language are listed in the table below.

Table 8—Assignment operators and data types

Operator token Operator name Operand data types
= Binary assignment operator Any plain-data type or reference type
+= -= Binary arithmetic assignment operators | Numeric
&= |= Binary bitwise assignment operators Integer
>>= <<= Binary shift assignment operators Integer

3 The assignment (=) operator is used in the context of attribute initializers and procedural statements.

4 The arithmetic assignment (+=, —=), shift assignment (<<=, >>=), and bitwise assignment (|=, &=)
s operators are used in the context of procedural statements. These compound assignment operators are
6 equivalent to assigning to the left-hand operand the result of applying the leading operator to the left-hand
7 and right-hand operands. For example, a <<= b is equivalenttoa = a << b.

8 While these operators may not be used as a part of an expression, they are documented here for consistency.

9 The type of the right-hand side of an assignment shall be assignment-compatible with the type of the left-
10 hand side. In an aggregate assignment, assignment is performed element by element. In an assignment of a
11 fixed-size array, the left-hand and right-hand sides of the assignment shall have the same size.

12 In assignment of struct types, the right-hand side shall be of the same type as the left-hand side or a derived
13 type thereof. When the left-hand side of an assignment is of struct type and the right-hand side is of a type
14 that inherits from the type of the left-hand side, the elements present in the left-hand type are assigned
15 element-by-element while elements only present in the right-hand type are ignored.

16 In assignment of reference types, the right-hand side shall be one of the following:

17— A reference expression of the same type as the left-hand side or a derived type of it
18— An instance path to a component of the same type as the left-hand side or a derived type of it
19— The value null

20 Following the assignment of a reference, the left-hand side variable shall point to (be an alias to) the same
21entity (component, action, monitor, flow/resource object) referred to by the right-hand side (or have the
22 value null in case the right-hand side evaluates to null).
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18.4 Expression operators

2 The expression operators defined by the PSS language are listed in the table below.

Table 9—Expression operators and data types

Operator token Operator name Operand data types Result data type

?: Conditional operator Any plain-data type or Same as operands
reference type
(condition is Boolean)
- Unary arithmetic negation operator Numeric Same as operand
~ Unary bitwise negation operator Integer Same as operand
! Unary Boolean negation operator Boolean Boolean
& | ~ Unary bitwise reduction operators Integer 1-bit
+ - * ) *x Binary arithmetic operators Numeric Numeric
% Binary modulus operator Integer Integer
& | ~ Binary bitwise operators Integer Integer
>> << Binary shift operators Integer Integer
&& || Binary Boolean logical operators Boolean Boolean
< <= > >= Binary relational operators Numeric Boolean
= I= Binary logical equality operators Any plain-data type or Boolean
reference type
cast Data type conversion operator Numeric, Boolean, Casting type
enum
in Binary set membership operator Any plain-data type Boolean
[expression] Index operator Array, list, map Same as element of
collection
[expression] Bit-select operators Integer Integer
[expression: Part-select operator Integer Integer
expression]

38.4.1 Operator precedence and associativity

4 Operator precedence and associativity are listed in Table 10. The highest precedence is listed first.

Table 10—Operator precedence and associativity

Operator Associativity Precedence
0 [] Left 1 (Highest)
cast Right 2
- ! ~ & | % (unary) 2
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Table 10—Operator precedence and associativity (Continued)

* Left 3
* /0% Left 4
+ - (binary) Left 5
<< >> Left 6
< <= > >= in Left 7
= I= Left 8
& (binary) Left 9
A (binary) Left 10
| (binary) Left 11
&& Left 12
I Left 13
?: (conditional operator) Right 14 (Lowest)

1 Operators shown in the same row in the table shall have the same precedence. Rows are arranged in order of
2 decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is
3 higher than that of the binary + and — operators.

4 All operators shall associate left to right with the exception of the conditional (? :) and cast operators, which
sshall associate right to left. Associativity refers to the order in which the operators having the same
6 precedence are evaluated. Thus, in the following example, B is added to A, and then C is subtracted from the
7result of A+B.

8

9 A+ B -C

10 When operators differ in precedence, the operators with higher precedence shall associate first. In the
11 following example, B is divided by C (division has higher precedence than addition), and then the result is
12 added to A.

13

14 A+B/C

15 Parentheses can be used to change the operator precedence, as shown below.
16
17 (A + B) / C // not the same as A + B / C

18 8.4.2 Using aggregate literals in expressions

19 Aggregate literals (i.e., value list, map, and structure literals, see 4.8) can be used as expression operands.
20 For example, aggregate literals can be used to initialize the contents of aggregate types as part of a variable
21declaration, in constraint contexts, as foreign language function parameters, and as template-type value
22 parameters. An aggregate literal may not be the target of an assignment.

23 When the operands of an assignment or equality operator are a structure aggregate literal and a struct-type
24 variable, any elements not specified by the literal are given the default values of the data type of the element.
25 When the operands of an assignment or equality operator are a value list literal and an array, the number of
26 elements in the aggregate literal must be the same as the number of elements in the array.
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1In Example 28, a struct type is declared that has four integer fields. A non-random instance of that struct is
2 created where all field values are explicitly specified. A constraint compares the fields of this struct with an
3 aggregate literal in which only the first two struct fields are specified explicitly. Because a struct is a fixed-
4 size data structure, the fields that are not explicitly specified in the aggregate literal are given default values—
5 in this case 0. Consequently, the constraint holds.

struct s {
int a, b, ¢, d;

}i

struct t {
s sl = {.a=1, .b=2, .c=0,.d=0};
constraint sl == {.b=2,.a=1};
}
7 Example 28—Using a structure literal with an equality operator

8 When an aggregate literal is used in the context of a variable-sized data type, the aggregate literal specifies
9 both size and content.

10 In Example 29, a set variable is compared with an aggregate literal using a constraint. The size of the set
11 variable is three, since there are three unique values in the initializing literal, while the size of the aggregate

12 literal in the constraint is two. Consequently, the constraint does not hold.

13

struct t {
set<int> s = {1, 2, 0, 0};
constraint s == {1, 2}; // False: s has 3 elements, but the literal has 2
}
14 Example 29—Using an aggregate literal with a set

15 Values in aggregate literals may be non-constant expressions. Example 30 shows use of a repeat-loop index
16 variable and a function call in a value list literal.

17

function int get val (int idx);
import solve function get val;
struct S {

list<array<int,2>> pair 1;

exec pre solve {
repeat (i : 4) {
array<int,2> pair = {i, get val(i)};
pair l.push back(pair);
}

18 Example 30—Using non-constant expressions in aggregate literals
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18.4.3 Type inference rules

2 The expected type of an expression shall be inferred according to the rules below. The expected type is used
3 in the resolution of unqualified enum_item names (see 7.5) and in the interpretation of aggregate literals (see

48.4.2).

5
6
7
8
9
10
1
12

13
14

15
16
7

18
19
20
21

22
23

The type of the expression on the left-hand side of an assignment determines the expected type of
the expression on the right-hand side. This includes initialization assignments.

The type of the formal parameter of a function determines the expected type of the respective actual
parameter expression (see 22.2). This is true also for covergroup instantiations (see 18.2).

The return type of a function determines the expected type of the expression in its return statement
(see 22.7.5).

An expression of a known type on the left-hand side of an equality operator (==, !=) determines the
expected type of the right-hand side (see 8.5.3).

The expected type of a conditional _expression (? :) determines the expected type of the second and
third operands of the expression (see 8.5.8).

The type of the expression on the left-hand side of a set membership (in) operator determines the
expected type of the expressions in the open _range list, or the elements of the collection_expres-
sion, on the right-hand side (see 8.5.9).

An explicit data type of a coverpoint determines the expected type of the coverpoint expression (see
18.3).

The type (explicit or implicit) of a coverpoint determines the expected type of its bin values (see
18.3.3).

In a cast_expression, the specified target type (casting type) determines the expected type of the
expression to be cast (see 7.12).

24 For the purposes of this section, all integer types are considered to be a single type, as all integer expressions
25 are type compatible, and all floating-point types are considered to be a single type, as all floating-point
26 expressions are type compatible (see 7.12). See more on the evaluation of numeric expressions in 8.7 and
27 8.8.

28 In Example 31, contextual typing is required to interpret structure literals. Based on the type of the left
29 operand of an equality operator, the structure literal on the right-hand side is interpreted differently in two
30 different constraints within the same action.
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component my ip c {
struct my struct { rand int a; };
action my op {
rand my struct s;

}

component pss top {
my ip ¢ my ip;
struct your struct { rand int a; };

action test {
rand your struct s;
constraint s == {.a = 2}; // pss_top::your struct literal

my ip c::my op op;
constraint op.s == {.a = 3}; // my ip c::my struct literal

activity {
op;

2 Example 31—Contextual typing in structure literal interpretation

3 Example 32 shows two cases of unqualified enum item resolution based on contextual typing—an
4 assignment and a function call. Note that in calling function print num (), whose formal parameter is
s declared with type int, the identifier ORANGE cannot be resolved, because the expected type is an int. The
6 enum_item must be qualified in this case.

7
enum color e {RED, GREEN, ORANGE};
function void print color(color e c);
function void print num(int n);
component pss top {
enum fruit e {APPLE, ORANGE};
exec init down {
color e c = ORANGE; // OK - expected type is color e
print color (RED); // OK — same as above
print num((int)ORANGE) ; // Error — 'ORANGE' unresolved -
// no enum type expected here
print num((int) fruit e::ORANGE); // OK - qualified reference
}
}
8 Example 32—Contextual typing in enum_item resolution

9 8.4.4 Operator expression short-circuiting

10 The logical operators (&&, | | ) and the conditional operator (? :) shall use short-circuit evaluation. In other
11words, operand expressions that are not required to determine the final value of the operation shall not be
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1evaluated. All other operators shall not use short-circuit evaluation. In other words, all of their operand
2 expressions are always evaluated.

3 8.5 Operator descriptions

4 The following sections describe each of the operator categories. The legal operand types for each operator
s are listed in Table 9.

6 8.5.1 Arithmetic operators
7 The binary arithmetic operators are given in Table 11.

Table 11—Binary arithmetic operators

atb aplusb

a-b a minus b

a*b a multiplied by b (or a times b)

a/b a divided by b

a%b a modulo b

a**p a to the power of b

8 Integer division shall truncate the fractional part toward zero. The modulus operator (for example, a % b)
9 gives the remainder when the first operand is divided by the second, and thus zero when b divides a exactly.
10 The result of a modulus operation shall take the sign of the first operand. Division or modulus by zero shall
11 be considered illegal.

12 If either operand of the power operator is of floating-point type, then the result type shall also be of floating-
13 point type. The result of the power operator is unspecified if the first operand is zero and the second operand

14 is negative or if the first operand is negative and the second operand is not an integer value.

Table 12—Power operator rules for integers

oplis<-1 oplis -1 oplis 0 oplis1 oplis>1
. . . op2isodd -> -1 sk
op2 is positive opl ** op2 op2 is even —> 1 0 1 opl ** op2
op2 is zero 1 1 1 1 1
op?2 is negative 0 op2is odd -> -1 undefined 1 0

op2iseven —> 1

15 The unary arithmetic negation operator () shall take precedence over the binary operators.
16 8.5.1.1 Arithmetic expressions with unsigned and signed types
17 bit-type variables are unsigned, while int-type variables are signed.

18 A value assigned to an unsigned variable shall be treated as an unsigned value. A value assigned to a signed
19 variable shall be treated as signed. Signed values shall use two’s-complement representation. Conversions
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1between signed and unsigned values shall keep the same bit representation. Only the bit interpretation
2 changes.

3 8.5.2 Relational operators

4 Table 13 lists and defines the relational operators. Relational operators may be applied only to numeric
5 operands.

Table 13—Relational operators

a<b aless than b

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

6 An expression using these relational operators shall yield the Boolean value true if the specified relation
7 holds, or the Boolean value false if the specified relation does not hold.

8 When one or both operands of a relational expression are unsigned, the expression shall be interpreted as a
9 comparison between unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be
10 zero-extended to the size of the larger operand.

11 When both operands are signed, the expression shall be interpreted as a comparison between signed values.
12 If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger

13 operand.
14 All the relational operators have the same precedence, and have lower precedence than arithmetic operators.
15 8.5.3 Equality operators

16 The equality operators rank lower in precedence than the relational operators. Table 14 defines the equality
17 operators.

Table 14—Equality operators

a== aequaltob

al=b anotequaltob

18 Both equality operators have the same precedence. When the operands are numeric, these operators compare
19 operands bit for bit. As with the relational operators, the result shall be false if the comparison fails and frue
20 if it succeeds.

21 When one or both operands are unsigned, the expression shall be interpreted as a comparison between
22 unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the
23 size of the larger operand.

24 When both operands are signed, the expression shall be interpreted as a comparison between signed values.
25 If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
26 operand.
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1 When the operands of an equality operator are of string type, both the sizes and the values of the string
2 operands are compared.

3 Aggregate data (structs and collections) may be compared using equality operators. When the equality
4 operators are applied to aggregate data, both operands shall be of the same type. Aggregate operands are

s compared element-by-element to assess equality.

6 The following rules apply to comparison of collections:

7 — It shall be illegal to compare two fixed-size arrays of different sizes. Variable-sized collections of
8 the same type may be compared, but they shall be considered not equal if they have different sizes.

9 — Two fixed-size arrays are considered equal if they have the same elements in the same order.
10— Two lists are considered equal if they have the same size and they have the same elements in the
1 same order.

12— Two maps are considered equal if they have the same size and the same key-value pairs, regardless
13 of order (maps are unordered).

14— Two sets are considered equal if they have the same size and the same elements, regardless of order
15 (sets are unordered).

16 The right-hand side of an equality operator may be an aggregate literal of the same type as the left-hand side.
17 The left-hand side of an equality operator may not be an aggregate literal. See more details about collections
181in 7.9 and about aggregate literals in 4.8 and 8.4.2.

19 References can be compared with equality operators. The operands may be one of the following:

20 — Two expressions of the same reference type, or one expression of a reference to a derived type of the
21 other

22— One expression of a component reference type, and the other an instance path to a component of the
23 same type, or a derived type of it

24 —  An expression of a reference type and the value null

25 The expression evaluates to #rue if both operands refer to the same entity (component, action, monitor, flow/
26 resource object) or if both evaluate to null; otherwise, it evaluates to false. Note that these rules apply to
27 variables declared with the ref modifier, the built-in comp reference, and other reference fields (see 7.10).
28 8.5.4 Logical operators

29 The binary operators logical AND (&&) and logical OR (| |) are logical connective operators and have a
30 Boolean result. The precedence of && is greater than that of | |, and both have a lower precedence than the
31relational and equality operators.

32 The unary logical negation operator (!) converts a true operand to false and a false operand to true.

33 In procedural contexts, the && and | | operators shall use short-circuit evaluation as follows:

34 — The first operand expression shall always be evaluated.
35 — For &&, if the first operand evaluates to false, then the second operand shall not be evaluated.
36 — For ||, if the first operand evaluates to frue, then the second operand shall not be evaluated.
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18.5.5 Bitwise operators

2 The bitwise operators perform bitwise manipulations on the operands. Specifically, the binary bitwise
3 operators combine a bit in one operand with the corresponding bit in the other operand to calculate one bit
4 for the result. The following truth tables show the result for each operator and input operands.

Table 15—Bitwise binary AND operator

& 0|1
0 0] 0
1 0|1

Table 16—Bitwise binary OR operator

0

1

0

1

Table 17—Bitwise binary XOR operator

A 0|1
0 0|1
1 110

7 The bitwise unary negation operator (~) negates each bit of a single operand.

Table 18—Bitwise unary negation operator

8 These operators may be applied only to integer operands.
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18.5.6 Reduction operators

2 The unary reduction operators perform bitwise operations on a single operand to produce a single-bit result.
3 The unary AND operator (&) returns 1’ bl if all the bits of the operand are 1, and returns 1’ b0 otherwise.
4 The unary OR operator (|) returns 1’/ bl if any bit of the operand is 1, and returns 1’ b0 otherwise. The
sunary XOR operator (*) returns 1’/ bl if an odd number of bits of the operand are 1, and returns 1’ b0

6 otherwise.

7 These operators may be applied only to integer operands.The table below shows the results of applying the
8 three reduction operators to four example bit patterns.

Table 19—Results of unary reduction operations

Operand | & | A Comments
4'b0000 0 0 No bits set
4'b1111 1 1 All bits set

o | o | o

4'b0110 0 1 Even number of bits set

4'b1000 0 1 1 Odd number of bits set

9 8.5.7 Shift operators

10 PSS provides two bitwise shift operators: shift-left (<<) and shift-right (>>). The left shift operator shifts
11the left operand to the left by the number of bit positions given by the right operand. The vacated bit
12 positions shall be filled with zeros. The right shift operator shifts the left operand to the right by the number
13 of bit positions given by the right operand. If the left operand is unsigned or if the left operand has a non-
14 negative value, the vacated bit positions shall be filled with zeros. If the left operand is signed and has a
15 negative value, the vacated bit positions shall be filled with ones. The right operand shall be a non-negative
16 number. These operators may be applied only to integer operands.

17 8.5.8 Conditional operator
18 The conditional operator (?:) is right-associative and is composed of three operands separated by two
19 operators as shown in Syntax 20. The first operand (the cond predicate) shall be of Boolean type. The

20 second and third operands shall be of the same type, and may be of any plain-data or reference type.

21

conditional expression ::=cond predicate ? expression : expression

cond_predicate ::= expression

22 Syntax 20—Conditional operator

23 If cond_predicate is true, then the operator evaluates to the first expression without evaluating the second
24 expression. If false, then the operator evaluates to the second expression without evaluating the first
25 expression.
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18.5.9 Set membership operator

2 PSS supports the set membership operator in, as applied to value sets and collection data types. Syntax 21
3 shows the syntax for the set membership operator.

48.5.9.1 Syntax

in_expression ::=
expression in [ open_range list |
| expression in collection expression
open_range list ::= open_range value {, open_range value }
open_range value ::= expression [ .. expression |

collection_expression ::= expression

6 Syntax 21—Set membership operator

7 The set membership operator returns frue if the value of the expression on the left-hand side of the in
g operator is found in the open_range_list or collection_expression on the right-hand side of the operator, and
9 false otherwise.

10 The expression on the left-hand side shall have a self-determined type; in particular, the left-hand side shall
11not be an unqualified enum_item (see 7.5) or an aggregate literal (see 4.8). The elements of the right-hand
12 side of the in operator shall have a type compatible with the expression on the left-hand side.

13 If the expression on the left-hand side is of a scalar type, the right-hand side may be an open_range list or a
14 collection_expression. Otherwise, the right-hand side shall be a collection_expression.

15 An open_range_list on the right-hand side of the in operator shall be a comma-separated list of scalar value
16 expressions or ranges. When specifying a range, the expressions shall be of a numeric or enumeration type.
17 If the left-hand bound of the range is greater than the right-hand bound of the range, the range is considered
18 empty. Values can be repeated; therefore, values and value ranges can overlap. The evaluation order of the
19 expressions and ranges within the open_range_list is nondeterministic.

20 A collection_expression on the right-hand side of the in operator shall evaluate to an arrayj, list, or set type
21that contains elements whose type is compatible with the type of the expression on the left-hand side. For
22 example, the collection_expression may be a value list literal or a hierarchical reference to a set. The
23 collection_expression may also be an array of action handles, components, or flow and resource object
24 references. In this case, the expression on the left-hand side shall be a corresponding ref type.

258.5.9.2 Examples

26 Example 33 constrains the addr attribute field to the range 0x0000 to OxFFFF.

27

constraint addr c {
addr in [0x0000..0XFFFF];
}

28 Example 33—Value range constraint
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1In the example below, v is constrained to be in the combined value set of values and the values specified
2 directly in the open_range_list 1, 2. In other words, the value of v willbein [1,2, 3,4, 5]. The variable
3values of type list may not be referenced in an open_range_list.

4
struct s {
list<int> wvalues = {3, 4, 5};
rand int v;
constraint v in [1,2] || v in values;
}
5 Example 34—Set membership in collection

6 In the example below, v is constrained to be in the range 1, 2, and between a and b. The range a. .b may
7 overlap with the values 1 and 2.

struct s {
rand int v, a, b;
constraint a < b;
constraint v in [1,2,a..b]l;

9 Example 35—Set membership in variable range

10 8.6 Primary expressions
11 There are several types of primary expressions (or simple operands).

12 The simplest type of primary expression is a reference (simple or hierarchical) to a variable, constant, or
13 template parameter.

14 In order to select a single bit of an integer variable or integer named constant (e.g., static const or template
15 parameter), a bit-select shall be used. In order to select a bit range of an integer variable or integer named

16 constant, a part-select shall be used.

17 In order to get a substring of characters within a string variable or string named constant, a sub-string
18 operator shall be used.

19 A collection variable of plain-data type can be referenced as a primary expression. In order to select an
20 element within a collection, an index operator shall be used.

21 A struct variable can be referenced as a primary expression.
22 A function call is a primary expression.

23 There are additional types of primary expressions. Formally, an expression is a primary expression if it is a
24 primary as defined in B.18 and unparenthesized.

25 8.6.1 Bit-selects and part-selects
26 Bit-selects select a particular bit from a named integer variable or constant using the syntax

27
28 identifier | expression |
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1 The index may be any integer expression and may be non-constant.

2 Part-selects select a fixed range of contiguous bits using the syntax
3
4 identifier [ constant expression : constant expression |

5 The value of the first constant expression shall be greater than or equal to the value of the second
6 constant _expression.

7 Bit-selects and part-selects may be used as operands of other operators and as targets of assignments. It shall
8 be illegal for a bit-select or a part-select to access an out-of-bounds bit index.

98.6.2 Selecting an element from a collection (indexing)

10 The index operator ([ 1) is applied to an array, list, or map collection to select a single element. In the case
110f an array or a list, the index shall be an integer expression whose value is between 0 and the size of the
12 array/list - 1. In the case of a map, the index shall be of the same type as that of the key in the map
13 declaration.

14 An indexed collection may be used as an operand of other operators and as a target of assignments.

15 In the case of an array or a list, it shall be illegal to access an out-of-bounds index. In the case of a map, it
16 shall be illegal to read an element whose key does not appear in the map. An assignment to a map element
17 whose key does not currently appear in the map shall add that key and value pair to the map.

18 8.6.3 The sub-string operator

19 The sub-string operator is applied to a string and returns a string that is equal to the sub-string, starting and
20 ending at the specified positions, using the syntax:

21

22 identifier [ string slice |

23 The syntax for the string slice operator is specified in Syntax 22.

24
string_slice ::=
expression [ .. expression |
| expression ..
| .. expression
25 Syntax 22—String slice operator

26 All expressions are of integer types. The expression preceding denotes the starting position, and the
27 expression following denotes the ending position. If “..” is used but the starting or the ending position is not
28 specified, the sub-string starts from the first character in the string or ends at the last character in the string,
29 respectively. If “..” is not used and only one expression is specified, it denotes both the starting and the
30 ending position, i.e., the sub-string contains one character.

31 The starting and ending positions shall be between 0 and the size of the string less than 1, and the starting
32 position shall not be greater than the ending position.

33
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18.7 Bit sizes for numeric expressions

2 The size, in bits, of a numeric expression is determined by the operands involved in the expression and the
3 context in which the expression appears. Casting can be used to set the size context of an intermediate value
4(see 7.12).

58.7.1 Rules for expression bit sizes

6 A self-determined expression is one where the size of the expression is solely determined by the expression
7itself. A context-determined expression is one where the size of the expression is determined both by the
g expression itself and by the fact that it is part of another expression. For example, the size of the right-hand
9 expression of an assignment depends on itself and the size of the left-hand side.

10 Table 20 shows how the form of an expression determines the sizes of the results of the expression. In
11 Table 20, i, j, and k represent operands of an expression, and L (i) represents the size of the operand

12 represented by i.

Table 20—Bit sizes resulting from self-determined expressions

Expression Bit size Comments
Unsized constant number At least 32
Sized constant number As specified
i op j, where op is: max(L(i),L(j))
+ - * / % & | *
op i,whereopis: + - ~ L)
op i,whereopis: & | * 1
i op j,whereopis: >> << *k L) j is self-determined
i?3:k max(L(j),L(k)) i must be Boolean
cast, where casting type is an integer type L(casting_type)

13 8.8 Evaluation rules for numeric expressions
14 8.8.1 Rules for expression signedness

15 The following apply when determining the signedness of an expression:

16 a) Expression signedness depends only on the operands. In an assignment, the signedness does not
17 depend on the left-hand side.

18 b) Unsized unbased decimal and octal numbers are signed. Unsized unbased hexadecimal numbers are
19 unsigned.

20 c¢) Based numbers are unsigned, except when they are designated as signed with the 's notation (e.g.,
21 4's5d12).

22 d) Bit-select results are unsigned, regardless of the operands.

23 e) Part-select results are unsigned, regardless of the operands, even if the part-select specifies the entire
24 width.

25 f)  Floating-point numbers are signed when converted to integers.

26 g) The signedness and size of a self-determined operand are determined by the operand itself, indepen-
27 dent of the remainder of the expression.
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1 h) Ifany context-determined operand of an expression is of floating-point type, the result is of floating-
2 point type.

3 1)  If any context-determined operand of an expression is unsigned, the result is unsigned regardless of
4 the operators.

j)  If all context-determined operands of an expression are signed, the result is signed regardless of the
6 operators, unless specified otherwise.

wv

78.8.2 Steps for evaluating a numeric expression

8 The following are the steps for evaluating a numeric expression:
9 a) Determine the expression size based on the expression size rules (see 8.7.1).
10 b) Determine the signedness of the expression using the rules described above.

1 ¢) Propagate the signedness and size of the expression to the context-determined operands of the

12 expression. In general, context-determined operands of an operator shall have the same signedness
13 and size as the result of the operator. However, there is one exception:

14 1) Ifthe result type of the operator is floating-point and if it has a context-determined operand that
15 is not floating-point, that operand shall be treated as if it were self-determined and then
16 converted to floating-point just before the operator is applied.

17 d) When propagation reaches a simple operand (see 8.6), that operand shall be converted to the
18 propagated signedness and size. If the operand must be size-extended, it shall be sign-extended if the
19 propagated type is signed and zero-extended if the propagated type is unsigned.

20 8.8.3 Steps for evaluating an assignment

21 The following are the steps for evaluating an assignment when the operands are of numeric type:

22 a) Determine the size of the right-hand side of the assignment using the size determination rules
23 described in 8.7.1.

24 b) Ifrequired, extend the size of the right-hand side, using sign extension if the type of the right-hand
25 side is signed and zero-extension if the type of the right-hand side is unsigned.
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19. Components

2 Components serve as a mechanism to encapsulate and reuse elements of functionality in a portable stimulus
3model. Typically, a model is broken down into parts that correspond to roles played by different actors
4 during test execution. Components often align with certain structural elements of the system and execution
s environment, such as hardware engines, software packages, or testbench agents.

6 Components are structural entities, defined per type and instantiated under other components (see
7 Syntax 23). Component instances constitute a hierarchy (tree structure), beginning with the top or root
8 component, called pss_top by default, which is implicitly instantiated. Each component instance has a
9unique hierarchical path name, and may also contain data attributes, but not constraints. Components may
10 also encapsulate function declarations (see 22.2.1) and imported class instances (see 22.4.2). In addition,
11 components may be derived from other components via inheritance, or a component may be extended to add
12 elements to the component type (see Clause 20).
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19.1 Syntax

component_declaration ::= [ pure ] component component_identifier [ template param_decl list ]
[ component_super_spec ] { { component body item } }

component_super_spec ::=: type_identifier
component_body _item ::=

override declaration

| component_data_declaration

| component_pool_declaration

| action_declaration

| abstract action_declaration

| object bind stmt

| exec_block

| struct_declaration

| enum_declaration

| covergroup declaration

| function_decl

| import_class_decl

| procedural function

| import_function

| target template function

| export_action

| typedef declaration

| import_stmt

| extend stmt

| compile assert stmt

| attr_group

| component body compile if

| stmt_terminator

| monitor declaration

| cover stmt

3 Syntax 23—component declaration

49.2 Examples

5 For an example of how to declare a component, see Example 36.

component uart c { ... };

7 Example 36—Component
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19.3 Components as namespaces

2 Component types serve as namespaces for their nested types, e.g., action, monitor, and struct types defined
3under them. The fully-qualified name of nested types is of the form 'package-
4namespace: : component-type: :nested-type"'. References to nested types in a component shall
5 follow the name resolution rules defined in 21.3.

6 For an example of how to use a component as a namespace, see Example 37.

component usb c {
action write {...}
}
component uart c {
action write {...}
}
component pss_top {
uart c sl;
usb _c s2;
action entry {
uart _c::write wr; //refers to the write action in uart c

8 Example 37—Namespace

9In Example 38 below, a component C1 is declared in a package. That component is instantiated in
10 component pss_top, and an action within component C1 is traversed in action pss_top: :entry.In
11 the traversal of action P: : C1: : A, the qualified name elements are the following:

12— package-namespace: P
13— component-type: C1
14 — class-type: A

package P {
component Cl {
action A {}

}

component pss top {
P::Cl cl;

action entry {
activity {
do P::Cl::A;
}

16 Example 38&—Component declared in package
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19.4 Component instantiation

2 Components are instantiated under other components as their fields, much like data fields of structs, and
3 may be arrays thereof.

419.4.1 Semantics

O 00 N O u

Il

12
13

14
15
16
7
18

19
20
21
22

23

24
25

26
27

a)

b)

d)

2

h)

Component fields are non-random; therefore, the rand modifier shall not be used. Component data
fields represent configuration data that is accessed by actions and monitors declared in the compo-
nent and by cover statements invoked in this component. To avoid infinite component instantiation
recursion, a component type and all template specializations thereof shall not be instantiated under
its own sub-tree.

In any model, the component instance tree has a predefined root component, called pss_top by
default, but this may be user-defined. There can only be one root component in any valid scenario.

Other components, actions, or monitors are instantiated (directly or indirectly) under the root com-
ponent. See also Example 39.

Plain-data fields may be initialized using a constant expression in their declaration. Data fields may
also be initialized via an exec init_down or init_up block (see 22.1.2), which overrides the value set
by an initialization assignment. The component tree is elaborated to instantiate each component and
then the exec init_down and init_up blocks are evaluated hierarchically. See also Example 246 and
Example 247 in 22.1.3.

Component data fields are considered immutable once construction of the component tree is com-
plete. Actions can read the value of these fields, but cannot modify their value. Component data
fields are accessed from actions relative to the comp field, which is a handle to the component con-
text in which the action is executing. See also Example 248 (and 22.1).

It shall be illegal to access static component members using the comp handle.

It shall be illegal to reference non-static context component members from struct types declared
within the component.

Any non-static component member may be referred to with a full hierarchical path starting with the
root component.

28 9.4.2 Examples

29 Example 39 depicts a component tree definition. In total, there is one instance of multimedia ss c
30 (instantiated in pss__top), four instances of codec_c (from the array declared in multimedia ss_c),
31and eight instances of vid pipe c (two in each element of the codec_c array).
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component vid pipe ¢ { ... };

component codec c {
vid pipe c pipeA, pipeB;
action decode { ... };

i

component multimedia ss c {
codec_c codecs|[4];

b

component pss_top {
multimedia ss c multimedia_ ss;

b

2 Example 39—Component instantiation

3 Example 40 shows some legal and illegal accesses to component functions and attributes.

component my comp c {
int f£;
struct S {
rand int g;
exec post solve {
g = f£; // ILLEGAL: S may not refer to instance-specific field of
// my comp c. NOTE: 'g = my comp c::f;' would be legal if
// f were 'static const int f'
bi
bi
function void print f() {
print ("&d", f);
}
action A a {
rand S s;
exec post solve {
comp.print f(); // comp handle required to access 'print f'
}
bi

component pss_top {

my comp c compl, comp2, comp3;
exec init {

compl.f = 6; comp2.f = 7; comp3.f = 8;
bi
action entry a {

activity {

do my comp c::A a;

}

5 Example 40—Component attribute and function access
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19.5 Component references

2 Each action instance is associated with a specific component instance of its containing component type, the
3 component-type scope where the action is defined. The component instance is the “actor” or “agent” that
4 performs the action. Only actions defined in the scope of instantiated components can legally participate in a
5 scenario.

6 The component instance with which an action is associated is referenced via the built-in field comp. The
7 value of the comp field can be used for comparisons of references (see 8.5.3). Unlike user-defined reference
g variables, the comp field is assigned automatically as part of the solving process (see 16.4.5) and may not be
9 assigned by the user. The static type of the comp field is the ref type of the action’s context component.
10 Consequently, attributes and sub-components of the containing component may be referenced via the comp
11 field using relative paths.

129.5.1 Semantics

13 A compound action can only instantiate sub-actions that are defined in its containing component or defined
14in component types that are instantiated in its containing component's instance sub-tree. In other words,
15 compound actions cannot instantiate actions that are defined in components outside their context component
16 hierarchy. Similarly, monitors and cover statements cannot reference actions or other monitors that are
17 defined in components outside their context component hierarchy. This maximizes the reusability of
18 components in other contexts.

199.5.2 Examples
20 Example 41 illustrates the need to define a sub-action in a containing component or its sub-tree. In action

2igraphics::gr_a, the traversal of bus c::write is illegal since the component bus c is not
22 instantiated in the action's containing component (graphics).
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component bus c {
import bar pkg::*;
action write{input bar s b;...} // bar s is a stream

}

component graphics {
import bar pkg::*;
action foo {output bar s b;...}
action gr_a {
activity {
parallel {
do bus c::write; // illegal
do foo;

component pss_top {
import bar pkg::*;
bus ¢ a0;
graphics g;
pool bar s bar p;
bind bar p *;

}

2 Example 41—lllegal traversal of an action outside of the containing component hierarchy

3 Example 42 demonstrates the use of the comp reference. The constraint within the decode action forces
4the value of the action’s mode bit to be 0 for the codecs [0] instance, while the value of mode is
srandomly selected for the other instances. The sub-action type program is available on both sub-
6 component instances, pipe? and pipeB, but in this case is assigned specifically to pipeA using the comp

7 reference.

8 See also 16.1.3.
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component vid pipe ¢ { ... };
component codec c {
vid pipe c pipeA, pipeB;
bit model enable;
action decode {
rand bit mode;
constraint set mode {

comp.model enable==0 -> mode == 0;
}
activity {
do vid pipe c::program with { comp == this.comp.piped;

}
i
b
component multimedia ss c {
codec_c codecs([2];
exec init up {
codecs[0] .model enable = 0;
codecs[1l] .model enable =1

}

’

b

Example 42—Using the comp attribute in constraints

39.6 Pure components

4 Pure components are restricted types of components that provide PSS implementations with opportunities
s for significant optimization of storage and initialization. Pure components are used to encapsulate
6 realization-level functionality and cannot contain scenario model features. Register structures are one

7 possible application for pure components (see 24.11).

8 The following rules apply to pure components, that is, component types declared with the pure modifier:

9
10
1l

12
13

14
15

a)

b)

In the scope of a pure component, it shall be an error to declare action and monitor types, pool
instances, pool binding directives, non-static data attributes, instances of non-pure component

types, exec blocks, or to specify cover statements.

A pure component may be instantiated under a non-pure component. However, a non-pure com-

ponent may not be instantiated under a pure component.

A pure component may not be derived from a non-pure component. However, both a pure compo-

nent and a non-pure component may be derived from a pure component.
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1 An example of the use of pure components is shown in Example 43.

pure component my register {
function bit[32] read();
function void write(bit[32] wval);

)z

pure component my register group {
my register regs[10];

}i

component my ip {
my register group reg groups[100]; // sparsely-used large structure

}i

3 Example 43—Pure components
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110. Actions

2 Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose
3 definitions can be reused in many different contexts. Along with their intrinsic properties, actions also
4encapsulate the rules for their interaction with other actions and the ways to combine them in legal
5 scenarios. Atomic actions may be composed into higher-level actions, and, ultimately, to top-level test
6 actions, using activities (see Clause 12). The activity of a compound action specifies the intended schedule
7of its sub-actions, their object binding, and any constraints. Activities are a partial specification of a
g scenario: determining their abstract intent and leaving other details open.

9 Actions prescribe their possible interactions with other actions indirectly, by using flow (see Clause 13) and
10 resource (see Clause 14) objects. Flow object references specify the action’s inputs and outputs and
11 resource object references specify the action’s resource claims.

12 By declaring a reference to an object, an action determines its relation to other actions that reference the very
13 same object without presupposing anything specific about them. For example, one action may reference a
14 data flow object of some type as its input, which another action references as its output. By referencing the
15 same object, the two actions necessarily agree on its properties without having to know about each other.
16 Each action may constrain the attributes of the object. In any consistent scenario, all constraints shall hold;
17 thus, the requirements of both actions are satisfied, as well as any constraints declared in the object itself.

18 Actions may be atomic, in which case their implementation is supplied via one or more exec body blocks
19 (see 22.1.2), or they may be compound, in which case they contain one or more activity statements (see
20 Clause 12) that instantiate and schedule other actions. A single action can have multiple implementations in
21different packages, so the actual implementation of the action is determined by which package is used.

22 An action is declared using the action keyword and an action_identifier, as shown in Syntax 24.
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110.1 Syntax

action_declaration ::= action action_identifier [ template param_decl list ] [ action_super_spec ]
{ { action_body item } }

abstract action_declaration ::= abstract action_declaration
action_super_spec ::=: type identifier
action_body _item ::=
activity declaration

| override declaration

| constraint_declaration

| action_field declaration

| symbol_declaration

| covergroup_declaration

| exec_block stmt

| activity scheduling_constraint

| attr _group

| compile_assert stmt

| covergroup_instantiation

| action_body compile if

| stmt_terminator

3 Syntax 24—action declaration

4 An action declaration optionally specifies an action_super_spec, a previously defined action type from
s which the new type inherits its members.

6 The following also apply:

7 a) The activity_declaration and body exec_block stmt (see 22.1.2) action body items are mutually

8 exclusive. An atomic action may specify body exec_block_stmt items; it shall not specify activity -
9 declaration items. A compound action, which contains instances of other actions and activity decla-
10 ration items, shall not specify body exec_block stmt items.

11 b) An abstract action may be declared as a template that defines a base set of field attributes and
12 behavior from which other actions may inherit. Non-abstract derived actions may be instantiated
13 like any other action. Abstract actions shall not be instantiated directly.

14 ¢) An abstract action may be derived from another abstract action, but not from a non-abstract action.

15 d) Abstract actions may be extended, but the action remains abstract and may not be instantiated
16 directly.
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110.2 Examples
210.2.1 Atomic actions

3 Examples of an atomic action declaration are shown in Example 44.

4
action write {
output data buf data;
rand int size;
//implementation details
}i
5 Example 44—atomic action

610.2.2 Compound actions

7 Compound actions instantiate other actions within them and use activity statements (see Clause 12) to
8 define the relative scheduling of these sub-actions.

9 Examples of compound action usage are shown in Example 45.

10

action sub a {...};

action compound a {
sub a al, a2;
activity {
al;
az;

11 Example 45—compound action
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110.2.3 Abstract actions

2 Abstract action types are used to capture common features of different actions, including actions of different
3 components. Abstract actions may not be traversed directly. Rather, they are used through inheritance, as
4base types for non-abstract action types. Abstract action types may be declared outside the scope of a
5 component, unlike non-abstract actions, which may only be declared in a component scope.

6 An example of abstract action usage is shown in Example 46. In this example, abstract action base is
7 declared outside a component scope, in package mypkg, and subsequently extended in the same package.
8 Action derived is declared as a non-abstract subtype of action base.

package mypkg {
abstract action base {
rand int 1i;
constraint i>5 && 1i<10;

}

// action base remains abstract
extend action base {
rand int j;

component pss_top {
import mypkg::*;

action derived : base {
constraint 1>6;
constraint 3>9;

10 Example 46—abstract action
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111. Template types

211.1 General
3 Template types in PSS provide a way to define generic parameterized types.

4 In many cases, it is useful to define a generic parameterizable type (struct/flow object/resource object/action/
5 monitor/component) that can be instantiated with different parameter values (e.g., array sizes or data types).
6 Template types maximize reuse, avoid writing similar code for each parameter value (value or data type)
7 combination, and allow a single specification to be used in multiple places.

8 Template types must be explicitly instantiated by the user, and only an explicit instantiation of a template
9 type represents an actual type.

10 The following sections describe how to define, use, and extend a template type when using the PSS input.

111.2 Template type declarations

12 A template type (struct, action, component, etc.) declaration specifies a list of formal #ype or value
13 template parameter declarations. The parameters are provided as a comma-separated list enclosed in angle
14 brackets (<>) following the name of the template type.

15 A template type may inherit from another template or non-template data type. A non-template type may
16 inherit from a template type instance. In both cases, the same inheritance rules and restrictions as for the
17 corresponding non-template type of the same type category are applied (e.g., a template struct may inherit
18 from a struct, or from a template struct).

19 The syntax specified in the corresponding struct/action/monitor/component sections contains the
20 template_param_decl list nonterminal marked as optional. When the parameter declaration list enclosed in
21angle brackets is provided on a struct/action/monitor/component declaration, it denotes that the struct/
22 action/monitor/component type is a template generic type.

2311.2.1 Syntax

24
struct_declaration = struct_kind identifier [ template _param_decl list ]
[ struct_super spec | { { struct body item } }
component_declaration ::= component component identifier [ template param decl list ]
[ component_super_spec | { { component body item } }
action_declaration = action action_identifier [ template _param_decl list ]
[ action_super_spec ] { { action_body _item } }
monitor_declaration ::= monitor monitor_identifier [ template param_decl list ]
[ monitor_super_spec ] { { monitor_body item } }
template param_decl list ::= < template_param_decl { , template_param_decl } >
template param_decl ::=type_param_decl | value_param_decl
25 Syntax 25—Template type declaration
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111.2.2 Examples

2 Generic template-type declaration for various type categories are shown in Example 47.

struct my template s <type T> {
T t attr;
}

buffer my buff s <type T> {
T t attr;
}

abstract action my consumer action <int width, bool is wide> ({
compile assert (width > 0);
}
monitor my sequence <monitor ml, monitor m2> {
activity {
do ml; do m2;
}

component eth controller c <struct ifg config s, bool full duplex = true> {

}
4 Example 47— Template type declarations

511.3 Template parameter declarations

6 A template parameter is declared as either a type or a value parameter. All template parameters have a name
7and an optional default value. All parameters subsequent to the first one that is given a default value shall
g also be given default values. Therefore, the parameters with defaults shall appear at the end of the parameter
9 list. Specifying a parameter with a default value followed by a parameter without a default value shall be
10 reported as an error.

11 A template parameter can be referenced using its name inside the body and the supertype specification of the
12 template type and all subsequent generic template type extensions, including the template type instance
13 extensions. A template parameter may not be referenced from within subtypes that inherit from the template
14 type that originally defined the parameter.

1511.3.1 Template value parameter declarations

16 Value parameters are given a data type and optionally a default value, as shown below.

1711.3.1.1 Syntax

18

value param_decl ::= data_type identifier [ = constant _expression ]
19 Syntax 26—Template value parameter declaration

20 The following also apply:

21 a) A value parameter can be referenced using its name anywhere a constant expression is allowed or
22 expected inside the body and the supertype specification of the template type.
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1 b) Valid data types for a value_param_decl are the scalar types, except chandle.
2 ¢) The default value, if provided, may also reference one or more of the previously defined parameters.

3 d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a
4 default value shall be enclosed in parentheses.

511.3.1.2 Examples

6 An example of declaring an action type that consumes a varying number of resources is shown in
7 Example 48.

action my consumer action <int n locks = 4> {
compileiassert (H locks in [l.Tl6]);
lock my resource ;es[n_locks};

}

9 Example 48—Template value parameter declaration

10 Example 49 contains a Boolean greater-than expression that must be enclosed in parentheses and depends
110n a previous parameter:

12

action my consumer action <int width, bool is wide = (width > 10) > {
compile assert (width > 0);

}
13 Example 49—Another template value parameter declaration

1411.3.2 Template type parameter declarations

15 Type parameters are prefixed with either the type keyword or a type-category keyword in order to identify
16 them as type parameters.

17 When the type keyword is used, the parameter is fully generic. In other words, it can take on any type.

18 Specifying category type parameters provides more information to users of a template type on acceptable
19 usage and allows tools to flag usage errors earlier. A category type parameter enforces that a template
20 instance parameter value must be of a certain category/class of type (e.g., struct, action, etc.). A category
21type parameter can be further restricted such that the specializing type (the parameter value provided on
22 instantiation) must be related via inheritance to a specified base type.

23 The syntax for declaring a type parameter is shown below.
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111.3.2.1 Syntax

type param_decl ::= generic_type param_decl | category type param_decl
generic_type param_decl ::= type identifier [ = type_identifier ]
category type param_decl ::= type category identifier [ type restriction | [ = type identifier ]
type_restriction ::= : type_identifier
type category ::=
action

| monitor

| component

| struct_kind

3 Syntax 27—Template type parameter declaration

4 The following also apply:

5 a) A type parameter can be referenced using its name anywhere inside the body of the template type
6 where a type is allowed or expected.

7 b)  The default value, if provided, may also reference one or more of the previously defined parameters.
811.3.2.2 Examples

9 Examples of a generic type and a category type parameter are shown in Example 50.

10

struct my container s <struct T> {
T t attr;
}

struct my template s <type T> {
T t attr;
}

11 Example 50—Template generic type and category type parameters

12 In the example above, the template parameter T of my container s must be of struct type, while in the
13case of my template s, the template parameter T may take on any type.

14 An example of how to use type restrictions in the case of a type-category parameter is shown in Example 51.
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struct base t {
rand bit[3:0] core;

struct my subl t : base t {
rand bit[3:0] addl;

struct my sub2 t : base t {
rand bit[3:0] add2;

buffer bl : base t { }
buffer b2 : base t { }

abstract action my action a <buffer B : base t> {

}

struct my container s <struct T : base t = my subl t> {
T t attr;
constraint t attr.core >= 1;

}

2 Example 51—Template parameter type restriction

3 In the example above, the template parameter T of my container s must be of type base t or one of
4its struct subtypes (my subl t ormy sub2 t,butnotbl or b2). This allows my container sto
s reasonably assume that T contains an attribute named ‘core’, and communicates this requirement to users
6 of this type and to the PSS processing tool. The template parameter B of my action_ a must be of one of

7 the buffer subtypes of base t (bl orb2).

8 The base type of the template type may also be a type parameter. In this way, the inheritance can be

9 controlled when the template type is instantiated.

10In Example 52, the my container s template struct inherits from the struct type template type

11 parameter.

12

struct my basel t {
rand int attrl;

struct my base2 t {
rand int attr2;

struct my container s <struct T> : T {

}

struct top s {
rand my container s <my basel t> contl;
rand my container s <my base2 t> cont2;
constraint contl.attrl == cont2.attr2;

13 Example 52—Template parameter used as base type
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111.4 Template type instantiation

2 A template type is instantiated using the name of the template type followed by the parameter value list
3 (specialization) enclosed in angle brackets (<>). Template parameter values are specified positionally.

4 The explicit instantiation of a template type represents an actual type. All explicit instantiations provided
s with the same set of parameter values are the same actual type.

611.4.1 Syntax

type identifier ::=[ :: ] type identifer elem { :: type identifer elem }
type identifier elem ::= identifier [ template param_value list ]
template param_value list ::= <[ template param_ value { , template param value } ] >

template param_value ::= constant_expression | data_type

8 Syntax 28—Template type instantiation

9 The following also apply:
10 a) Parameter values must be specified for all parameters that were not given a default value.

11 b) An instance of a template type must always specify the angle brackets (<>), even if no parameter
12 value overrides are provided for the defaults.

13 ¢) The specified parameter values must comply with parameter categories and parameter type restric-
14 tions specified for each parameter in the original template declaration, or an error shall be generated.

15 d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a
16 parameter value must be enclosed in parentheses.

1711.4.2 Examples

18

struct base t {
rand bit[3:0] core;

}

struct my subl t : base t {
rand bit[3:0] addil;
}

struct my sub2 t : base t {
rand bit[3:0] add2;
}

struct my container s <struct T : base t = my subl t> {
T t attr;
constraint t attr.core >= 1;

}

struct top s {
my container s<> my subl container attr;
my container s<my sub2 t> my sub2 container attr;

}
19 Example 53—Template type instantiation
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1In Example 53 above, two attributes of my container s type are created. The first uses the default
2 parameter value. The second specifies the my sub2 t type as the value for the T parameter.

3 Type qualification for an action declared in a template component is shown in Example 54 below.

component my compl c <int bus width = 32> {
action my actionl a { }
action my action2 a <int nof iter = 4> { }

}

component pss top {
my compl c<64> compl;
my compl c<32> comp2;

action test {
activity {
do my compl c<64>::my actionl a;
do my compl c<64>::my action2 a<>;
do my compl c::my actionl a; // Error - my compl c must be specialized
do my compl c<>::my actionl a;

5 Example 54—Template type qualification
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1Example 55 depicts various ways of overriding the default values. In the example below, the
2my_struct t<2> instance overrides the parameter A with 2, and preserves the default values for
3 parameters B and C. The my struct t<2, 8> instance overrides the parameter A with 2, parameter B

4with 8, and preserves the default value for C.

struct my

s 1 ()
struct my s 2 { }

struct my struct t <int A = 4, int B = 7, int C = 3> { }

struct container t {
my struct t<2> a; // instantiated with <2, 7, 3>
my:struct:t<2,8> b; // instantiated with <2, 8, 3>

}

6 Example 55—Overriding the default values

711.5 Template type user restrictions

8 A generic template type may not be used in the following contexts:

9 — Asaroot component
10 — Asaroot action
11— As an inferred action to complete a partially specified scenario

12 Template types are explicitly instantiated by the user, and only an explicit instantiation of a template type
13 represents an actual type. Only action actual types can be inferred to complete a partially specified scenario.
14 The root component and the root action must be actual types.

15 Template types may not be used as parameter types or return types of imported functions.
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112. Action activities

2 When a compound action includes multiple operations, these behaviors are described within the action
3using one or more activity statements. An activity specifies the set of actions to be executed and the
4 scheduling relationship(s) between them. If more than one activity is specified in an action, the execution
5 semantics are the same as if the activity statements were combined in a schedule statement (see 12.3.5 and
612.6). A reference to an action within an activity is via an action handle, and the resulting action traversal
7 causes the referenced action to be evaluated and randomized (see 12.3.1).

8 An activity, on its own, does not introduce any scheduling dependencies for its containing action. However,
9 flow object or resource scheduling constraints of the sub-actions may introduce scheduling dependencies for
10 the containing action relative to other actions in the system.

112.1 Activity declarations

12 Because activities are explicitly specified as part of an action, activities themselves do not have a separate
13 name. Relative to the sub-actions referred to in the activity, the action that contains the activity is referred to
14 as the context action.

1512.2 Activity constructs

16 Each node of an activity represents an action, with the activity specifying the temporal, control, and/or data
17 flow between them. These relationships are described via activity rules, which are explained herein. See also

18 Syntax 29.
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112.2.1 Syntax

activity _declaration ::= activity { { activity_stmt } }
activity _stmt ::=
[ label identifier :] labeled activity stmt

| activity action_traversal stmt

| activity _data_field

| activity _bind_stmt

| action_handle_declaration

| activity constraint_stmt

| activity _scheduling_constraint

| stmt_terminator
labeled_activity stmt ::=

activity _sequence block stmt

| activity parallel stmt

| activity schedule stmt

| activity _repeat stmt

| activity foreach stmt

| activity _select stmt

| activity if else_stmt

| activity_match_stmt

| activity replicate stmt

| activity _super stmt

| activity atomic_block stmt

| symbol_call

3 Syntax 29—activity statement

412.3 Action scheduling statements

5 By default, statements in an activity specify sequential behaviors, subject to data flow constraints. In
6 addition, there are several statements that allow additional scheduling semantics to be specified. Statements
7 within an activity may be nested, so each element within an activity statement is referred to as a sub-activity.

812.3.1 Action traversal statement

9 An action traversal statement designates the point in the execution of an activity where an action is
10 randomized and evaluated (see Syntax 30). The action being traversed may be specified via an action handle
1 referring to an action field or local variable that was previously declared. Alternatively, the action being
12 traversed may be specified by type, in which case a label, if specified, serves as an action handle. In the
13 absence of a label, the action instance is anonymous.
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112.3.1.1 Syntax

activity action_traversal stmt ::=
identifier [ [ expression | ] inline_constraints_or_empty
| [ label identifier : ] do type_identifier inline constraints_or_empty
inline_constraints_or_empty ::=

with constraint_set

s

Syntax 30—Action traversal statement

4 identifier names a unique action handle or variable in the context of the containing action type or activity
sscope. If identifier refers to an action handle array (see 12.3.2), then a specific array element may be
6 specified with the optional array subscript. The alternative forms are specified by the keyword do, followed
7 by an action-type specifier. Given a label identifier, the action instance can be referenced using the label. In
gthe absence of a label identifier, the action instance is anonymous. Either form of the action traversal
9 statement may include an optional in-line constraint.

10 The following also apply:

1l
12
13

14
15

16
7
18

19
20
21

a)

b)

¢)

d)

An action handle is considered uninitialized until it is first traversed. The fields within the action
cannot be referenced in an exec block or conditional activity statement until after the action is first
traversed.

Upon entry to an activity scope, all action handles traversed in that scope are reset to an uninitial-
ized state.

The labeled traversal statement is semantically equivalent to a traversal statement with an explicitly
declared action variable. With this form, the label identifier serves as an action handle, equivalent
to an explicitly declared variable of the specified action type in the enclosing activity scope.

The anonymous action traversal statement is semantically equivalent to the other two forms with the
exception that it does not create an action handle that may be referenced from elsewhere in the stim-
ulus model.

22 The following also apply for action traversal statements in action activity only:

23
24
25
26

27
28
29
30
31
32

33
34

35
36

37
38

a)

b)

¢)

The action variable is randomized and evaluated at the point in the flow where the statement occurs.
The variable may be of an action type or a data type declared in the context action with the action
modifier. In the latter case, it is randomized, but has no observed execution or duration (see

Example 144).
The steps that occur as part of the action traversal are as follows:

i)  The pre_solve block (if present) is executed.
i) Random values are selected for rand fields.
iii) The post_solve block (if present) is executed.
iv) The body exec block (if present) is executed.
v) The activity block (if present) is evaluated.

vi) The validity of the constraint system is confirmed, given any changes by the post_solve or
body exec blocks.

A named action handle may only be traversed once in the following scopes and nested scopes
thereof:

1) sequential activity scope (e.g., sequence or repeat)
2) parallel
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-

3) schedule

2 d) Formally, a traversal statement is equivalent to the sub-activity of the specified action type, with the
3 optional addition of in-line constraints. The sub-activity is scheduled in accordance with the
4 scheduling semantics of the containing activity or sub-activity.

5 e) Other aspects that impact action-evaluation scheduling, are covered via binding inputs or outputs
6 (see 13.4), resource claims (see 14.2), or attribute value assignment.

7 f)  When an action is traversed, its component context will be randomly chosen from the instantiated
8 components of the correct type in the component subtree, starting with the component context of the
9 action containing the activity in which it is traversed.

1012.3.1.2 Examples

11 Example 56 shows an example of traversing an action handle. Action A is an atomic action that contains a 4-
12 bit random field £1. Action B is a compound action encapsulating an activity involving two invocations of
13 action A. The default constraints for A apply to the evaluation of al. An additional constraint is applied to
14 a2, specifying that £1 shall be less than 10. Execution of action B results in two sequential evaluations of
15 action A.

16

action A {
rand bit[3:0] f1;

action B {
A al, a2;

activity {
al;
a2 with {
f1 < 10;
b

17 Example 56—Action traversal

18 Example 57 shows an example of anonymous action traversal, including in-line constraints.

19

action A {
rand bit[3:0] £f1;

action B {
activity {
do A;
do A with {f1 < 10;};

20 Example 57—Anonymous action traversal
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1Example 58 shows the use of a label of an action traversal statement to constrain a sub-action instance from
2 a higher activity context.

action mem2mem chain {
activity {
do mem c::load buff;
repeat (10) {
select {
xfer: do dma c::memZ2mem xfer;
cpy: do cpu_c::memcpy;

action my test ({
activity {
do mem2mem chain with { xfer.size > 10; };

}

4 Example 58—Labeled action traversal

s Example 59 shows an example of traversing a compound action as well as a random action variable field.
6 The activity for action C traverses the random action variable field max, then traverses the action-type field
7b1l. Evaluating this activity results in a random value being selected for max, then the sub-activity of bl
8 being evaluated, with al. £1 constrained to be less than or equal to max.
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action A {
rand bit[3:0] £f1;

action B {
A al, a2;

activity {
al;
a2 with {
f1 < 10;
bi

action C {
action bit[3:0] max;
B bl;

activity {
max;
bl with {
al.fl <= max;

i

2 Example 59—Compound action traversal

312.3.2 Action handle array traversal

4 Arrays of action handles may be declared within an action. These action handle arrays may be traversed as
5 a whole or traversed as individual elements.

6 The semantics of traversing individual action handle array elements are the same as those of traversing
7 individually-declared action handles.

8 Example 60 below shows traversing an individual action handle array element and one action handle. The
9 semantics of both action traversal statements are the same.

10

component pss_ top {
action A { }
action entry {
A a_ arrl4];
A al, a2, a3, a4;
activity {
a arr[0];
al;

1 Example 60—Individual action handle array element traversal
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1When an action handle array is traversed as a whole, each array element is traversed independently
2 according to the semantics of the containing scope.

3 Example 61 below shows an action that traverses the elements of the a arr action handle array in two
4 ways, depending on the value of a rand action attribute. Both ways of traversing the elements of a_arr
s have identical semantics.

component pss_ top {
action A { }
action entry {
rand bool traverse arr;

A a_arr[2];
activity {
if (traverse arr) {
a_arr;
} else {

a arr[0];
a_arr([l];

7 Example 61—Action handle array traversal

8 The contexts in which action handle arrays may be traversed, and the resulting semantics, are described in
9 the table below.

Table 21—Action handle array traversal contexts and semantics

Context Semantics
parallel All array elements are scheduled for traversal in parallel.
schedule All array elements are scheduled for traversal independently.
select One array element is randomly selected and traversed.
sequence All array elements are scheduled for traversal in sequence from 0 to N-1.
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112.3.3 Sequential block
2 An activity sequence block statement specifies sequential scheduling between sub-activities (see Syntax 31).

312.3.3.1 Syntax

activity_sequence block stmt ::=[ sequence ] { { activity_stmt } }

5 Syntax 31—Activity sequence block

6 The following also apply:

7 a) Statements in a sequential block execute in order so that one sub-activity completes before the next
8 one starts.

9 b) Formally, a sequential block specifies sequential scheduling between the sets of action executions

10 per the evaluation of activity _stmt; .. activity _stmt,, keeping all scheduling dependencies within the
1 sets and introducing additional dependencies between them to obtain sequential scheduling (see
12 6.3.2).

13 ¢) Sequential scheduling does not rule out other inferred dependencies affecting the nodes in the
14 sequence block. In particular, there may be cases where additional action executions must be sched-
15 uled in between sub-activities of subsequent statements.

1612.3.3.2 Examples
17 Assume A and B are action types that have no rules or nested activity (see Example 62).

18 Action my test specifies one execution of action A and one of action B with the scheduling dependency
19 (A) -> (B); the corresponding observed behavior is { start A, end A, start B, end B}.

20 Now assume action B has a state precondition which only action C can establish. C may execute before,
21concurrently to, or after A, but it shall execute before B. In this case the scheduling dependency relation
22 would include (A) -> (B) and (C) -> (B) and multiple behaviors are possible, such as {start C,
23start A, end A, end C, start B, end B}.

24 Finally, assume also C has a state precondition which only A can establish. Dependencies in this case are
25 (A) -=> (B), (A) => (C) and (C) -> (B) (note that the first pair can be reduced) and, consequently, the
26 only possible behavioris {start A, end A, start C, end C, start B, end B}.

27
action my test ({
A a;
B b;
activity {
a;
b;
}
}i
28 Example 62—Sequential block

29 Example 63 shows all variants of specifying sequential behaviors in an activity. By default, statements in an
30 activity execute sequentially. The sequence keyword is optional, so placing sub-activities inside braces ({})
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1is the same as an explicit sequence statement, which includes sub-activities inside braces. The examples
2 show a total of six sequential actions: A, B, A, B, A, B.

action my test ({
A al, a2, a3;
B bl, b2, b3;
activity {
al;
bl;
{a2; b2;1};
sequence{a3; b3;};

Example 63— Variants of specifying sequential execution in activity

512.3.4 parallel

6 The parallel statement specifies sub-activities that execute concurrently (see Syntax 32).

712.3.4.1 Syntax

activity parallel stmt ::= parallel [ activity join spec | { { activity stmt } }

Syntax 32—~Parallel statement

10 The following also apply:

1
12
13

14
15
16
17
18

19
20
21
22

a)

b)

Parallel activities are invoked in a synchronized way and then proceed without further synchroniza-
tion until their completion. Parallel scheduling guarantees that the invocation of an action in one
sub-activity branch does not wait for the completion of any action in another.

Formally, the parallel statement specifies parallel scheduling between the sets of action executions
per the evaluation of activity_stmt; .. activity _stmt,, keeping all scheduling dependencies within the
sets, ruling out scheduling dependencies across the sets, and introducing additional scheduling
dependencies to initial action executions in each of the sets in order to obtain a synchronized start
(see 6.3.2).

In the absence of an activity join spec (see 12.3.6), execution of the activity statement following the
parallel block is scheduled to begin after all parallel branches have completed. When an
activity join_spec is specified, execution of the activity statement following the parallel block is
scheduled based on the join specification.

2312.3.4.2 Examples

24 Assume A, B, and C are action types that have no rules or nested activity (see Example 64).

25 The activity in action my test specifies two dependencies (a) -> (b) and (a) -> (c). Since the
26 executions of both b and ¢ have the exact same scheduling dependencies, their invocation is synchronized.

27 Now assume action type C inputs a buffer object and action type B outputs the same buffer object type, and
28 the input of c is bound to the output of b. According to buffer object exchange rules, the inputting action
29 shall be scheduled after the outputting action. But this cannot satisfy the requirement of parallel scheduling,
30 according to which an action in one branch cannot wait for an action in another. Thus, in the presence of a
31 separate scheduling dependency between b and c, this activity shall be illegal.
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action my test ({
A a;
B b;
C c;
activity {
ay
parallel {
b;
Cc;

i

2 Example 64—Parallel statement

3 In Example 65, the semantics of the parallel construct require the sequences {A,B} and {C, D} to start
4 execution at the same time. The semantics of the sequential block require that the execution of B follows A
sand D follows C. It is illegal to have any scheduling dependencies between sub-activities in a parallel

6 statement, so neither A nor B may have any scheduling dependencies relative to either C or D.

7 Even though actions A and D lock the same resource type from the same pool, the pool contains a sufficient
gnumber of resource instances such that there are no scheduling dependencies between the actions. If
9pool R contained only a single instance, there would be a scheduling dependency in that A and D could not

10 overlap, which would violate the rules of the parallel statement.

n

resource R{...}

pool [4] R R pool;
bind R pool *;

action A { lock R r; }
action B {}

action C {}

action D { lock R r; }

action my test ({
activity {
parallel {
{do A; do B;}
{do C; do D;}

12 Example 65—Another parallel statement

1312.3.5 schedule

14 The schedule statement specifies that the PSS processing tool shall select a legal order in which to evaluate

15 the sub-activities, provided that one exists. See Syntax 33.
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112.3.5.1 Syntax

activity_schedule stmt ::= schedule [ activity join spec ] { { activity _stmt } }

Syntax 33—Schedule statement

4 The following also apply:

5
6

7
8
9
10

n

12
13
14
15

a)

b)

¢)

All activities inside the schedule block shall execute, but the PSS processing tool is free to execute
them in any order that satisfies their other scheduling requirements.

Formally, the schedule statement specifies that any scheduling of the combined sets of action execu-
tions per the evaluation of activity_stmt, .. activity_stmt, is permissible, as long as it keeps all sched-
uling dependencies within the sets and introduces (at least) the necessary scheduling dependencies
across the sets in order to comply with the rules of input-output binding of actions and resource
assignments.

In the absence of an activity join spec (see 12.3.6), execution of the activity statement following the
schedule block is scheduled to begin after all statements within the block have completed. When an
activity_join_spec is specified, execution of the activity statement following the schedule block is
scheduled based on the join specification.

1612.3.5.2 Examples

17 Consider the code in Example 66, which is similar to Example 64, but uses a schedule block instead of a
18 parallel block. In this case, the following executions are valid:

19
20

21
22

23

24

a)
b)

¢)

The sequence of action nodes a, b, c.
The sequence of action nodes a, c, b.

The sequence of action node a, followed by b and c run in any order, subject to other scheduling
constraints.

action my test ({
A a;
B b;
C c;
activity {
ay
schedule {
b;
Ccy

Example 66—Schedule statement

25 Note that neither b nor ¢ may start execution until after the completion of a, and the start of execution for
26 either may be subject to additional scheduling constraints. In contrast to b and ¢ executing in parallel, as in
27 Example 64, there may be scheduling dependencies between b and c in the schedule block. The scheduling
28 graph for the activity is shown here:
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2 Figure 6—Scheduling graph of activity with schedule block

3 For the case where b and c overlap, the runtime behaviors will execute as shown here:

behavior

Time

5 Figure 7—Runtime behavior of activity with schedule block

6 In contrast, consider the code in Example 67. In this case, any execution order in which both B comes after A
7and D comes after C is valid.

8 If both A and D wrote to the same state variable, they would have to execute sequentially. This is in addition
9 to the sequencing of A and B and of C and D. In the case where D writes before 2, the sequence would be {C,
10D, A, B}. In the case where A writes before D, the runtime behavior would be as shown in Figure 8.
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action A {}
action B {}
action C {}
action D {}

action my test ({
activity {
schedule {
{do A; do B;}
{do C; do D;}

2 Example 67—Scheduling block with sequential sub-blocks

behavior

Vv

Time

4 Figure 8—Runtime behavior of scheduling block with sequential sub-blocks
512.3.6 Fine-grained scheduling specifiers

6 Fine-grained scheduling specifiers modify the termination semantics for parallel and schedule blocks (see
7 Syntax 32, Syntax 33, and Syntax 34). The semantics of fine-grained scheduling are defined strictly at the
g activity scheduling level. The semantics do not assume that any runtime execution information is
9 incorporated by the PSS processing tool in the scheduling process. Activity scheduling in the presence of a
10 fine-grained scheduling specifier is still subject to all other scheduling rules.
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112.3.6.1 Syntax

activity join_spec ::=
activity join_branch
| activity _join_select
| activity join_none
| activity join_first
activity join_branch ::= join_branch ( label identifier {, label identifier } )
activity join_select ::= join_select ( expression )

activity join_none ::= join_none

activity join_first ::= join_first ( expression )

Syntax 34—Activity join specification

4 The following also apply:

5
6
7

8
9
10

n
12
13

14
15
16
17
18

19
20

21
22

23
24

25
26
27
28

29
30

31
32

a)

b)

¢)

d)

join_branch accepts a list of labels referring to labeled activity statements. The activity statement
following the fine-grained scheduling block is scheduled after all the listed activity statements have
completed.

1) The label identifier used in the join_branch specification must be the label of a top-level
branch within the parallel or schedule block to which the join_branch specification is
applied.

2) When the /abel identifier used in the join_branch specification applies to traversal of an array,
the activity statement following the fine-grained scheduling block is scheduled after all actions
in the array have completed.

join_select accepts an expression specifying the number of top-level activity statements within the
fine-grained scheduling block on which to condition execution of the activity statement following
the fine-grained scheduling block. The specific activity statements shall be selected randomly. Exe-
cution of the activity statement following the fine-grained scheduling block is scheduled after the
selected activity statements.

1) The expression shall be of an integer type. The value of the expression must be determinable at
solve time. If the value is 0, the join_select is equivalent to join_none.

2)  When an action array is traversed, each element of the array is considered a separate action that
may be selected independently.

join_none specifies that the activity statement following the fine-grained scheduling block has no
scheduling dependency on activity statements within the block.

join_first specifies that the activity statement following the fine-grained scheduling block has a run-
time execution dependency on the first N activity statements within the fine-grained scheduling
block to complete execution. The activity statement following the fine-grained scheduling block has
no scheduling dependency on activity statements within the block, only a runtime dependency.

1) The expression shall be of an integer type. The value of the expression must be determinable at
solve time. If the value is 0, the join_first is equivalent to join_none.

2)  When an action array is traversed, each element of the array is considered a separate action that
may be selected independently.

33 The application scope of a fine-grained scheduling block is bounded by the sequential block that contains it.
34 In other words, all activity statements that start within the fine-grained scheduling block must complete
35 before the statement following the containing sequential block begins. Activities started, but not joined,
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1within a fine-grained scheduling block are not implicitly waited for by any containing parallel or schedule

2 blocks. Only the containing sequential block causes a join on activities started within it.

312.3.6.2 Examples

4In Example 68, the innermost parallel block (1L4) starts two activities (L5 and L 6), while only waiting for
sone (L5) to complete before continuing. Since L5 traverses the action array b, all elements of b must
6 complete before continuing. The next level of parallel block (L2) waits for its two branches to complete (L3
7and L4), but does not wait for L6 to complete. The outermost parallel block (L1) waits for one of its
g branches (L2) to complete before proceeding. This means that both L7 and L6 may be in-flight when L8 is

9 traversed.

10

B bl2];
activity {
Ll: parallel join branch(L2) {
L2: parallel {
L3: do A;
L4: parallel join branch (L5) {
L5: b;
L6: do C;

L7: do D;

L8: do F;

11 Example 68—join_branch

12 The scheduling graph of the activity is shown in Figure 9.
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(1
w1/

L1
L2
L7:D L4
D G G (@2
2 Figure 9—join_branch scheduling graph

3 The runtime behavior is shown in Figure 10.
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behavior

AL

Time
2 Figure 10—join_branch runtime behavior

3 Activity scheduling in the presence of a fine-grained scheduling block is still subject to all other scheduling
4rules. For example, if both 16 and L8 in the example above contend for the same single resource, they must
5 be scheduled sequentially in order to avoid a resource conflict.

6 For the following four examples, assume that each of the three actions in the activity locks a resource from
7 the same pool.

8 In Example 69, the parallel block causes traversal of branches L1 and L2 to be scheduled in parallel. The
9 join_branch specifier causes traversal of action C to be scheduled with a sequential dependency on the
10 activity statement labeled L2. Traversal of action C may not begin until the activity statement labeled L2 has
11 completed. To avoid adding additional scheduling dependencies, the resource pool would need a minimum
12 of two resource instances. Actions A and B would each lock a resource instance, and C, since it is guaranteed
13 not to start until A completes, would lock the same resource instance as that assigned to A. Note that this
14 allocation is handled at solve-time, and is independent of whether B completes before or after A completes.

15

activity {
L1 : parallel join branch(L2) {
L2: do A;
L3: do B;
}
L4: do C;
}
16 Example 69—join_branch with scheduling dependency
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1 The scheduling graph of the activity is shown in Figure 11.

2

3 Figure 11—Scheduling graph of join_branch with scheduling dependency
4 The runtime behavior is shown in Figure 12.

5

behavior

|—
w
o

I 1 ____7
|
1
; A L4:C )
! o
Time
6 Figure 12—Runtime behavior of join_branch with scheduling dependency

7 In Example 70, the parallel block causes traversal of the branches labeled L2 and L3 to be scheduled in
g parallel. The join_select specifier causes traversal of action C to be scheduled with a sequential dependency
9 on a random selection of either the branch labeled L2 or L3. This means that traversal of C may not begin
10 until after the selected target activity statement has completed. The tool randomly selects N (in this case, 1)
11 target branch(es) from the candidate branches on which to make traversal of the following activity statement
12 dependent.

13 In this example, the resource pool would need a minimum of two resource instances. Because the tool may
14 not know which of A or B will complete first, it must choose one and assign the same resource instance to
15 action C. If the tool selected L2 as the branch on which C depends, the behavior would be identical to the
16 previous example.
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activity {
L1l : parallel join select(1l) {
L2: do A;
L3: do B;
}
L4: do C;

Example 70—join_select

3 In Example 71, the join_none specifier causes traversal of action C to be scheduled with no dependencies.
4To avoid additional scheduling dependencies, the minimum size of the resource pool must be three, since
5 each action traversed in the activity must have a unique resource instance.

6 Actions A and B are scheduled in parallel, and action C is scheduled concurrently with both of them. This
7means that C could start at the same time as A and B, but it may not. While the parallel statement precludes
g any dependencies between A and B, the join_none qualifier allows action C to be scheduled concurrently,
9 but there may be additional dependencies between action C and action A and/or B.

10

activity {
L1l : parallel join none ({
L2: do A;
L3: do B;
}
L4: do C;

Example 71—join_none

12 The scheduling graph of the activity is shown in Figure 13.

13

14

Figure 13—join_none scheduling graph

15 In Example 72, the join_first specifier causes the PSS processing tool to condition execution of action C on
16 runtime execution completion of the first of either action A or B. Since the scheduling tool may not know
17 which action will complete first, there must be a minimum of three resource instances in the pool in order to
18 guarantee that C may execute immediately after whichever of A or B completes first. If there are two
19 instances in the pool, the tool may assign either resource instance to C at solve-time. If the other action
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1assigned the same resource instance completes last, then action C, because it starts execution after the
2 previous action completes, will also start its execution after the completion of the first action.

activity {
L1l

: parallel join first(1l) {
L2: do A;

L3: do B;

}

L4: do C;

Example 72—join_first

5 The runtime behavior is shown in Figure 14.

behavior

Vv

Time

Figure 14—join_first runtime behavior

8 Example 73 illustrates how a sequence block bounds the impact of the fine-grained scheduling specifier.

9 The execution of L5 is scheduled in sequence with L.3. L4 and L5 may be scheduled concurrently. L6 is
10 scheduled strictly sequentially to all statements inside L1, the sequence block.

1

activity {
Ll: sequence {
L2: parallel join branch(L3) ({
L3: do A;
L4: do B;
}
L5: do C;
}
L6: do D;
}
Example 73—Scope of join inside sequence block
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1 The scheduling graph is shown in Example 15.

2

3 Figure 15—Scheduling graph of join inside sequence block
4 The runtime behavior is shown in Figure 16.

5

behavior

6 Figure 16—Runtime behavior of join inside sequence block
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1 Example 74 shows how the join specification may also be used with the schedule block.

activity {
L1 : schedule join branch(L2) {
L2: do A;
L3: do B;
}
L4: do C;
}
3 Example 74—join with schedule block

4 Assuming there are no scheduling dependencies between actions A and B, the scheduling graph of schedule
sblock L1 is shown in Figure 17.

6 In all cases, action C is scheduled subsequent to action A. If A is scheduled before B, then B and C may—or
7 may not-be scheduled concurrently, although there may be additional dependencies between them. If B is
8 scheduled before 2, the actions are executed in the order B, A, C. If A and B are scheduled concurrently, then
9 C is still scheduled after A, but again may be concurrent with B, subject to any dependencies between B and
10 C.

L2:A

12 Figure 17—Scheduling graph join with schedule block
1312.3.7 Atomic block specifier

14 Within an activity block, the atomic block specifier is used to preserve intended scheduling structure of its
15 sub-activity, by preventing potential interference from other actions in the larger scenario. Example 75 and
16 Example 76 in 12.3.7.2 demonstrate two typical causes for such interference: action inference and
17 scheduling issues due to resource allocation. The atomic block specifier restricts the legal solution space by
18 ruling out “unintended” (but otherwise legal) scheduling dependencies between actions within an atomic

Copyright © 2024 Accellera. All rights reserved.
150



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1block and the rest of the scenario. The following section defines which scheduling dependencies are ruled
2 out and which remain legal.

3 An atomic block is analogous to an atomic action from a scheduling point of view, meaning that it can be
4 substituted by an atomic action without change to the outside scheduling relations. All actions explicitly
s traversed in an atomic block are part of a single scheduling “cluster” (a nested subgraph of the scheduling
6 dependency graph). In a transitive-reduced scheduling graph, the atomic block would have exactly one
7incoming edge and one outgoing edge. The incoming edge would represent “upward” dependencies,
8 scheduling dependencies of an action traversed in the atomic block on outside actions. These outside actions
9become scheduling dependencies of the block as a whole (i.e., of all other actions in the cluster). The
10 outgoing edge would represent “downward” dependencies, scheduling dependencies of an action within the
11 cluster to an action outside the cluster. The outside action has a scheduling dependency on the block as a
12 whole (i.e., on all other actions within the cluster).

1312.3.7.1 Syntax

14

activity atomic block stmt ::= atomic { { activity stmt } }

15 Syntax 35—Atomic block

16 An atomic set is the set of all action executions corresponding to action traversal statements under the scope
17 of an atomic block.

18— This recursively includes all sub-actions of a compound action traversed in the atomic block.

19 — One atomic set can be a subset of another, but two atomic sets cannot have a non-empty intersection
20 unless one is a subset of the other (this is guaranteed by the structure of activities).

21— Inferred actions are never within an atomic set.

22 The following applies:

23— IfASis an atomic set, a; € A4S, and a, ¢ A4S, then:

24 1) Ifa; — ay, then for every az € A4S, a3 — ay; that is, if an action outside the atomic set has a
25 scheduling dependency on an action inside the atomic set, then the outside action has a sched-
26 ule dependency on all actions in the atomic set.

27 2) If ay — aj then for every as € AS, a, — aj; that is, if an action inside the atomic set has a
28 scheduling dependency on an action outside the atomic set, then all actions in the atomic set
29 have a scheduling dependency on the outside action.

3012.3.7.2 Examples

31 Consider the code in Example 75. It demonstrates how the atomic specifier prevents the PSS solver from
32 generating an unintended scenario scheduling due to the action inference process.

33 The atomic block specifier is used to ensure that B_a starts immediately after A a completes. B_a may
34only start after configX a completes. configX a could require a meaningful amount of time to
35 complete. configX a needs to be inferred. Without the atomic specifier, configX a could be inferred
36to execute after A_a_and before B_a. With the atomic specifier, we are guaranteed a stress scenario where
37B_a is executed immediately after A a completes.
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action bringup a {}

state config s {
rand mode e mode;

}

action configX a {
output config s out cfg;
constraint out cfg.mode == X;

}
action A a {}

action B a {
input config s cfg;
constraint cfg.mode == X;

action my stress seq a {
activity {
do bringup_a;
atomic {
do A a;
do B a;
}

2 Example 75—Atomic block to avoid action interference

3 Figure 18 illustrates undesired scheduling of the configX a action when inferred, which can occur if the
4 atomic specifier is not used.

In reality, B a may start

long after A_a. Stress is not A
achieved because relevant
behavior is spaced apart or ~
diluted.
6 Figure 18—Scheduling graph of action interference
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1Figure 19 illustrates the cluster of actions in an atomic block (i.e., A_a and B_a) and how the configX a
2 action is an “upward” scheduling dependency of the atomic block. The figure shows two examples where
3configX aisscheduled: a) after the bring-up and before the atomic block; b) in parallel with the bring-up

4 and before the atomic block.

Inferred action is scheduled

prior to the atomic block.
bringup_a

/ Atomic block does not start
until all its dependencies are

g

Figure 19—Scheduling graph of atomic block avoiding interference

7 Consider the code in Example 76. It demonstrates how the atomic specifier prevents the PSS solver from
8 generating an unintended scenario scheduling due to a possible outcome of the resource allocation process.

9 Test intent of my stress seq is that B follows A as soon as possible. Figure 20 shows a scheduling
10 solution that would violate this intent within the my test scenario. C could be scheduled in parallel with A
11when both B and C happen to be assigned same resource slot, causing B to wait for completion of C which

12 may take longer than A.
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resource core r {}
pool [4] core r core pool;

action A {}

action B {
lock core r core;

action C {
lock core r core;

action my stress seq {
activity {
atomic {
do A;
do B;

action my test {
activity {

schedule {
do my stress seq;
do C;

Example 76—Atomic block to avoid resource allocation issues

|
Resource  assignment
randomized to be the
same. Ve
T
A S

~ : In reality, B may start long
~ after A completes.
«

2

Figure 20—Scheduling graph of resource allocation issues
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112.4 Activity control flow constructs

2In addition to defining sequential and parallel blocks of action execution, repetition and branching
3 statements can be used inside the activity clause.

412.4.1 repeat (count)
5 The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.

6 This section describes the count-expression variant (see Syntax 36) and 12.4.2 describes the while-
7 expression variant.

§12.4.1.1 Syntax

activity repeat stmt ::=
repeat ([ index_identifier : ] expression ) activity stmt

10 Syntax 36—repeat-count statement

11 The following also apply:
12 a) expression shall be a non-negative integer expression (int or bit).

13 b) Intuitively, the activity stmt is iterated the number of times specified in the expression. An optional

14 index-variable identifier can be specified that ranges between 0 and one less than the iteration count.
15 If the expression evaluates to 0, the activity stmt is not evaluated at all.

16 c¢) Formally, the repeat-count statement specifies sequential scheduling between N sets of action exe-
17 cutions per the evaluation of activity stmt N times, where N is the number to which expression eval-
18 uates (see 6.3.2).

19 d) The choice of values to rand attributes figuring in the expression shall be such that it yields legal
20 execution scheduling.

2112.4.1.2 Examples

22 In Example 77, the resulting execution is six sequential action executions, alternating A’s and B’s, with five
23 scheduling dependencies: (Ay) > (Bg), (Bgy) > (A1), (Aq) > (By), (B1) > (B3), (Ay) > (By).

24
action my test {
A a;
B b;
activity {
repeat (3) {
a;
b;
}
}
bi
25 Example 77—repeat statement
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1 Example 78 shows an additional example of using repeat-count.

action my test ({
my actionl actionl;
my action2 action2;
activity {
repeat (i : 10) {
if ((1 % 4) == 0) {
actionl;
} else {
action2;

}

i

Example 78—Another repeat statement

412.4.2 repeat-while

5 The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.
6 This section describes the while-expression variant (see Syntax 37).

712.4.2.1 Syntax

activity repeat_stmt ::=

| repeat activity stmt while ( expression ) ;

Syntax 37—repeat-while statement

10 The following also apply:

n

12
13

14
15
16
17

a)
b)

¢)

expression shall be of type bool.

Intuitively, the activity _stmt is iterated so long as the expression condition is true, as sampled after
the activity _stmt.

Formally, the repeat-while statement specifies sequential scheduling between multiple sets of
action executions per the iterative evaluation of activity stmt. The evaluation of activity stmt con-
tinues repeatedly so long as expression evaluates to true. expression is evaluated after the execution
of each set in the repeat-while block.
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112.4.2.2 Examples

component top {
function bit is last one();

action do something {
bit last one;

exec post solve {
last one = comp.is last one();

}

exec body C = """
printf ("Do Something\n");

wuwn o,
’

action entry {
do something sl;

activity {
repeat {
sl;
} while (sl.last one !=0);

Example 79—repeat-while statement

412.4.3 foreach

5 The foreach construct iterates over the elements of a collection (see Syntax 38). See also Example 80.

612.4.3.1 Syntax

activity foreach stmt =
foreach ([ iterator_identifier : ] expression [ [ index_identifier | ] ) activity stmt

Syntax 38—foreach statement

9 The following also apply:

10
il

12
13

14
15
16

7
18

a)

b)

¢)

d)

expression shall be of a collection type (i.e., array, list, map or set), including fixed-sized arrays of
action handles, components, and flow and resource object references.

The body of the foreach statement is a sequential block in which activity stmt is evaluated once for
each element in the collection.

iterator_identifier specifies the name of an iterator variable of the collection element type. Within
activity stmt, the iterator variable, when specified, is an alias to the collection element of the current
iteration.

index_identifier specifies the name of an index variable. Within activity stmt, the index variable,
when specified, corresponds to the element index of the current iteration.

Copyright © 2024 Accellera. All rights reserved.
157



O 0 N O

10

n
12

Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one
less than the size of the collection variable, in that order.

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys. The order of key traversal is undetermined.

3) For sets, an index variable shall not be specified.

Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

1312.4.3.2 Examples

14

15

action my actionl {
rand bit[4] wval;
//

}

action my test ({
rand bit[4] in [0..7] al[l6];
my actionl actionl;

activity {
foreach (a[j]) {
actionl with {val <= al[jl;};

}

}i

Example 80—foreach statement

16 12.4.4 select

17 The select statement specifies a branch point in the traversal of the activity (see Syntax 39).

18 12.4.4.1 Syntax

19

20

activity_select stmt ::= select { select branch select branch { select branch } }

select_branch ::=[ [ (expression ) ] [ | expression | ] : ] activity stmt

Syntax 39—select statement

21 The following also apply:

22

23
24
25
26

a)
b)

Intuitively, a select statement executes one out of a number of possible activities.

One or more of the activity stmts may optionally have a guard condition specified in parentheses
( (). Guard condition expressions shall be of Boolean type. When the select statement is evaluated,
only those activity stmts whose guard condition evaluates to true or that do not have a guard condi-
tion are considered enabled.
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Formally, each evaluation of a select statement corresponds to the evaluation of just one of the
select_branch statements. All scheduling requirements shall hold for the selected activity statement.

Optionally, all activity stmts may include a weight expression, which is a numeric expression that
evaluates to a non-negative integer value. The probability of choosing an enabled activity stmt is the
weight of the given statement divided by the sum of the weights of all enabled statements. If the
activity_stmt is an array of action handles, then the weight expression is assigned to each element of
the array, from which one element is selected and traversed.

If any activity stmt has a weight expression, then any statement without an explicit weight expres-
sion associated with it shall have a weight of 1.

It shall be illegal if no activity statement is valid according to the active constraint and scheduling
requirements and the evaluation of the guard conditions.

1212.4.4.2 Examples

13In Example 81, the select statement causes the activity to select actionl or action2 during each
14 execution of the activity.

15

16

action my test ({
my actionl actionl;
my action2 action2;
activity {
select {
actionl;
action2;

Example 81—Select statement

17 In Example 82, the branch selected shall depend on the value of a when the select statement is evaluated.

18
19
20
21
22
23
24
25
26

a)

b)

a==0 means that all three branches could be chosen, according to their weights.

1) actionl is chosen with a probability of 20%.

2) action2 is chosen with a probability of 30%.

3) action3 is chosen with a probability of 50%.

a in [1..3] meansthataction?2 or action3 is traversed according to their weights.
1) action2 is chosen with a probability of 37.5%.

2) action3is chosen with a probability of 62.5%.

a==4 means that only action3 is traversed.
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action my test ({
my actionl actionl;
my action2 action2;
my action3 action3;
rand int in [0..4] a;
activity {
select {
(a == ) [20]: actionl;
(a in [0..3])[30]: action2?2;
[50]: action3;

2 Example 82—Select statement with guard conditions and weights

3In Example 83, the select statement causes the activity to select actionl or one element of action?2
4 during the execution of the activity. Since the weight expression of 2 is applied to each element of the
saction?2 array, there is a 40% chance that either element of that array is chosen, and a 20% (weight of 1)
6 chance of choosing actionl.

action my test {
my actionl actionl;
my action2 action2[2];

activity {
select {
actionl;
[2]: action2;

8 Example 83—Select statement with array of action handles

912.4.5 if-else

10 The if-else statement introduces a branch point in the traversal of the activity (see Syntax 40).
112.4.5.1 Syntax

12

activity _if else stmt ::= if ( expression ) activity stmt [ else activity stmt ]

13 Syntax 40—if-else statement

14 The following also apply:
15 a) expression shall be of type bool.

16 b) Intuitively, an if-else statement executes some activity if a condition holds, and, otherwise (if speci-
17 fied), the alternative activity.

18 ¢) Formally, the if-else statement specifies the scheduling of the set of action executions per the evalu-
19 ation of the first activity stmt if expression evaluates to true or the second activity stmt (following
20 else) if present and expression evaluates to false.
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1 d) The scheduling relationships need only be met for one branch for each evaluation of the activity.

2 e) The choice of values to rand attributes figuring in the expression shall be such that it yields legal
3 execution scheduling.

412.4.5.2 Examples

5 If the scheduling requirements for Example 84 required selection of the b branch, then the value selected for
6 x must be <= 5.

action my test {
rand int in [1..10] x;
A a;
B b;
activity {
if (x > 5)
ay
else
b;

8 Example 84—if-else statement

912.4.6 match

10 The match statement specifies a multi-way decision point in the traversal of the activity that tests whether
11an expression matches any of a number of other expressions and traverses one of the matching branches
12 accordingly (see Syntax 41).

1312.4.6.1 Syntax

14

activity_match_stmt ::= match ( match expression ) { match choice { match choice } }
match_expression ::= expression
match_choice ::=

[ open_range list | : activity stmt

| default : activity stmt
15 Syntax 41—match statement

16 The following also apply:
17 a)  When the match statement is executed, the match_expression is evaluated.

18 b)  After the match _expression is evaluated, the open_range_list of each match_choice shall be com-
19 pared to the match_expression. open_range_lists are described in 8.5.9.1.

20 c¢) Ifthere is exactly one match, then the corresponding branch shall be traversed.

21 d) If there is more than one match, then one of the matching match choices shall be randomly tra-
22 versed.

23 e) Ifthere are no matches, then the default branch, if provided, shall be traversed.
24 f)  The default branch is optional. There may be at most one default branch in the match statement.
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g) As with a select statement, it shall be an error if no match_choice is valid according to the active
2 constraint and scheduling requirements and the evaluation of the match_expression against the
3 match_choice open_range_lists.

-

412.4.6.2 Examples

sIn Example 85, the match statement causes the activity to evaluate the data field
6in security data.val and select a branch according to its value at each execution of the activity. If
7 the data field is equal to LEVEL2, actionl is traversed. If the data field is equal to LEVELS, action?2 is
g traversed. If the data field is equal to LEVEL3 or LEVEL4, then either actionl or action?2 is traversed
9 at random. For any other value of the data field, action3 is traversed.

10

action my test ({
rand security data in security data;
my actionl actionl;
my action2 action2;
my action3 action3;
activity {
match (in_security data.val) {
[LEVEL2..LEVEL4] :
actionl;
[LEVEL3..LEVELS5] :
action2;
default:
action3;

11 Example 85—match statement

1212.5 Activity construction statements
1312.5.1 replicate

14 The replicate statement is a generative activity statement interpreted as an in-place expansion of a specified
15 statement multiple times. The replicate statement does not introduce an additional layer of scheduling or
16 control flow. The execution semantics applied to the expanded statements depend on the context. In
17 particular, replicating a statement N times under a parallel statement executes the same statement N times in
18 parallel. Unlike a repeat statement, replicate provides a way to reference specific expansion instances from
19 above using a label array.

2012.5.1.1 Syntax

21

activity replicate stmt ::=
replicate ([ index_identifier : | expression ) [ label identifier [ ] : ] labeled activity stmt
22 Syntax 42—replicate statement

23 The following also apply:
24 a) expression shall be a positive integer expression (int or bit).
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1 b) The replicate statement expands in-place to labeled activity stmt replicated the number of times
2 specified in the expression. An optional index variable index_identifier may be specified that ranges
between 0 and one less than the iteration count.

w

4 ¢) The execution semantics of a replicate statement where expression evaluates to N are equivalent to
5 the execution semantics of N occurrences of labeled _activity stmt directly traversed in its enclosing
6 activity scope.
7 d) The number of replications must be known as part of the solve process. In other words, expression
8 may not contain an attribute that is assigned in the context of a runtime exec block (body/run_start/
9 run_end).
10 €) A label identifier may optionally be used to label the replicated statement in the form of a label
1 array. If used, each expanded occurrence of labeled activity stmt becomes a named sub-activity
12 with the label label identifier[0] ... label identifier[N-1] respectively, where N is the number of
13 expanded occurrences. Reference can be made to labels and action handles declared under the repli-
14 cate and its nested scopes using array indexing on the label. (See more on hierarchical activity refer-
15 ences in 12.8).
16 f)  Labels may be used to name sub-activities inside the scope of a replicate statement only if the
17 label identifier is specified. A label under a replicate statement without a named label array leads to
18 name conflict between the replicated sub-activities (see scoping rules for named sub-activities in
19 12.8.2).
20 g) Traversing a named action handle within a replicate scope that is declared outside the replicate
21 scope shall not result in multiple traversal when the replicate statement is expanded (see
22 12.3.1.1(c)). Both anonymous action traversal and action traversal of an action handle declared
23 locally inside the replicate scope are allowed.

2412.5.1.2 Examples

25 In Example 86, the resulting execution is either two, three, or four parallel executions of the sequence A ->
26 B.

27

action my test {
rand int in [2..4] count;
activity {
parallel {
replicate (count) {
do A;
do B;

28 Example 86—replicate statement
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1In Example 87, the execution of action my test results in one execution of A as well as four executions of
2 B, all in the scope of the schedule statement, that is, invoked in any order that satisfies the scheduling rules.

action my test ({
activity {
schedule {
do A;
replicate (i: 4) do B with { size == 1*10; };
}
}
}i
4 Example 87—replicate statement with index variable

s Example 87 can be rewritten in the following equivalent way to eliminate the replicate statement:

action my test {
activity {
schedule {
do A;
do B with { size == 0*10; };
do B with { size == 1*10; };
do B with { size == 2*10; };
do B with { size == 3*10; };
t
}
}i
7 Example 88—Rewriting previous example without replicate statement
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1Example 89 illustrates the use of a replicate label array for unique hierarchical paths to specific expansion
2 instances. References are made to action handles declared and traversed in specific expansion instances of a
3 replicate statement from outside its scope.

action my compound {
rand int in [2..4] count;
activity {
parallel {
replicate (count) RL[]: {

A a;
B b;
ay
b;

}
if (RL[count-1].a.x ==0) { // 'a' of the last replicate expansion
do C;

}
}i

action my test {
activity {
do my compound with {
RL[0].a.x == 10; // 'a' of the first replicate expansion

}i

5 Example 89—replicate statement with label array

6 In Example 90 a number of error situations are demonstrated. Note that label L in this example causes a
7 name conflict between the named sub-activities in the expansion of the replicate statement (see also 12.8.2).

action my test {
A a;
C c arr[4];
activity {
schedule {
replicate (i:4) {
B b;
a; // Error - traversal of action handle
// declared outside the replicate scope
b; // OK - action handle declared inside replicate scope
c_arr([i]; // OK - each element of the action handle array is a
// unique action handle, so does not cause the same
// handle to be traversed multiple times
L: select { // Error - label causes name conflict in expansion
do A;
do B;
}
}
}
}
}i
8 Example 90—replicate statement error situations
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112.6 Activity evaluation with extension and inheritance

2 Compound actions support both type inheritance and type extension (see Clause 20). When type extension is
3used to contribute one or more activities to an action type, the execution semantics are the same as if all the
4 contributed activities were scheduled along with all the activities from the initial definition.

sIn Example 91, action type entry traverses action type A. Extensions to action type entry include
6 activities that traverse action types B and C.

component pss_top {
action A { };
action B { };
action C { };

action entry {
activity {
do A;
}

extend action entry {
activity {
do B;
}

extend action entry {
activity {
do C;
}

8 Example 91—Extended action traversal

9 The semantics of activity in the presence of type extension state that all three activity blocks will be
10 traversed in an implied schedule block. In other words, Example 91 is equivalent to the hand-coded
11 example shown in Example 92.
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component pss_top {
action A { };
action B { };
action C { };

action entry {
activity {
schedule {
do A;
do B;
do C;

2 Example 92—Hand-coded action traversal

3 When a compound action inherits from another compound action, any activities declared in the inheriting
4 action shadow (mask) the activity (or activities) declared in the base action. The “super;” statement can be
s used to traverse the activity (or activities) declared in the base action.

6 In Example 93, action base declares an activity that traverses action type A. Action ext1 inherits from
7base and replaces the activity declared in base with an activity that traverses action type B. Action ext 2
g inherits from base and replaces the activity declared in base with an activity that first traverses the
9 activity declared in base, then traverses action type C.

10

component pss_top {
action A { }
action B { }
action C { }

action base {
activity {
do A;
}

action extl : base {
activity {
do B;
}

action ext2 : base {
activity {
super;
do C;

11 Example 93—Inheritance and traversal
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112.7 Symbols

2 To assist in reuse and simplify the specification of repetitive behaviors in a single activity, a symbol may be
3 declared to represent a subset of activity functionality (see Syntax 43). The symbol may be used as a node in
4 the activity.

5 A symbol may activate another symbol, but symbols are not recursive and may not activate themselves.

612.7.1 Syntax

7
symbol declaration ::= symbol symbol_identifier [ ( symbol paramlist ) | { { activity stmt } }
symbol paramlist ::= [ symbol param { , symbol param } ]
symbol param ::= data type identifier

8 Syntax 43—symbol declaration

912.7.2 Examples

10 Example 94 depicts using a symbol. In this case, the desired activity is a sequence of choices between aN
11and bN, followed by a sequence of cN actions. This statement could be specified in-line, but for brevity of
12 the top-level activity description, a symbol is declared for the sequence of a N and b selections. The symbol
13 is then referenced in the top-level activity, which has the same effect as specifying the a N/bN sequence of
14 selects in-line.

15

component entity {
action a { }
action b { }
action ¢ { }

action top {
a al, a2, a3;
b bl, b2, b3;
c cl, c2, c3;

symbol a or b {
select {al; bl; }
select {a2; b2; }
select {a3; b3; }
}

activity {
a or b;
cl;
c2;
c3;

}

}
}
16 Example 94—Using a symbol
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1Example 95 depicts using a parameterized symbol.

component entity {
action a { }
action b { }
action ¢ { }
action top {
a al, a2, a3;
b bl, b2, b3;
c cl, c2, c3;
symbol ab or ba (a aa, b bb) {
select {
{ aa; bb; }
{ bb; aa; }

}

activity {
ab or ba(al,bl);
ab or ba(a2,b2);
ab_or ba(a3,b3);
cl;
c2;
c3;

3 Example 95—Using a parameterized symbol

412.8 Named sub-activities

5 Sub-activities are structured elements of an activity. Naming sub-activities is a way to specify a logical tree
6 structure of sub-activities within an activity. This tree serves for making hierarchical references, both to
7 action-handle variables declared in-line, as well as to the activity statements themselves. The hierarchical
8 paths thus exposed abstract from the concrete syntactic structure of the activity, since only explicitly labeled
9 statements constitute a new hierarchy level.

1012.8.1 Syntax
11 A named sub-activity is declared by labeling an activity statement, see Syntax 29.
1212.8.2 Scoping rules for named sub-activities

13 Activity statement labels shall be unique in the context of the containing named sub-activity—the nearest
14 lexically-containing statement which is labeled. Activity statement labels shall not conflict with local
15 variable names, including named action handles. Unlabeled activity statements do not constitute a separate
16 naming scope for sub-activities.

17 Note that labeling activity statements inside the scope of a replicate statement leads to name conflicts
18 between the expanded sub-activities, unless a label array is specified (see 12.5.1.1). With a replicate label
19 array, each expanded named sub-activity has a unique hierarchical path.

20 In Example 96, some activity statements are labeled while others are not. The second occurrence of label 1.2
211s conflicting with the first because the if statement under which the first occurs is not labeled and hence is
22 not a separate naming scope for sub-activities.
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action A {};

action B {
int x;
activity {
Ll: parallel { // 'Ll' is 1st level named sub-activity
if (x > 10) {
L2: | // 'L2' is 2nd level named sub-activity
A a;
ay

A a; // OK - this is a separate naming scope for variables
ajy

}

L2: { // Error - this 'L2' conflicts with 'L2' above
A a;
ay

2 Example 96—Scoping and named sub-activities

3 Example 97 below demonstrates a name conflict between a local action-handle variable and a label of an
4 activity statement in the same named sub-activity. This is not allowed, as it would render the hierarchical

spath L. a from action A’s scope ambiguous.

action A {
activity {
L: schedule {
A a;
B b;
a: { // illegal label!
do C;
do D;

}

constraint parallel {L.a, L.b};

7 Example 97—Activity statement label name conflict

8 12.8.3 Hierarchical references using named sub-activity

9Named sub-activities, introduced through labels, allow referencing action-handle variables using
10 hierarchical paths. References can be made to a variable from within the same activity, from the compound

11 action top-level scope, and from outside the action scope.
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1A hierarchical activity path uses labels in a way similar to variables of struct and array types. The dot
2 operator (.) in the case of simple labels, or the indexing operator ([]) and other array operators in the case of
3 label arrays (introduced by replicate statements), may be used to reference named sub-activity blocks.

4 Only action handles declared directly under a labeled activity statement can be accessed outside their direct
s lexical scope. Action handles declared in an unnamed activity scope cannot be accessed from outside that
6 scope.

7 Note that the top activity scope is unnamed. For an action handle to be directly accessible in the top-level
g action scope, or from outside the current scope, it shall be declared at the top-level action scope.

9 In Example 98, action B declares action-handle variables in labeled activity statement scopes, thus making
10 them accessible from outside by using hierarchical paths. action C uses hierarchical paths to constrain the

11 sub-actions of its sub-actions b1 and b2.

12

action A { rand int x; };

action B {
A ay
activity {
ay
my seq: sequence {
A a;
ay
parallel {
my rep: repeat (3) |
A a;
ay
}i
sequence {
A a; // this 'a' is declared in unnamed scope
a; // can't be accessed from outside

action C {

B bl, b2;

constraint bl.a.x == 1;

constraint bl.my seqg.a.x == 2;

constraint bl.my seg.my rep.a.x == 3; // applies to all three iterations

// of the loop
activity {
bl;
b2 with { my seq.my rep.a.x == 4; }; // likewise
}
}i

13 Example 98—Hierarchical references and named sub-activities
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112.9 Explicitly binding flow objects

2 Input and output fields of actions may be explicitly connected to actions using the bind statement (see
3 Syntax 44). It states that the fields of the respective actions reference the same object—the output of one
4 action is the input of another.

512.9.1 Syntax

6

activity_bind_stmt ::= bind hierarchical_id activity bind_item_or_list ;
activity bind_item or list ::=
hierarchical id
| { hierarchical id list}

Syntax 44—bind statement

8 The following also apply:

9

10
1

12
13

14

a)
b)

¢)

d)

Reference fields that are bound shall be of the same object type.

Explicit binding shall conform to the scheduling and connectivity rules of the respective flow object
kind defined in 13.4.

Explicit binding can only associate reference fields that are statically bound to the same pool
instance (see 15.3).

The order in which the fields are listed does not matter.
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112.9.2 Examples

2 Examples of binding are shown in Example 99.

component top({
buffer B {rand int a;};
action P1 {
output B out;
}i
action P2 {
output B out;
}i
action C {
input B inp;
}i

pool B B p;
bind B p {*};

action T {

Pl pl;

P2 p2;

C c;

activity {
pl;
r2;
c;
bind pl.out c.inp; // c.inp.a == pl.out.a

}i

}
}i
4 Example 99—bind statement

512.10 Hierarchical flow object binding

6 As discussed in 13.4, actions, including compound actions, may declare inputs and/or outputs of a given
7 flow object type. When a compound action has inputs and/or outputs of the same type and direction as its
g sub-action and which are statically bound to the same pool (see 15.3), the bind statement may be used to
9 associate the compound action’s input/output with the desired sub-action input/output. The compound
10 action’s input/output shall be the first argument to the bind statement.

11 The outermost compound action that declares the input/output determines its scheduling implications, even
12 if it binds the input/output to that of a sub-action. The binding to a corresponding input/output of a sub-
13 action simply delegates the object reference to the sub-action.

14 In the case of a buffer object input to the compound action, the action that produces the buffer object must
15 complete before the activity of the compound action begins, regardless of where within the activity the sub-
16 action to which the input buffer is bound begins. Similarly, the compound action’s activity shall complete
17 before the compound action’s output buffer is available, regardless of where in the compound action’s
18 activity the sub-action that produces the buffer object executes. The corollary to this statement is that no
19 other sub-action in the compound action’s activity may have an input explicitly hierarchically bound to the
20 compound action’s buffer output object. Similarly, no sub-action in the compound action’s activity may
21have an output that is explicitly hierarchically bound to the compound action’s input object. Consider

22 Example 100.
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action sub_a {
input data buf din;
output data buf dout;
}

action compound a {
input data buf data in;
output data buf data out;
sub a al, a2;
activity {
al;
a2;
bind al.dout a2.dinj;
bind data_in al.din; // hierarchical bind
bind data_out a2.dout; // hierarchical bind
// The following bind statements would be illegal
// bind data in al.dout; // sub-action output may not be bound to

// // compound action’s input
// bind data out a2.din; // sub-action input may not be bound to
// // compound action’s output
}
}
2 Example 100—Hierarchical flow binding for buffer objects

3 For stream objects, the compound action’s activity shall execute in parallel with the action that produces the
4 input stream object to the compound action or consumes the stream object output by the compound action. A
5 sub-action within the activity of a compound action that is bound to a stream input/output of the compound
6 action shall be an initial action in the activity of the compound action. Consider Example 101.

action sub _a {
input data str din;
output data buf dout;
}

action compound a {
input data str data in;
output data buf data out;
sub_a al, a2;
activity {
al;
az;
bind data in al.din; // hierarchical bind
// The following bind statement would be illegal
// bind data in a2.din; // a2 is not scheduled in parallel with compound a

8 Example 101—Hierarchical flow binding for stream objects

9 For state object outputs of the compound action, the activity shall complete before any other action may
10 write to or read from the state object, regardless of where in the activity the sub-action executes within the
11activity. Only one sub-action may be bound to the compound action’s state object output. Any number of
12 sub-actions may have input state objects bound to the compound action’s state object input.
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112.11 Hierarchical resource object binding

2 As discussed in 14.2, actions, including compound actions, may claim a resource object of a given type.
3 When a compound action claims a resource of the same type as its sub-action(s) and where the compound
4 action and the sub-action are bound to the same pool, the bind statement may be used to associate the
5 compound action’s resource with the desired sub-action resource. The compound action’s resource shall be
6 the first argument to the bind statement.

7 The outermost compound action that claims the resource determines its scheduling implications. The
g binding to a corresponding resource of a sub-action simply delegates the resource reference to the sub-
9 action.

10 The compound action’s claim on the resource determines the scheduling of the compound action relative to
11other actions and that claim is valid for the duration of the activity. The sub-actions’ resource claim
12 determines the relative scheduling of the sub-actions in the context of the activity. In the absence of the
13 explicit resource binding, the compound action and its sub-action(s) claim resources from the pool to which
14 they are bound. Thus, it shall be illegal for a sub-action to lock the same resource instance that is locked by
15 the compound action.

16 A resource locked by the compound action may be bound to any resource(s) in the sub-action(s). Thus, only
17 one sub-action that locks the resource reference may execute in the activity at any given time and no sharing
18 sub-actions may execute at the same time. If the resource that is locked by the compound action is bound to
19 a shared resource(s) in the sub-action(s), there is no further scheduling dependency.

20 A resource shared by the compound action may only be bound to a shared resource(s) in the sub-action(s).
21Since the compound action’s shared resource may also be claimed by another action, there is no way to
22 guarantee exclusive access to the resource by any sub-action; so, it shall be illegal to bind a shared resource
23 to a locking sub-action resource.

24 In Example 102, the compound action locks resources cr1kA and cr1kB, so no other actions outside of
25 compound_a may lock either resource for the duration of the activity.

26

action sub _a {
lock res r rlkA, rlkB;
share res r rshA, rshB;

}

action compound a {
lock res r crlkA, crlkB;
share res r crshA, crshB;
sub_a al, a2;
activity {
schedule {
al;
az2;

bind crlkA {al.rlkA, a2.rlkA};
bind crshA {al.rshA, a2.rshA};
bind crlkB {al.rlkB, a2.rshB};
bind crshB {al.rshB, a2.rlkB}; //illegal

27 Example 102—Hierarchical resource binding
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113. Flow objects

2 A flow object represents incoming or outgoing data/control flow for actions, or their pre-condition and post-
3 condition. A flow object can have two modes of reference by actions: input and output.

413.1 Buffer objects

s Buffer objects represent data items in some persistent storage that can be written and read. Once their
6 writing is completed, they can be read as needed. Typically, buffer objects represent data or control buffers
7 in internal or external memories. See Syntax 45.

813.1.1 Syntax

buffer identifier [ template param_decl list ] [ struct_super_spec ] { { struct_body item } }

10 Syntax 45—buffer declaration

11 The following also apply:

12 a) Note that the buffer type does not imply any specific layout in memory for the specific data being
13 stored.

14 b) Buffer types can inherit from previously defined structs or buffers.

15 ¢) Buffer object reference fields can be declared under actions using the input or output modifier (see
16 13.4). Instance fields of buffer type (taken as a plain-data type) can only be declared under higher-
17 level buffer types, as their data attribute.

18 d) A buffer object shall be the output of exactly one action. A buffer object may be the input of any
19 number (zero or more) of actions.

20 e) Execution of a consuming action that inputs a buffer shall not begin until after the execution of the
21 producing action completes (see Figure 2).

22 f)  Anaction may not have the same buffer object declared as both an input and an output.
2313.1.2 Examples

24 Examples of buffer objects are show in Example 103.

25
struct mem segment s {...};
buffer data buff s {
rand mem segment s seg;
bi
26 Example 103—buffer object

2713.2 Stream objects

28 Stream objects represent transient data or control exchanged between actions during concurrent activity,
29e.g., over a bus or network, or across interfaces. They represent data item flow or message/notification
30 exchange. See Syntax 46.
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113.2.1 Syntax

stream identifier [ template param_decl list | [ struct_super_spec ] { { struct body item } }

Syntax 46—stream declaration

4 The following also apply:

5

6
7
8

9

10
1l
12

a)
b)

¢)
d)

Stream types can inherit from previously defined structs or streams.

Stream object reference fields can be declared under actions using the input or output modifier (see
13.4). Instance fields of stream type (taken as a plain-data type) can only be declared under higher-
level stream types, as their data attribute.

A stream object shall be the output of exactly one action and the input of exactly one action.

The outputting and inputting actions shall begin their execution at the same time, after the same pre-
ceding action(s) completes. The outputting and inputting actions are said to run in parallel. The
semantics of parallel execution are discussed further in 12.3.4.

1313.2.2 Examples

14 Examples of stream objects are show in Example 104.

15

16

struct mem segment s {...};
stream data stream s {
rand mem_ segment s seg;

b

Example 104—stream object

1713.3 State objects

18 State objects represent the state of some entity in the execution environment at a given time. See Syntax 47.

1913.3.1 Syntax

20

21

state identifier [ template param_decl list ] [ struct super spec | { { struct body item } }

Syntax 47—state declaration

22 The following also apply:

23
24

25
26

27
28
29
30

31

a)

b)

¢)

d)

The writing and reading of states in a scenario is deterministic. With respect to a pool of state
objects, writing shall not take place concurrently to either writing or reading.

The initial state of a given type is represented by the built-in Boolean initial attribute. See 15.5
for more on state pools (and initial).

State object reference fields can be declared under actions using the input or output modifier (see
13.4). Instance fields of state type (taken as a plain-data type) can only be declared under higher-
level state types, as their data attribute. It shall be illegal to access the built-in attribute initial on
an instance field.

State types can inherit from previously defined structs or states.
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An action that has an input or output of state object type operates on a pool of the corresponding
state object type to which its field is bound. Static pool bind directives are used to associate the
action with the appropriate state object pool (see 15.3).

At any given time, a pool of state object type contains a single state object. This object reflects the
last state specified by the output of an action bound to the pool. Prior to execution of the first action
that outputs to the pool, the object reflects the initial state specified by constraints involving the
initial built-in field of state object types.

The built-in variable prev is a reference from this state object to the previous one in the pool. prev
is a reference to the same type as this state object. The value of prev shall be unresolved in the con-
text of the initial state object. prev shall only be available within a state type declaration or exten-
sion, in relation to this state object itself.

An action that inputs a state object reads the current state object from the state object pool to which
it is bound.

An action that outputs a state object writes to the state object pool to which it is bound, updating the
state object in the pool.

Execution of an action that outputs a state object shall complete at any time before the execution of
any inputting action begins.

Execution of an action that outputs a state object to a pool shall not be concurrent with the execution
of any other action that either outputs or inputs a state object from that pool.

Execution of an action that inputs a state object from a pool may be concurrent with the execution of
any other action(s) that input a state object from the same pool, but shall not be concurrent with the
execution of any other action that outputs a state object to the same pool.

2313.3.2 Examples

24 Examples of state objects are shown in Example 105.

25

26

enum mode e {...};
state config s {
rand mode e mode;

b

Example 105—state object
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113.4 Using flow objects

2 Flow object references are specified by actions as inputs or outputs. These references are used to specify
3rules for combining actions in legal scenarios. An action that outputs a flow object is said to produce that
4 object and an action that inputs a flow object is said to consume the object. See Syntax 48.

5 A consumer may consume flow objects that are produced by multiple producers, and vice versa.

6 An action can produce or consume a fixed-size array of flow objects. Declaring such an array is equivalent
7 to declaring multiple distinct object reference fields of the same type.

§13.4.1 Syntax

10

action_field declaration ::=
attr_field
| activity data field
| action_handle declaration
| object ref field declaration
object_ref field declaration ::=
flow_ref field declaration
| resource ref field declaration
flow_ref field declaration ::=
(input | output ) flow_object_type object ref field {, object ref field } ;
flow_object type ::=
buffer type_identifier
| state type identifier
| stream_type_identifier
object_ref field ::= identifier [ array dim ]
array_dim ::= [ constant _expression |

Syntax 48—Flow object reference

11 The following apply for arrays of flow object references:

12
13

14
15

16
17
18
19

20
21

a)

b)

c)

d)

Individual elements in the array may be referenced by using the array name and the element index in
square brackets.

A flow object array is specified as entirely input or entirely output. The mode cannot be specified
separately for an individual element of the array.

The different elements in an array may be bound to different pools. Explicit binding must be used
for array elements associated with different pools. Default (type-based) pool binding applies to all
elements of an object-reference array, and therefore cannot be used for this purpose (see 15.3 for
more details).

For an array of state object references, each object reference must be bound to a different state pool,
since a state pool can store only one state object at a time (see 13.3.1 and Example 116).
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113.4.2 Examples

2 Examples of using buffer flow objects are shown in Example 106.

struct mem segment s {...};
buffer data buff s {

rand mem_ segment_ s seg;
i
action cons mem a {

input data buff s in data;
b
action prod mem a {

output data buff s out data;
i

4 Example 106—buffer flow object

s For a timing diagram showing the relative execution of two actions sharing a buffer object, see Figure 2.

6 Examples of using stream flow objects are shown in Example 107.

struct mem segment s {...};
stream data stream s {

rand mem segment s seg;
b
action cons mem a {

input data stream s in data;
i
action prod mem a {

output data stream s out data;

i

8 Example 107—stream flow object

9 For a timing diagram showing the relative execution of two actions sharing a stream object, see Figure 3.

10 In Example 108, four buffer objects are produced, one by action prod 1b and three by action prod 3b,
11and five buffer objects are consumed, one by cons 1b, two by cons 2b 0, and two by cons_2b 1.
12 All the buffer objects are produced and consumed from the same pool, buff p. All the buffer objects
13 have a random integer attribute, int attr. Consumer objects in cons_2b 0 constrain their int attr
14 attribute to 3, while in cons_2b_1, the first consumer object’s int attr attribute is constrained to be
15 greater than or equal to 2, and the second is constrained to be less than 3. prod 3b’s producer objects
16 int attr attributes are all constrained to 3.

17 There is an explicit bind to bind the second consumer object in cons 2b 1 with the first producer object
18in prod 3b, The explicit bind constraint will fail because int attr in the consumer object is
19 constrained to be less than 3, while int attr in the producer object is constrained to 3. If we remove the
20 explicit bind, then that same consumer object will bind to the producer prod 1Db’s output object because
21its int_attr is constrained to be less than 3.
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}i

}i

}i

}i

}i

buffer data buff {
rand int int attr;

component flow object array c {
pool data buff buff p;
bind buff p *;

action prod buff a {
output data buff out 1 buff;

action prod 3 buff a {
output data buff out 3 buff [3];

action cons buff a {
input data buff in 1 buff;

action cons 2 buff a {
input data buff in 2 buff [2];

action activity a {
prod buff a prod 1b;
prod 3 buff a prod 3b;

cons_buff a cons_1b;
cons_2 buff a cons 2b 0;

cons_2 buff a cons 2b 1;

activity {

prod 1b with {out 1 buff.int attr == 1;};
prod 3b with {
foreach (b:out 3 buff) { b.int attr == 3;};
b
cons 1b with { in 1 buff.int attr == 3;};

cons_2b 0;

constraint { foreach (b: cons 2b 0.in 2 buff) ({
b.int attr == 3;

piti

cons 2b 1 with {

in 2 buff[0].int attr >= 2 && in 2 buff[l].int attr < 3;};

bind cons 2b 1.in 2 buff[l] prod 3b.out 3 buff[0];

// conflict

2 Example 108—Multiple producers/consumers using the same buffer pool

3 An example of use of an array of state object references can be seen in Example 116.
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114. Resource objects

2 Resource objects represent computational resources available in the execution environment that may be
3 assigned to actions for the duration of their execution.

414.1 Declaring resource objects

5 Resource types can inherit from previously defined structs or resources. See Syntax 49. Resources reside in
6 pools (see Clause 15) and may be claimed by specific actions.

714.1.1 Syntax

resource identifier [ template param_decl list ] [ struct_super_spec | { { struct body item } }

9 Syntax 49—resource declaration

10 The following also apply:
1 a) Resources have a built-in non-negative integer attribute called instance_id. This attribute rep-

12 resents the relative index of the resource instance in the pool. The value of instance_id ranges
13 from 0 to pool size — 1. See also 15.4.

14 b)  There can only be one resource object per instance_id value for a given pool. Thus, actions ref-
15 erencing a resource object of some type with the same instance_id are necessarily referencing
16 the very same object and agreeing on all its properties.

17 ¢)  Resource object reference fields can be declared under actions using the lock or share modifier (see
18 14.2). Instance fields of resource type (taken as a plain-data type) can only be declared under higher-
19 level resource types, as their data attribute.

2014.1.2 Examples

21For examples of how to declare a resource, see Example 109.

22
resource DMA channel s {
rand bit[3:0] priority;
}i
23 Example 109—Declaring a resource

2414.2 Claiming resource objects

25 Resource objects may be locked or shared by actions. This is expressed by declaring the resource reference
26 field of an action. See Syntax 50.

27 An action can claim a fixed-size array of resource objects. Declaring such an array is equivalent to declaring
28 multiple distinct object reference fields of the same type.
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114.2.1 Syntax

action_field declaration ::=
attr_field
| activity _data_field
| action_handle_declaration
| object ref field declaration
object_ref field declaration ::=
flow_ref field declaration
| resource ref field declaration
resource_ref field declaration ::=
(lock | share) resource_object_type object ref field {, object ref field } ;
resource_object _type ::= resource_type_identifier
object ref field ::= identifier [ array dim ]

array_dim ::= [ constant_expression |

3 Syntax 50—Resource object reference

4lock and share are modes of resource use by an action. They serve to declare resource requirements of the
saction and restrict legal scheduling relative to other actions. Locking excludes the use of the resource
6 instance by another action throughout the execution of the locking action and sharing guarantees that the
7 resource is not locked by another action during its execution.

8 In a PSS-generated test scenario, no two actions may be assigned the same resource instance if they overlap
9in execution time and at least one is locking the resource. In other words, there is a strict scheduling
10 dependency between an action referencing a resource object in lock mode and all other actions referencing
11the same resource object instance.

12 The following apply for arrays of resource object references:

13 a) Individual elements in the array may be referenced by using the array name and the element index in
14 square brackets.

15 b) A resource object array is specified as entirely locked or entirely shared. The mode cannot be speci-
16 fied separately for an individual element of the array.

17 ¢) All elements of a resource object array must be bound to the same pool.

18 d) When claiming an array of resource objects, the pool size must be at least as large as the array, in
19 order to accommodate all distinct resource claims.

2014.2.2 Examples

21Example 110 demonstrates resource claims in lock and share mode. Action two_chan transfer claims
22 exclusive access to two different DMA channel s instances. It also claims one CPU_core s instance in
23 non-exclusive share mode. While two chan transfer executes, no other action may claim either
241instance of the DMA channel s resource, nor may any other action lock the CPU core s resource
25 mstance.

Copyright © 2024 Accellera. All rights reserved.
183



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

resource DMA channel s {
rand bit[3:0] priority;

b

resource CPU core s {...};

action two chan transfer ({
lock DMA channel s chan A;
lock DMA channel s chan B;
share CPU core s ctrl core;

}i
2 Example 110—Resource object

3In Example 111, there is a pool of 16 resource objects of type config. The action baz lock a claimsa
4lock for 8 resource objects. The action baz share a claims to share 16 resource objects. The action
sentry a can legally traverse two baz share a actions in parallel, as the same resource object can be
6 shared between concurrent activities. It can also legally traverse two baz lock a actions in parallel
7 because overall there are 16 resource objects and each action instance consumes only 8.

8
resource config {}
component foo c {
pool[l6] config config p;
bind config p *;
action baz lock a {
lock config config object[8];
}
action baz share a {
share config config object[16];
}
action entry a {
activity {
parallel {
do baz share a;
do baz_ share a;
}
parallel {
do baz lock a;
do baz lock a;
}
}
}
}
9 Example 111—Locking and sharing arrays of resource objects
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115. Pools

2 Pools are used to determine possible assignment of objects to actions, and thus shape the space of legal test
3 scenarios. Pools represent collections of resources, state variables, and connectivity for data flow purposes.
4 Flow object exchange is always mediated by a pool. One action outputs an object to a pool and another
s action inputs it from that same pool. Similarly, actions lock or share a resource object within some pool.

6 Pools are structural entities instantiated under components. They are used to determine the accessibility that
7 actions (see Clause 10) have to flow and resource objects. This is done by binding object reference fields of
gaction types to pools of the respective object types. Bind directives in the component scope associate
gresource references with a specific resource pool, state references with a specific state pool (or state
10 variable), and buffer/stream object references with a specific data flow object pool (see 15.3).

115.1 Syntax

12

component_pool_declaration ::= pool [ [ expression | | type_identifier identifier ;

13 Syntax 51—Pool instantiation

14 In Syntax 51, type_identifier refers to a flow/resource object type, i.c., a buffer, stream, state, or resource
15 struct type.

16 The expression applies only to pools of resource type; it specifies the number of resource instances in the
17 pool. If omitted, the size of the resource pool defaults to 1.

18 The following also apply:
19 a) The execution semantics of a pool are determined by its object type.

20 b) A pool of state type can hold one object at any given time, a pool of resource type can hold up to
21 the given maximum number of unique resource objects throughout a scenario, and a pool of buffer
22 or stream type is not restricted in the number of objects at a given time or throughout the scenario.

2315.2 Examples
24 Example 112 demonstrates how to declare a pool.

25

buffer data buff s {

rand mem_segment s seg;
}i
resource channel s {...};
component dmac_c {

pool data buff s buff p;

pool [4] channel s chan p;

}
26 Example 112—Pool declaration
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115.3 Static pool binding directive

2 Every action executes in the context of a single component instance, and every object resides in some pool.
3 Multiple actions may execute concurrently, or over time, in the context of the same component instance, and
4 multiple objects may reside concurrently, or over time, in the same pool. Actions of a specific component
5 instance output objects to or input objects from a specific pool. Actions of a specific component instance can
6 only be assigned a resource of a certain pool.

7 Static bind directives determine which pools are accessible to the actions’ object references under which
8 component instances (see Syntax 52). Binding is done relative to the component sub-tree of the component
9 type in which the bind directive is applied. See also 20.1.

10 15.3.1 Syntax

n

12

object bind stmt ::= bind hierarchical id object bind item or list;
object_bind_item_or list ::=
object bind item path
| { object bind item path {, object bind item path } }
object bind item path ::= { component path elem . } object bind item
component_path_elem ::= component_identifier [ [ domain_open_range list ] ]
object_bind_item ::=

action_type_identifier . identifier [ [ domain_open_range list ] ]

‘ *

Syntax 52—Static bind directives

13 Pool binding can take one of two forms:

14
15
16

17
18

Explicit binding: associating a pool with a specific object reference field (input/output/resource-
claim) of an action type under a component instance or one or more elements of a component
instance array.

Default binding: associating a pool generally with a component instance sub-tree, or array of com-
ponent instances, by object type.

19 The following also apply:

20
21
22

23
24
25
26
27
28
29
30

31
32

a)

b)

d)
e)

Components (and arrays thereof) and pools are identified with a relative instance path expression. A
specific object reference field is identified with the component instance path expression, followed
by an action-type name and field name, separated by dots (. ).

Default binding can be specified for an entire sub-tree by using a wildcard instead of specific paths.
When referring to an entire array, the array may be referred to by name, without needing to specify
the range of elements in brackets (“[]”).

Explicit binding always takes precedence over default bindings.

Conflicting explicit bindings for the same object reference field shall be illegal.

If multiple bindings apply to the same object reference field, the bind directive in the context of the
top-most component instance takes precedence (i.e., the order of default binding resolution is top-
down).

Applying multiple default bindings to the same object reference field(s) from the same component
shall be illegal.
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1 g) When binding object reference fields to a pool, the object and the pool must be of the exact same
2 type. Thus, it shall be illegal to bind an object of a derived type to a pool of its base type, or vice
3 versa.

415.3.2 Examples
s Example 113 illustrates default binding pools.

6 In these examples, the buff p pool of data buff s objects is bound using the wildcard specifier
7({*}). Because the bind statement is applied in the context of component dma c, the buff p pool is
g bound to all component instances and actions defined in dma_c (i.e., component instances dmasl and
9dmas?2, and action mem2mem_a). Thus, the in data input and out data output of the mem2mem_a
10 action share the same buff p pool. The chan p pool of channel s resources is bound to the two
11 1stances.

12

struct mem segment s {...};
buffer data buff s {

rand mem segment s seg;
b
resource channel s {...};
component dma sub c {

i
component dma c {
dma sub c dmasl, dmas2;
pool data buff s buff p;
bind buff p {*};
pool [4] channel s chan p;
bind chan p {dmasl.*, dmas2.*};
action mem2mem a {
input data buff s in data;
output data buff s out data;

i
b

13 Example 113—Static binding

14 Example 114 illustrates the binding of pools to arrays of components. Each declared pool is of a different
15 type, each of which will be bound to a different subset of the array of mem ¢ components.
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component mem c {...}

component top c {
mem c mem[4];

pool mbuf mbuf p;
pool mbuf2 mbufA p;
pool mbuf3 mbufB p
pool mbuf4 mbufC p;

bind mbuf p mem.*; // All elements of the array
bind mbufA p mem[0..2].*; // Explicit range
bind mbufB p mem[l..].*; // Up to the top element of the array

bind mbufC p mem[2,3].*; // Explicit array element (s)

2 Example 114—Binding of pools to array of components

3 Example 115 illustrates the two forms of binding:, explicit and default. Action power transition a’s
4input and output are both associated with the context component’s (graphics_c) state object pool.
sHowever, action observe same power state a has two inputs, each of which is explicitly
6 associated with a different state object pool, the respective sub-component state variable. The channel s
7 resource pool is instantiated under the multimedia subsystem and is shared between the two engines.
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state power state s { rand int in [0..4] level; }
resource channel s ({}
component graphics c {
pool power state s power state var;
bind power_ state var *; // accessible to all actions under this
// component (specifically power transition's
// input/output)
action power transition a {
input power state s curr; //current state
output power state s next; //next state
lock channel s chan;

}
component my multimedia ss c {
graphics c gfx0;
graphics c gfxl;
pool [4] channel s channels;
bind channels {gfx0.*,gfxl.*};// accessible by default to all actions
// under these component sub-trees
// (specifically power transition's chan)
action observe same power state a {
input power state s gfx0 state;
input power state s gfxl state;
constraint gfx0 state.level == gfxl state.level;
}
// explicit binding of the two power state variables to the
// respective inputs of action observe same power state a
bind gfx0.power state var observe same power state a.gfx0 state;
bind gfxl.power state var observe same power state a.gfxl state;

Example 115—Pool binding

Copyright © 2024 Accellera. All rights reserved.
189




Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1In Example 116, there is a observe same power state a action type with an array of 2 input state
2objects. Action power transition a will cause at least one inferred instance to bind with the
3respective observe same power state a action’s object for each one of the graphics c
4component instances. Using explicit pool bind statements, each element in the object array of

sobserve same power state a isbound to a different pool.

state power state s {
rand int in [0..4] level;
constraint initial -> level == 0;

// graphics component with power state
component graphics c {
pool power state s power state var;
bind power state var *; // accessible to all actions under this
// component (specifically power transition's
// input/output)
action power transition a {
input power state s curr; //current state
output power state s next; //next state

component my multimedia ss c {
graphics ¢ gfx[2];

action observe same power state a {
rand int in [1..4] observed level;

input power state s gfx state[2];
constraint { foreach (s: gfx state) {
s.level == observed level;
}}
}

// explicit binding of the two power state variables to the

// respective inputs of action observe same power state a

bind gfx[0] .power state var observe same power state a.gfx state[0];
bind gfx[1l].power state var observe same power state a.gfx state[l];

7 Example 116—Multiple state pools of the same state type
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115.4 Resource pools and the instance_id attribute

2 Each object in a resource pool has a unique instance_id value, ranging from 0 to the pool’s size - 1.
3 Two actions that reference a resource object with the same instance_id value in the same pool are
4referencing the same resource object. See also 16.1.

sFor example, in Example 117, action transfer is locking two kinds of resources: channel s and
6 cpu_core_ s. Because channel s is defined under component dma c, each dma_c instance has its
7 own pool of two channel objects. Within action par dma_xfers, the two transfer actions can be assigned
8 the same channel instance_id because they are associated with different dma c instances. However,
9 these same two actions must be assigned a different cou _core s object, with a different instance_id,
10 because both dma_ c instances are bound to the same resource pool of cpu_core s objects defined under
1npss_top and they are scheduled in parallel. The bind directive designates the pool of cpu_core_ s
12 resources is to be utilized by both instances of the dma ¢ component.

13

resource cpu core s {}
component dma c {
resource channel s ({}
pool[2] channel s channels;
bind channels {*}; // accessible to all actions
// under this component (and its sub-tree)
action transfer {
lock channel s chan;
lock cpu core s core;
}
}
component pss_top {
dma c dma0O,dmal;
pool[4] cpu core s cpu;
bind cpu {dmaO.*, dmal.*};// accessible to all actions
// under the two sub-components
action par dma xfers {
dma c::transfer xfer a;
dma c::transfer xfer b;

constraint xfer a.comp != xfer b.comp;
constraint xfer a.chan.instance id==xfer b.chan.instance_id; //OK
constraint xfer a.core.instance id==xfer b.core.instance id; //conflict!
activity {
parallel {
xfer a;
xfer b;

14 Example 117—Resource object assignment

1515.5 Pool of states and the initial attribute

16 Each pool of a state type contains exactly one state object at any given point in time throughout the
17 execution of the scenario. A state pool serves as a state variable instantiated in the context component.
18 Actions outputting to a state pool can be viewed as transitions in a finite state machine. See also 16.1.
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1 Prior to execution of an action that outputs a state object to the pool, the pool contains the initial object. The
2initial flag is true for the initial object and false for all other objects subsequently residing in the pool.
3 The initial state object is overwritten by the first state object (if any) which is output to the pool. The initial
4 object is only input by actions that are scheduled before any action that outputs a state object to the same
5 pool.

6 Consider, for example, the code in Example 118. The action codec c: :configure has an UNKNOWN
7mode as its configuration state precondition, due to the constraint on its input prev_conf. Because it
goutputs a new state object with a different mode value, there can only be one such action per codec
9 component instance (unless another action, not shown here, sets the mode back to UNKNOWN).

10

enum codec config mode e {UNKNOWN, A, B}
component codec c {
state configuration s {
rand codec_config mode e mode;
constraint initial -> mode == UNKNOWN;
}
pool configuration s config var;
bind config var *;
action configure {
input configuration s prev conf;
output configuration s next conf;
constraint prev conf.mode == UNKNOWN && next conf.mode in [A, B];

}

11 Example 118—State object binding

12
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116. Randomization

2 Scenario properties can be expressed in PSS declaratively, as algebraic constraints over attributes of
3 scenario entities.

4 a) There are several categories of struct and action fields.

5 1) Random attribute field - a field of a plain-data type (e.g., bit) that is qualified with the rand
6 keyword.

7 2)  Non-random attribute field - a field of a plain-data type (e.g., int) that is not qualified with the
8 rand keyword.

9 3) Sub-action field - a field of an action type or a plain-data type that is qualified with the action
10 keyword.

11 4)  Input/output flow object reference field - a field of a flow object type that is qualified with the
12 input or output keyword.

13 5) Resource claim reference field - a field of a resource object type that is qualified with the lock
14 or share keyword.

15 b) Constraints may shape every aspect of the scenario space. In particular:

16 1) Constraints are used to determine the legal value space within the type domain for attribute
17 fields of actions.

18 2) Constraints affect the legal assignment of resources to actions and, consequently, the schedul-
19 ing of actions.

20 3) Constraints may restrict the possible binding of action inputs to action outputs, and, thus, possi-
21 ble action inferences from partially specified scenarios.

22 4) Constraints determine the association of actions with context component instances.

23 5) Constraints may be used to specify all of the above properties in a specific context of a higher
24 level activity encapsulated via a compound action.

25 6) Constraints may also be applied also to the operands of control flow statements—determining
26 loop count and conditional branch selection.

27 Constraints are typically satisfied by more than just one specific assignment. There is often room for
28 randomness or the application of other considerations in selecting values. The process of selecting values for
29 scenario variables is called constrained randomization or simply randomization.

30 Randomized values of variables become available in the order in which they are used in the execution of a
31scenario, as specified in activities. This provides a natural way to express and reason about the
32 randomization process. It also guarantees values sampled from the environment and fed back into the PSS
33 domain during the generation and/or execution have clear implications on subsequent evaluation. However,
34 this notion of ordering in variable randomization does not introduce ordering into the constraint system—the
35 solver is required to look ahead and accommodate for subsequent constraints.

3616.1 Algebraic constraints
3716.1.1 Member constraints

38 PSS supports two types of constraint blocks (see Syntax 53) as action/struct members: static constraints
39 that always hold and dynamic constraints that only hold when they are referenced by the user by traversing
40 them in an activity (see 16.4.11) or referencing them inside a constraint. Dynamic constraints associate a
41 name with a constraint that would typically be specified as an in-line constraint.
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116.1.1.1 Syntax

constraint_declaration ::=
constraint constraint_set
| [ dynamic ] constraint identifier constraint block
constraint_set ::=
constraint_body_item
| constraint_block
constraint_block ::= { { constraint_body_item } }
constraint_body_item ::=
expression_constraint_item
| foreach_constraint_item
| forall constraint_item
| if constraint item
| implication_constraint_item
| unique_constraint_item
| default hierarchical id == constant expression ;
| default disable hierarchical id ;
| dist_directive
| constraint_body compile if

| stmt_terminator

3 Syntax 563—Member constraint declaration

416.1.1.2 Examples

s Example 119 declares a static constraint block, while Example 120 declares a dynamic constraint block. In
6 the case of the static constraint, the name is optional.

7
action A {
rand bit[31:0] addr;
constraint addr c {
addr == 0x1000;
}
}
8 Example 119—Declaring a static constraint
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action B {
action bit[31:0] addr;

dynamic constraint dyn addrl c ({
addr in [0x1000..0x1FFF];
}

dynamic constraint dyn addr2 c ({
addr in [0x2000..0x2FFF];
1

2 Example 120—Declaring a dynamic constraint

3 Example 121 shows a dynamic constraint inside a static constraint. In the examples, the send pkt action
4sends a packet of a random size. The static constraint pkt sz c ensures the packet is of a legal size and
s the two dynamic constraints, small pkt cand jumbo pkt c, specialize the packet size to be small or
6 large, respectively. The static constraint interesting sz c restricts the size to be either <=100 for
7small pkt cor>1500 for jumbo pkt c.

action send pkt {
rand bit[16] pkt sz;

constraint pkt sz c {pkt sz > 0;}
constraint interesting sz c¢ {small pkt c || jumbo pkt c;}

dynamic constraint small pkt ¢ {pkt sz <= 100;}
dynamic constraint jumbo pkt ¢ {pkt sz > 1500;}

action scenario {
activity {

// Send a packet with size in [1..100, 1501..65535]
do send pkt;
// Send a small packet with a directly-specified in-line constraint
do send pkt with {pkt sz <= 100;};
// Send a small packet by referencing a dynamic constraint
do send pkt with {small pkt c;};

9 Example 121—Referencing a dynamic constraint inside a static constraint

10 16.1.2 Constraint inheritance

11 As discussed in 20.1, an action/struct subtype has all of the constraints that are declared in the context of its
12 supertype or that are inherited by the supertype. Unnamed static constraints in a subtype are added to all
13 other constraints. A named static or dynamic constraint in a subtype shadows (masks) a constraint of the
14 same name from the supertype. Constraint inheritance applies in the same way to static constraints and
15 dynamic constraints.

16 Example 122 illustrates a simple case of constraint inheritance and shadowing. Instances of struct
17 corrupt data buff satisfy the unnamed constraint of data buff based on which size is in the
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1range 1 to 1024. Additionally, size is greater than 256, as specified in the subtype. Finally, per constraint
2size align as specified in the subtype, size divided by 4 has a reminder of 1.

buffer data buff ({
rand int size;
constraint size in [1..10247];
constraint size align { size%4 == 0; } // 4-byte aligned

buffer corrupt data buff : data buff {
constraint size align { size%4 == 1; } // alignment 1 byte off
constraint corrupt data size { size > 256; } // additional constraint

4 Example 122—Inheriting and shadowing constraints

516.1.3 Action traversal in-line constraints

6 Constraints on sub-action data attributes can be in-lined directly in the context of an action traversal
7 statement in the activity clause (for syntax and other details, see 12.3.1).

8 In the context of in-line constraints, attribute field paths of the traversed sub-action can be accessed without
9 the sub-action field qualification. Fields of the traversed sub-action take precedence over fields of the
10 containing action. Other attribute field paths are evaluated in the context of the containing action. In cases
11 where the containing-action fields are shadowed (masked) by fields of the traversed sub-action, they can be
12 explicitly accessed using the built-in variable this. In particular, fields of the context component of the
13 containing action shall be accessed using the prefix path this. comp (see also Example 124).

14 1f a sub-action field is traversed uniquely by a single traversal statement in the activity clause, in-lining a
15 constraint has the same effect as declaring the same member constraint on the sub-action field of the
16 containing action. In cases where the same sub-action field is traversed multiple times, in-line constraints
17 apply only to the specific traversal in which they occur.

18 Unlike member constraints, in-line constraints are evaluated in the specific scheduling context of the action
19 traversal statement. 1f attribute fields of sub-actions other than the one being traversed occur in the
20 constraint, these sub-action fields shall have already been traversed in the activity. In cases where a sub-
21action field has been traversed multiple times, the most recently selected values are considered.

22 Example 123 illustrates the use of in-line constraints. The traversal of a3 is illegal, because the path a4 . £
23 occurs in the in-line constraint, but a4 has not yet been traversed at that point. Constraint c2, in contrast,
24 equates al . £ with a4 . £ without having a specific scheduling context, and is, therefore, legal and enforced.
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action A {
rand bit[3:0] f;
b

action B {
A al, a2, a3, ai4;

constraint cl { al.f in [8..15]; };
constraint c2 { al.f == a4.f; };

activity {
al;
a2 with {
f in [8..15]; // same effect as constraint cl has on al
b
a3 with {
f == ad.f; // illegal: a4.f unresolved at this point
bi

a4;

2 Example 123—Action traversal in-line constraint

3 Example 124 illustrates different name resolutions within an in-line with clause.

4
component subc {
action A {
rand int f;
rand int g;
}
}
component top {
subc subl, sub2;
action B {
rand int f;
rand int h;
subc::A a;
activity {
a with {
f < h; // sub-action's f and containing action's h
g == this.f; // sub-action's g and containing action's f
comp == this.comp.subl;
// sub-action's component is sub-component
// '"subl' of the parent action's component
bi
}
}
}
5 Example 124—Name resolution inside with constraint block
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116.1.4 Logical expression constraints

2 A logical (Boolean) constraint can be used to specify a constraint. Syntax 54 shows the syntax for an
3 expression constraint.

416.1.4.1 Syntax

expression_constraint_item ::= expression ;

6 Syntax 54—Expression constraint

7 expression may be any logical expression. The constraint is satisfied if the expression evaluates to true.
816.1.5 Implication constraints

9 Conditional constraints can be specified using the implication operator (-=>). Syntax 55 shows the syntax for
10 an implication constraint.

1116.1.5.1 Syntax

12

implication_constraint_item ::= expression -> constraint_set

13 Syntax 55—Implication constraint

14 expression may be any logical expression. constraint_set represents any valid constraint or an unnamed
15 constraint set.

16 The following also apply:

17 a) The Boolean equivalent of the implication operator a -> bis (!a || b). This states that if the
18 expression is true, all of the constraints in constraint set shall be satisfied. In other words, if the
19 expression is true, then the random values generated are constrained by the constraint set. Other-
20 wise, the random values generated are unconstrained.

21 b) The implication constraint is bidirectional.
2216.1.5.2 Examples

23 Consider Example 125. Here, b is forced to have the value 1 whenever the value of the variable a is greater
24than 5. However, since the constraint is bidirectional, if b has the value 1, then the evaluation expression
25 (! (a>5) || (b==1)) is true, so the value of a is unconstrained. Similarly, if b has a value other than
261,ais<= 5.

27
struct impl s {
rand bit[7:0] a, b;
constraint ab c {
(a > 5) -=> b == 1;
}
}
28 Example 125—Implication constraint
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116.1.6 if-else constraints
2 Conditional constraints can be specified using the if and if-else constraint statements.
3 Syntax 56 shows the syntax for an if-else constraint.

416.1.6.1 Syntax

if constraint_item ::= if ( expression ) constraint_set [ else constraint_set ]
6 Syntax 56—Conditional constraint

7 expression may be any logical expression. constraint_set represents any valid constraint or an unnamed
8 constraint set.

9 The following also apply:

10 a) Ifthe expression is true, all of the constraints in the first constraint_set shall be satisfied; otherwise,
1 all the constraints in the optional else constraint_set shall be satisfied.

12 b) Constraint sets may be used to group multiple constraints.

13 ¢) Justlike implication (see 16.1.5), if-else style constraints are bidirectional.

1416.1.6.2 Examples

15 In Example 126, the value of a constrains the value of b and the value of b constrains the value of a.

16 Attribute a cannot take the value 0 because both alternatives of the if-else constraint preclude it. The
17 maximum value for attribute b is 4, since in the i f alternative it is 1 and in the e1se alternative it is less
18 than a, which itselfis <= 5.

19In evaluating the constraint, the if-clause evaluates to ! (a>5) || (b==1). If a is in the range
20{1,2,3,4,5}, then the ! (a>5) expression is true, so the (b==1) constraint is ignored. The else-
21clause evaluates to ! (a<=5), which is false, so the constraint expression (b<a) is true. Thus, b is in the

22range {0.. (a-1) }.Ifais 2,then b isintherange {0,1}.Ifa > 5,thenbis 1.

23 However, if b is 1, the (b==1) expression is true, so the ! (a>5) expression is ignored. At this point,
24 either ! (a<=5) ora > 1, which means that a is in the range {2,3, .. 255}.

25

struct if else s {
rand bit[7:0] a, b;

constraint ab c {
if (a > 5) {

b == 1;
} else {
b < a;
}
}
}
26 Example 126—if constraint
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116.1.7 foreach constraints

2 Elements of collections can be iteratively constrained using the foreach constraint.

3 Syntax 57 shows the syntax for a foreach constraint.

416.1.7.1 Syntax

foreach_constraint_item ::=
foreach ([ iterator_identifier : | expression [ [ index_identifier | ] ) constraint_set

Syntax 57—foreach constraint

7 constraint_set represents any valid constraint or an unnamed constraint set.

8 The following also apply:

9
10

il
12

13
14
15

16
17

18
19

20
21

22

23
24
25
26
27

28
29

a)
b)

¢)

d)

e)

expression shall be of a collection type (i.e., array, list, map or set), including fixed-sized arrays of
action handles, components, and flow and resource object references.

All of the constraints in constraint_set shall be satisfied for each of the elements in the collection
specified by expression.

iterator_identifier specifies the name of an iterator variable of the collection element type. Within
constraint_set, the iterator variable, when specified, is an alias to the collection element of the cur-
rent iteration.

index_identifier specifies the name of an index variable. Within constraint_set, the index variable,
when specified, corresponds to the element index of the current iteration.

1) For arrays and lists, the index variable shall be a variable of type int, ranging from O to one
less than the size of the collection variable.

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys.

3) For sets, an index variable shall not be specified.

Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

3016.1.7.2 Examples

31 Example 127 shows an iterative constraint that ensures that the values of the elements of a fixed-size array
32 increment.

Copyright © 2024 Accellera. All rights reserved.
200



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

struct foreach s {
rand bit[9:0] fixed arr[10];

constraint fill arr elem c {
foreach (fixed arr[i]) {
if (1 > 0) {
fixed arr[i] > fixed arr[i-1];

}

Example 127—foreach iterative constraint

316.1.8 forall constraints

4 The forall constraint is used to apply constraints to all instances of a specific type within the instance subtree
5 in which the constraint is placed.

6 Syntax 58 shows the syntax for a forall constraint.

716.1.8.1 Syntax

forall _constraint_item =
forall (iterator_identifier : type identifier [ in ref path ]) constraint_set

Syntax 58—forall constraint

10 type_identifier specifies the type of the entity (action, struct, stream, buffer, state, resource) to which the
11 constraint applies. iferator_identifier can be used inside constraint_set as an alias to each instance, much
12 like the iterator_identifier in a foreach constraint is an alias to each element in the collection (see 16.1.7).
13 ref _path is optionally used to restrict the constraint’s scope of application to a certain instance subtree.

14 The following also apply:

15
16

7

18
19
20

21
22

23
24

25
26

27
28

a)

b)

d)

All of the constraints in constraint _set shall be satisfied for every instance of the specified type in
the forall constraint’s application scope.

When ref path is omitted, the application scope is the subtree of the constraint’s enclosing scope:

1) In the case of a member (type-level) non-dynamic constraint, its application scope includes all
of the context type’s fields (attributes, object references), and in the case of a compound action,
also its entire activity.

2) In the case of an in-line with constraint (see 16.1.3), its application scope is the traversed sub-
action’s fields and, if compound, also its entire activity.

3) In the case of an activity constraint statement or the activation of a named dynamic constraint,
the application scope is the activity scope immediately enclosing the activity statement.

When ref path is specified, the application scope is the subtree under the entity (action, object, or

struct) designated by ref path.

The forall constraint applies to sub-actions within its application scope regardless of whether they
are traversed using an action handle or anonymously.
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116.1.8.2 Examples

2 Example 128 demonstrates the use of a forall constraint in a compound action, constraining sub-actions
3 traversed directly and indirectly under its activity (case b.1 above). Action entry places a constraint on all
4 instances of action A, relating attribute x to its own attribute ax 1imit. The constraint does not apply to an
5 attribute of sub-action B by the same name.

action A {
rand int in [0..9] x;

}i

action B {
rand int in [0..9] x;
}i

action C {
A a;
B b;
activity {
schedule {
a; b;

}
}i

action entry {
rand int in [0..9] ax limit;
A a;
C c;
constraint {
forall (a_it: A) {
a it.x <= ax_limit;
}
}
activity {
a; c;
}
}i
7 Example 128—forall constraint

8 The forall constraint in Example 128 is equivalent to the corresponding constraint on each path to an action
9 handle of type A. Hence, action entry in Example 128 can be rewritten in the way shown in Example 129.
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action entry {
rand int in [0..9] ax limit;
A ay
C c;
constraint {
a.x <= ax limit;
c.a.x <= ax limit;
}
activity {
a; c;

}

}i
2 Example 129—rewrite of forall constraint in terms of explicit paths

3 Example 130 demonstrates the use of forall constraints in two different contexts inside an activity. The first
41s an in-line with constraint item (case b.2 above), applying to all instances of type A under action C that is
5 being traversed in this statement. The second is an activity constraint statement (case b.3 above). It applies
6 to all instances of type A in the immediately enclosing activity scope — in this case the parallel statement.
7 Hence this constraint applies to action A in the first parallel branch, and to all actions of type A under action
8 C in the second parallel branch.

action entry {
activity {
do C with {
forall (a_it: A) {
a it.x == 1;
}
}
parallel {
do A;
do C;
constraint forall (a it: A) {
a it.x in [2, 4];

10 Example 130—forall constraint in different activity scopes

11 Example 131 demonstrates the use of a forall constraint item in a dynamic constraint under an action. The
12 dynamic constraint is activated from above for one traversal of that action, and not for the other. In this case,
13 A’s attributes s1.x and s2.x may be randomized to the value 0xff in the first execution of B, but not in
14 the second.
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struct S {
rand bit[8] x;
)z

action A {
rand S sl, s2;
}i

action B {
dynamic constraint cl {
forall (it: S) { it.x != Oxff; }
}
activity { do A; }
}i

action entry {
activity {
do B;
do B with { cl; };

2 Example 131—forall constraint item in a dynamic constraint

316.1.9 Unique constraints
4 The unique constraint causes unique values to be selected for each element in the specified set.

5 Syntax 59 shows the syntax for a unique constraint.

616.1.9.1 Syntax

7
unique_constraint_item ::= unique { hierarchical id list} ;
hierarchical id list ::= hierarchical id { , hierarchical id }

8 Syntax 59—unique constraint

916.1.9.2 Examples
10 Example 132 forces the solver to select unique values for the random attribute fields 2, B, and C. The
11 unique constraint is equivalent to the following constraint statement: ( (A != B) && (A != C) &&

2(B !'=C)).

13

struct my struct ({
rand bit[4] in [0..12] A, B, C;
constraint unique abc c {
unique {A, B, C};
}

14 Example 132—unique constraint
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116.1.10 Default value constraints

2 A default value constraint determines the value of an attribute, unless explicitly disabled for that specific
3 attribute from its direct or indirect containing type. Default value constraints may only take the form of
4 equality of the attribute to a constant expression. Disabling a default value is done with the default disable
s constraint form.

616.1.10.1 Syntax

constraint_body item ::=

| default hierarchical id == constant expression ;

| default disable hierarchical id ;

Syntax 60—Default constraints

9 The following also apply:

10
n
12

13
14

15
16

7
18

19
20

21
22

23
24
25
26

27

28
29

a)

b)

¢)

d)

2

A default value constraint has the same semantics as the corresponding equality constraint, unless
explicitly disabled. The equality must hold, and conflict with other constraints shall be flagged as a
contradiction.

A default disable constraint is a directive to remove default constraints on the designated attribute,
if any are specified.

hierarchical id for both default and default disable constraints shall be a random attribute (a field
with rand modifier). It shall be an error to apply a default constraint on a non-rand attribute.

Multiple default constraints and default disable constraints may be applied to the same attribute,
with the following precedence rules:

1) A constraint from a higher-level containing context overrides one from a lower-level contain-
ing context.

2) A constraint from a derived type context overrides one from a base type context.
3) A constraint overrides another in the same type context if it occurs later in the code.

default value constraints and default disable constraints may be applied to an attribute of an aggre-
gate data type. The semantics in this case are equivalent to applying the corresponding constraints to
all the rand scalar attributes it comprises. In particular, applying a default disable constraint to an
attribute of an aggregate data type disables default value constraints on all attributes under it.

default and default disable constraints may not be conditioned on non-constant expressions.

default and default disable constraints may not be used under dynamic constraints (constraints pre-
fixed with the dynamic modifier).

3016.1.10.2 Examples

31In Example 133, my struct has two attributes, and a default value constraint on one of them. This struct
321s instantiated three times under my action.

Copyright © 2024 Accellera. All rights reserved.
205



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

struct my struct ({
rand int in [0..3] attrl;
constraint default attrl == 0; // (1)

rand int in [0..3] attr2;
constraint attrl < attr2; // (2)
}i

action my action ({
rand my struct sl;

rand my struct s2;
constraint default s2.attrl == 2; // (3)

rand my struct s3;
constraint default disable s3.attrl; // (4)
constraint s3.attrl > 0; // (5)

2 Example 133—Use of default value constraints

3 When randomizing my action, sl.attrl isresolved to 0 because of constraint (1), and s1.attr2 is
4randomized in the domain 1. . 3 because of constraint (2). s2.attrl is resolved to 2, because constraint
5(3) overrides constraint (1), and s2.attr?2 is resolved to 3 because of constraint (2). Within s3, constraint
6 (1) was disabled by (4), and has no effect. Due to constraints (2) and (5), s3.attrl is randomized in the
7domain 1. .2 and s3.attr2 inthe domain 2. . 3 such that s3.attrl islessthan s3.attr2.

8In Example 134 below, two attributes of my action have default value constraints. If
9my derived action israndomized, attrl is resolved to 0, because default constraint (1) is disabled
10 (3) and a different constraint is in effect (4). However, there is no consistent assignment to at tr2, because
11 both default constraint (2) and the regular constraint (5) are in effect and conflicting.

12

action my action {
rand int attrl;
constraint default attrl == -1; // (1)
rand int attr2;
constraint default attr2 == -1; // (2)
}i
action my derived action : my action ({
constraint {
default disable attrl; // (3)
attrl == 0; // (4) OK
}
constraint attr2 == 0; // (5) contradiction!
}i
13 Example 134—Contradiction with default value constraints

14 Example 135 below shows how default value constraints and default disable constraints apply to aggregate
15 data types. A default value constraint is placed on an array as a whole (1). Under my action, for instance
16 s1 of the struct, the default is replaced by another for a specific element (3), while the other elements retain
17 their original default. Constraint (4) disables the default for all array elements under s2, and they are
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1randomized over their full domain. Constraint (5) disables defaults of all attributes under the struct,
2 including the 4 arr elements and attr. A subsequent constraint determines that s3 . attr randomizes to
350.

4
struct my struct {
rand array<int, 4> arr;
constraint default arr == {0, 10, 20, 30}; // (1)
rand int attr;
constraint default attr == 40; // (2)
}i
action my action {
rand my struct sl, s2, s3;
constraint default sl.arr[3] == 100; // (3)
constraint default disable s2.arr; // (4)
constraint default disable s3; // (5)
constraint s3.attr == 50;
}i
5 Example 135—Default value constraints on compound data types

616.1.11 Distribution directive

7 The distribution directive provides a value-distribution specification for a given expression to the constraint
8 solver within the PSS processing tool.

constraint_body_item ::=

| dist_directive

dist_directive ::= dist expression in [ dist_list | ;
dist_list ::= dist_item {, dist_item }
dist_item ::= open_range value [ dist_weight ]
dist_weight ::=
1= expression
| :/ expression
10 Syntax 61—Distribution directive

11 A dist directive is a standalone statement from a syntax perspective. It is used to influence the value
12 distribution of the target expression, but is not itself an expression.

13 The dist_list is a comma-separated list of integral expressions and ranges. Each term in the list can be given
14 a non-negative weight, specified via the := or :/ operators. If no weight is specified for a given item, the
15 default weight is := 1.
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11In the absence of conflicting constraints, the value of the distribution target expression must fall within the
2dist_list; the probability that the distribution target expression matches any value in the dist list is
3 proportional to its specified weight. Constraints take priority over the dist directive and may force the
4 distribution target expression to fall outside the set of values captured by the dist_list.

5 Value-distribution probability is only specified with respect to a single dist directive acting on an
6 expression. In the presence of multiple dist directives acting on common expression elements with different
7 distribution weights, the resulting value distribution across the common expression elements is undefined.

8 The := operator assigns the specified weight to the item in the case of a single-value dist_item. In the case of
9 a value-range dist_item, the weight is assigned to each value in the value range.

10 The :/ operator assigns the specified weight to the item in the case of a single-value dist_item. In the case of
11a value-range dist_item, the weight is distributed across the values in the range. In other words, if there are n
12 values in the range, each value will have a weight of weight / n.

13 The following also apply:
14 a) The left-hand expression shall be an integer expression and contain at least one rand variable.
15 b) rand variables may not be used in dist weights or value ranges.

16 ¢) The total weight associated with a value is the sum of all weights applied to that value in the dist_list
17 using the := and :/ operators.

1816.1.11.1 Examples

19

struct S {
rand bit[32] x;
constraint dist x in [100..102 := 1, 200 := 2, 300 := 5];
}
20 Example 136—Distribution directive on single variable

21In the example above, x is weighted to have a value range [100..102, 200, 300]. Additionally, value
22 selection is weighted 1, 1, 1, 2, 5.

23
struct S {
rand bit[32] x;
constraint dist (x+6) in [100..102 := 1, 200 := 2, 300 := 5];
}
24 Example 137—Distribution directive on expression

25 Distribution weights may be applied to expressions as well as to individual variables. In the example above,
26 the expression (x+6) is weighted to have a value range [100..102, 200, 300] with weights 1, 1, 1, 2, 5. Note
27 that this is equivalent to applying the value ranges [94..96, 194, 294] to x.

28
struct S {
rand bit[32] x;
constraint dist x in [100..102 :/ 1, 200 := 2, 300 := 5];
}
29 Example 138—Distribution directive weight specification forms
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1In the example above, x is weighted to have a value range [100..102, 200, 300]. Additionally, value
2 selection is weighted 1/3, 1/3, 1/3, 2, 5.

struct S {
rand bit[32] x;
bit Vi
constraint dist x in [100..102 := 1, 200 := 2, 300 := 5];
constraint (y==1) -> x > 300;
}
4 Example 139—Constraint priority over distribution directive

5 In the example above, a constraint can cause the value of x to be outside the dist directive range in some
6 cases. When v is set to 1, the implication constraint prevents the dist directive from biasing the distribution
7 of the target expression. This case does not result in a solve failure.

struct S {
rand bit[32] x;
bit[32] w; // default value is 0
constraint dist x in [100..102 := 1, 200 := 2, 300 := w];
}
9 Example 140—Zero-valued distribution weight

10 In Example 140 above, x is constrained using the declared value range of [100..102, 200, 300]. However,
11 value 300 is given a weight of 0. Consequently, the effective value range of x will be [100..102, 200]. The
12 value selection is weighted 1, 1, 1, 2.

1316.2 Scheduling constraints

14 Scheduling constraints relate two or more actions or sub-activities from a scheduling point of view.
15 Scheduling constraints do not themselves introduce new action traversals. Rather, they affect actions
16 explicitly traversed in contexts that do not already dictate specific relative scheduling. Such contexts
17 necessarily involve actions directly or indirectly under a schedule statement (see 12.3.5). Similarly,
18 scheduling constraints can be applied to named sub-activities, see Syntax 62.

1916.2.1 Syntax

20

activity _scheduling_constraint = constraint (
{ hierarchical id, hierarchical id {, hierarchical id } } ;

parallel | sequence )

21

Syntax 62—scheduling constraint statement

22 The following also apply:

23 a) constraint sequence schedules the related actions so that each completes before the next one starts
24 (equivalent to a sequential activity block, see 12.3.3).

25 b) constraint parallel schedules the related actions such that they are invoked in a synchronized way
26 and then proceed without further synchronization until their completion (equivalent to a parallel
27 activity statement, see 12.3.4).
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1 ¢) Scheduling constraints may not be applied to action handles that are traversed multiple times. In par-
2 ticular, they may not be applied to actions traversed inside an iterative statement: repeat, repeat-
3 while, and foreach (see 12.4). However, the iterative statement itself, as a named sub-activity, can
4 be related in scheduling constraints.

5 d) Scheduling constraints involving action-handle variables that are not traversed at all, or are traversed

o

in branches not actually chosen from select or if statements (see 12.4), hold vacuously.

7 e) Scheduling constraints shall not undo or conflict with any scheduling requirements of the related
8 actions.

916.2.2 Example

10 Example 141 demonstrates the use of a scheduling constraint. In it, compound action my sub_ flow
11 specifies an activity in which action a is executed, followed by the group b, c, and d, with an unspecified
12 scheduling relation between them. Action my top flow schedules two executions of my sub flow,
13 relating their sub-actions using scheduling constraints.

14
action my sub flow {
A a; B Db; Cc; D d;
activity {
sequence {
ay
schedule {
b; c; d;
}i
}i
}i
}i
action my top flow {
my sub flow sfl, sf2;
activity {
schedule {
sfl;
sf2;
}i
b
constraint sequence {sfl.a, sf2.b};
constraint parallel {sfl.b, sf2.b, sf2.d};
}i
15 Example 141—Scheduling constraints
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116.3 Sequencing constraints on state objects

2 A pool of state type stores exactly one state object at any given time during the execution of a test scenario,
3 thus serving as a state variable (see 15.5). Any action that outputs a state object to a pool is considered a
4 state transition with respect to that state variable. Within the context of a state type, reference can be made to
s attributes of the previous state, relating them in Boolean expressions to attributes values of this state. This is
6 done by using the built-in reference variable prev (see 13.3).

7 NOTE—Any constraint in which prewv occurs is vacuously satisfied in the context of the initial state object.

8 In Example 142, the first constraint in power state s determines that the value of domain B may
9 only decrement by 1, remain the same, or increment by 1 between consecutive states. The second constraint
10 determines that if a domain_C in any given state is 0, the subsequent state has a domain Cof 0 or 1 and
ndomain B is 1. These rules apply equally to the output of the two actions declared under component
2power ctrl c.

13

state power state s {
rand int in [0..3] domain A, domain B, domain C;

constraint domain B in { prev.domain B - 1,
prev.domain B,
prev.domain B + 1};

constraint prev.domain C==0 -> domain C in [0,1] || domain B==0;

b

component power ctrl c {
pool power state s psvar;
bind psvar *;

action power transl {
output power state s next state;

b

action power trans2 {
output power state s next state;
constraint next state.domain C == 0;

b

14 Example 142—Sequencing constraints

1516.4 Randomization process

16 PSS supports randomization of plain-data type fields associated with scenario elements, as well as
17 randomization of different relations between scenario elements, such as scheduling, resource allocation, and
18 data flow. Moreover, the language supports specifying the order of random value selection, coupled with the
19 flow of execution, in a compound action’s sub-activity, the activity clause. Activity-based random value
20 selection is performed with specific rules to simplify activity composition and reuse and minimize
21 complexity for the user.

22 Random attribute fields of struct type are randomized as a unit. Traversal of a sub-action field triggers
23 randomization of random attribute fields of the action and the resolution of its flow/resource object
24 references. This is followed by evaluation of the action’s activity if the action is compound.
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116.4.1 Random attribute fields
2 This section describes the rules that govern whether an element is considered randomizable.

316.4.1.1 Semantics

4 a) Struct attribute fields qualified with the rand keyword are randomized if a field of that struct type is

5 also qualified with the rand keyword.

b)  Action attribute fields qualified with the rand keyword are randomized at the beginning of action
execution. In the case of compound actions, rand attribute fields are randomized prior to the execu-
tion of the activity and, in all cases, prior to the execution of the action’s exec blocks (except
pre_solve, see 16.4.12).

O 0 N O

10 NOTE—TIt is often helpful to directly traverse attribute fields within an activity. This is equivalent to creating an inter-
11 mediate action with a random attribute field of the plain-data type.

1216.4.1.2 Examples
13 In Example 143, struct S1 contains two attribute fields. Attribute field a is qualified with the rand keyword,
14 while b is not. Struct S2 creates two attribute fields of type S1. Attribute field s1 1 is also qualified with

15 the rand keyword. s1_1.a will be randomized, while s1_1.b will not. Attribute field s1 2 is not
16 qualified with the rand keyword, so neither s1_2.anor s1_2.Db will be randomized.

7

struct S1 {
rand bit[3:0] a;
bit[3:0] b;
}

struct S2 {

rand S1 sl 1;
S1 sl 2;
}
18 Example 143—Struct rand and non-rand fields

19 Example 144 shows two actions, each containing a rand-qualified data field (A: :a and B: :b). Action B
20 also contains two fields of action type A (a_1 and a_2). When action B is executed, a value is assigned to
21the random attribute field b. Next, the activity body is executed. This involves assigning a valuetoa 1.a
22and subsequentlytoa 2.a.

23

action A {
rand bit[3:0] a;
}

action B {
A al, a2;
rand bit[3:0] b;

activity {
a 1;
a 2;

}

24 Example 144—Action rand-qualified fields
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1Example 145 shows an action-qualified field in action B named a_bit. The PSS processing tool assigns a
2value to a_bit when it is traversed in the activity body. The semantics are identical to assigning a
3 value to the rand-qualified action field A: : a.

4
action A {
rand bit[3:0] a;
}
action B {
action bit[3:0] a bit;
A a 1;
activity {
a bit;
a 1;
t
}
5 Example 145—Action-qualified fields

616.4.2 Randomization of lists
7 When a rand-qualified list variable is randomized, its elements are randomized and given values consistent
g with any constraints on them. The size of the array is not randomized, and may not be constrained (see

97.9.3.4).

10 Hierarchical constraint references to list elements can be declared in locations where it is not yet known
11 whether the list element exists. Example 146 illustrates such a case.

12

action sub a {
rand list<bit[8]> 1lst;
exec pre solve ({
lst.push back(0);
}

action parent a {
sub a a;
rand int yy;
constraint a.lst[0] == yy;

activity {
ay

}

13 Example 146—Hierarchical constraint reference to list element

14 Constraints on list elements must hold when the list is randomized. In this example, the list is randomized as
15 part of the traversal of action handle a. At this point in time, the list contains a single element, and the
16 constraint on this element is valid. If the referenced list element does not exist at the point of list
17 randomization, then the PSS processing tool shall flag an error.
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116.4.3 Randomization of flow objects

2 When an action is randomized, its input and output fields are assigned a reference to a flow object of the
3respective type. On entry to any of the action’s exec blocks (except pre_solve, see 22.1.2), as well as its
4 activity clause(s), values for all rand data attributes accessible through its inputs and outputs fields are
sresolved. The values accessible in these contexts satisfy all constraints. Constraints can be placed on
6 attribute fields from the immediate type context, from a containing struct or action at any level or via the
7 input/output fields of actions.

8 The same flow object may be referenced by an action outputting it and one or more actions inputting it. The
9 binding of inputs to outputs may be explicitly specified in an activity clause or may be left unspecified. In
10 cases where binding is left unspecified, the counterpart action of a flow object’s input/output may already be
11 one explicitly traversed in an activity or it may be introduced implicitly by the PSS processing tool to satisfy
12 the binding rules (see Clause 17). In the case where multiple actions input the same buffer object type, the
13 input references may be constrained to indicate that they refer to the same object. In all of these cases, value
14 selection for the data attributes of a flow object shall satisfy all constraints coming from the action that
15 outputs it and actions that input it.

16 Consider the model in Example 147. Assume a scenario is generated starting from action test. The
17 traversal of action writel is scheduled, followed by the traversal of action read. When read is
18 randomized, its input in _obj must be resolved. Every buffer object shall be the output of some action. The
19 activity does not explicitly specify the binding of read’s input to any action’s output, but it must be
20resolved regardless. Action writel outputs a mem obj whose dat is in the range 1 to 5, due to a
21constraint in action writel. But, dat of the mem ob3j instance read inputs must be in the range 8 to 12.
2280 read.in obj cannot be bound to writel.out obj without violating a constraint. The PSS
23 processing tool shall schedule another action of type write2 at some point prior to read, whose
24mem_obj is bound to read’s input. In selecting the value of read.in obj.dat, the PSS processing
25 tool shall consider the following:

26— dat is an even integer, due to the constraint in mem_obj.
27— dat isin the range 6 to 10, due to a constraint in write?2.
28 — dat isin the range 8 to 12, due to a constraint in read.

29 This restricts the legal values of read.in obj.dat to either 8 or 10.
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component top {
buffer mem obj {
rand int dat;
constraint dat%2 == 0; // dat must be even

}

action writel {
output mem obj out obj;
constraint out obj.dat in [1..5];

action write2 {
output mem obj out obj;
constraint out obj.dat in [6..10];

action read {
input mem obj in obj;
constraint in obj.dat in [8..12];

action test {
activity {
do writel;
do read;

2 Example 147—Randomizing flow object attributes

316.4.4 Randomization of resource objects

4 When an action is randomized, its resource claim fields (of resource type declared with lock / share
s modifiers, see 14.1) are assigned a reference to a resource object of the respective type. On entry to any of
6 the action’s exec blocks (except pre_solve, see 22.1.2) or its activity clause, values for all random attribute
7 fields accessible through its resource fields are resolved. The same resource object may be referenced by any
gnumber of actions, given that no two concurrent actions lock it (see 14.2). Value selection for random
9 attribute fields of a resource object satisfy constraints coming from all actions to which it was assigned,
10 either in lock or share mode.

11 Consider the model in Example 148. Assume a scenario is generated starting from action test. In this
12 scenario, three actions are scheduled to execute in parallel: al, a2, and a3, followed sequentially by a
13 traversal of a4. In the parallel statement, action a3 of type do_something else shall be exclusively
14 assigned one of the two instances of resource type rsrc_ob7j, since do_something else claims it in
15 lock mode. Therefore, the other two actions, of type do_something, necessarily share the other instance.
16 When selecting the value of attribute kind for that instance, the PSS processing tool considers the
17 following constraints:

18— kind is an enumeration whose domain has the values A, B, C, and D.

19— kindisnot A, due to a constraint in do_something.

20 — al.my rsrc inst is referencing the same rsrc ob7j instance as a2.my rsrc inst, as
21 there would be a resource conflict otherwise between one of these actions and a3. B

22— kind is not B, due to an in-line constraint on a1l.

23 — kindisnot C, due to an in-line constraint on a2.
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1D is the only legal value for al.my rsrc inst.kindand a2.my rsrc inst.kind.

2 Since there are only two instances of rsrc_obj in rsrc_pool, and one of the instances is claimed via
3 the share in a1l and a2, the other instance will be locked by a 3. In order to determine the value of its kind
4 field, we must consider the in-line constraint on the traversal of a4. Since a4.my rsrc_inst.kindis
5 constrained to the value A, this must be a different instance from the one shared by al and a2. Therefore,
6 this is the same instance that is claimed by a3, and therefore a3.my rsrc inst.kind shall also have
7 the value of A.

component top {
enum rsrc_kind e {A, B, C, D};

resource rsrc obj {
rand rsrc kind e kind;

}

pool[2] rsrc obj rsrc pool;
bind rsrc pool *;

action do something {
share rsrc_obj my rsrc inst;
constraint my rsrc inst.kind != A;

action do_something else ({
lock rsrc obj my rsrc inst;

}

action test {
do_something al, a2;
do something else a3, a4;
activity {

parallel {
al { my rsrc inst.kind != B; };
a2 { my rsrc inst.kind != C; };
a3;

}

a4 with { my rsrc inst.kind == A; };

}
}
}
9 Example 148—Randomizing resource object attributes

10 16.4.5 Randomization of component assignment

11 When an action is randomized, its association with a component instance is determined. The built-in field
12 comp is assigned a reference to the selected component instance. The assignment shall satisfy constraints
13 where comp fields occur (see 9.5). Furthermore, the assignment of an action’s comp field corresponds to
14 the pools in which its inputs, outputs, and resources reside. If action a is assigned resource instance r, r is
15 taken out the pool bound to a’s resource reference field in the context of the component instance assigned to
16 a. If action a outputs a flow object which action b inputs, both output and input reference fields shall be
17 bound to the same pool under a’s component and b’s component respectively. See Clause 15 for more on
18 pool binding.
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116.4.6 Procedural randomization of data
2 Procedural constrained randomization is performed using the randomize statement shown in Syntax 100.

3 The randomization target is composed of one or more variables of plain-data type. The entire set of variables
41s randomized together. Additional constraints may be added via the optional with block.

5 The set of variables and constraints involved in a procedural randomization statement is determined from the
6 variables and in-line constraints passed to the statement. The variables and constraints described below are
7 solved together.

8 — Randomization target variables are those that are specified as operands of the randomize statement.
9 Target variables are treated as random, independent of whether they are declared rand.
10 — If a target variable is of a struct type, sub-fields declared rand are treated as random. Those not
1 declared rand are treated as invariants.
12— Constraints declared inside the target-variable types are applied.
13— In-line constraints are applied.
14
struct S1 {

rand bit[8] a, b;
}

struct S2 {
rand S1 f1;
S1 f£2;
constraint fl.a < f2.a;

}

action A {
exec post solve {
52 vl;
bit[4] v2;

vli.f2.a = 100;
randomize vl1, v2 with {vl.fl.a < v2;}

15 Example 149—procedural randomization

16 In Example 149 above, A: :post_solve performs procedural randomization on two variables (v1, v2):
17 a) vl isof struct type S2, and has two struct-type fields of the same type S1.

18 1) £1 is declared random.
19 2) f2 is declared non-random.
20 3) A constraint is placed between sub-fields of £1 and £2.

21 b) v2isofbit[4] type and thus has a maximum value of 15.

22 An in-line constraint is placed between v1.f1.a and v2. When the procedural randomization statement
23 executes, it considers:

24 a) Random variables: v1.fl.a,v1.f1l.b,v2
25 b) Invariants: vl.f2.a,v1.f2.Db

26 ¢) Invariant values:
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1 1) v1i.f2.a == 100

2 2) vl.f2.b == 0

3 d) Constraints:

4 1) vli.fl.a < v2

5 2) wvl.fl.a < vl.f2.a

6v1.fl.a will have avalue [0..14] because it is required to be less than 100 (v1.£2.a) and less than
7 the maximum value of v2 (15).

816.4.6.1 Support on solve and target platforms
9 Support for procedural randomization in target exec blocks is restricted to built-in functions (e.g.,
1ourandom ()) and randomization of scalar integer quantities. Randomization of struct data types is

11 restricted to the solve platform, and may not be performed directly or indirectly from target exec blocks.

12 When procedural randomization is performed on the solve platform, any solve-time exec blocks within the
13 scope of variables that are part of a procedural randomization are evaluated as part of the randomization
14 process.

15

import std pkg::*;

struct S1 {
rand bit[8] a, b;
exec pre solve { print("Pre S1"); }
exec post solve { print ("Post S1"); }

struct S2 {
rand S1 f1;
S1 £2;
constraint fl.a < f2.a;
exec pre solve { print("Pre S2"); }
exec post solve { print ("Post S2"); }
}
action A {
exec post solve {
S2 vl;
bit[4] v2;

vli.a = 100;
randomize vl1, v2 with {vl.fl.a < v2;}

16 Example 150—Evaluation of solve-time exec blocks in procedural randomization

17 In Example 150 above, we would expect to see the following when procedural randomization is invoked:
18

19 Pre S2

20 Pre Sl

21 Pre S1
22 Post S2
23 Post S1

24 Post S1
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116.4.6.2 Random stability

2 When procedural randomization features are used in solve-time exec blocks (pre_solve, post_solve,
3 pre_body), random stability shall be ensured when the PSS description and the random seed specified to the
4 PSS processing tool remain the same.

5 When procedural randomization features are used in target exec blocks (body), random stability shall be
6 ensured when the PSS description, random seed specified to the runtime environment (if applicable), and
7 design behavior remain the same.

816.4.7 Random value selection order
9 A PSS processing tool conceptually assigns values to sub-action fields of the action in the order they are
10 encountered in the activity. On entry into an activity, the value of plain-data fields qualified with action and

11rand sub-fields of action-type fields are considered to be undefined.

12 Example 151 shows a simple activity with three action-type fields (a, b, c). A PSS processing tool might
13assign a.val=2,b.val=4,and c.val="7 on a given execution.

14
action A {
rand bit[3:0] wval;
}
action my action {
A a, b, c;
constraint abc _c {
a.val < b.val;
b.val < c.val;
}
activity {
ay
b;
c;
}
}
15 Example 151—Activity with random fields

16 16.4.8 Evaluation of expressions with action handles

17 Upon entry to an activity, all action handles (fields of action type) are considered uninitialized. Additionally,
18 action handles previously traversed in an activity are reset to their uninitialized state upon entry to an
19 activity block in which they are traversed again (an action handle may be traversed only once in any given
20 activity scope and its nested scopes (see 12.3.1.1)). This applies equally to traversals of an action handle in a
21loop and to multiple occurrences of the same action handle in different activity blocks.

22 The value of all attributes reachable through uninitialized action handles, including direct attributes of the
23 sub-actions and attributes of objects referenced by them, are unresolved. Only when all action handles in an
24 expression are initialized, and all accessed attributes assume definite value, can the expression be evaluated.

25 Constraints accessing attributes through action handles are never violated. However, they are considered
26 vacuously satisfied so long as these action handles are uninitialized. The Boolean expressions only need to
27 evaluate to frue at the point(s) in an activity when all action handles used in a constraint have been traversed.

Copyright © 2024 Accellera. All rights reserved.
219



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1Expressions in activity statements accessing attributes through action handles shall be illegal if they are
2 evaluated at a point in which any of the action handles are uninitialized. Similarly, expressions in solve-exec
3 (pre_solve and post_solve) statements of compound actions accessing attributes of sub-actions shall be
4illegal, since these are evaluated prior to the activity (see 16.4.12), and all action handles are uninitialized at
s that point. This applies equally to right-value and left-value expressions.

6 Example 152 shows a root action (my action) with sub-action fields and an activity containing a loop. A
7 value for a . x is selected, then two sets of values for b. x and c . x are selected.

action A {
rand bit[3:0] x;

action my action {
A a, b, c;
constraint abc _c {
a.x < b.x;
b.x < c.x;
}
activity {
ay
repeat (2) {
b;
c; // at this point constraint 'abc c¢' must hold non-vacuously

}

9 Example 152—Value selection of multiple traversals

10 The following breakout shows valid values that could be selected here:

1l
Repetition a.x b.x cx
1 3 5 6
2 3 9 13

12 Note that b . x of the second iteration does not have to be less than c. x of the first iteration since action
13 handle c is uninitialized on entry to the second iteration. Note also that similar behavior would be observed
14 if the repeat would be unrolled, i.e., if the activity contained instead two blocks of b, ¢ in sequence.

15 Example 153 demonstrates two cases of illegal access of action-handle attributes. In these cases, accessing
16 sub-action attributes through uninitialized action handles shall be flagged as errors.
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action A {
rand bit[3:0] x;
int y;

}

action my action {
A a, b, c;

exec post solve {
a.y = b.x; // ERROR - cannot access uninitialized action handle
attributes

}

activity {

ay
if (a.x > 0) { // OK - 'a' is resolved
b;
Cy
}
{
if (c.y == a.x) { // ERROR - cannot access attributes of
// uninitialized action handle 'c.y'
b;
}
Ccy

Example 153—Illegal accesses to sub-action attributes

316.4.9 Relationship lookahead

4 Values for random fields in an activity are selected and assigned as the fields are traversed. When selecting
5 a value for a random field, a PSS processing tool shall take into account both the explicit constraints on the
6 field and the implied constraints introduced by constraints on those fields traversed during the remainder of
7 the activity traversal (including those introduced by inferred actions, binding, and scheduling). This rule is

g illustrated by Example 154.

916.4.9.1 Example 1

10 Example 154 shows a simple struct with three random attribute fields and constraints between the fields.
11 When an instance of this struct is randomized, values for all the random attribute fields are selected at the

12 same time.

13

14

struct abc s {
rand bit[4] in [0..12] a val, b val, c val;

constraint {
a val < b val;
b val < c val;

Example 154—Struct with random fields
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116.4.9.2 Example 2

2 Example 155 shows a root action (my action) with three sub-action fields and an activity that traverses
3these sub-action fields. It is important that the random-value selection behavior of this activity and the
4struct shown in Example 154 are the same. If a value for a.val is selected without knowing the
s relationship between a.val and b.val, the tool could select a.val=15. When a.val=15, there is no
6 legal value for b.val, since b.val must be greater than a . val.

7 a) When selecting a value for a.val, a PSS processing tool shall consider the following:

8 1) a.val isin the range O to 15, due to its domain.
9 2) Db.val isin the range O to 15, due to its domain.
10 3) c.val isinthe range O to 15, due to its domain.
11 4) a.val < b.val.

12 5) b.val < c.val.

13 This restricts the legal values of a.val to 0 to 13.

14 b)  When selecting a value for b.val, a PSS processing tool shall consider the following:

15 1) The value selected for a.val.

16 2) b.valisinthe range 0 to 15, due to its domain.
17 3) c.valisintherange 0 to 15 due to its domain.
18 4) a.val < b.val.

19 5) b.val < c.val.

20

action A {
rand bit[3:0] val;
}

action my action {
A a, b, c;

constraint abc c {
a.val < b.val;
b.val < c.val;

}

activity {
ay
b;
Cy

21 Example 155—Activity with random fields

2216.4.10 Lookahead and sub-actions

23 Lookahead shall be performed across traversal of sub-action fields and must comprehend the relationships
24 between action attribute fields.

25 Example 156 shows an action named sub that has three sub-action fields of type A, with constraint
26 relationships between those field values. A top-level action has a sub-action field of type A and type sub,
27with a constraint between these two action-type fields. When selecting a value for the
28top_action.v.val random attribute field, a PSS processing tool shall consider the following:

29 — top action.sl.a.val == top action.v.val
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1 — top_action.sl.a.val < top action.sl.b.val

2This implies that top.v.val shall be less than 14 to satisfy the top action.sl.a.val

3top_action.sl.b.val constraint.

4
component top {
action A {
rand bit[3:0] wval;
}
action sub {
A a, b, c;
constraint abc c {
a.val < b.val;
b.val < c.val;
}
activity {
ay
b;
Ccy
}
t
action top action {
A v;
sub sl;
constraint c {
sl.a.val == v.val;
}
activity {
\
sl;
}
}
}
5 Example 156—Sub-activity traversal

616.4.11 Lookahead and dynamic constraints

<

7 Dynamic constraints introduce traversal-dependent constraints. A PSS processing tool must account for
8 these additional constraints when making random attribute field value selections. A dynamic constraint shall

9 hold for the entire activity branch on which it is referenced, as well to the remainder of the activity.

10 Example 157 shows an activity with two dynamic constraints which are mutually exclusive. If the first
11 branch is selected, b.val <= 5andb.val < a.val.Ifthe second branch is selected, b.val <= 7
12and b.val > a.val. A PSS processing tool shall select a value for a.val such that a legal value for

13b.val also exists (presuming this is possible).

14 Given the dynamic constraints, legal value ranges for a.val are 1 to 15 for the first branch and 0 to 6 for

15 the second branch.
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action A {
rand bit[3:0] wval;
}

action dyn {
A a, b;

dynamic constraint dl {
b.val < a.val;
b.val <= 5;

}

dynamic constraint d2 {
b.val > a.val;
b.val <= 7;

}

activity {
ay
select {
dl;
dz;

b;

2 Example 157—Activity with dynamic constraints

316.4.12 pre_solve and post_solve exec blocks

4The pre_solve and post_solve exec blocks enable external code to participate in the solve process.
5 pre_solve and post_solve exec blocks may appear in struct and action type declarations.

6 Statements in pre_solve blocks are used to set non-random attribute fields that are subsequently read by the
7 solver during the solve process. Statements in pre_solve blocks can read the values of non-random attribute
g fields and their non-random children. Statements in pre_solve blocks cannot access handle-type fields
9 (input/output, lock/share, action handles) or their children since these fields are null handles prior to the
10 completion of randomization. Accessing plain-data random fields (e.g., bit, int, struct) is permitted.
11 Reading the value of these fields in pre_solve blocks returns the initial value of the field. Values written to
12 scalar plain-data random fields in pre_solve will be overwritten by the solve process.

13 Statements in post_solve blocks are evaluated after the solver has resolved values for random attribute fields
14 and are used to set the values for non-random attribute fields based on randomly-selected values.

15 The execution order of pre_solve and post_solve exec blocks, respectively, corresponds to the order random
16 attribute fields are assigned by the solver. The ordering rules are as follows:

17 a) Order within a compound action is top-down—both the pre_solve and post_solve exec blocks,

18 respectively, of a containing action are executed before any of its sub-actions are traversed, and,
19 hence, before the pre_solve and post_solve, respectively, of its sub-actions.

20 b) Order between actions follows their relative scheduling in the scenario: if action a; is scheduled
21 before a,, a;’s pre_solve and post_solve blocks, if any, are called before the corresponding block of
22 as.
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Order for flow objects (instances of struct types declared with a buffer, stream, or state modifier)
follows the order of their flow in the scenario: a flow object’s pre_solve or post_solve exec block is
called after the corresponding exec block of its outputting action and before that of its inputting
action(s).

A resource object’s pre_solve or post_solve exec blocks are called before the corresponding exec
block(s) of all actions referencing it, regardless of their use mode (lock or shared).

Order within an aggregate data type (nested struct and collection fields) is top-down—the exec
blocks of the containing instance are executed before those of the contained.

9 PSS does not specify the execution order in other cases. In particular, any relative order of execution for
10 sibling random struct attributes is legitimate and so is any order for actions scheduled in parallel where no
11 flow objects are exchanged between them.

12 See 22.1 for more information on the exec block construct.

1316.4.12.1 Example 1

14 Example 158 shows a top-level struct S2 that has rand and non-rand scalar fields, as well as two fields of
15 struct type S1. When an instance of S2 is randomized, the exec block of S2 is evaluated first, but the
16 execution for the two S1 instances can be in any order. The following is one such possible order:

17
18
19
20
21
22

23

a)
b)
c)
d)
e)
f)
g)

pre_solve in S2

pre_solvein S2.s1 2
pre_solvein S2.s1 1
assignment of attribute values
post_solve in S2
post_solvein S2.s1 1

post_solve in S2.s1 2
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function bit[5:0] get init val();
function bit[5:0] get exp val (bit[5:0] stim val);

struct S1 {
bit[5:0] init val;
rand bit[5:0] rand val;
bit[5:0] exp val;

exec pre solve ({
init val = get init val();

}

constraint rand val c {
rand val <= init val+10;

}

exec post solve {
exp val = get exp val(rand val);

}

struct S2 {
bit[5:0] init val;
rand bit[5:0] rand val;
bit[5:0] exp val;

rand S1 sl 1, sl 2;

exec pre solve ({
init val = get init val();

}

constraint rand val c {
rand val > init val;

}

exec post solve {
exp val = get exp val(rand val);

}

2 Example 158—pre_solve/post_solve

316.4.12.2 Example 2

4 Example 159 illustrates the relative order of execution for post_solve exec blocks of a containing action

5 test, two sub-actions: read and write, and a buffer object exchanged between them.

6 The calls therein are executed as follows:
7 a) post_solvein test
8 b) post_solveinwrite
9 c¢) post_solveinmem obj
10 d) post_solvein read
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buffer mem obj {
exec post solve { ... }

b

action write {
output mem obj out obj;
exec post solve { ... }

b

action read {
input mem obj in obj;
exec post solve { ... }

i

action test {
write wr;
read rd;

activity {

wWr;

rd;

bind wr.out obj rd.in obj;
}
exec post solve { ... }

i

2 Example 159—post_solve ordering between action and flow objects

316.4.13 Body blocks and sampling external data

4 exec body blocks, or functions invoked by them, can assign values to attribute fields. exec body blocks are
5 evaluated for atomic actions as part of the test execution on the target platform (see 22.1). The impact of any
6 field values modified by an exec body block is evaluated after the entire exec body block has completed.

7 Example 160 shows an exec body block that assigns two non-rand attribute fields. The impact of the new
g values applied to y1 and y2 are evaluated against the constraint system after the exec body block completes
9 execution. It shall be illegal if the new values of y1 and y2 conflict with other attribute field values and

10 constraints. Backtracking is not performed.
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function bit[3:0] compute vall(bit[3:0] v);
function bit[3:0] compute val2(bit[3:0] v);
component pss_top {

action A {
rand bit[3:0] x;
bit[3:0] v1, y2;

constraint assume y c {
yl >= x && yl <= x+2;
y2 >= x && y2 <= x+3;

vyl <= y2;
exec body {

yl = compute vall (x);
y2 = compute val2(x);

Example 160—exec body block sampling external data
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117. Action inferencing

2 Perhaps the most powerful feature of PSS is the ability to focus purely on the user’s verification intent, while
3 delegating the means to achieve that intent. Previous clauses have introduced the semantic concepts to
4 define such abstract specifications of intent. The modeling constructs and semantic rules thus defined for a
s portable stimulus model allow a tool to generate a number of scenarios from a single (partial) specification
6 to implement the desired intent.

7 Beginning with a root action, which may contain an activity, a number of actions and their relative
8 scheduling constraints is used to specify the verification intent for a given model. The other elements of the
9model, including flow objects, resources and their binding, as well as algebraic constraints throughout,
10 define a set of rules that shall be followed to generate a valid scenario matching the specified intent. It is
11 possible to fully specify a verification intent model, in which only a single valid scenario of actions may be
12 generated. The randomization of data fields in the actions and their respective flow and resource objects
13 would render this scenario as what is generally referred to as a “directed random” test, in which the actions
14 are fully defined, but the data applied through the actions is randomized. The data values themselves may
15 also be constrained so that there is only one scenario that may be generated, including fully-specified values
16 for all data fields, in which case the scenario would be a “directed” test.

17 There are a number of ways to specify the scheduling relationship between actions in a portable stimulus
18 model. The first, which allows explicit specification of verification intent, is via an activity. As discussed in
19 Clause 12, an activity may define explicit scheduling dependencies between actions, which may include
20 statements, such as schedule, select, if-else and others, to allow multiple scenarios to be generated even for
21a fully-specified intent model. Consider Example 161.

22

component pss top {
buffer data buff s {
rand int val;
}i
pool data buff s data mem;
bind data mem *;

action A a {output data buff s dout;};
action B a {output data buff s dout;};
action C a {input data buff s din;};
action D a {input data buff s din;};

action root a {

A a a;

B a b;

C a c;

D a d;

activity {
select {a; Db;}
select {c; d;}

23 Example 161—Generating multiple scenarios

24 While an activity may be used to fully express the intent of a given model, it is more often used to define the
25 critical actions that must occur to meet the verification intent while leaving the details of how the actions
26 may interact unspecified. In this case, the rules defined by the rest of the model, including flow object
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1requirements, resource limitations, pool bindings, and algebraic constraints, permit a tool to introduce the
2 traversal of additional actions as defined by the model to ensure the generation of a valid scenario that meets
3 the critical intent as defined by the activity. The introduction of an action in the execution of a scenario to
4 complete a partially specified flow is called action inferencing.

5 The evaluation ordering rules for pre_solve and post_solve exec blocks of actions, objects, and structs, as
6 specified in 16.4.12, apply regardless of whether the actions are explicitly traversed or inferred, and whether
7 objects are explicitly or implicitly bound. In particular, the order conforms to the scheduling relations
8 between actions, such that if an action is scheduled before another, its pre_solve and post_solve execs are
9 evaluated before the other’s. Backtracking is not performed across exec blocks. Assignments in exec blocks
10 to attributes that figure in constraints may therefore lead to unsatisfied constraint errors. This applies to
11 inferred parts of the scenarios in the same way as to parts that are explicitly specified in activities.

1217.1 Implicit binding and action inferences

13 In a scenario description, the explicit binding of outputs to inputs may be left unspecified. In these cases, an
14 implementation shall execute a scenario that reflects a valid completion of the given partial specification in a
1sway that conforms to pool binding rules. If no valid scenario exists, the tool shall report an error.
16 Completing a partial specification may involve decisions on output-to-input binding of flow objects in
17 actions that are explicitly traversed. It may also involve introducing the traversal of additional actions,
18 beyond those explicitly traversed, to serve as the counterpart of a flow object exchange. Once an action
19 traversal is inferred to complete a given flow object exchange, it may also be considered for completing
20 other flow object exchanges with which it may also be compatible.

21 Action inferences are necessary to make a scenario execution legal if the following conditions hold:

22 a) Aninput of any kind is not explicitly bound to an output, or an output of stream kind is not explicitly
23 bound to an input.

24 b) There is no action explicitly traversed or inferred that is available to legally bind its output/input to
25 the unbound input/output, i.e.,

26 1) There is no action that is or may be scheduled before the inputting action in the case of buffer
27 or state objects.

28 2) There is no action that is or may be scheduled in parallel to the inputting/outputting action in
29 the case of stream objects.

30 The inferencing of actions may be based on random or policy-driven (which may include specified coverage
31 goals) decisions of a processing tool. Actions may only be inferred to complete a partially-specified flow. If
32all required input-to-output bindings are specified by explicit bindings to the traversed actions in the
33 activity, an implementation may not introduce additional actions in the execution. See Annex E for more
34 details on inference rules.

35 Consider the model in Example 162.

36If action send data is designated as the root action, this is clearly a case of partial scenario description,
37 since action send_data has an input and an output, neither of which is explicitly bound. The buffer input
38 src_data is bound to the data mem object pool, so there must be a corresponding output object also
39 bound to the same pool to provide the buffer object. The only action type outputting an object of the required
40 type that is bound to the same object pool is 1oad data. Thus, an implementation shall infer the prior
41traversal of 1oad data before traversing send data.

42 Similarly, 1oad data has a state input that is bound to the config var pool. Since the output objects
43 of action types setup A and setup B are also bound to the same pool, 1load data.curr cfgcanbe
44 bound to the output of either setup A or setup_B, but cannot be the initial state due to the constraint in
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1load data. In the absence of other constraints, the choice of whether to infer setup A or setup B
2may be randomized and the chosen action traversal shall occur before the traversal of 1oad data.

3Moreover, send_data has a stream output out data, which shall be bound to the corresponding input
4 of another action that is also bound to the data bus pool. So, an implementation shall infer the traversal
sof an action of type receive data in parallel to send data.

component pss_top {
state config s {};
pool config s config var;
bind config var *;

buffer data buff s {};
pool data buff s data mem;
bind data mem *;

stream data stream s {};
pool data stream s data bus;
bind data bus *;

action setup A {
output config s new cfg;

b

action setup B {
output config s new cfg;

b

action load data {
input config s curr cfg;
constraint !curr cfg.initial;
output data buff s out data;
}i

action send data {
input data buff s src data;
output data stream s out data;

i

action receive data {
input data stream s in data;

b

bi
7 Example 162—Action inferences for partially-specified flows

8 Note that action inferences may be more than one level deep. The scenario executed by an implementation
9 shall be the transitive closure of the specified scenario per the flow object dependency relations. Consider
10 adding another action within the pss_top component in Example 162, e.g.,

1

12 action xfer data {
13 input data buff s src data;
14 output data buff s out data;

15 b
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11n this case, the xfer data action could also be inferred, along with setup A or setup_ B to provide
2the data buff sinputto send data.src data.Ilfxfer data were inferred, thenits src_data
3 input would require the additional inference of another instance of setup A, setup B, or xfer data
4to provide the data buff s. This “inference chain” would continue until either an instance of setup A
sor setup B is inferred, which would require no further inferencing, or the inferencing limit of the tool is
6 exceeded, in which case an error would be reported.

7 Since the type of the inferred action is randomly selected from all available compatible action types, a tool
8 may ensure that either setup A or setup_B gets inferred before the inferencing limit is exceeded.

9 Consider Example 163. Starting with the constr test action, two instances of the get data action
10 are traversed in parallel. Since each instance inputs a buffer of type data buff s, at least one instance of
1 load data must be inferred to provide the input buffer. The equality constraint c2 requires that
12gdl.src_data and gd2.src_data are actually the same object, so only a single instance of
13 load_data will be inferred. Without the c2 constraint, it would have been possible to infer two separate
14 instances of load data, each of which would provide a buffer object to either gd1 or gd2, although
15 inferring a single instance is also legal. Note that the c1 constraint by itself is not sufficient to guarantee a
16 single instance inference since there could be two distinct buffers with identical contents. With the c2
17 constraint present, the c1 constraint is redundant (but legal).

18

component pss top {
buffer data buff s {bit[4] val;};
pool data buff s dbuf p;
bind dbuf p *;

action load data {
output data buff s out data;
}

action get data {
input data buff s src data;
1

action constr test {
get data gdl, gd2;

constraint cl {gdl.src data.val == gd2.src data.val;}
constraint c2 {gdl.src data == gd2.src_data;}

activity {
parallel {gdl; gd2;}
}

19 Example 163—Buffer equality constraint to limit inferencing

20 Consider Example 164. Inthe constr rsrc_ test action, two instances of the m2m action are scheduled
21and traversed, each of which inputs and outputs a data buff s buffer object and locks a dma descr
22 resource object, followed by the parallel traversal of two instances of the get data action. Constraint c¢3
23 ensures that both m2m instances input the same data buff s object and therefore a single instance of
24either load data or m2m is inferred to provide it. Constraint c4 guarantees that the two get data
25 instances will each consume a different data buff s object, so each will be provided by either m2m1 or
26 m2m2. Constraint c5 requires the two m2m instances to claim the same resource object, so the schedule
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1statement must require one instance to be traversed before the other, in either order. Note that the
2 commented-out constraint c6 is equivalent to c5.

}

}

//

bind

action m2m {
input data buff s ibuf;
output data buff s obuf;
lock dma descr descr;

constraint
constraint
constraint
constraint

activity {
schedule
parallel

component pss_top {

buffer data buff s {bit[4] val;};
resource dma descr {bit[4] chan;};
pool data buff s dbuf p;

bind dbuf p *;

pool [16] dma descr descr p;
descr_p *;

action load data {
output data buff s out data;

action get data {
input data buff s src data;

action constr rsrc test ({
get data gdl ,
m2m m2ml,

c3
c4d
c5
c6

{m2ml; m2m2;}
{gdl ; gd2; }

gd2;

m2m2;

{m2ml.ibuf == m2m2.ibuf;}

{gdl.src data != gd2.src data;}

{m2ml.descr == m2m2.descr; }
{m2ml.descr.instance id == m2m2.descr.instance id;}

Example 164—Resource equality constraint may affect scheduling

517.2 Object pools and action inferences

6 Action traversals may be inferred to support the flow object requirements of actions that are traversed in the
7model, whether they are explicitly traversed or inferred. The set of actions from which a traversal may be
g inferred is determined by object pool bindings.

9 In Example 165, there are two object pools of type data buff s, each of which is bound to a different
10 set of object field references. The select statement in the activity of root a will randomly choose either ¢
1or d, each of which has a data buff s buffer input type that requires a corresponding action to be
12 inferred to supply the buffer object. Since C_a is bound to the same pool as A_a, if the generated scenario
13 chooses c, then an instance of A _a shall be inferred to supply the c.din buffer input. Similarly, if d is
14 chosen, then an instance of B_a shall be inferred to supply the d.din buffer input.

Copyright © 2024 Accellera. All rights reserved.
233



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

component pss_top {
buffer data buff s {...};
pool data buff s data meml, data mem2;
bind data meml {A a.dout, C a.din};
bind data mem2 {B a.dout, D a.din};

action A a {output data buff s dout;};
action B a {output data buff s dout;};
action C a {input data buff s din;};
action D a {input data buff s din;};

action root a {
C a c;
D a d;
activity {
select {c; d;}

2 Example 165—O0bject pools affect inferencing

3 Consider the following modified version of Example 41 from 9.5.2. In this example, the traversal of action
4 foo in the activity of action gr _a requires the inference of an action that can be bound to the same pool as
sgraphics: : foo and supply the compatible bar s type flow object. Since the bar p pool is bound by
6 default to all components under graphics and bus c, it is legal to infer the traversal of
7bus_c::write in parallel with foo, even though it was illegal to traverse this action explicitly as shown

g in Example 41.

component bus c¢ {
import bar pkg::*;
action write{input bar s b;...} // bar s is a stream

}

component graphics {
import bar pkg::*;
action foo {output bar s b;...}
action gr_a {
activity {
do foo; // will infer traversal of bus c::write
// to complete stream object connection

component pss_top {
import bar pkg::*;
bus ¢ a0;
graphics g;
pool bar s bar p;
bind bar p *;

}

10 Example 166—Inferred traversal of an action outside of the containing component hierarchy
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117.3 Data constraints and action inferences

2 As mentioned in Clause 16, introducing data constraints on flow objects or other elements of the design may
3affect the inferencing of actions. Consider a slightly modified version of Example 161, as shown in

4 Example 167.

5 Since the explicit traversal of ¢ does not constrain the val field of its input, it may be bound to the output of
6 either explicitly traversed action a or b; thus, there are two legal scenarios to be generated with the second
7 select statement evaluated to traverse action c. However, since the data constraint on the traversal of action
8 d is incompatible with the in-line data constraints on the explicitly-traversed actions a or b, another instance
gof either A_a or B_a shall be inferred whose output shall be bound to d.. din. Since there is no requirement
10 for the buffer output of either a or b to be bound, one of these actions shall be traversed from the first select
11 statement, but no other action shall be inferred.

12

component pss_top {
buffer data buff s {
rand int wval;
bi
pool data buff s data mem;
bind data mem *;

action A a {output data buff s dout;};
action B a {output data buff s dout;};
action C a {input data buff s din;};
action D a {input data buff s din;};

action root a {

A a a;

B a b;

C a c;

D a d;

activity {
select {a with{dout.val<5;}; b with {dout.val<5;};}
select {c; d with {din.val>5;};}

13 Example 167—In-line data constraints affect action inferencing
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1 Consider, instead, if the in-line data constraints were declared in the action types, as shown in Example 168.

2 In this case, there is no valid action type available to provide the d . din input that satisfies its constraint as
3defined in the D_a action declaration, since the only actions that may provide the data buff s type,
4actions A_a and B_a, have constraints that contradict the input constraint in D_a. Therefore, the only legal
s action to traverse in the second select statement is c. In fact, it would be illegal to traverse action D_a under

6 any circumstances for this model, given the contradictory data constraints on the flow objects.

component pss_top {
buffer data buff s {
rand int val;
}i
pool data buff s data mem;
bind data mem *;

action A a {
output data buff s dout;
constraint {dout.val<5;}
}i
action B a {
output data buff s dout;
constraint {dout.val<5;}
}i
action C a {
input data buff s din;
}i
action D _a {
input data buff s din;
constraint {din.val > 5;}

b

action root a {

A a a;

B a b;

C a c;

D a d;

activity {
select {a; Db;}
select {c; d;}

8 Example 168—Data constraints affect action inferencing
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118. Data coverage

2 The legal state space for all non-trivial verification problems is very large. Coverage goals identify
3 important scenarios and key value ranges and value combinations that need to occur in order to exercise key
4 functionality. Covering scenarios is the subject of the behavioral coverage, and it is described in Clause 19.
5 Covering value ranges and combinations is called data coverage, and it is described in this clause. The
6 covergroup construct is used to specify the data coverage targets.

7 The coverage targets specified by the covergroup construct are more directly related to the test scenario
8 being created. As a consequence, in many cases the coverage targets would be considered coverage targets
9on the “generation” side of stimulus. PSS also allows data to be sampled by calling external functions.
10 Coverage targets specified on data fields set by external functions can be related to the system state.

118.1 Defining the coverage model: covergroup

12 The covergroup construct encapsulates the specification of a coverage model. Each covergroup
13 specification can include the following elements:

14— A set of coverage points

15—  Cross coverage between coverage points
16— Optional formal arguments

17— Coverage options

18 The covergroup construct is a user-defined type. There are two forms of the covergroup construct. The first
19 form allows an explicit type definition to be written once and instantiated multiple times in different
20 contexts. The second form allows an in-line specification of an anonymous covergroup type and a single
211instance.

22 a)  An explicit covergroup type can be defined in a package, component, action, monitor, or struct.

23 In order to be reusable, an explicit covergroup type shall specify a list of formal parameters and
24 shall not reference fields in the scope in which it is declared. An instance of an explicit covergroup
25 type can be created in an action, monitor, or struct. Syntax 63 defines an explicit covergroup type.
26 b)  Anin-line covergroup can be defined in an action, monitor, or struct scope. An in-line covergroup
27 can reference fields in the scope in which it is defined. 18.2 contains more information on in-line
28 covergroups.
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118.1.1 Syntax

2 The syntax for covergroups is shown in Syntax 63.

covergroup_declaration ::=
covergroup covergroup_identifier ( covergroup port {, covergroup port } )
{ {covergroup_body item} }
covergroup_port ::= data_type identifier
covergroup body_item ::=
covergroup_option
| covergroup coverpoint
| covergroup cross
| covergroup body compile if
| stmt_terminator
covergroup_option ::=

option . identifier = constant expression ;

Syntax 63—covergroup declaration

5 The following also apply:

[e)]

foe]

10
1

12
13
14

15
16
7
18
19

a)
b)
¢)

d)

The identifier associated with the covergroup declaration defines the name of the coverage model
type.

A covergroup can contain one or more coverage points. A coverage point can cover a variable or an
expression.

Each coverage point includes a set of bins associated with its sampled value. The bins can be user-
defined or automatically created by a tool. Coverage points are detailed in 18.3.

A covergroup can specify cross coverage between two or more coverage points or variables. Any
combination of more than two variables or previously declared coverage points is allowed. See also
Example 170.

A covergroup can also specify one or more options to control how coverage data are structured and
collected. Coverage options can be specified for the covergroup as a whole or for specific items
within the covergroup, i.e., any of its coverage points or crosses. In general, a coverage option spec-
ified at the covergroup level applies to all of its items unless overridden in a specific item’s defini-
tion. Coverage options are described in 18.5.

2018.1.2 Examples

21Example 169 defines an in-line covergroup cs1 with a single coverage point labeled c associated with
22 struct field color. The value of the variable color is sampled at the default sampling point: the end of an
23 action’s traversal in which the field color is randomized. Sampling is discussed in more detail in 18.6.

24 Because the coverage point does not explicitly define any bins, the tool automatically creates three bins, one
25 for each possible value of the enumeration type. Automatic bins are described in 18.3.4.
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enum color e {red, green, blue};

struct s {
rand color e color;

covergroup {
c: coverpoint color;
} csl;

2 Example 169—Single coverage point

3 Example 170 creates an in-line covergroup cs2 that includes two coverage points and two cross coverage
4items. Explicit coverage points labeled Of fset and Hue are defined for variables pixel offset and
spixel hue. PSS implicitly declares coverage points for variables color and pixel adr to track their

6 cross coverage. Implicitly declared coverage points are described in 18.4.

enum color e {red, green, blue};

struct s {
rand color e color;
rand bit[3:0] pixel adr, pixel offset, pixel hue;

covergroup {
Hue : coverpoint pixel hue;
Offset : coverpoint pixel offset;
AxC: cross color, pixel adr;
all : cross color, Hue, Offset;

} cs2;

8 Example 170—Two coverage points and cross coverage items

918.2 covergroup instantiation

10 A covergroup type can be instantiated in struct, action, monitor, and cover contexts. If the covergroup
11 declared formal parameters, these shall be bound to variables visible in the instantiation context. Instance-
12 specific coverage options (see 18.5) may be specified as part of instantiation. If a covergroup is specific to
13 the containing type, it cannot be generally instantiated in other types. In these cases, it is possible to declare

14 a covergroup instance in-line. In this case, the covergroup type is anonymous.
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118.2.1 Syntax

2 Syntax 64 specifies how a covergroup is instantiated and how an in-line covergroup instance is declared.

covergroup_instantiation ::=
covergroup_type_instantiation
| inline_covergroup
inline_covergroup ::= covergroup { { covergroup_body item } } identifier ;
covergroup_type_instantiation ::= covergroup type identifier covergroup identifier
( covergroup portmap_list ) covergroup options_or_empty
covergroup_type_identifier ::= type_identifier
covergroup portmap_list ::=
covergroup portmap { , covergroup_portmap }
| hierarchical id_list
covergroup_portmap ::=. identifier ( hierarchical id )
covergroup_options_or_empty ::=
with { { covergroup option } }

s

4 Syntax 64—covergroup instantiation

518.2.2 Examples

6 Example 171 defines a covergroup type with a formal parameter list and creates a covergroup instance.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup csl (color e c) {
c : coverpoint c;

}

csl csl inst(color);

}
8 Example 171—Creating and instantiating a covergroup type with a formal parameter list
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1Example 172 defines a covergroup type and creates a covergroup instance with instance-specific options.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup csl (color e color) {
c: coverpoint color;

}

csl csl inst (color) with {
option.at least = 2;

i

3 Example 172—Creating a covergroup instance with instance-specific options

4 Example 173 creates an in-line covergroup instance.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup {
option.at least = 2;
c: coverpoint color;
} csl inst;

6 Example 173—Creating an in-line covergroup instance

718.3 Defining coverage points

8 A covergroup can contain one or more coverage points. A coverage point specifies an integer expression or
9 enum that is to be covered. Each coverage point includes a set of bins associated with the sampled values of
10 the covered expression. The bins can be explicitly defined by the user or automatically created by the PSS
11 processing tool. The syntax for specifying coverage points is shown in Syntax 65.

12 Evaluation of the coverage point expression (and of its enabling iff condition, if any) takes place when the
13 covergroup is sampled (see 18.6).

1418.3.1 Syntax

15 The syntax for coverpoints is shown in Syntax 65.
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covergroup_coverpoint ::= [ [ data_type ] coverpoint_identifier : ] coverpoint
expression [ iff ( expression ) ] bins_or empty
bins_or_empty ::=
{ { covergroup coverpoint body item } }
|5
covergroup_coverpoint body item ::=

covergroup_option

| covergroup coverpoint_binspec

Syntax 65—coverpoint declaration

3 The following also apply:

4

o ~N o u

9
10

n
12
13

14
15

16
7
18

19
20
21
22
23

a)

b)

d)

e)

A coverpoint coverage point creates a hierarchical scope and can be optionally labeled. The label
(coverpoint_identifier) designates the name of the coverage point. This name can be used to add this
coverage point to a cross coverage specification. If the coverage point is associated with a single
variable and the label is omitted, the variable name becomes the name of the coverage point. A cov-
erage point on an expression is required to specify a label.

A data type for the coverpoint may be specified. The data type shall be an integer or enum type. If a
data type is specified, then a label shall also be specified.

If a data type is specified, the coverpoint expression shall be assignment compatible with the data
type. Values for the coverpoint shall be of the specified data type and shall be determined as though
the coverpoint expression were assigned to a variable of the specified type.

If no data type is specified, the inferred type for the coverpoint shall be the self-determined type of
the coverpoint expression.

The expression within the iff construct specifies an optional condition that disables coverage sam-
pling for that coverpoint. If the iff expression evaluates to false at a sampling point, the coverage
point is not sampled.

A coverage point bin associates a name and a count with a set of values. The count is incremented
every time the coverage point matches one of the values in the set. The bins for a coverage point can
be defined using the bins construct to name each bin. If the bins are not explicitly defined, they are
automatically created by the PSS processing tool. The number of automatically created bins can be
controlled using the auto_bin_max coverage option. Coverage options are described in Table 22.

2418.3.2 Examples

25 In Example 174, coverage point s0 is covered only if is_s0_enabled is true.

26

27

struct s {
rand bit[4] sO;
rand bool is s0 enabled;

covergroup {
coverpoint s0 iff (is sO enabled);
} cs4;

Example 174—Specifying an iff condition
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118.3.3 Specifying bins

2 The bins construct creates a separate bin for each value in the given range list or a single bin for the entire
3range of values. The syntax for defining bins is shown in Syntax 66.

418.3.3.1 Syntax

5 The syntax for bins is shown in Syntax 66.

covergroup_coverpoint_binspec ::= bins_keyword identifier
[ [ [ constant_expression | | ] = coverpoint_bins
coverpoint_bins ::=
[ covergroup range list | [with ( covergroup expression ) ] ;
| coverpoint_identifier with ( covergroup expression ) ;
| default ;
covergroup_range list ::= covergroup value range { , covergroup value range }
covergroup_value range ::=
expression
| expression .. [ expression |
| [ expression ] .. expression

bins_keyword ::= bins | illegal bins | ignore bins

covergroup_expression ::= expression

Syntax 66—bins declaration

8 The following also apply:

9
10

il
12

13
14

15
16

7
18

19
20

21

22
23

24

25
26

27
28

a)

b)

c)

To create a separate bin for each value (an array of bins), add square brackets ([ ]) after the bin

name.

1) To create a fixed number of bins for a set of values, a single positive integral expression can be
specified inside the square brackets.

2) The bin name and optional square brackets are followed by a covergroup range_list that spec-
ifies the set of values associated with the bin.

3) It shall be legal to use the range value form expression.. and ..expression to denote a range that

extends to the upper or lower value (respectively) of the coverpoint data type.

If a fixed number of bins is specified and that number is smaller than the specified number of values,
the possible bin values are uniformly distributed among the specified bins.

1)

2)
3)

The first N specified values (where N = int(number of values / number of bins) ) are assigned to
the first bin, the next N specified values are assigned to the next bin, etc.

Duplicate values are retained; thus, the same value can be assigned to multiple bins.
If the number of values is not evenly divisible by the number of bins, then the last bin will
include the remaining items, e.g., for

bins fixed [4] = [1..10, 1, 4, 7];
The 13 possible values are distributed as follows: <1,2,3>, <4,5,6>, <7,8,9>,
<10,1,4,7>.

A covergroup _expression is an expression. In the case of a with covergroup expression, the expres-
sion can involve constant terms and the coverpoint variable (see 18.3.3.3).
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d) The default specification defines a bin that catches the values of the coverage point that do not lie
within any of the defined bins. The default is useful for catching unplanned or invalid values. The
coverage calculation for a coverage point shall not take into account the coverage captured by
default bins. Default bins are also excluded from cross coverage (see 18.4). A default bin cannot be
explicitly ignored (see 18.3.5).

(ST SN CU R |

618.3.3.2 Examples

7In Example 175, the first bins construct associates bin a with the values of v_a, between 0 and 63 and the
g value 65. The second bins construct creates a set of 65 bins b[127], b[128], ... b[191]. Note that
9 when empty square brackets are specified, each value is assigned one bin, including values that are specified
10 more than once. Likewise, the third bins construct creates 3 bins: c[200], ¢[201], and c[202]. The
11 fourth bins construct associates bin d with the values between 1000 and 1023 (the trailing . . represents
12 the maximum value of v_a). Every value that does not match bins a, b[ ], c[], or d is added into its own
13 distinct bin (e.g., the value 64), using the default specification.

14
struct s {
rand bit[10] v_a;
covergroup {
coverpoint v _a {
bins a = [0..63, 65];
bins b[] = [127..150, 148..191];
bins c[] = [200, 201, 202];
bins d = [1000..];
bins others[] = default;
}
} cs;
}
15 Example 175—Specifying bins

16 18.3.3.3 Coverpoint bin with covergroup expressions

17 The with clause specifies that only those values in the covergroup range list (see Syntax 66) that satisfy
18 the given expression (i.e., for which the expression evaluates to true) are included in the bin. In the
19 expression, the name of the coverpoint shall be used to represent the candidate value. The candidate value is
20 of the same type as the coverpoint.

21 The with clause behaves as if the expression were evaluated for every value in the covergroup range_list at
22 the time the covergroup instance is created. The with covergroup expression is applied to the set of values
231in the covergroup range_list prior to distribution of values to the bins. The result of applying a with
24 covergroup_expression shall preserve multiple, equivalent bin items as well as the bin order. The intent of
25 these rules is to allow the use of non-simulation analysis techniques to calculate the bin (e.g., formal
26 symbolic analysis) or for caching of previously calculated results.

27 Consider Example 176, where the bin definition selects all values from 0 to 255 that are evenly divisible by
28 3.
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struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

bins mod3[] = [0..255] with ((a % 3) == 0);

} cs;

2 Example 176—Select constrained values between 0 and 255

3 The name of the coverpoint itself may be used in place of the covergroup range list, preceding the with
4 keyword, to denote all values of the coverpoint. Only the name of the coverpoint containing the bin being
5 defined shall be allowed.

6 In Example 177, coverpoint name a is used in place of the covergroup range list to denote that the with
7 covergroup_expression will be applied to all values of the coverpoint.

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

bins mod3[] = a with ((a % 3) == 0);

} cs;

9 Example 177—Using with in a coverpoint

10 18.3.4 Automatic bin creation for coverage points

111If a coverage point does not define any bins, PSS automatically creates bins. This provides an easy-to-use
12 mechanism for binning different values of a coverage point. Users can either let the tool automatically create
13 bins for coverage points or explicitly define named bins for each coverage point.

14 When the automatic bin creation mechanism is used, PSS creates N bins to collect the sampled values of a
15 coverage point. The value NV is determined as follows:

16— For an enum coverage point, NV is the cardinality of the enumeration.
17— Foran integer coverage point, N is the minimum of 2M and the value of the auto_bin max option
18 (see Table 22), where M is the number of bits needed to represent the coverage point.

19 If the number of automatic bins is smaller than the number of possible values (N < ZM), the 2M values are
20 uniformly distributed in the N bins. If the number of values, ZM, is not divisible by A, then the last bin will
21include the additional remaining items. For example, if M is 3 and N is 3, the eight possible values are
22 distributed as follows: <0..1>,<2..3>, <4..7>.

23 PSS implementations can impose a limit on the number of automatic bins. See Table 22 for the default value
24of auto_bin_max.

25 Each automatically created bin will have a name of the form auto[value], where value is either a

26 single coverage point value or the range of coverage point values included in the bin (in the form
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1low. .high). For enumeration types, value is the named constant (enum item) associated with the
2 particular enumeration value.

318.3.5 Excluding coverage point values

4 A set of values associated with a coverage point can be explicitly excluded from coverage by specifying
s them as ignore_bins. See Example 178.

6 All values associated with ignored bins are excluded from coverage. Each ignored value is removed from
7the set of values associated with any coverage bin. The removal of ignored values shall occur after

g distribution of values to the specified bins.

9 Example 178 may result in a bin that is associated with no values or sequences. Such empty bins are
10 excluded from coverage.

1

struct s {
rand bit[4] a;

covergroup {
coverpoint a {
ignore bins ignore vals = [7, 8];
t
} cs23;

12 Example 178—Excluding coverage point values

1318.3.6 Specifying illegal coverage point values

14 A set of values associated with a coverage point can be marked as illegal by specifying them as illegal_bins.
15 See Example 179.

16 All values associated with illegal bins are excluded from coverage. Each illegal value is removed from the
17set of values associated with any coverage bin. The removal of illegal values shall occur after the
18 distribution of values to the specified bins. If an illegal value occurs, a runtime error shall be issued. Illegal
19 bins take precedence over any other bins, i.e., they result in a runtime error even if they are also included in
20 another bin.

21 Example 179 may result in a bin that is associated with no values or sequences. Such empty bins are
22 excluded from coverage.

23
struct s {
rand bit[4] a;
covergroup {
coverpoint a {
illegal bins illegal vals = [7, 8];
}
} cs23;
}
24 Example 179—Specifying illegal coverage point values
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118.3.7 Value resolution

2 A coverpoint expression, the expressions in a bins construct, and the coverpoint type, if present, are all
3 involved in comparison operations in order to determine into which bins a particular value falls. Let e be the
4 coverpoint expression and b be an expression in a bins covergroup range list. The following rules shall
5 apply when evaluating e and b:

6
7

8
9

10

1
12

a)

b)

If there is no coverpoint type, the effective type of e shall be self-determined. In the presence of a
coverpoint type, the effective type of e shall be the coverpoint type.

b shall be statically cast to the effective type of e. An implementation shall issue a warning under the
following conditions:

1) If the effective type of e is unsigned and b is signed with a negative value.

2) If assigning b to a variable of the effective type of e would yield a value that is not equal to b
under normal comparison rules for ==.

13 If a warning is issued for a bins element, the following rules shall apply:

14
15
16

7
18

If an element of a bins covergroup range list is a singleton value b, that element shall not appear in
the bins values.

If an element of a bins covergroup range_list is a range b1 . .b2 and there exists at least one value
in the range for which a warning would not be issued, the range shall be treated as containing the
intersection of the values in the range and the values expressible by the effective type of e.

19 Example 180 leads to the following:

20
21

22
23

24
25

26
27

28

29

For b1, a warning is issued for the range 6..10. b1l is treated as though it had the specification
[1, 2..5, 6..7].

For b2, a warning is issued for the range 1. .10 and for the values -1 and 15. b2 is treated as
though it had the specification [1. . 7].

For b3, a warning is issued for the ranges 2. . 5 and 6. . 10. b3 is treated as though it had the spec-
ification [1, 2..3].

For b4, a warning is issued for the range 1. . 10 and for the value 15. b4 is treated as though it had
the specification [-1, 1..3].

struct s {
rand bit[3] pl; // type expresses values in the range 0 to 7
int [3] p2; // type expresses values in the range -4 to 3

covergroup {
coverpoint pl {
bins bl = [1, 2..5, 6..10]; // warning issued for range 6..10
bins b2 = [-1, 1..10, 15]; // warning issued for range 1..10
} // and values -1 and 15
coverpoint p2 {
bins b3 = [1, 2..5, 6..10]; // warning issued for ranges 2..5

// and 6..10
bins b4 = [-1, 1..10, 15]; // warning issued for range 1..10
} // and value 15

}ocl;

Example 180—Value resolution
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118.4 Defining cross coverage

2 A covergroup can specify cross coverage between two or more coverage points or variables. Cross
3 coverage is specified using the cross construct (see Syntax 67). When a variable V is part of a cross
4 coverage, the PSS processing tool shall implicitly create a coverage point for the variable, as if it had been
screated by the statement coverpoint V;. Thus, a cross involves only coverage points. Expressions
6 cannot be used directly in a cross; a coverage point must be explicitly defined first.

718.4.1 Syntax

8 Syntax 67 declares a cross.

covergroup_cross ::= covercross_identifier : cross
coverpoint_identifier { , coverpoint_identifier }
[iff ( expression )] cross_item or null
cross_item or null ::=
{ { covergroup cross_body item } }
'3
covergroup_cross_body_item ::=
covergroup_option
| covergroup cross_binspec
covergroup_cross_binspec ::=
bins_keyword identifier = covercross_identifier with ( covergroup expression ) ;

covergroup_expression ::= expression

10 Syntax 67—cross declaration

11 The following also apply:
12 a) The label is required for a cross.

13 b)  The expression within the optional iff provides a conditional sampling guard for the cross coverage.

14 If the condition evaluates to false at any sampling point, the cross coverage is not sampled.

15 ¢) Cross coverage of a set of N coverage points is defined as the coverage of all combinations of all
16 bins associated with the N coverage points, i.e., the Cartesian product of the N sets of coverage point
17 bins. See also Example 181.

1818.4.2 Examples

19 The covergroup cov in Example 181 specifies the cross coverage of two 4-bit variables, a and b. The PSS
20 processing tool implicitly creates a coverage point for each variable. Each coverage point has 16 bins,
21specifically auto [0]..auto [15]. The cross of a and b (labeled aXb), therefore, has 256 cross products
22 and each cross product is a bin of aXb.
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struct s {
rand bit[4] a, b;

covergroup {
aXb : cross a, b;
} cov;

2 Example 181—Specifying a cross

318.4.3 Defining cross bins

4In addition to specifying the coverage points that are crossed, PSS allows the definition of cross coverage
sbins. Cross coverage bins are specified to group together a set of cross products. A cross coverage bin
6 associates a name and a count with a set of cross products. The count of the bin is incremented any time any
7 of the cross products match; i.e., every coverage point in the cross matches its corresponding bin in the cross
8 product.

9 User-defined bins for cross coverage are defined using bins with expressions. The names of the coverpoints

1oused as elements of the cross coverage are used in the with expressions. User-defined cross bins and
11 automatically generated bins can coexist in the same cross. Automatically generated bins are retained for
12 those cross products that do not intersect cross products specified by any user-defined cross bin.

13 Consider Example 182, where two coverpoints are declared for fields a and b. A cross coverage is specified
14 between these two coverpoints. The small a b bin collects those bins where both a<=10 and b<=10.

15

struct s {
rand bit[8] a, b;

covergroup {
coverpoint a {
bins low[] = [0..127];
bins high [128..255];

}

coverpoint b {
bins two[] = b with (b%2 == 0);
}

X : cross a, b {
bins small a b = X with (a<=10 && b<=10);
}

} cov;

16 Example 182—Specifying cross bins

1718.5 Specifying coverage options

18 Options control the behavior of the covergroup, coverpoint, and cross elements. Options can be specified
19 when creating an instance of a reusable covergroup, and are specific to that covergroup instance.

20 Specifying a value for the same option more than once within the same covergroup definition shall be an
21error. Specifying a value for the option more than once when creating a covergroup instance shall be an
22 error.
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1Table 22 lists the instance-specific covergroup options and their description. Each instance of a reusable

2 covergroup type can initialize an instance-specific option to a different value.

Table 22—Instance-specific covergroup options

Option name

Default

Description

weight=number

If set at the covergroup syntactic level, it specifies the
weight of this covergroup instance relative to all other
instances when computing overall instance coverage. If set
at the coverpoint (or cross) syntactic level, it specifies the
weight of a coverpoint (or cross) for computing the instance
coverage of the enclosing covergroup. The specified weight
shall be a non-negative integral value.

goal=number

100

Specifies the target goal for a covergroup instance or for a
coverpoint or cross. The specified value shall be a non-neg-
ative integral value.

name=string

unique name

Specifies a name for the covergroup instance. If unspeci-
fied, a unique name for each instance shall be automatically
generated by the tool.

comment=string

"

A comment that appears with the covergroup instance or
with a coverpoint or cross of a covergroup instance. The
comment is saved in the coverage database and included in
the coverage report.

at_least=number

Minimum number of hits for each bin. A bin with a hit count
that is less than number is not considered covered. The spec-
ified value shall be a positive integral value.

detect_overlap=bool

false

When true, a warning is issued if there is an overlap between
the range list of two bins of a coverpoint.

auto_bin_max=number

64

Maximum number of automatically created bins when no
bins are explicitly defined for a coverpoint. The specified
value shall be a positive integral value.

per_instance=bool

false

Each instance contributes to the overall coverage informa-
tion for the covergroup type. When true, coverage informa-
tion for this covergroup instance shall be saved in the
coverage database and included in the coverage report.
When false, implementations are not required to save
instance-specific information.

3 Instance options can be specified at the covergroup level. Except for the weight, goal, comment, and
4per_instance options (see Table 22), all other options set at the covergroup syntactic level act as a
s default value for the corresponding option of all coverpoints and crosses in the covergroup. Individual
6 coverpoints and crosses can overwrite these defaults. When set at the covergroup level, the weight,
7goal, comment, and per_instance options do not act as default values to the lower syntactic levels.
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118.5.1 Examples

2 The instance-specific options mentioned in Table 22 can be set in the covergroup definition. Example 183
3 shows this, and how coverage options can be set on a specific coverpoint.

4
covergroup csl (bit[64] a var, bit[64] b var) {
option.per instance = true;
option.comment = "This is CS1";
a : coverpoint a var {
option.auto bin max = 128;
}
b : coverpoint b var ({
option.weight = 10;
}
}
5 Example 183—Setting options

618.6 covergroup sampling

7 Coverage credit can be taken once execution of the action containing covergroup instance(s) is complete.
8 Thus, by default, all covergroup instances that are created as a result of a given action’s traversal are
9 sampled when that action’s execution completes. covergroup sampling in monitors is described in 19.5.1.
10 Table 23 summarizes when covergroups are sampled, based on the context in which they are instantiated.

Table 23—covergroup sampling

Instantiation context Sampling point

Flow objects Sampled when the outputting action completes traversal.

Resource objects Sampled before the first action referencing them begins traversal.

Action Sampled when the instantiating action completes traversal.

Monitor Sampled at the match point of the cover statement, instantiating the monitor.

Data structures Sampled along with the context in which the data structure is instantiated, e.g., if a
data structure is instantiated in an action, the covergroup instantiated in the data
structure is sampled when the action completes traversal.

118.7 Per-type and per-instance coverage collection

12 By default, covergroups collect coverage on a per-type basis. This means that all coverage values sampled
13by instances of a given covergroup type, where per instance is false, are merged into a single
14 collection.

15 Per-instance coverage is collected when per _instance is true for a given covergroup instance and
16 when a contiguous path of named handles exists from the root component, root action, or an instantiated
17 cover statement to where new instances of the containing type are created. If one of these conditions is not
18 satisfied, per-type coverage is collected for the covergroup instance.
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118.7.1 Per-instance coverage of flow and resource objects

2 Per-instance coverage of flow objects (buffer (see 13.1), stream (see 13.2), state (see 13.3)) and resource
3 objects (see 14.1)) is collected for each pool of that type.

4In Example 184, there is one pool (pss_top.bl p) of buffer type bl. When the PSS model runs,
s coverage from all 10 executions of P_a and C_ a is placed in the same coverage collection that is associated
6 with the pool through which P_a and C_a exchange the buffer object b1l.

enum mode e { MO, M1, M2 }

buffer bl {
rand mode e mode;

covergroup {
option.per instance = true;

coverpoint mode;
} cs;

}

component pss_top {
pool bl bl p;
bind bl p *;

action P a {
output bl bl out;
}

action C a {
input bl bl in;
1

action entry {

activity {

repeat (10) {
do C a;

}

}

}
}
8 Example 184—~Per-instance coverage of flow objects

918.7.2 Per-instance coverage in actions

10 Per-instance coverage for actions is enabled when per_instance is #7ue for a covergroup instance and
11when a contiguous path of named handles exists from the root action to the location where the covergroup
12 is instantiated.

13 In Example 185, a contiguous path of named handles exists from the root action to the covergroup instance
14inside al (entry.al.cqg). Coverage data collected during traversals of action A are placed in a coverage
15 collection unique to this named path. Plus, four samples are placed in the coverage collection associated
16 with the instance path entry.al . cg because the named action handle a1l is traversed four times.
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1Also in Example 185, a contiguous path of named handles does not exist from the root action to the
2 covergroup instance inside the action traversal by type (do 2). In this case, coverage data collected during
3the 10 traversals of action A by type (do A) are placed in the per-type coverage collection associated with

4 covergroup type A: : cg.

enum mode e { MO, M1, M2 }
component pss_ top {

action A {
rand mode e mode;

covergroup {
option.per instance = true;

coverpoint mode;
}ocas

action entry {

A al;

activity {
repeat (4) {

al;

}
repeat (10) {
do A;

}

Example 185—Per-instance coverage in actions
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119. Behavioral coverage

2 A large number of specific scenarios may be generated from one PSS specification. These scenarios vary in
3 the action order and data. Coverage statements identify a key action order and data combinations that need
4to be observed to exercise the key functionality. The specification of the observed action order and, possibly
stheir data, related to this ordering, is called behavioral coverage and is described in this clause. Data
6 coverage is described in Clause 18.

719.1 Defining behavioral coverage: cover and monitor

8 The cover statement directs the PSS processing tool to observe an action scenario; i.e., an action execution
9 order together with its data as specified in its body. The action order specification, including action data
10 specification, is called a scenario. Scenarios may also be written separately as monitors. The cover
11 statements are only active in component instances actually instantiated from the root component.

1219.1.1 Syntax

13 The syntax for monitors is shown in Syntax 68.

14

cover_stmt ;=
[ label identifier : ] cover type identifier ;

| [ label identifier : ] cover { { monitor_body item } }
monitor_declaration ::= monitor monitor_identifier

[ template_param_decl list ] [ monitor_super_spec | { { monitor body item } }
abstract_monitor_declaration ::= abstract monitor declaration
monitor_super_spec ::=: type_identifier
monitor_body_item ::=

monitor_activity declaration

| override declaration

| monitor constraint_declaration

| monitor field declaration

| covergroup_declaration

| attr_group

| compile_assert_stmt

| covergroup instantiation

| monitor body compile if

| stmt_terminator
monitor_field declaration ::=

const_field declaration

| action_handle_declaration

| monitor handle declaration
15 Syntax 68—Cover statement and monitor declaration

16 Monitors are coverage counterparts of actions. An action construct describes a generation scenario for a
17 solution. A monitor construct describes a scenario to be observed, and a cover statement instructs the PSS
18 processing tool to monitor the executed stream of actions for the presence of the specified scenario.
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1A cover statement may incorporate a monitor type directly or instantiate an existing monitor type, as shown
2 in Example 186.

3 A monitor type may be declared separately using the monitor keyword and a monitor_identifier, as shown
41n Syntax 68. The monitor’s syntax is similar, but not identical to the syntax of the compound action (see 10
sand 12). Like an action, a monitor may declare fields, have an activity, constraints, and covergroup
6 declarations and instantiations. All rules applicable to actions apply also to monitors unless the opposite is
7 stated explicitly.

8 A monitor declaration optionally specifies a monitor_super spec, a previously defined monitor type from
9 which the new type inherits its members. A monitor activity specifies the scenario that must be observed in
10 order to satisfy the monitor. If more than one activity is specified in a monitor, its scenario is equivalent to
11its activity scenarios combined in a schedule of scenarios (see 19.3.8).

12 The following also apply:
13 a) Monitor fields may be action and monitor handles. Data attributes, references, and resource claims

14 are not supported in monitors. Other data fields shall be declared as static const.

15 b)  An abstract monitor may be declared as a template that defines a base set of field attributes from
16 which other monitors may inherit. Non-abstract derived monitors may be instantiated like any other
17 monitor. Abstract monitors shall not be instantiated directly.

18 ¢)  An abstract monitor may be derived from another abstract monitor but not from a non-abstract mon-
19 itor.

20 d) Abstract monitors may be extended, but the monitor remains abstract and may not be instantiated
21 directly.

22 A non-abstract monitor (the initial definition and all its extensions) shall have one or more activity
23 statements (see 19.3).

24 An abstract monitor may have no activity defined.

25 In Example 186, the cover statement c1 captures a scenario when the execution of an action of type read
26 follows the execution of an action of type write. Cover statement cl directly specifies the monitor
27 scenario as part of the cover directive. Cover statement c2 specifies the scenario as a reusable monitor type
28Wr.
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component pss_top {

action read {}
action write {}

cl: cover {
activity {
do write;

do read;

monitor wr {
activity {
do write;

do read;

c2: cover wr; // equivalent to cl

Example 186—Cover statement and monitor

319.2 Behavioral coverage concepts

4 This section defines basic concepts used in the definition of the behavioral coverage.

5

a)
b)

¢)

d)

2

h)

)

i)

k)

)

A top-level monitor is the monitor type (inlined or instantiated) of a cover statement.
An observed scenario is a mapping of a monitor or of a monitor activity statement into sets of
observed action executions.

The time is assumed to be an unsigned integer. An action execution spans from its start time
(including) and its end time (excluding). Hence, an instantaneous action with the start time ¢ has
the end time #+1.

A scenario checkpoint is a time instant relative to which the scenario is observed.
An attempt is a scenario along with its checkpoint.

An attempt scenario realization is a set of action executions traversed by this attempt along with the
mapping of action handles into specific action executions.

Realizations of an attempt of a scenario with a standalone constraint are those realizations of the
unconstrained scenario that satisfy the constraint.

Realizations of an attempt of a scenario with a constraint, whether standalone or in-line, shall satisfy
all constraints.

A scenario realization start (or beginning) point is a start time of the first observed action execu-
tion of this scenario for a given checkpoint. It may either coincide with the checkpoint, or it may be
after it.

A scenario realization endpoint or match point is the end time of the last observed action execution
of this scenario for a given checkpoint.

An attempt of the top-level monitor has a match or is successful if it has at least one scenario reali-
zation whose start point coincides with the attempt’s checkpoint; otherwise, the attempt has no
match or is failing.

The first match of a successful top-level monitor attempt is the closest among the match points of
its scenario realizations to its checkpoint (not to the realization’s start point).
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1 m) The top-level monitor of a cover statement shall not have attempts with an empty realization (see
2 19.3.7).
3 n) A cover statement has a match or is successful if its top-level monitor has at least one successful
4 attempt.

5 The notion of a checkpoint is required to build compound monitors from the smaller ones. For example, if
6 the top-level monitor is a sequence of two action traversals, then the first action traversal is matched from
7its start point; whereas, the second action traversal should be matched not from its start point but from
8 the end point of the first action traversal, i.e., the checkpoint of the second action traversal is the endpoint of
gthe first action traversal. This is explained in Example 187 and the diagrams shown in Figure 21 and

10 Figure 22.

n

action read {}
action write {}
action idle {}
action send {}
action receive {}

monitor ml {
write w;
read r;
activity {
Wy
ry;

monitor m2 {
activity {
do write;
select {
do read;
do send;
}i

do receive;

monitor m3 {
activity {
select {
do write;
do read;
}i
select {
do send;
do receive;

}i

cl: cover ml;
c2: cover m3;
12 Example 187—lllustration of behavioral coverage concepts
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1 The monitors m1, m2, and m3 define the following scenarios:

no

— Monitor m1: a write action execution is followed (directly or not) by a read action execution.

— Monitor m2: a write action execution is followed (directly or not) by either a read or a send
action execution (or both), followed by a receive action execution.

S w

w

Monitor m3: An execution of a write or a read action (or both) is followed by an execution of a
6 send or a receive action (or both).

7 The top-level monitor of the cover statement c1 is m1. Monitor m1 describes a compound scenario. Its

8 scenario is a sequence of two action executions defined by handles w and r. The monitor starts matching

9 from the start times of all action executions, i.e., for the action trace shown in Figure 21, its checkpoint
10 times are tq, ts, ts, tg, tg, and tqg. Only attempts with start points t, and t are successful, and

11 because there exist successful attempts, the cover statement c1 is successful. The start times of these

12 attempts coincide with their checkpoints. The first successful attempt has two match points: ¢t (its first

13 match) and t;, because both read actions follow write. There is no need to follow the top-level attempt
14 beyond the first top match. The second successful attempt has only one match point t,,, which is also its
15 first match. The first attempt has two scenario realizations: {write;, read;} with the mapping: wowrite,,
16 r-read;, and with the mapping: wowrite;, r—read,. The second attempt has one scenario realization:
17 {write,, read, }.

18

idle :
e < >
I
1o ty t t3 1, ts ts t;, tglo tio i tz Time
19 Figure 21—Monitor matching

20 Consider monitor m2, checkpoint t, and the trace shown in Figure 22.

21

send receive

write : < >
Q read

t ty t, ot t, ts tg t, tg to

22 Figure 22—Behavioral coverage concepts illustration
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1This attempt has two different realizations: the action set {write, read, receive}, and the action set
2 {write, send, receive}. Both of them have the same start point t; and the same match point t4. Though
3 this attempt has a single match point, it has two different realizations: the action set {write, read, receive}
4 and the action set {write, send, receive}. The same is true for the attempt with the checkpoint t;. For the
s checkpoint t,, the attempt has no scenario realizations.

6 Now consider monitor m3, cover statement c2, and the trace shown in Figure 22. To check c2, monitor
7m3 is matched from the beginning of every action execution, i.e., at checkpoints t;, ty, ts, and tg. There
gare two successful attempts, starting at times t; and t,. The first attempt has scenario realizations
9 {write, send} and {write, receive} with the start point t;, and match points t; and tq, correspondingly.
10 The second attempt has one scenario realization {read, receive}, with the start point £, and the match
T point tq.

1219.3 Monitor activity

13 A scenario to be watched is defined in a monitor using an activity statement. A monitor activity statement
14 is similar but not identical to an action activity statement.

15 The monitor scenario is defined by the monitor activity hierarchically by activity statements corresponding
16 to the subscenarios.

17

monitor activity declaration ::=
activity { { monitor activity stmt } }
monitor_activity_stmt ::=
[ label identifier : ] labeled monitor_activity stmt
| activity action traversal stmt
| monitor activity monitor traversal stmt
| action_handle declaration
| monitor handle declaration
| monitor activity constraint stmt
| stmt_terminator
labeled monitor activity stmt ::=
monitor_activity sequence block stmt
| monitor activity concat stmt
| monitor activity eventually stmt
| monitor activity overlap stmt
| monitor activity schedule stmt
| monitor activity select stmt

| activity _super stmt

18 Syntax 69—Monitor activity

19 There are the following monitor activity statements for scenario specification:

20 — Action traversal scenario (see 19.3.1)
21— Sequence statement (see 19.3.2)
22— Concat statement (see 19.3.3)
23— Eventually statement (see 19.3.4)
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1 — Overlap statement (see 19.3.5)

2 — Select statement (see 19.3.6)

3 — Empty scenario (see 19.3.7)

4 — Schedule statement (see 19.3.8)

5 — Monitor traversal statement (see 19.3.9)

619.3.1 Action traversal scenario

7 An action traversal scenario specified by a monitor action traversal statement observes an execution of an
g action either atomic or compound. It has the same syntax as an action traversal statement in actions (see
9 Syntax 70 and 12.3.1).

10

activity action_traversal stmt ::=
identifier [ [ expression | ] inline constraints_or_empty
| [ label identifier : | do type_identifier inline_constraints_or_empty
inline_constraints_or_empty ::=

with constraint_set

s

1 Syntax 70—Action traversal statement

12 identifier names a unique action handle or variable in the context of the containing monitor type or activity
13 scope. The syntactical rules are the same as for an action traversal statement in an action activity (see
1412.3.1.1).

15 The following also apply:

16 a) The semantics of traversing individual action handle array elements are the same as those of travers-
17 ing individually declared action handles.

18 b) The anonymous action traversal statement is semantically equivalent to an action traversal with the
19 exception that it does not create an action handle that may be referenced from elsewhere.

20 ¢) A named action handle may only be traversed once in the following scopes and nested scopes
21 thereof:

22 1) sequential activity scope (sequence or concat)
23 2) overlap
24 3) schedule

25 d) Values of action attributes mentioned in data constraints are sampled at the end of the action execu-
26 tion.

27 Given a checkpoint t, an action traversal scenario realization consists of an execution of an appropriately
28 constrained action of the specified type starting at time t;, t; 2 tg, such that there is no other
29 appropriately constrained action execution of this type starting at an earlier time t:ty, < t < t;. An
30action traversal scenario may have multiple realizations, as explained below (see Example 188 and

31 Figure 26).

32 Example 188 defines two monitors m1 and m2 using anonymous action traversals and their equivalent
33 counterparts m1 1 and m21 using action handles.
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enum locked e {
LOCKED,
UNLOCKED

}i

action read {
rand locked e lock mode;

}

monitor ml {
activity {
do read;

monitor mll {
read r;
activity {
r;

monitor m2 {
do read with lock mode == LOCKED;
}

monitor m21 {
read r;
activity {
r with lock mode == LOCKED;
}

cl: cover ml;
2 Example 188—Action traversal in monitors

3 The monitor m1 watches an execution of an action of type read. The monitor m2 watches an execution of
4 an action of type read whose lock mode is LOCKED.

5 In the action trace shown in Figure 21, cover statement c1 has successful attempts starting at times t5 and
6 t11 corresponding to read action executions.

7 Now consider matching the above monitors relative to a specific checkpoint. In the below examples, the
8 checkpoint is t.

9 First, consider matching monitor m1 in the action trace shown in Figure 23. There is no match because there
10 is no execution of a read action either at time ¢, or later.
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t t t

2 Figure 23—Action traversal statement. No match

3 The attempt of monitor m1 with the checkpoint t; has a single scenario realization: {read} on the trace
4 shown in Figure 24. The scenario realization start pointis t; and its endpoint is t,.

6 Figure 24—Action traversal statement. One scenario realization

7In the trace shown in Figure 25, the monitor m1 has one realization scenario (t; is a checkpoint): the
gunlocked read (the first one). The monitor m2 also has one realization scenario: the locked read (the
9 second one).

10

read, LOCKED

read, UNLO CKED

4 t, t3 ta ts

1 Figure 25—Matching action traversal statements with constraints

12 Figure 26 shows a trace where the attempt (with checkpoint t;) of the monitor m1 has two realization
13 scenarios: {read;} and {read,}.
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read,

|

read;

|

Y t t3 ts

2 Figure 26—Action traversal, multiple matches
319.3.2 Sequential scenario

4 The sequential scenario is specified by the sequence statement (see Syntax 71):

monitor_activity sequence block stmt ::=[ sequence ] {{ monitor activity stmt }}
6 Syntax 71—Sequence monitor activity statement

7 The sequential scenario defines a consecutive matching of its member-subscenarios; there may be an
g arbitrary gap between two consecutive subscenarios. Namely, in a sequential scenario, the first sub-scenario
9is matched first; at its match point or after it the second sub-scenario is matched; and so on. The realization
10 of scenario sequence { si,.., s, } consists of member-wise realization unions of subscenarios s, . . .,
nand s,. For example, if a, b, c, d, e, and f are action executions, and for some checkpoint, a realization of s;
121s set {a,b} and a realization of s, for a checkpoint at or after the end of b is set {c} and for a checkpoint at
13or after the end of c, a realization of s is set {d,e,f}, then {ab,c,d,e,f} is a realization of sequence
14 {s1,5,,53}.

15 Consider monitor m1:

16

17 monitor ml {
18 activity {
19 do write;
20 do read;
21 }

22 }

23 defined in Example 187, the action trace shown in Figure 27, and the checkpoint ¢.
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idle ;
< = : >
1 '
I
1o ty t t3 1, ts ts t;, tglo tio i tz Time
2 Figure 27—Sequential scenario

3 Monitor m1 defines a sequence of two action traversals: {do write; do read;}. Its subscenarios are
4do writeand do read. First, the scenario do write is matched. Its realization is the write action
s execution, and its end time is t,. As a checkpoint of the second scenario do read, t, or a later time
6 instant should be chosen. For the checkpoint t,, the second scenario realization is {read;} action execution.
7For any checkpoint between t, and ts (the start point of {read;}), the scenario realization will not
g change. For any checkpoint t, ts < t < t;,, the scenario realization is {read,} action execution. For
gany checkpoint t > t;,, there is no match. To summarize, scenario { do write; do read; } has
10two scenario realizations: {write|, read;} and {write, read,}, with the match points t,; and t;,,
11 correspondingly. Informally speaking, we choose the first execution of a write action at or after t, and at
12 or after its endpoint (t-), we choose any read action.

1319.3.3 Concatenation scenario
14 The concatenation scenario is specified by the monitor activity concat statement (see Syntax 72):

15

monitor_activity concat_stmt ::= concat {{ monitor_activity stmt }}

16 Syntax 72—Concat monitor activity statement

17 The concatenation scenario defines an immediate consecutive matching of its subscenarios; the checkpoint
18 of the next sub-scenario is the matching point of the previous one. Namely, in a concatenation scenario, the
19 first sub-scenario is matched first; at its match point, the second sub-scenario is matched, and so on. The
20realization of scenario concat { s;,...,s, } consists of member-wise realization unions of
21subscenarios sq, ..., and s,. For example, if for some checkpoint, {a,b} is a realization of s;, for a
22 checkpoint at the end of b, {c} is a realization of s,, and for a checkpoint at the end of c, {d,e,f} is a
23realization of ss, then {a,b,c,d,e,f} is a realization of concat { sy,s,,s53 }. Here, a,b,c,d,e,andf
24 are action executions.

25 The concatenation scenario often may be used interchangeably with the sequential scenario, but there are
26 cases when the matching results are different in both scenarios (see the examples below). Because concat is
27 more restrictive, all realizations of the concatenation scenario are also realizations of the sequential scenario,
28 but the opposite is not always true.

29 The following action definitions will be used in this section’s examples:
30 action read {
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rand int core;

action write {
rand int core;

action start {}

~N o W N

8 Example 189 shows a simple case when the sequential and concatenation scenarios behave similarly.

cl: cover {
activity {
concat {
do write;
do read;

c2: cover {
activity {
sequence {
do write;
do read;

10 Example 189—Concat vs sequence scenarios. Simple case

11 For the action trace shown in Figure 28, the results of cover statements c1 and c2 are identical. Both top-
12 level scenarios have the only realization {write, read}.

13

read
write § é
t t, t3 t
14 Figure 28—Action trace with two consecutive actions

15 In the action trace shown in Figure 29, the attempt of the cover statement c1 with the checkpoint ¢ has a
16 realization {write, read; } because the match point of the first sub-scenario “do write”is t,, and this time
17 instant serves the checkpoint of the second sub-scenario do read. The attempt of the cover statement c2
18 has two realizations: {write, read} and {write, read,}. However, because all attempts of both of these cover
19 statements are either simultaneously successful or simultancously failing, there is no difference between
20 sequence and concat in this case as well.
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2 Figure 29—Action trace with two repeated actions at the end

3 Example 190 illustrates the minor difference between the concatenation and sequential scenarios in the
4 presence of covergroups.

c3: cover {
write w;
activity {
concat {
do start;
w;
do read;

}
covergroup {
cp: coverpoint w.core;

} cg;

c4d: cover {
write w;
activity {
sequence {
do start;
wy
do read;

}
covergroup {
cp: coverpoint w.core;

} cg;

6 Example 190—Concat vs sequence scenarios. Covergroups

7 In the action trace shown in Figure 30, the top-level scenario of the cover statement c3 has a realization
8 {start, write;, read}; the top-level scenario of cover statement c4 has two realizations:
9 {start, write;, read} and {start, write,, read}. This difference may impact the embedded covergroup
10 sampling: ¢3 will sample core value 1, whereas c4 may sample either core value 0 or 1 (see 19.5).
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start writey, core =0 write,, core =1 read, core=1

Ty ¥ i 1% ts ts t ts

2 Figure 30—Action trace with two repeated actions in the middle

3 Example 191 and Example 192 illustrate the impact of inline and standalone constraints on the matching
4 behavior of sequential and concatenation monitors.

5 In Example 191, there are two cover statements, c5 and c6, each of which specifies an inline constraint for
6 the traversal of the write action. The activity in c5 specifies a concat scenario and c 6 specifies a sequence
7 scenario.

c5: cover {
activity {
concat {
do start;
do write with core == 0;
do read;

c6: cover {
activity {
sequence {
do start;
do write with core == 0;
do read;

}
9 Example 191—Concat vs sequence scenarios. Inline constraints with same behavior

10 Consider the traces shown in Figure 31 and Figure 32, in the context of Example 191.

11 The top-level scenarios of ¢c5 and c6 have the same realization for each trace: {start, write;, read} for the
12 trace in Figure 31 and {start, write,, read} for the trace in Figure 32.

13 The inline constraint in the concat scenario in cover statement c5 will match the first traversal of write
14 that satisfies the constraint. In Figure 32, starting at ¢, the match point of the start traversal, the sub-
15 scenario “do write with core == 07 has the realization {write,}.
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start writey, core =0 write,, core =1 read, core=1

5 5 ts ta ts te  t tg

2 Figure 31—First alternative. Example 191
3
start write;, core=1 write,, core=0 read, core=1

)

ty t ot ty ts ts t tg

4 Figure 32—Second alternative. Example 191

s Example 192 illustrates the case of a different behavior of the concatenation and sequential monitors.

c7: cover {
write w;
activity {
concat {
do start;
w;
do read;

}

constraint w.core == 0;

c8: cover {
write w;
activity {
sequence {
do start;
w;
do read;

}

constraint w.core == 0;

}

7 Example 192—Concat vs sequence scenarios. Different behavior due to standalone constraints

8 In the trace shown in Figure 33, both ¢ 7 and c8 have the same realization {start, write,, read}. In the
9 absence of the standalone constraint, the only realization of the top-level scenario of c7 is

10 {start, write;, read}. According to 19.2.g, the standalone constraint “w.core == 0 must hold for this
11 realization, so the realization matches. The top-level scenario of c8 in the absence of the constraint has two
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1realizations: {start, write;, read} and {start, write,, read}; however, only the first realization meets the
2 constraint condition, so that is the realization that will match.

3 In the trace shown in Figure 34, the top-level scenario of c7 does not have a match since the only
4 unconstrained realization {start, write|, read} does not satisfy the constraint. The top-level scenario of c8

s does have a realization {start, write,, read}.

6
start write;, core =0 write,, core =1 read, core=1
ty t ty t ts et &
7 Figure 33—First alternative. Example 192
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start write;, core=1 write,, core=0 read, core=1

t L ot t ts ts t s

2 Figure 34—Second alternative. Example 192

3 Example 193 illustrates another difference between the concatenation and sequential scenarios in the
4 presence of inlined constraints.

c9: cover {
read r;
write w;
activity {
concat {
do start;
wy
r with core == w.core;

cl0: cover {
read r;
write w;
activity {
sequence {
do start;
wy
r with core == w.core;

}
6 Example 193—Concat vs sequence scenarios. Inline constraints with different behavior

7 The top-level scenarios of both c¢9 and c10 have the same realization {start, write;, read} in the trace in
8 Figure 35. The top-level scenario of c10 has a realization {start, write,, read} on the trace in Figure 36. The
9 top-level scenario of ¢9 does not have any realization there. Indeed, the write action is searched for from

10 the checkpoint t,. The only match is the first write action, and this action has attribute “core == 0.
11 The read action is searched from the checkpoint t,; the only read action on the trace has attribute
12“core == 07, and it does not satisfy the constraint “r with core == w.core”.

13
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start write;, core=1 write,, core=0 read, core=1

t L ot t ts ts t s

2 Figure 35—First alternative. Example 193
3
start write, core =0 write,, core =1 read, core=1

4 4 t t ts t 4 ts

4 Figure 36—Second alternative. Example 193
519.3.4 Eventuality scenario

6 The eventuality scenario is specified by the monitor activity eventually statement (see Syntax 73):

monitor_activity _eventually stmt ::= eventually monitor activity stmt ;

8 Syntax 73—Eventually monitor activity statement

9 Given a checkpoint t, the eventuality scenario matches its sub-scenario for any checkpoint t= tg, ie.,
10 any realization of the sub-scenario matched from any checkpoint t2>t is a realization of the eventuality
11 scenario.

12 Consider cover statement c in Example 194. It reads: capture a scenario when some read action after
13 start belongs to core 0 or the first write action after start belongs to core 1. Without eventually, only
14 the first read after start would be checked, and if that action did not satisfy “r.core == 07, there is
15 no match.
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action start;
action read { rand int core; }
action write { rand int core; }
c: cover {
read r;
write w;
activity {
concat {
do start;
select {
eventually r;
Wy

}
constraint {
w.core == 1;

~.

2 Example 194—Eventuality scenario

3 On the trace shown in Figure 37, the first alternative takes place with the realization {start, read,}. On the

4trace shown in Figure 38, the second alternative takes place with the realization
5 {start, write}.

6
start read,, core=2 write, core=0 read,, core=0
< >
4 L, t s te t tg
7 Figure 37—First alternative. Example 194
8
start read,, core=2 write, core=1 read,, core=1
< »
4 L, t s te t tg
9 Figure 38—Second alternative. Example 194
10 In general, sequence { s;; s,; ...; s,; } isequivalentto
nconcat { s;; eventually s,; ... eventually s,; },wheresq,s,,...,and s, are the

12 sequence subscenarios.
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119.3.5 Overlapping scenario

2 The overlapping scenario is specified by the monitor activity overlap statement (see Syntax 74):

monitor_activity _schedule stmt::= overlap {{ monitor_activity stmt }}
4 Syntax 74—Overlap monitor activity statement

5 The overlapping scenario defines overlapping of its member subscenarios. The overlapping scenario meets
6 the same conditions as the scheduling scenario and the additional condition that there is a time instant where
7 all its member scenarios are simultaneously active.

8 In an overlapping scenario, the subscenarios are matched from the overlapping scenario checkpoint or after
9it. The realizations of scenario overlap { s;,...,s, } consistof member-wise realization unions of
10 subscenarios sq, ..., and s,, provided that these realizations of different scenarios are pairwise disjoint
1and that they mutually overlap in time. Realizations of scenarios s;, ..., and s, overlap if
emax(by,...,b,) < min(ey,...,e,), where by, ..., b, and e, ..., e, are the beginning and
13 the end time of the realizations of scenarios sq, . . ., s,, accordingly. For example, if {a,b} is a realization
140of s, {c} is a realization of s, and {d,e,f} is a realization of s, and the maximal among the beginning
15 times of action executions a, ¢, and d is less than the minimal between the end times of action executions b,
16 ¢, and £, then {a,b,c.d,e.f} is a realization of overlap { s;, s,, s3 }. Here, a, b, c, d, e, and f are action
17 executions.

18 Consider monitor m defined in Example 195, the action traces shown in Figure 39, and the checkpoint t.

19

action read {}
action write {}

monitor m {
activity {
overlap {
do read;
do write;

20 Example 195—Overlapping scenario
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write

>

read

|

to t t t3 t

read

write : :
to t1 t2 t3 ts
write
read

to 1 t 13 1
write
: read 5
to 4 t t3 ts
2 Figure 39—Overlapping scenario

3 The monitor’s scenario has a match in the last two traces but not in the first two.

4Now consider the overlapping scenario with three member scenarios defined in Example 196, the action
s traces shown in Figure 40 and Figure 41, and the checkpoint t.
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action read {}
action write {}
action send {}

monitor m {
activity {
overlap {
do read;
do write;
do send;

2 Example 196—OQverlapping of three scenarios

30n the trace shown in Figure 40, the overlapping scenario has one realization:
4 {write, read, send} because the three action executions are simultaneously active (on the time interval from
5 t3 to t,). On the other hand, this scenario does not have any realization on the trace shown in Figure 41
6 because the three action executions do not overlap, though “write” and “read” overlap, and “read” and
7 “send” also overlap.

send

to 4 t t3 4 ts ts

9 Figure 40—Overlapping of three scenarios

10

to t t, t3 ts ts ts

1 Figure 41—Three scenarios. No overlap
1219.3.6 Selection scenario

13 The selection scenario is specified by the monitor activity select statement (see Syntax 75):
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monitor_activity select stmt ::= select { monitor activity stmt

monitor_activity stmt { monitor_activity stmt }}

Syntax 75—Select monitor activity statement

3 The selection scenario defines a selection between several alternative subscenarios. The set of realizations of
4the selection scenario consists of all realizations of its subscenarios. Consider Example 197 and the trace
5 shown in Figure 42.

ac
ac
ac
ac
ac

cl:

c2:

tion read {}
tion write {}
tion idle {}
tion send {}
tion receive {}

cover {
activity {
do write;
select {
do read;
do send;
}i

do receive;

cover |
activity {
select {
do write;
do read;
}i
select {
do send;
do receive;

}i

Example 197—lllustration of behavioral coverage concepts

g8 Cover statement c1 has a successful attempt starting at £; with two realizations: {write, read, receive} and
9 {write, send, receive}. Cover statement c2 has two successful attempts, one starting at time t; with two
10 realizations {write, send} and {write, receive}, and the other has starting at time t5 with the realization
11 {read, receive}. See also Example 187.

Copyright © 2024 Accellera. All rights reserved.
276



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

send receive

ty t, ts ty ot te ty tg

2 Figure 42—lllustration to Example 197
319.3.7 Empty scenario

4 An empty scenario is defined by an empty monitor, an empty activity, or an activity statement with an empty
5 body. For example, the scenarios in Example 198 are empty:

monitor m {}
activity {} // activity statement with an empty body

{} // empty sequence
sequence {} // empty sequence
concat {} // empty concat

eventually {} // empty eventually
schedule {} // empty schedule
overlap {} // empty overlap

7 Example 198—Empty scenarios

8 The empty scenario always has a realization, and its realization is empty: @. It does not contain any action
9 execution. Note the difference between the empty realization and empty set of realizations: the empty set of
10 realizations means that the attempt is unsuccessful.

11 When an empty scenario is a member of a sequential, a concatenation, a scheduling, or an overlapping
12scenario, it may be dropped. For example, sequence {{}; s;} is equivalent to
13sequence {s; {};} andisequivalentto s.

14 A scenario is called degenerate if it admits an empty realization. For example, the empty scenario is
15 degenerate because its only realization is empty. There may be non-empty degenerate scenarios, for
16 example, select {do a; {};} where a is an action type. This scenario admits an empty realization but
17 may also admit a realization consisting of an execution of an action of type a.

18 The top-level scenario of a cover statement shall not be degenerate. Example 199 shall result in a syntax

19 error because the top-level scenario select {do a; {};} admits an empty realization. Note that cover
20 statement c2 is legal (b is a name of an action type). Though the scenario select{ do a; {} }is
21degenerate, the scenario

22 sequence { select{ do a; {} }; do b; }isnot.
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cl: cover {
activity {
select {

do a;

{1

c2: cover {
activity {
sequence {
select {
do a;
{}
}
do b;

2 Example 199—Degenerate scenario

419.3.8 Scheduling scenario

5 The scheduling scenario is specified by the monitor activity schedule statement (see Syntax 76):

monitor_activity schedule stmt::= schedule { {monitor_activity stmt} }

7 Syntax 76—Schedule monitor activity statement

8 The scheduling scenario defines execution of its subscenarios in any order, provided that scenario
9 realizations of the member scenarios are not shared. There may be any overlaps or gaps between its member

10 scenario spans.

11 In the scheduling scenario, the subscenarios are matched from the checkpoint of the scheduling scenario or
12 after it. The checkpoints of individual subscenarios are independent of each other. The realizations of
13 scenario schedule { si,.., s, } consist of member-wise realization unions of subscenarios s4,. . .
14 s, provided that these realizations of different scenarios are pairwise disjoint. For example, if set
15 {a,b} is a realization of s1, set {c} is a realization of s2 and set {d,e,f} is a realization of s5, then set
16 {a,b,c,d,e,f} is a realization of schedule { s, s,, s3 };here, a, b, c, d, e, and f are action executions.

17 Now consider monitors m defined in Example 200, the action traces shown in Figure 43, and the checkpoint

18 to.
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action read {}
action write {}

monitor m {
activity {
schedule {
do read;
do write;

Example 200—Scheduling scenario

write

read : H
to t1 t t3 1
read
write

)

to t t t3 ts

read

to ty t t3 ts
write
' read H
to t t t3 ts

Figure 43—Scheduling scenario
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10n all traces, the only realization of the scenario defined by m is set {read, write}, its start time is t;, and
2 its match time is t,. Note that in the first two traces, the actions are scheduled sequentially, and on the last
3 two, they overlap.

4 Now consider monitor m; and m, in Example 201, the action trace shown in Figure 44, and the checkpoint
5 to.

action read {}
action write {}
action send {}
action receive {}
monitor ml {
activity {
schedule {
sequence {
do read;
do write;
}i
sequence {
do write;
do send;

monitor m2 {
activity {
schedule {
sequence {
do write;
do send;
}i
sequence {
do send;
do receive;

7 Example 201—Scheduling scenario with common actions
8
write;
writel: ; send

recieve

@
[

[

to t t, ts ty ts e t tg to tio

9 Figure 44—Scheduling scenario with common actions

10 The first sub-scenario of the monitor m1 is sequence { do read; do write; }.Ithastwo
nrealizations: {read, write;} and {read, write,}. The second sub-scenario is
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1sequence { do write; do send; },which also has two realizations: {write;, send} and

2 {write,, send}. The realization of the top scenario is obtained either as a union of the first realization of the
3 first sub-scenario and the second realization of the second sub-scenario or as a union of the second
4realization of the first sub-scenario and the first realization of the second sub-scenario. Both cases result in
s the same realization {read, write, write,, send}. Other combinations of sub-scenario realizations cannot be
6 united because they have a common element, either the first or the second write.

7 The scenario of the monitor m2 has no match. Its first sub-scenario sequence
8{ do write; do send; } hasone realization: {write, send}. Its second sub-scenario sequence

9{ do send; do receive; } also has one realization: {send, receive}. Since both realizations
10 intersect, the top-level scenario does not have any match.

119.3.9 Monitor traversal

12 A monitor may be traversed within another monitor. The monitor traversal syntax is similar to the action
13 traversal statement, see Syntax 77.

14

monitor_activity _monitor_traversal stmt ::=
monitor_identifier [ [ expression | ] inline_constraints_or_empty
| [ label identifier : | do monitor_type_identifier inline_constraints_or_empty
monitor_inline constraints_or_empty ::=
with monitor constraint_set
K

15 Syntax 77—Monitor traversal statement

16 At the monitor traversal statement, the scenario specified by the monitor is being matched. If the monitor
17 traversal statement has an associated inline constraint, the monitor scenario realization must match the

18 specified constraint.

19 Example 202 illustrates a monitor traversal. Monitors irw, irwl, and irw2 are equivalent. Consider the
20 monitor matching in the trace shown in Figure 45 for the checkpoint t,. The monitor irw specifies a
21sequential scenario and its only realization is {idle, read, write}. Monitor irwl defines a sequential
22 scenario whose subscenarios are the traversal of action i1 with the realization {idle} and the traversal of an
23 anonymous monitor of type rw. The monitor type rw, in its turn, defines a sequential scenario, and its
24 checkpoint is t; or later so that the realization of monitor 1rwl is {idle, read, write}. The monitor irw2
25 differs from the monitor irwl only in that it traverses the monitor of type rw using its handle m, and of
26 course, has the same realization {idle, read, write}.
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action idle {}
action read {}
action write {}
monitor rw {
activity {
do read;
do write;

}
monitor irw {
idle 1i;
read r;
write w;
activity {
i
r;
3

}
monitor irwl {
idle 1i;
activity {
i
do rw;

}
monitor irw2 {
idle i;
rw m;
activity {
1/

m;
}
}
2 Example 202—Monitor traversal
3
idle read write

to t ty t3 t4 ts te

4 Figure 45—Monitor traversal

5 Example 203 illustrates using a constraint at the monitor traversal. It shows the similarities and differences
6 between inlined and standalone constraints in monitors in the presence of sequential and concatenation
7 scenarios.
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action read {
rand bit [32] addr;
}
action write {
rand bit [32] addr;
}
monitor write read sequence {
write w;
read r;
activity {
sequence {
Wy

r;

}
monitor write read concat ({
write w;
read r;
activity {
concat {
w;

r;

}
monitor mll {
write read sequence wrs;
activity {
wrs with w.addr == r.addr;

}
monitor ml2 {
write read sequence wrs;
activity {
Wrs
}
constraint wrs.w.addr == wrs.r.addr;
}
monitor m21 {
write after read concat wrc;
activity {
wrc with w.addr == r.addr;

}
monitor m22 {
write read concat wrc;
activity {
wWrc;
}

constraint wrc.w.addr == wrc.r.addr;

Example 203—Data constraint at monitor instantiation
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1Monitors m11 and m12 and monitors m21 and m22 are pairwise equivalent. Monitors m11 and m12 match
2 when there is a read after a write from the same address. Monitors m21 and m22 match when the first

3 read after a write is from the same address (see 19.3.3).

419.4 Monitor action handles and constraints

5 Action handles in monitors are used for readability and for constraining the monitor scenario realizations.
6 For example, the monitor m in Example 204 defines a scenario capturing a read after a write from the

7 same address.

monitor activity constraint stmt ::= constraint monitor constraint set

monitor constraint declaration ::=
constraint monitor constraint_set

| constraint identifier monitor constraint block

monitor constraint set ::=
monitor_constraint body item

| monitor constraint block

monitor constraint block ::= { { monitor constraint body item } }

monitor_constraint_body_item ::=

expression_constraint_item

| foreach_constraint_item

| forall constraint item

| if constraint item

| implication_constraint_item

| unique_constraint_item

| constraint_compile if

| stmt_terminator

9 Syntax 78—Monitor constraints

10
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action read {

rand bit [32] addr;
}
action write {

rand bit [32] addr;
}

monitor m {

read r;

write w;

activity {
w;
r with addr == w.addr;

}

}
2 Example 204—Action handles in monitors

3 A monitor body may contain algebraic constraints (see 16.1) with the same syntax as in actions, and these
4 constraints are subject to the same rules. As in actions, constraints in monitors may be either inline or
s standalone.

6 As explained in 19.3.1, an inline constraint imposes a condition on an action execution, see monitors m2 and
7m21 in Example 188. The standalone constraints are applied to the scenario realizations and rule out the
grealizations violating at least one constraint. See Example 191-Example 193 and the explanation about
9 cover statements c5—c10 there.

10 Inlined and standalone constraints in monitors may behave differently. A constraint inlined within an action
11 traversal statement prescribes finding an appropriately constrained action execution of the specified type. A
12 standalone constraint is checked at the completion of the specified statement, and if it cannot be satisfied,
13 there is no coverage. When a monitor is built from sequences, the standalone and inlined constraints behave
14 similarly, but when they contain a concat statement, the behavior may be different. This is illustrated in
15 Example 205.
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action read {
rand bit [8] core;
}

action write {}

cl: cover {
read r;
write w;
activity {
concat {
Wy
r with core == 1;

}

}
c2: cover {
read r;
write w;
activity {
concat {
w;
ry;

}

constraint r.core == 1;

2 Example 205—Inlined and standalone constraints in monitors

3 Consider the action execution trace shown in Figure 46. Cover statement c1 is covered because its second
4action traversal in the concat statement looks for the next read action with “core = 1” after write.
5 This action is “read,”. Cover statement c2 is not covered because its second action traversal looks for the
6next read after write without any restrictions. This read action is “read;”, but it does not satisfy the
7 constraint, which requires the core to be 1.

write read,, core=0 read,, core=1

t [ 5 ts ts

9 Figure 46—Inlined and standalone constraints in monitors

1019.5 Covergroups in monitors
119.5.1 Covergroup sampling in monitors

12 Covergroups may be defined and instantiated in monitors and cover statements to collect data coverage
13 along the scenario defined by the monitor. A monitor covergroup is sampled at the first match of the
14 attempts of a cover statement where the monitor is traversed (directly or not). The sampling is done
15 according to the action handle mapping associated with a first match scenario realization. If there are several
16 first match scenario realizations, any realization may be selected for sampling by the implementation.
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1 Consider the covergroup instantiation cg shown in Example 206 and the trace shown in Figure 47.

enum locked e { LOCKED, UNLOCKED };
enum write mode e { WRITE BACK, WRITE THRU };

action read {
rand locked e lock mode;
}
action write {
rand write mode e write mode;
}
c: cover {
write w;
read r;
activity {
Wy
r;
}
covergroup {
cpw: coverpoint w.write mode;
cpr: coverpoint r.lock mode;
wXr: Cross Cpw, cCpr;

} cg;
}
3 Example 206—Covergroup in a cover statement
4
read,
UNLOCKED
write, read; f(iiiiiiiiijjjﬁ write, reads
WRITE_BACK LOCKED | { WRITE_THRU ~ UNLOCKED
t t ts te ts te ty ts to tio

5 Figure 47—Covergroup in a cover statement

6 Successful attempts of the cover statement start at times t; and t5. The first match scenario realization of
7the first attempt is {write|, read;} and the mapping w — write;, r — read; so that the values
8WRITE BACK and LOCKED are sampled. The first match scenario realization of the second attempt is
9 {write,, read;} and the mapping w — write,, r — readj so that the values WRITE THRU and
10 UNLOCKED are sampled.

11 Consider now the cover statement c in Example 207, the covergroup instantiation cg, and the trace shown
12 in Figure 48.
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action
action
action

rand

}

do

Wy

do
}

cpw:
} cg;

enum write mode e { WRITE BACK,

start {}
read {}
write {

write mode e write mode;

c: cover {
write w;
activity {

start;

read;

covergroup {
coverpoint w.write mode;

WRITE THRU };

Example 207—Covergroup sampling for multiple realizations

write 2
WRITE_THRU

write;
start WRITE_ BACK read

@Q@

thts ety s

Figure 48—Covergroup sampling. Multiple realizations

5 There is one successful attempt of the cover statement c, starting at time t;. It has one match time but two

6 different realizations: {start, write,, read} and {start, write,, read}. In the first realization,

w is mapped into

7the first write, and in the second one, into the second write. The decision whether to sample
8WRITE BACK or WRITE THRU is implementation dependent.

9 Example 208 shows that when the entire cover statement is not satisfied, its covergroups do not sample.
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enum locked e { LOCKED, UNLOCKED };
enum write mode e { WRITE BACK, WRITE THRU };

action read {
rand locked e lock mode;
}
action write {
rand write mode e write mode;
}

action ack {}

monitor wr {

activity {
w: do write;
r: do read;

}

covergroup {
cpw: coverpoint w.write mode;
cpr: coverpoint r.lock mode;
wXr: Cross Cpw, cCpr;

} cgi;

c: cover {
monitor wr;
activity {

wr;
do ack;

2 Example 208—Covergroup in a cover statement

3 In the trace shown in Figure 49, the covergroup data (WRITE BACK and LOCKED) are sampled: both the
4 monitor scenario and the cover statement top-level scenario have matches. In the trace shown in Figure 50,
s the covergroup data (WRITE BACK and LOCKED) are not sampled: in spite of the fact that the monitor
6 scenario has a match, the top-level cover statement scenario does not have a match.

7
write read
WRITE_BACK LOCKED ack
t ot te ts ts
8 Figure 49—Covergroup instantiation in a monitor
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write read
WRITE_BACK LOCKED

2 Figure 50—Covergroup instantiation in a monitor. No match of cover statement
319.5.2 Per-instance coverage in cover statements and monitors

4By default, covergroups collect coverage on a per-type basis (see 18.7). Per-instance coverage in cover
5 statements is enabled when per_instance is t7ue for a covergroup instance in a cover statement.

6 Per-instance coverage of monitors is enabled when per_instance is frue for a covergroup instance and
7when there exists a contiguous path of named handles from a cover statement to the location where the
8 covergroup is instantiated.
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component pss_top {
action write {
rand int core;
}
action read {
rand int core;
}
monitor mon {
write w;
activity { w; }
covergroup {
option.per instance = true;
cp: coverpoint w.core;
} cg;
}
cl: cover {
mon m;
read r;
activity {
m;
r with core == 0;

}
c2: cover {
read r;
activity {
do mon;
r with core == 1;

}
c3: cover {
read r;
activity {
m: do mon;
r with core == 2;

2 Example 209—Per-instance coverage in monitors

3 In Example 209, a contiguous path of named handles exists from the cover statement c1 to the covergroup
4 instance inside mon. Coverage data collected by c1 are placed in a coverage collection unique to this named
spath (m. cg). The same is true for the cover statement c3. However, there exists no named monitor handle
6 path from the cover statement c2 to the covergroup instance inside mon. In this case, coverage data
7 collected by c2 are placed in the per-type coverage collection associated with covergroup type mon: : cg.

819.6 Monitor activity evaluation with extension and inheritance
9 Monitors support both type inheritance and type extension (see Clause 20).
10 When a monitor inherits from another monitor, the activity declared in the inheriting monitor shadows

11 (masks) the activity declared in the base monitor. The “super;” statement can be used to traverse the activity
12 declared in the base monitor.
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1In Example 210, monitor base declares an activity that traverses action type A. The monitor ext1 inherits
2 from base and replaces the activity declared in base with an activity that traverses action type B. Monitor
3 ext?2 inherits from base and replaces the activity declared in base with an activity that first traverses the
4 activity declared in base, then traverses action type C.

component pss_ top {
action A { }
action B { }
action C { }

monitor base {
activity {
do A;
}

monitor extl : base {
activity {
do B;
}

monitor ext2 : base {
activity {
super;
do C;

6 Example 210—Monitor inheritance and traversal
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120. Type inheritance, extension, and overrides

2 PSS supports the concepts of object-oriented inheritance and type extension to maximize reuse and
3 portability of the model. Type inheritance allows the declaration of model entities such as actions, objects,
4 components and struct types to be derived from a base type (or supertype), where the new derived type (or
s subtype) includes all attributes and other members of the base type, and allows the declaration of the derived
6 type to add new members or mask the definition of existing members. Type extension allows the declaration
7 of additional fields in an existing type using a separate declaration. Type inheritance is described in 20.1,
gand type extension is described in 20.2. Type overrides allow type-specific and instance-specific
9 replacement of the declared type of a field with a specified subtype, and are described in 20.5.

1020.1 Type inheritance

11 For actions, monitors, components, structs, data flow and resource objects, the declaration may include an
12 optional super-spec qualifier to declare a base type of the same type category (action, monitor, component,
13 struct, buffer, stream, state, resource), from which the element is to be derived. The only exception is that
14 data flow and resource objects may inherit from an element of the same type category or from a struct.

15 A derived type includes all elements from the base type, and may declare new elements that may or may not
16 have the same name as a corresponding element in the base type. For fields declared in a derived type with
17 the same name as a field in the base type, the derived type’s field shadows (masks) the base type’s field, and
18 the base type’s field may be referenced as “super . <name>". Certain unnamed elements, such as activities
19 and procedural exec blocks, may invoke the corresponding element(s) from the base type by the “super;”
20 statement.

21 The behavior of specific elements when declared in a derived type is shown in Table 24.

Copyright © 2024 Accellera. All rights reserved.
293



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

Table 24—Derived type element behaviors

In a struct, data

Element kind In a component In an action In a monitor flow or resource
object
activity n/a shadow, may call shadow, may call n/a
super; super;
dynamic n/a shadow (may access n/a shadow (may access
constraint base constraint as base constraint as
super.name) super.name)

named static n/a shadow shadow shadow
constraint
unnamed static n/a added added added
constraint
field shadow (may shadow (may access shadow (may access shadow (may access

exec block

access base field as base field as base field as base field as
super.name) super.name) super.name super.name)?
instance function shadow (may call n/a n/a n/a
base function as

super.name(args))
static function shadow n/a n/a n/a
override added added added n/a
declaration
object pool bind added n/a n/a n/a
procedural exec shadow, may call shadow, may call n/a shadow, may call
block super; super; super;
target-template n/a shadow n/a shadow

21f field is not a pool instance. Accessing the pool instance of a supertype component to do a bind in the subtype is not

allowed.

2 Activities in derived actions and monitors shadow the activities from the base action or monitor type.
3 However, the “super ;” statement may be used to traverse the base activity (or activities). See Example 93
41in 12.6 and Example 210 in 19.6.

5 Procedural exec blocks defined in a derived type shadow same-kind exec block(s) defined in the base type.
6 The exec block in the derived type may include the “super ;” statement, which will execute the contents of
7 the corresponding base-type exec block(s) at that point. See 22.1.4.1 and 22.1.4.2.

g Target-template exec blocks defined in a derived type shadow same-kind exec blocks with the same target
9 language identifier in the base type. The “super ;” statement shall not be allowed in a target-template exec

10 block.

11 Example 211 shows a simple case of declaring a component base _c, which contains an action declaration,
12base_a. Derived component der c inherits from base_c, so it is treated as having action base a
13 already declared within it. Note that base c and der c are different component types. Action der _a
14 inherits from base_a, so it already includes random integer 1 and bit-vector b, as well as the unnamed
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1constraint limiting 1 to be less than 10 and constraint ¢ forcing b > 7. Derived action der a adds an
2 additional random integer, j, a new unnamed constraint that relates the values of i and j, and a new
3 constraint c that relates the values of b and j, shadowing constraint ¢ from action base_a.

component base c {
action base a {
rand int 1i;
rand bit[31:0] b;
constraint {i < 10;}
constraint ¢ {b > 7;}

component der c : base c {
action der a : base a {
rand int j;
constraint {j > 5 -> i < 5;}
constraint ¢ {j < 10 -> b < 128;}

5 Example 211—Declaring derived components and actions

6 When a pool bind statement (see 15.3) is used in a base component type, it may also apply to a derived type,
7 provided that any new component instances and actions in the derived type also match the path specification
g in the bind statement and that the types of the object references match the pool type exactly.

9In Example 212, the default bind statement in base ¢ binds the cpu_p pool to the actions act1l a and

10 act2_a defined therein. Since der c is derived from base c, it also inherits the bind statement, which
11 applies to all action definitions in der c that match the path specification. In the context of der c, the
12 default bind statement binds all three actions act1l a, act2 aand act3_a to the cpu_p pool.

13

resource cpu core s {...

}

component base c {
pool[4] cpu core s cpu p;
bind cpu p *;
action actl a {
share cpu core s cpu share;
}
action act2 a {
lock cpu core s cpu lock;

}

component der c : base c {
action act3 a {
share cpu core s cpu_ share;

}

14 Example 212—Default pool with inheritance
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1As mentioned above, a derived type inherits all members from the base type and may declare additional
2 elements specific to the derived type. When a named element (other than a function) is declared in the
3derived type with the same name as an element in the base type, the derived type’s declaration shadows
4 (masks) the base type’s declaration (as with constraint ¢ in Example 211).

5 When the shadowed element is a function, the function call is polymorphic, that is, the actual function called
6 depends on its context component. In Example 213, component der c shadows the definition of function
7foo () in component base c. Action call foo invokes the appropriate definition of foo () depending
8 on the type of its context component. Action test schedules call foo in the context of a component of
gtype base c, followed by call foo in the context of der c. Executing test will call the core library
10 target function message () to add the following messages to the execution log, at LOW verbosity:

il base c::foo
12 der c::foo

13

import std pkg::*;

component base c {
target function void foo () {
message (LOW, "base c::foo");

}

action call foo {
exec body {
comp.foo();

}

component der ¢ : base c {
function void foo () {
message (LOW, "der c::foo");

}i

component pss top {
base c b;
der c d;
action test {
base c::call foo b foo, d foo;

constraint {b foo.comp == this.comp.b;
d foo.comp == this.comp.d;}
activity {
b foo;
d foo;
}
}
}
14 Example 213—~Polymorphic function calls

15 As discussed in 9.3, the qualified name of an action declared in a component is of the form ' component-
16 type::action-type'. In Example 214, the base component dma base c declares action xfer a.
17 The derived component dma_der c declares the compound action mult xfer a, which traverses the
18xfer a action. Since dma der c inherits the xfer a action, the anonymous (by type) traversal in
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1mult xfer a correctly resolves to the xfer a action declared in the base component. It is thus not
2necessary to further qualify the type name xfer a in the anonymous traversal inmult xfer a.

3The component dma test c instantiates the derived component dma der c. The first traversal
4 statement in the activity is an anonymous traversal of the dma der c::mult xfer a action. The next
s statement anonymously traverses the dma base c::xfer a action. We can use the dma_base c path
6 qualifier because the instantiated subcomponent of type dma_der c is also considered a dma base c
7 component. It would be illegal to refer to dma base c::mult xfer abecausemult xfer aisnot
g declared in dma_base_c. To promote reuse, the third anonymous traversal statement is preferred, referring
9to dma_der c::xfer a, since xfer a can be used without knowing whether it was declared in the
10 base component or the derived component. Note that, since there is only a single instance of the
1dma_der c component, the instance context of these traversals is the same.

12

component dma base c {
action xfer a {

}

component dma der c : dma base c {
action mult xfer a {
activity {
repeat (3) {
do xfer a; // dma base c::xfer a

}

component dma test c {
dma der c dma;

action test a {
activity {
do dma der c::mult xfer a;
do dma base c::xfer a;
do dma_der_c::xfer_a; // dma_base_c::xfer_a

}

13 Example 214—Derived type is also a base type

14 In Example 215, there are two instances of the dma_der c component instantiated in dma_test c. For
15 the first anonymous traversal of dma_base c::xfer a, either instance may be chosen as context for the
16xfer a action. In the second anonymous traversal, the comp attribute is constrained to specify that the
17 context component must be dma_test c.dmal. As stated in 9.5, the static type of the comp attribute of
18dma_der c::xfer a is actually dma base c, since that is its containing component type (See also
1916.1.3).

20 Because comp is of type dma_base c and not dma_der c, it would be illegal to refer to fields of
21dma_der c as relative to comp, since these fields are not in dma base c. Rather, fields of
22dma_der c may be referred to relative to this.comp.dmal, which is the actual instance of
23dma_der c (which is also a dma_base c) in which xfer a will execute. Thus, based on the actual
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1instance of a context component, we can constrain the fields of xfer a even though xfer a may not
2 have visibility otherwise to the dma_der c fields that control the constraints.

component dma base c {
action xfer a {
rand int 1i;

component dma der c : dma base c {
int j;
action mult xfer a {
activity {
repeat (3) {
do xfer a; // dma base c::xfer a

}

component dma test c {
dma der c dmal, dma2;

action test a {
activity {
do dma base c::xfer a;
do dma der c::xfer a with {comp == this.comp.dmal;
(this.comp.dmal.j < 8) —-> i>4;};

4 Example 215—Use of comp and this.comp with inheritance

5 When declaring a new component, it shall be illegal to declare types that derive from types declared in an
6 existing component type unless the new component derives from the existing component.

7Example 216 demonstrates why this kind of inheritance is problematic. Action new_ a, derived from
gexisting c::existing a, inherits constraint con that constrains k based on the value of attribute 1
9 of component existing c. The comp field of action new a is of type new c and not existing c,
10 and therefore does not have attribute i . For that reason, the action new_a is not able to evaluate constraint
11 con, Thus, modeling with this kind of inheritance cannot work.
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component existing c {
int 1i;
exec 1init {1 = 1;}
action existing a {
rand int in [0..4] k;
constraint con {k > comp.i;};

component new c {
action new a : existing c::existing a {} // Illegal

}

component pss_top {
new c c;
action entry a {
activity {
do new c::new a;

}

2 Example 216—lllegal inheritance declaration

320.2 Type extension

4 Type extensions in PSS enable the decomposition of model code so as to maximize reuse and portability.
5 Model entities, actions, objects, monitors, components, and data types, may have a number of properties that
6 are logically independent. Moreover, distinct concerns with respect to the same entities often need to be
7 developed independently. Later, the relevant definitions need to be integrated, or woven into one model, for
8 the purpose of generating tests.

9 Some typical examples of concerns that cut across multiple model entities are:

10 — Implementation of actions and objects for, or in the context of, some specific target platform/lan-
1 guage.

12— Model configuration of generic definitions for a specific device under test (DUT) / environment
13 configuration, affecting components and data types that are declared and instantiated elsewhere.
14— Definition of functional elements of a system that introduce new properties to common objects,
15 which define their inputs and outputs.

16—  Restricting monitors with additional constraints.

17 Such crosscutting concerns can be decoupled from one another by using type extensions and then
18 encapsulated as packages (see 21.1).

19 Composite and enumeration types in PSS are extensible. They are declared once, along with their initial
20 definition, and may later be extended any number of times, with new body items being introduced into their
21scope. Items introduced in extensions may be of the same kinds as those introduced in the initial definition.
22 Extension statements may appear in package and component definitions.

23 An extension statement explicitly specifies the kind of type being extended, which must agree with the
24 specific type named (see Syntax 79).
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1 The overall definition of any given type in a model is the sum total of its definition statements—the initial
2 one along with extensions in active packages (see 21.1). The semantics of extensions are those of weaving
3 all those statements into a single definition.

4 Every type extension, regardless of whether it extends a package-level type or a component-level inner type,
5 is associated with the nearest package that lexically encloses its definition (an explicit package if enclosed
6 in a package declaration statement or otherwise the unnamed global package (see 21.1)).

7 Members introduced in an extension of a type can be referenced throughout the package in which they were
g introduced. As a corollary, members introduced in extensions associated with the global package can be
greferenced everywhere. Members introduced in extensions cannot be referenced outside the scope of the
10 package in which the extension is defined unless the reference occurs in a lexical scope that wildcard-

11 imports that package.

12 These rules concern reference of static members as well as non-static members, and apply regardless of
13 whether fully-qualified static paths are used (for static members).

1420.2.1 Syntax

15

extend_stmt ::=
extend action type identifier { { action body item } }
| extend monitor type identifier { { monitor body item } }
| extend component type identifier { { component body item } }
| extend struct_kind type_identifier { { struct body item } }
| extend enum type identifier { [ enum_item { , enum item } |}

16 Syntax 79—type extension

17 20.2.2 Examples
18 Examples of type extension are shown in Example 217 and Example 218.

19

enum config modes e {UNKNOWN, MODE A=10, MODE B=20};

component uart c {
action configure {
rand config modes e mode;
constraint {mode != UNKNOWN; }

package additional config pkg {
extend enum config modes e {MODE C=30, MODE D=50}

extend action uart c::configure {
constraint {mode != MODE D;}
}

20 Example 217—Type extension
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component pcie c {
action read { bit [32] addr; }
action write { bit [32] addr; }

monitor read after write {
read r;
write w;
activity {
w;
r;

}
package additional checks pkg {
extend monitor pci c::read after write {

constraint { r.addr == w.addr; }

}

2 Example 218—monitor type extension

320.2.3 Composite type extensions

4 Any kind of member declared in the context of the initial definition of a composite type can be declared in
s the context of an extension, as per its entity category (action, monitor, component, buffer, stream, state,
6 resource, struct, or enum).

7 Named type members of any kind, fields in particular, may be introduced in the context of a type extension.
8 Names of fields introduced in an extension shall not conflict with those declared in the initial definition of
9 the type. They shall also be unique in the scope of their type within the package in which they are declared.
10 However, field names do not have to be unique across extensions of the same type in different packages.

11 Fields are always accessible within the scope of the package in which they are declared, shadowing
12 (masking) fields with the same name declared in other packages. Members declared in a different package
13 are accessible if the declaring package is wildcard-imported into the scope of the accessing package or
14 component, given that the reference is unique. If the same field name or type name is wildcard-imported
15 from two or more separate packages, it shall be an error to reference it.

16 In Example 219, an action type is initially defined in the context of a component and later extended in a
17 separate package. Ultimately the action type is used in a compound action of a parent component. The
18 component explicitly wildcard-imports the package with the extension and can therefore constrain the
19 attribute introduced in the extension.
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component mem_ops_c {
enum mem block tag e {SYS MEM, A MEM, B MEM, DDR};

buffer mem buff s {
rand mem block tag e mem block;

}

pool mem buff s mem;
bind mem *;

action memcpy {
input mem buff s src buff;
output mem buff s dst buff;

package soc config pkg {
extend action mem ops c::memcpy {

rand int in [1, 2, 4, 8] ta width; // introducing new attribute

constraint { // layering additional constraint
src_buff.mem block in [SYS MEM, A MEM, DDR];
dst buff.mem block in [SYS MEM, A MEM, DDR];
ta width < 4 -> dst buff.mem block != A MEM;

component pss top {
import soc config pkg::*;// explicitly importing the package grants

// access to types and type members
mem_oOps _C mem _ops;

action test {
mem ops cC::memcpy cpyl, cpyZ2;
constraint cpyl.ta width == cpy2.ta width;// constraining an

// attribute introduced in an extension
activity {

repeat (3) {
parallel { cpyl; cpy2; };

Example 219—Action type extension

320.2.4 Enumeration type extensions

4 Enumeration types can be extended in one or more package contexts, introducing new enum items to the
5 domain of all variables of that type. Each enum item in an enum type shall be associated with an integer
6 value that is unique across the initial definition and all the extensions of the type. Enum item values are
7 assigned according to the same rules they would be if all the enum items appeared in the initial definition,

g according to the order of package evaluations. An explicit conflicting value assignment shall be illegal.
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1An enum item introduced in an extension can be referenced within the package in which the extension is
2 defined. Outside that package, enum items can be referenced inside a lexical scope that wildcard-imports

3 the respective package.

4 In Example 220, an enum type is initially declared empty and later extended in two independent packages.

5 Ultimately items are referenced from a component that wildcard-imports both packages.

package mem defs pkg { // reusable definitions
enum mem block tag e {}; // initially empty

buffer mem buff s {
rand mem block tag e mem block;
}
}
package AB subsystem pkg {
import mem defs pkg ::*;

extend enum mem block tag e {A MEM, B MEM};
}
package soc_config pkg {

import mem defs pkg ::*;

extend enum mem block tag e {SYS MEM, DDR};
}
component dma c {
import mem defs pkg::*;
action mem2mem xfer
input mem buff s src buff;
output mem buff s dst buff;
}
}
extend component dma c {
import AB_subsystem pkg::*; // wildcard-importing the package
import soc_config pkg::*; // grants access to enum items

action dma test {

activity {
do memZmem xfer with ({
src_buff.mem block == A MEM;
dst buff.mem block == DDR;

b

Example 220—Enum type extensions

820.2.5 Ordering of type extensions

9 Multiple type extensions of the same type can be coded independently, and be integrated and woven into a
10 single stimulus model, without interfering with or affecting the operation of one another. Methodology

11 should encourage making no assumptions on their relative order.
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1From a semantics point of view, order would be visible in the following cases:

2 — Invocation order of exec blocks of the same kind

3 — Multiple default value constraints, default disable constraints, and type override declarations
4 occurring in a scope of the same type

5 — Integer values associated with enum items that do not explicitly have a value assignment

6 The initial definition always comes first in ordering of members. The order of extensions conforms to the
7 order in which packages are processed by a PSS implementation.

8 NOTE—This standard does not define specific ways in which a user can control the package processing order.
920.2.6 Template type extensions
10 Template types, as all other user-defined types, may be extended using the extend statement.

11 Template types may be extended in two ways:
12 a) Extending the generic template type. The extension will apply to all instances of the template type.

13 b) Extending the template type instance. The extension will apply to all instances of the template type
14 that are instantiated with the same set of parameter values.

15 NOTE—Partial template specialization is not supported.
16 20.2.6.1 Examples

17 Examples of extending the generic template type and the template type instance are shown in Example 221.

Copyright © 2024 Accellera. All rights reserved.
304



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

struct domain s <int LB = 4, int UB = 7> {
rand int attr;
constraint attr >= LB && attr <= UB;

struct container s {
domain_ s<2, 7> domA; // specialized with LB UB = 7
domain s<2, 8> domB; // specialized with LB = 2, UB = 8
}

Il
N
~

extend struct domain s {
rand int attr all; // container s::domA and container s::domB
// will have attr_all
constraint attr all > LB && attr_all < UB;
}

extend struct domain s<2> { // extend instance specialized with
// LB = 2, UB = 7 (default)
rand int attr 2 7; // container t::domA will have attr 2 7

constraint attr 2 7 > LB && attr 2 7 < UB; // parameters accessible in
// template instance extension

struct sub domain s<int MIN, int MAX> : domain s<MIN, MAX> ({
rand int domain size;
constraint domain size == MAX - MIN + 1;

dynamic constraint half max domain {
attr >= LB && attr <= UB/2; // Error - LB and UB parameters not accessible
// in inherited struct

2 Example 221—Template type extension

3In the example above, the generic template type extension is used to add attr all to all instances of
4domain_s. The template type instance extension is used to add attr 2 7 to the specific <2, 7> instance
sof domain_s.

620.3 Combining inheritance and extension

7 It is important to understand that inheritance creates a new type derived from the base type, while extension
8 modifies the definition of an existing type. Once a derived type is created by inheriting from a base type, the
9 derived type may be extended just as any other type. In this case, the extensions to the derived type do not
10 affect the base type. However, since a derived type inherits from its base type, any extensions to the base
11 type will also affect the derived type. If multiple types are derived from the same base type, extensions to the
12 base type will affect all derivations thereof.

13 Extending types in a component scope is only allowed for types that are defined in that scope. It shall be
14 illegal to extend a type defined in a base component type from a derived or unrelated component type.
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1In Example 222, by extending action der a in component der c, we add a new constraint on the j field.
2 This constraint is added to the existing constraints in the initial definition of der a. By extending action
3base_ ainthebase c extension, we add a new constraint, 1 > 2, which is then inherited by the derived
4action, der a. The result is that j is constrained to be greater than 7, implying that 1 must be less than 5,
s and the additional constraint requires that i must also be greater than 2.

6 The attempt to extend action base a in component der c is illegal, since base a was originally
7declared in base c, which is a different type from der c.

component base c {
action base a {
rand int 1i;
rand bit[31:0] b
constraint { i <
constraint ¢ { b

’

}

10;
> 7; }

component der c : base c {
action der a : base a {
rand int j;
constraint { 3 > 5 -> 1 < 5; }
constraint ¢ { j < 10 -> b < 128; }

extend action der a {
constraint { j > 7; }

}

extend action base a {...} // ILLEGAL
}

extend component base c {
extend action base a {
constraint { 1 > 2; }

}

9 Example 222—Combining inheritance and extension

10 In Example 223, in the pss_top root action, the anonymous traversal of der c::base a will use the
Tbase_a action as extended in base_c in the global scope. Thus, the constraints i > 2and i < 10 will
12 apply. Its execution context will be either instance c1 or c2 of der c.

13 The anonymous traversal of der c::der a similarly will use the extended definition of der a, but the
14with constraint forces the execution context to be instance cl. Note that the constraint c in
15der c::der_ a masks the original constraint c in base c::base_a, so the resolved set of applicable
16 constraints will be:

7 = J > 7
18 — 1 < 5(duetoconstraint j > 5 -> i < 5)
19 — 3 < 10 -> b < 128
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component base c {
action base a {
rand int i;
rand bit[31:0] b;
constraint { i < 10; }
constraint ¢ { b > 7; }

component der c : base c {
action der a : base a {
rand int j;
constraint { 3 > 5 -> 1 < 5; }
constraint ¢ { j < 10 -> b < 128; }

extend component der c {
extend action der a {
constraint { j > 7; }

}

extend component base c {
extend action base a {
constraint { i > 2; }

}

component pss top {
der c cl, c2;

action root {
activity {
do der c::base a;
do der c::der a with {comp == this.comp.cl; };

}

Example 223—Inheritance and extension of constraints

320.4 Access protection

4 By default, all data attributes of components, actions, monitors, and structs have public accessibility. The
s default accessibility can be modified for a single data attribute by prefixing the attribute declaration with the
6 desired accessibility. The default accessibility can be modified for all attributes going forward by specifying
7 a block-access modifier.

8 The following also apply:

9
10

1
12

a)
b)
¢)

A public attribute is accessible from any element in the model.
A private attribute is accessible only from the element in which the attribute is declared.

A protected attribute is accessible only from the element in which the attribute is declared, from
sub-elements that inherit from it, and from their extensions.
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1 Example 224 shows using a per-attribute access modifier to change the accessibility of the random attribute
2 b. Fields a and c are publicly accessible.

struct S1 {
rand int a; // public accessibility (default)
private rand int b; // private accessibility
rand int c; // public accessibility (default)

4 Example 224—Per-attribute access modifier

s Example 225 shows using block access modifiers to set the accessibility of a group of attributes. Fields w
6and x are private due to the private: directive. Field y is public because its access modifier is explicitly
7 specified. Field z is private, since the private: block access modifier is in effect. Field s is public, since the
g preceding public: directive has changed the default accessibility back to public.

struct S2 {
private:
rand int w; // private accessibility
rand int x; // private accessibility
public rand int y; // public accessibility
rand int z; // private accessibility
public:
rand int s; // public accessibility
}
10 Example 225—Block access modifier

120.5 Overriding types

12 The override block (see Syntax 80) allows type- and instance-specific replacement of the declared type of a
13 field with some specified subtype.

14 Overrides apply to action and monitor fields, struct attribute fields, and component instance fields. In the
15 presence of override blocks in the model, the actual type that is instantiated under a field is determined
16 according to the following rules:

17 a)  Walking from the field up the hierarchy from the contained entity to the containing entity, the appli-
18 cable override directive is the one highest up in the containment tree.

19 b)  Within the same container, instance override takes precedence over type override.
20 c¢) For the same container and kind, an override introduced later in the code takes precedence.

21 Overrides do not apply to reference fields, namely fields with the modifiers input, output, lock, and share.
22 Component-type overrides under actions and monitors as well as action-type and monitor-type overrides
23 under components are not applicable to any fields; this shall be an error.
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120.5.1 Syntax

override_declaration ::= override { { override stmt } }
override_stmt ::=
type_override
| instance override
| override compile if
| stmt_terminator
type_override ::= type type_identifier with type_identifier ;

instance_override ::= instance hierarchical id with type identifier ;

3 Syntax 80—override declaration

420.5.2 Examples

5 Example 226 combines type- and instance-specific overrides with type inheritance. Action reg2axi top
6 specifies that all axi write action instances shall be instances of axi write action x. The
7 specific instance xlator.axi action shall be an instance of axi write action x2. Action
sreg2axi top x specifies that all instances of axi write action shall be instances of
9axi write action x4, which supersedes the override in reg2axi top. In addition, action
10 reg2axi top x specifies that the specific instance xlator.axi action shall be an instance of
maxi write action x3.
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action axi write action { ... };

action xlator action {
axi write action axi action;
axi write action other axi action;
activity {
axi action; // overridden by instance
other axi action; // overridden by type
}
i

action axi write action x : axi write action { ... };

action axi write action x2 : axi write action x { ... };
action axi write action x3 : axi write action x { ... };
action axi write action x4 : axi write action x { ... };

action reg2axi top {
override {
type axi write action with axi write action x;
instance xlator.axi action with axi write action x2;

xlator action xlator;
activity {
repeat (10) {
xlator; // override applies equally to all 10 traversals

}
bi
action reg2axi top x : regZaxi top {
override {
type axi write action with axi write action x4;
instance xlator.axi action with axi write action x3;

b

Example 226—Type inheritance and overrides
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121. Source organization and processing

2 A PSS model is captured in one or more source units. Source units contain declarations of PSS elements.
3 Name resolution rules for types are specified with respect to source units. The bounds of a source unit are
4 specified either by a single file or by a collection of files identified to the PSS processing tool as being part
sof a single source unit. The files comprising a multi-file source unit could be identified to the PSS
6 processing tool in several different ways. For example, the PSS processing tool could be instructed to
7 consider all PSS source files in a given directory to be a single source unit. The PSS processing tool could be
g instructed to consider all PSS source files listed in a filelist to be a single source unit. Tool implementations
9 shall support both single-file and multi-file source unit processing modes, but this standard does not dictate
10 the mechanism by which source units shall be specified to the PSS processing tool.

11 A lexical scope must be fully contained within a single source file, independent of whether source files are
12 processed as single- or multi-file source units.

13 The processing order of a set of source units is user-specified to the PSS processing tool. This standard does
14 not dictate a specific processing order for files within a multi-file source unit, but tools may provide users
15 with means to control it.

1621.1 Packages

17 Packages are a way to group, encapsulate, and identify sets of related definitions, namely type declarations
18 and type extensions. In a verification project, some definitions may be required for the purpose of generating
19 certain tests, while others need to be used for different tests. Moreover, extensions to the same types may be
20 inconsistent with one another, e.g., by introducing contradicting constraints or specifying different mappings
21to the target platform. By enclosing these definitions in packages, they may coexist and be managed more
22 easily.

23 Packages also constitute namespaces for the types, functions, and constants declared in their scope. From a
24 namespace point of view, packages and components have the same meaning and use (see also 9.3).
25 However, in contrast to components, packages cannot be instantiated, and cannot contain attributes, sub-
26 component instances, or concrete action definitions.

27 Type declarations, functions, and constants declared under the scope of a package declaration statement are
28 members of that package. Package members may be referenced from outside the package using a qualified
29 reference or made visible by importing them into the referencing scope (see 21.1.3).

30 Definition statements that do not occur inside the lexical scope of a package declaration are implicitly
31associated with the unnamed global package. Elements in the unnamed global package are visible to all
32 user-defined namespaces without the need for an import statement.

33 Tools may provide means to control and query which packages are active in the generation of a given test.
34 Tools may also provide ways to locate source files of a given package in the file system. However, these
35 means are not covered herein.
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121.1.1 Package declarations

221.1.1.1 Syntax

package declaration ::= package package id path { { package body item } }
package id path ::= package identifier { :: package identifier }
package_identifier ::= identifier
package body item ::=
abstract_action_declaration

| struct_declaration

| enum_declaration

| covergroup declaration

| function_decl

| import_class_decl

| procedural function

| import_function

| target_template function

| export_action

| typedef declaration

| import_stmt

| extend_stmt

| const_field declaration

| component_declaration

| abstract monitor declaration

| package declaration

| compile_assert_stmt

| package body compile if

| stmt_terminator

const field declaration ::= [ static ] const data_declaration

4 Syntax 81—package declaration

5 The following also apply:

6 a) Multiple package statements can apply to the same package name. The package contains the mem-
7 bers and type extensions declared in all package scopes with the same name.

oo

b) Inaconst field declaration, the static keyword is optional, but the field is a static constant even if
9 the static keyword is not used.

1021.1.1.2 Examples
11 For an example of package usage, see 22.2.7.
1221.1.2 Nested packages

13 A package may be nested inside another package. There are two way to declare a nested package.
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10ne way is to include a package declaration inside the outer package declaration, as shown in the following
2 example:

package my lib {
package impl {
struct internal impl s {}

4 Example 227—Hierarchical declaration of nested package

sIn the example above, the fully-qualified type name of the struct internal impl s is
6my lib::impl::internal impl_s.

7 Nested packages can also be specified with double-colon-separated package identifier paths. In the example
gbelow, the fully-qualified type name of the struct internal impl s is also

omy lib::impl::internal impl_s.

10

package my lib::impl {
struct internal impl s {}

}

1 Example 228—Direct declaration of nested package

12 Declaring a package inside another is equivalent to directly specifying a hierarchical name for a package
13 namespace

14 The declaration order of package namespaces is not significant. So, for example, it is not necessary to
15 declare an outer namespace prior to declaring an inner namespace. In the example below, two structs are
16declared. my 1lib::impl::internal impl s is declared first, while my lib::public s is
17 declared second.

18

package my lib::impl {
struct internal impl s {}

}

package my lib {
struct public s {}
}

19 Example 229—Declaration of nested package before outer package

2021.1.3 Referencing package members

21 There are three ways to reference package members from outside the scope of their declaring package:
22 qualified reference, explicit import, and wildcard import.

23 One way to use a declaration from a package is to reference it explicitly using the scope resolution operator
24 ::. This is called a qualified reference. Example:

25

26 my lib::public s my struct;
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1An alternate method for referencing package declarations is via the import statement. Importing an
2 identifier into a package or component makes that identifier visible within that lexical scope without
3 requiring the scope resolution operator. An import statement is a name resolution directive, and does not
4 introduce symbol declarations or symbol aliases into the namespace in which it appears.

5 Two forms of the import statement are provided: explicit import and wildcard import. An explicit import
6 only imports the symbols specifically referenced by the import. Example:

7
8 import my lib::public_s;
9 public_s my struct;

10 It shall be illegal to explicitly import an identifier from a package if the same name is already declared in the
11 importing namespace or to explicitly import the same identifier from two different packages.

12 A wildcard import allows all identifiers declared within a package to be imported into a lexical scope,
13 provided the identifier is not otherwise defined anywhere in the importing component or package. A
14 wildcard import also allows access from the lexical scope to members declared in type extensions found in
15 the imported package. Note that type extensions are unnamed and therefore cannot be explicitly imported.

16 A wildcard import is of the following form:
17

18 import my lib::*;

19 public s my struct;

20 A local declaration of an identifier takes precedence over a wildcard import of the same identifier. An
21explicit import of an identifier takes precedence over a wildcard import of the same identifier from a
22 different package. If the same name is declared in two wildcard-imported packages, neither is imported, a
23 qualified reference must be used.

24 import specifications may appear in package and component declaration statements and in component
25 extension statements, but shall come first in those statements. The scope of an import statement is limited to
26 the declaration statement or extension statement in which it appears.

27 Elements in the unnamed global package are visible to all user-defined namespaces without the need for an
28 explicit import statement. To explicitly refer to a type declared in the unnamed global package, prefix the

2

29 type name with “: :”.
30 import statements are not transitive. If package B imports package A, package B does not have unqualified

31access to contents declared in packages that A may have imported. Package B must import those packages
32 directly in order to have unqualified access to contents declared within them.

3321.1.3.1 Syntax

34
import_stmt ::= import package import_pattern ;
package import pattern ::= type_identifier [ package import qualifier ]
package import_qualifier ::= package import wildcard | package import_alias
package import wildcard ::=:: *
package import_alias ::= as package_identifier

35 Syntax 82—import statement

36 Note: Package aliases are described in 21.1.4.
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1Importing content from a package namespace using a wildcard only imports content from that exact
2 namespace, and does not import content from nested namespaces.

3 Note that using a wildcard import on an outer package namespace, as shown with pl: : * in the example
4 below, allows inner package namespaces to be located without specifying the fully-qualified name of the
s namespace. In this example, struct pl: : p2: :u can be referenced as p2: : u because the elements of p1
6 are imported with a wildcard import.

7
package pl {
struct s { }
package p2 {
struct u { }
}
t
struct t { }
struct s { }
package top {
import pl::*;
struct my s {
s vl; // Resolves to pl::s
HE] v2; // Explicit reference to ::s
t v3; // Resolves to ::t
p2::u v4; // Resolves to pl::p2::u
}
}
8 Example 230—Importing the name of a nested package

921.1.4 Package aliases

10 The use of nested namespaces benefits from the ability to define a named alias for a given namespace. This
111s used when it is necessary to disambiguate between content declared in different namespaces and it is
12 undesirable to use the fully-qualified name of the namespace. The syntax for declaring a package alias is
13 shown in Syntax 82.

14 A namespace alias is only visible in the lexical scope (e.g., a package declaration statement) in which it
15 appears. It is a name resolution shortcut, and does not introduce a new entity into the scope in which it is
16 specified.

17 In the example below, this means that pl and p2 are not visible in the scope of any other declaration
18 statement of consumer pkg. pl and p2 may not be referenced from outside the package (e.g., as
19 consumer pkg::pl). Wildcard-importing consumer pkg into another package namespace does not
20 make symbols p1 and p2 visible in that namespace.
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package pkgl::a::b::c {
struct my s {}

package pkg2::d::e::f {
struct my s {}

package consumer pkg {
import pkgl::a::b::c as pl;
import pkg2::d::e::f as p2;
struct s {

pl::my s vl 1; // Refers to pkgl::a::b::c::my s
pkgl::a::b::ciimy s vl 2; // vl 1 and vl 2 have the same type
p2::my_s v2; // Refers to pkg2::d::e::f::my s
}
}
2 Example 231—Package alias

3 A package alias shall not have the same name as a package name added to the same namespace in previous
4 or current source units. However, it shall be legal to add a package name with the same name as the package
s alias in subsequent source units. In addition, two package aliases defined in the same lexical scope shall not
6 have the same name.

package P {
package foo {}

package P {
package bar {}
import bar as foo; // Error: P already has a package named 'foo'
import foo as my alias;
import bar as my alias; // Error: cannot define two aliases named
// 'my alias' in the same scope

8 Example 232—Illlegal package alias declarations

921.2 Declaration and reference ordering

10 Elements may be referenced after their declaration, within the same source unit or in a subsequent source
11unit. PSS also enables referencing most elements prior to their declaration within the same source unit, but
12 places stronger ordering requirements on some elements. The following apply:

13 a) A variable declared and referenced within a procedural block or an activity block may only be refer-
14 enced after its declaration.

15 b) A constant or enum item may be referenced in the initialization assignment expression of another
16 constant only after its declaration.

17 ¢) A constant declared within a type may reference type-level and package-level constants in its initial-
18 ization assignment expression. A package-level constant may only reference other package-level
19 constants in its initialization assignment expression.
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121.2.1 Examples

2In the example below, filel.pss (the first source unit) declares a component named 1ib base c.
3file2.pss (the second source unit) declares a type my base c that inherits from 1ib base c, so
4filel.pss must be processed before file2.pss. However, within file2.pss, the declaration of
smy_ a_c that refers to my base c as a supertype may be placed either before or after the declaration of
6my base c.

// Source Unit 1 (filel.pss)
component lib base ¢ { /* ... */ }

// Source Unit 2 (file2.pss)

component my a ¢ : my base ¢ { /* ... */}
component my base ¢ : lib base c { /* ... */ }
8 Example 233—Reference to a previous source unit

9In the example below, action pss_top: :entry declares a field named val that is referenced in the
10 constraint val c. Field val may be declared before or after the constraint that references it.

n

component pss top {
action entry {
constraint val c {
val < 10;
}
rand bit[4] val;
}
}
12 Example 234—Reference to a later-declared action field

13 In the example below, a local variable is declared within an exec block. As per requirement a) above, the
14 variable val may only be referenced after it is declared.

15

function int get val();

component pss top {
exec init up {
int val;
val = get val();

16 Example 235—Reference to local variable after declaration

17 In the example below, constants are declared and referenced in initialization expressions of other constants.
18 As per requirement b) above, a constant must be declared prior to its reference in an initialization expression
19 of a constant or in a type-width expression. Consequently, it is an error to reference the yet undeclared
20 constant C in the initialization expression for A. It is legal to reference the previously declared constant A in
21the initialization expression for B.
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package my {
const int A = C /* Error: C is not yet declared */;
const int B = A + 2;
const int C 3;

2 Example 236—Initialization of constants

321.3 Name resolution

4 For the purpose of the following description, the term namespace refers to either a package or a type (e.g.,
5 component, struct) under which static members (types, static constants, static functions, and enum items)
6 may be declared.

7 The members of a package namespace include the members declared in the union of all the package
8 definition statements of that package (see 21.1.1.1). The visible members of a type namespace include the

9 members declared in the union of the type’s initial definition and all visible extensions of the type (see 20.2),

10 Members of PSS namespaces shall have unique names in the context of their namespace, but members may
11 have the same name if declared under different namespaces.

12 Types can be referenced in different contexts, such as declaring a variable, extending a type, or inheriting
13 from a type. In all cases, a qualified name of the type can be used, using the scope operator ::.

14 Constants, static functions, and enum items can be referenced in expression contexts. In these cases too, a
15 qualified name can be used, using the scope operator.

16 Informally, unqualified entity names can be used in the following cases:

17— when referencing an entity that was declared in the same namespace or in an enclosing namespace.
18— when referencing an entity that was declared in a package imported into a logical scope enclosing
19 the reference.

20 Precedence is given to the current namespace scope; explicit qualification can be used to override the
21 precedence.

22 Formally, unqualified names are resolved using the following process, starting with step a, continuing with
23 step b, and then step ¢, in the absence of resolution in previous steps:

24 a) If the reference occurs within an expression whose expected type is an enumeration type (see 8.4.3
25 for definition of expected type):

26 1) Search enum items declared in the expected type’s initial definition.

27 2) Search enum items declared in the expected type’s extensions that are defined under the current
28 package or one of its containing packages (see 20.2), or in the expected type’s extensions that
29 are within a package wildcard-imported into a lexical scope enclosing the reference.

30 b) Ifthe reference occurs within the definition of a type:

31 1) Search members of the type declared in its initial definition.

32 2) Search members of the type declared in its extensions that are defined under the current pack-
33 age or one of its containing packages (see 20.2), or in its extensions that are within a package
34 wildcard-imported into a lexical scope enclosing the reference.

35 3) If the type inherits from a supertype, search members declared in the supertype using the pro-
36 cess described in steps 1 and 2. Repeat for all supertypes in the inheritance hierarchy.
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1 4) If the scope is a component initial definition or extension:

2 i)  Search package members explicitly imported into the lexical scope of the initial definition
or extension, respectively.

w

4 ii) Search members of packages wildcard-imported into the lexical scope of the initial defini-
5 tion or extension, respectively.

6 5) If the type is an inner type (e.g., an action declared inside a component), search members
7 declared in the outer type using the process described in steps 1 through 4 above.

8 ¢) Search package namespaces, starting with the package namespace of the immediate lexical scope
9 and working outward along the package hierarchy. At each level, do the following:

10 1) Search package members declared under all package declarations of the same package.

1 2) If the reference is enclosed in a lexical package scope corresponding to the namespace being
12 searched:

13 i)  If the package member being searched for is itself a package, search for a package alias
14 name defined in the lexical scope of the corresponding package declaration statement.

15 ii) Search package members explicitly imported into the lexical scope.of the corresponding
16 package_declaration statement.

17 iii) Search members of packages wildcard-imported into the lexical scope.of the correspond-
18 ing package declaration statement.

19 A qualified name is composed of double-colon-separated elements. Qualified name elements are resolved by
20 first applying the same process for unqualified names described above on the first element of the static path.
21 Having resolved the first element to a certain package/type, the rest of the static path is used to access down
22 from it.

2321.3.1 Name resolution examples

24 In Example 237, s is declared in three places: imported package P1, encapsulating package P2, and nested
25 component C1. The s referenced in nested component C1 is resolved to the s locally defined in nested
26 component C1. Using qualifiers, P1: : s would be used to resolve to s in imported package P1,and P2: : s

27 would be used to resolve to s in encapsulating package P2.

28

package P1 {
struct s {};
}i

package P2 {
struct s {};

component C1l {
import Pl::*;
struct s {};
s f;
)}z
}i

29 Example 237—Name resolution to declaration in nested nhamespace
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1In Example 238, s is declared in two places: imported package P1 and encapsulating package P2. The s
2 referenced in nested component C1 is resolved to the s defined in imported package P1. Using qualifiers,

3P2: :s would be used to resolve to s in encapsulating package P2.

package P1 {
struct s {};
}i

package P2 {
struct s {};

component C1l {
import Pl::*;
s f;
}i
}i
5 Example 238—Name resolution to declaration in imported package in nested namespace

6 In Example 239, s is declared in two places: imported package P1 and encapsulating package P2. The s
7referenced in nested component C1 is resolved to the s defined in encapsulating package P2. Using
g qualifiers, P1 : : s would be used to resolve to s in package P1 imported in encapsulating package P2.

package P1 {
struct s {};
}i

package P2 {
import Pl::*;
struct s {};

component C1l {
s f;
bi

}i
10 Example 239—Name resolution to declaration in encapsulating package

11 In Example 240, s is declared in one place: imported package P1. The s referenced in nested component C1
12 is resolved to the s defined in package P1 imported inside encapsulating package P2.

13

package P1 {
struct s {};
}i

package P2 {
import Pl::*;

component C1l {
s f;
}i

}
14 Example 240—Name resolution to declaration in imported package in encapsulating package
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1Example 241 shows a case where importing the encapsulating package has no effect on the resolution rules.
2 s will resolve to the same s in P2.

package P1 {
struct s {};
}i

package P2 {
import Pl::*;
struct s {};

component C1l {
import P2::%*;
s f;

}i

Example 241—Package import has no effect on name resolution

s Example 242 shows a case where importing the encapsulating package does have effect on the resolution
6 rules. s will resolve to s in P1 due to the wildcard import of P1.

package Pl {
struct s {}

package P2 {
struct s {}
component C1l {
import Pl::*;
s f; // Pl::s
P2::s5 g; // Pl::P2::s

Example 242—Package import affects name resolution

9In Example 243 below, a_pkg declares a struct S1, b _pkg imports content from a_pkg, and b _pkg
10 declares a struct S2 that inherits from S1. pss_top imports content fromb_pkg.

Il

12
13

14
15

— Line (1): S2 is resolved via the import of b _pkg.

— Line (2): Imports are not transitive. Therefore, the import of b _pkg does not make content from
a_pkg visible in component pss_top.

— Line (3): S1 can be referenced with a fully-qualified type name, a_pkg: :S1.

— Line (4): Importing a package does not introduce symbols into the importing namespace.
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package a pkg {
struct S1 { }
}

package b pkg {
import a pkg::*;
struct S2 : S1 { }

component pss top {
import b pkg::*;

S2 s2 10; // (1) OK
Sl sl il; // (2) Error: Sl is not made visible
// by importing b pkg

a pkg::81 sl i2; // (3) OK: S1 is declared in a pkg
b:pkgzzsl slii3; // (4) Error: import of a pkg in b pkg
// does not make S1 a b pkg member
)i
2 Example 243—Package import is not a declaration

3 Example 244 demonstrates the use of qualified and unqualified enum item references. The unqualified
4references are resolved based on the expected type in context, namely the type of the expression on the other
5 side of the equality operator and on the left-hand side of the in operator.

component my ip c {
enum mode e {A, B, C, D};
action my op {
rand mode e mode;

}

component pss top {
my ip ¢ my ip;
action test {
my ip c::my op op;
constraint op.mode == my ip c::mode e::A;
constraint op.mode == A;
constraint op.mode in [A, C, DJ];

activity {
op;

7 Example 244—Resolution of enum item references

8 Example 245 demonstrates how name resolution is affected by using package aliases. P2 : : s is resolved to
9P3::P4::sandnotto P1::P2: :s, because the package alias takes precedence over the wildcard import
10 in resolving P2.

Copyright © 2024 Accellera. All rights reserved.
322



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

package Pl {
package P2 {
struct s {}

}

package P3 {
package P4 {
struct s {}

}

component pss top {
import Pl::*;
import P3::P4 as P2;
action test {
P2::s f;

Example 245—Resolution in presence of package alias
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122. Test realization

2 A PSS model interacts with foreign languages in order to drive, or bring about, the behaviors that leaf-level
3actions represent in a test scenario. This is done by calling application programming interfaces (APIs)
4 available in the execution environment, or generating foreign language code that executes as part of the test.
5 In addition, external code, such as reference models and checkers, may be used to help compute stimulus
6 values or expected results during stimulus generation.

7 The platform on which test generation takes place is generally referred to as the solve platform, while the
8 platform on which test execution takes place is called the target platform.

9 Logic used to help compute stimulus values is coded using procedural constructs (see 22.7), possibly
10 invoking a foreign procedural interface on the solve platform (see 22.4). The implementation of runtime
11behavior of leaf-level actions can similarly be specified with procedural constructs, possibly invoking a
12 foreign procedural interface on the target platform or invoking target template functions (see 22.6).
13 Alternatively, implementation of actions and other scenario entities can be specified as target code template
14 blocks (see 22.5). In all cases, the constructs for specifying implementation of PSS entities are called exec
15 blocks.

16 Functions can be defined in PSS as a means to factor out and reuse portable procedural logic required for the
17 implementation of scenario entities in exec blocks (see 22.3). Functions may take parameters and optionally
18 return a result value. Like exec blocks, functions are defined in terms of procedural constructs or as target
19 code templates.

2022.1 exec blocks

21exec blocks provide a mechanism for associating specific functionality with a component, an action, a flow/
22 resource object, or a struct (see Syntax 83). A number of exec block kinds are used to implement scenario
23 entities.

24 — init_down and init_up exec blocks allow component data fields to be assigned a value as the com-
25 ponent tree is being elaborated (see 9.4).

26— body exec blocks specify the actual runtime implementation of atomic actions.

27— pre_solve and post_solve exec blocks of actions, flow/resource objects, and structs are a way to
28 involve arbitrary computation as part of the scenario solving.

29— Other exec kinds serve more specific purposes in the context of pre-generated test code and auxil-
30 iary files.
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122.1.1 Syntax

exec_block stmt ::=
exec_block
| target_code exec_block
| target file exec_block
| stmt_terminator
exec_block ::= exec exec_kind { { exec_stmt } }
exec_kind ::=
pre_solve
| post_solve
| pre_body
| body
| header
| declaration
| run_start
| run_end
| init_down
| init_up
| init
exec_stmt ::=
procedural stmt
| exec_super stmt
exec_super_stmt ::= super ;
target code exec block ::= exec exec_kind language identifier = string_literal ;

target file exec block ::= exec file filename string = string_literal ;

Syntax 83—exec block declaration

4 The following also apply:

5
6
7
8

9

10
n

12
13

14
15
16

a)

b)
¢)
d)

e)

exec block content is given in one of two forms: as a sequence of procedural constructs (possibly
involving foreign function calls) or as a text segment of target code parameterized with PSS attri-
butes.

In either case, a single exec block is always mapped to implementation in no more than one foreign
language.

In the case of a target-template block, the target language shall be explicitly declared; however,
when using procedural constructs, the corresponding language may vary.

“exec init” is an alias for “exec init_up,” and is considered deprecated as of PSS 2.0. The keyword
“init” may be removed in a future version of this standard. Users should use “init_up” instead.
Multiple exec blocks of the same kind may be declared in a given definition scope. If multiple exec
blocks of the same kind are declared in a given definition scope, they shall be considered as a single
exec block of the given kind, processed in source order.

17 22.1.2 exec block kinds

18 The following list describes the different exec block kinds:
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pre_solve—valid in action, flow/resource object, and struct types. The pre_solve block is pro-
cessed prior to solving of random-variable relationships in the PSS model. pre_solve exec blocks are
used to initialize non-random variables that the solve process uses. See also 16.4.12.

post_solve—valid in action, flow/resource object, and struct types. The post_solve block is pro-
cessed after random-variable relationships have been solved. The post_solve exec block is used to
compute values of non-random fields based on the solved values of random fields. See also 16.4.12.

pre_body—valid in action, flow/resource object, and struct types. The pre_body block is an exec
block evaluated on the solve platform that is evaluated after exec post_solve and before exec body
is evaluated as part of the test realization process. It is evaluated after executor assignments and
memory allocations are completed for the given action, but before code is generated to represent the
body block. Solve functions may be called in this exec block, as well as the executor (),
addr_value_solve (), and addr_value_abs () functions.

body—valid in action types. The body block constitutes the implementation of an atomic action.
The body block of each action is invoked in its respective order during the execution of a sce-
nario—after the body blocks of all predecessor actions complete. Execution of an action’s body
may be logically time-consuming and concurrent with that of other actions. In particular, the invoca-
tion of exec blocks of actions with the same set of scheduling dependencies logically takes place at
the same time. Implementation of the standard should guarantee that executions of exec blocks of
same-time actions take place as close as possible.

run_start—valid in action, flow/resource object, and struct types. The run_start block is a proce-
dural non-time-consuming code block to be executed before any body block of the scenario is
invoked. It is used typically for one-time test bring-up and configuration required by the context
action or object. exec run_start is restricted to pre-generation flow (see Table 26).

run_end—valid in action, flow/resource object, and struct types. The run_end block is a proce-
dural non-time-consuming code block to be executed after all body blocks of the scenario are com-
pleted. It is used typically for test bring-down and post-run checks associated with the context action
or object. exec run_end is restricted to pre-generation flow (see Table 26).

init_down/init_up(init)}—valid in component types. The init_down and init_up blocks are used to
assign values to component attributes and to initialize foreign language objects. Component
init_ down and init_up blocks are called before the scenario root action’s pre_solve block is
invoked. init_down and init_up blocks may not call target template functions.

1) init_down—Starting with the root component, init_down blocks are evaluated top-down for
each component in the hierarchy. The relative order of evaluating init_down blocks for compo-
nents at the same level of hierarchy is undefined. For any component, the init_down block
shall be evaluated before its init_up block is evaluated.

2) init_up—For a leaf-level component (i.e., one that does not instantiate any subcomponents),
the init_up block shall be evaluated after its init_down block (if any). A parent component’s
init_up block shall be evaluated only after all subcomponent init_up blocks have been evalu-
ated.

header—valid in action, flow/resource object, and struct types. The header block specifies top-
level statements for header declarations presupposed by subsequent code blocks of the context
action or object. Examples are '#include' directives in C, or forward function or class declara-
tions.

declaration—valid in action, flow/resource object, and struct types. The declaration block speci-
fies declarative statements used to define entities that are used by subsequent code blocks. Examples
are the definition of global variables or functions.

47 exec header and declaration blocks shall only be specified in terms of target code templates. All other exec
48 kinds may be specified in terms of procedural constructs or target code templates.
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122.1.3 Examples

2 In Example 246, the init_up exec blocks are evaluated in the following order:
3 a) 1init up in pss_top.sl
4 Db) init up in pss_top.s2

5 ¢) 1init up in pss_top

6 This results in the component fields having the following values:

7 a) sl.base addr=0x2000 (init up in pss_top overwrote the value set by
8 init up in sub_c)

9 b) s2.base addr=0x1000 (value set by init up in sub_ c)

10

component sub c {
int base addr;

exec init up {
base addr = 0x1000;
}
b

component pss_top {
sub_c sl, s2;

exec init up {
sl.base addr = 0x2000;
}
i

1 Example 246—Data initialization in a component

12 In Example 247, the init_down and init_up blocks will be evaluated in the following order:

13 — init down in T
14— init down in T.cl
15 — init down in T.c2
6 — init up in T.cl

17 — dinit up in T.c2

8 — init up in T
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component C {
exec init down ({
}
exec init up {
}
}

component T {
C cl, c2;
exec init down ({
}
exec init up {

}

2 Example 247—init_down and init_up exec blocks

3 A diagram of the example is shown below:

5 Figure 51—Order of invocation of init_down and init_up exec blocks

6 The order of initialization calls is annotated on each of the init_d(own) and init_u(p) blocks. Note that
7init_down in T is called first, followed by init down in T. c1, etc.

8 Note that a tool is free to execute the exec init_down and init_up blocks of sibling instances in arbitrary
gorder. For example, while the diagram above shows init_down in T.c1 executing before init_down in
10 T . c2, the opposite order is also correct. The key requirements are that the exec init_down block of a parent
11 component instance (e.g., T) execute before the exec init_down block of any child component instances,
12 and that the exec init_up block of a parent component instance (e.g., T) execute after all exec init_up blocks
13 of child component instances have executed. This implies that the following ordering of execution is also
14 legal:

15 — init down in T

6 — init down in T.cl
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1 — init up in T.cl

2 — init down in T.c2
3 — init up in T.c2

4 — init up in T

5 In Example 248, component pss_top contains two instances of component sub ¢, named s1 and s2.
6 Component sub c contains a data field named base addr that controls the value to function

7activate () when action A is traversed.

8 During construction of the component tree, component pss_top sets s1l.base addr=0x1000 and

9s2.base_addr=0x2000.

10 Action pss_top: :entry traverses action sub_c: : A twice. Depending on which component instance
nsub_c::A is associated with during traversal, it will cause sub_c: : A to be associated with a different

12base addr.
13 — Ifsub_c::Aexecutes in the context of pss_top.sl, sub c::Auses 0x1000.

14— Ifsub_c::Aexecutes in the context of pss_top.s2, sub_c::Auses 0x2000.

15

component sub c {
bit[32] base addr = 0x1000;
action A {
exec body {
// reference base addr in context component
activate (comp.base addr + 0x10);
// activate() is an imported function

component pss top {
sub c sl, s2;
exec init up {
sl.base addr = 0x1000;
s2.base _addr = 0x2000;
}
action entry {
sub c::A a;
activity {
repeat (2) {
a; // Runs sub_c::A with 0x1000 as base addr when
// associated with sl
// Runs sub_c::A with 0x2000 as base addr when
// associated with s2

16 Example 248—Accessing component data field from an action

17 For additional examples of exec block usage, see 22.2.7.
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122.1.4 exec block evaluation with inheritance and extension

2 Both inheritance and type extension can impact the behavior of exec blocks. See also 20.1 and 20.2.
322.1.4.1 Inheritance and shadowing

4 exec blocks are considered to be virtual, in that a derived type that defines an exec block completely replaces
s the behavior of any same-kind exec block (e.g., body) specified by its base type. Procedural exec blocks may
6 include the “super;” statement, which will execute the contents of the corresponding base-type exec
7 block(s) at that point (see 22.1.4.2).

8 The following examples use the core library target function message () to add a formatted line as a
9message to the execution log, at LOW verbosity. In Example 249, action B inherits from action A and

10 shadows the pre_solve and body exec blocks defined by action A.

1

import std pkg::*;

action A {
int a;

exec pre solve {
a=1;
}
exec body {
message (LOW, "Hello from A %d", a);
}
}

action B : A {
exec pre solve {
a=2;
}
exec body {
message (LOW, "Hello from B %d", a);
}

12 Example 249—Inheritance and shadowing

13 When an instance of action B is evaluated, the following is printed:
14
15 Hello from B 2

1622.1.4.2 Using super

17 Specifying “super;” as a statement in a subtype executes the behavior of the same-kind procedural exec
18 block(s) from the base type, allowing a type to prepend or append behavior. The “super ;” statement shall
19 not be allowed in a target-template exec block.

20 In Example 250, both A1 and A2 inherit from action A. Both execute the pre_solve exec block inherited
21from A. A1 invokes the body behavior of A, then displays an additional statement. A2 displays an additional
22 statement, then invokes the body behavior of A.
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import std pkg::*;

action A {
int a;

exec pre solve ({
a=1;
}
exec body {
message (LOW, "Hello from A %d", a);
}

action Al : A {
exec body {
super;
message (LOW, "Hello from Al %d", a);
t

t
action A2 : A {
exec body {
message (LOW, "Hello from A2 %d", a);
super;

2 Example 250—Using super

3 When an instance of A1 is evaluated, the following is printed:
4

5 Hello from A 1

6 Hello from Al 1

7 When an instance of A2 is evaluated, the following is printed:
8

9 Hello from A2 1

10 Hello from A 1

122.1.4.3 Type extension

12 Type extension enables additional features to be contributed to action, component, and struct types. Type
13 extension is additive and all exec blocks contributed via type extension are evaluated, along with exec blocks
14 specified within the initial definition. First, the initial definition’s exec blocks (if any) are evaluated. Next,
15 the exec blocks (if any) contributed via type extension are evaluated, in the order that they are processed by
16 the PSS processing tool.

Copyright © 2024 Accellera. All rights reserved.
331



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1In Example 251, a type extension contributes an exec block to action A1.

import std pkg::*;

action A {
int a;

exec pre solve {
a=1;
}
exec body {
message (LOW, "Hello from A %d", a);
}

action Al : A {
exec body {
super;
message (LOW, "Hello from Al %d", a);

extend action Al {
exec body {
message (LOW, "Hello from Al extension %d", a);

}

Example 251—Type extension contributes an exec block

4 When an instance of A1 is evaluated, the following is printed:

5

6
7
8

Hello from A 1
Hello from Al 1
Hello from Al extension 1
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1In Example 252, two exec blocks are added to action A1 via extension.

import std pkg::*;

action A {
int a;

exec pre solve {
a=1;
}
exec body {
message (LOW, "Hello from A %d", a);
}

action Al : A {
exec body {
super;
message (LOW, "Hello from Al %d", a);

extend action Al {
exec body {
message (LOW, "Hello from Al (1) extension %d", a);

}

extend action Al {
exec body {
message (LOW, "Hello from Al (2) extension %d", a);

}

3 Example 252—exec blocks added via extension

4 If the PSS processing tool processes the first extension followed by the second extension, then the following
5 is produced:
6

7 Hello from A 1

8 Hello from Al 1

9 Hello from Al (1) extension 1
10 Hello from Al (2) extension 1

11 If the PSS processing tool processes the second extension followed by the first extension, then the following
12 is produced:

13

14 Hello from A 1

15 Hello from Al 1

16 Hello from Al (2) extension 1

17 Hello from Al (1) extension 1
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122.2 Functions

2 Functions are a means to encapsulate behaviors used by actions and other entities to implement test
3scenarios. Functions are called in procedural description contexts, and are akin to procedures in
4 conventional programming languages.

s Functions can be declared in global, package, or component scopes. Functions can be static or instance
6 (non-static) functions. A global or package function is always static. A component function can be explicitly
7declared as static. If a component function is non-static, each function call is associated with a specific
g instance of that component type.

9 A function may be defined in one of three ways:

10 — Using native PSS procedural statements, possibly calling other functions (see 22.3).

11— Asbound to a procedural interface in a foreign programming language, such as a function in C/C++,
12 or a function/task in SystemVerilog (see 22.4). This only applies to static functions; an instance
13 function cannot be bound.

14 —  As atarget code template block (see 22.6).

15 The definition of a function in one of these three ways may be coupled with the function’s initial declaration.
16 The definition may also be provided without a preceding declaration. In this case, the definition serves also
17 as a declaration. On the other hand, the definition may be provided separately from the declaration, in a
18 different lexical scope. The intent and semantics of a function are fixed by its declaration, but its
19 implementation could vary between different environments and contexts. However, a given PSS model,
20 along with all its source units, shall only contain one definition for any function (in case of an instance
21 function, at most one definition per derived component type).

22 Functions may be called from procedural exec blocks, namely exec init down, init up, pre_solve,
23 post_solve, body, run_start, and run_end. Functions called from exec init_down, init_up, pre_solve, and
24 post_solve are evaluated on the solve platform, whereas functions called from exec body, run_start and
25 run_end are evaluated on the target platform. If a function is explicitly declared as solve or target, its usage
26 1s restricted to the context of exec blocks of corresponding kinds.

27 A static function declared in a component scope may be shadowed by a function declaration with the same
28 name in a derived component, which can be static or non-static. The function declaration in the derived
29 component may have a different return type or arguments than in the base component.

30 An instance function declared in a component scope may be shadowed by an instance function declaration
31 with the same name in a derived component. The function declaration in the derived component must have
32 the same return type and arguments as that in the base component. The function in the base type may be
33 called from within the function in the derived type by calling “super.<function name>(...)”.

34 However, an instance function cannot be shadowed by a static function.

35 When the shadowed element is an instance function, the function call is polymorphic, that is, the actual
36 function called depends on its context component. See 20.1 for details. On the other hand, static functions
37 calls are not polymorphic.

3822.2.1 Function declarations

39 A function prototype is declared in a package or component scope within a PSS description. The function
40 prototype specifies whether the function availability is restricted to a solve or target platform, whether it is
41 static, the function name, return type, and function parameters. See Syntax 84. Note that the syntax shown
42 here is for the declaration of a function prototype only, where the definition is provided separately. A

Copyright © 2024 Accellera. All rights reserved.
334



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1 function can also be declared and defined at once using a procedural statement block, a target code template,
20or an import function statement (see 22.3, 22.6, and 22.4, respectively). The same syntax is used for
3 specifying the prototype in these cases also.

422.2.1.1 Syntax

function_decl ::=
[ platform_qualifier ] [ pure ] [ static ] function function_prototype ;
platform_qualifier ::=
target
| solve

function_prototype ::=
function_return_type function_identifier function_parameter list prototype

function_return_type ::=
void
| data_type
function_parameter list prototype ::=
([ function_parameter { , function_parameter } | )
| ( { function_parameter , } varargs parameter )
function_parameter ::=
[ function_parameter dir | const ] data_type identifier [ = constant_expression ]
| [const] ( type | ref type category | struct ) identifier
function_parameter dir ::=
input
| output
| inout
varargs_parameter ::= ( data_type | type | ref type category | struct ) ... identifier
type category ::=
action
| component

| struct kind
6 Syntax 84—Function declaration

7 The following also apply:
8 a) Functions declared in global or package scopes are considered static, regardless of whether the static
9 qualifier is used.

10 b)  The optional platform_qualifier (either solve or target) specifies function availability. An unquali-
1 fied function is assumed to be available during all phases of test generation and execution.

12 ¢) Static functions (declared any scope) are called optionally using package or component type qualifi-
13 cation with the scope operator (: :).

14 d) Instance functions are called optionally using the dot operator (.) on a component instance expres-
15 sion.
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122.2.1.2 Examples
2 For an example of declaring a function, see 22.2.2, below.
322.2.1.3 Specifying function availability

4In some environments, test generation and execution are separate activities. In those environments, some
s functions may only be available during test generation, on the solve platform, while others are only available
6 during test execution, on the target platform. For example, reference model functions may only be available
7during test generation while the utility functions that program hardware devices may only be available
8 during test execution.

9 An unqualified function is assumed to be available during all phases of test generation and execution.
10 Qualifiers are specified to restrict a function’s availability. Functions restricted to the solve platform shall
11not be called directly or indirectly from target execs, namely body, run_start, and run_end. Similarly,
12 functions restricted to the target platform shall not be called from solve execs, namely init_down, init_up,
13 pre_solve, post_solve, and pre_body.

14 Example 253  specifies  function  availability. =~ Two  functions are declared in the
1sexternal functions pkg package. The alloc addr function allocates a block of memory, while
16 the transfer mem function causes data to be transferred. Both of these functions may be present in all
17 phases of test execution in a system where solving is done on-the-fly as the test executes; therefore, no

18 platform qualifier is used.

19In a system where a pre-generated test is to be compiled and run on an embedded processor, memory
20 allocation may be pre-computed. Data transfer shall be performed when the test executes. The
2ipregen_ tests pkg package specifies these restrictions: alloc addr is only available during the
22 solving phase of stimulus generation, while transfer mem is only available during the execution phase
23 of stimulus generation. PSS processing uses this specification to ensure that the way imported functions are
24 used aligns with the restrictions of the target environment.

25

package external functions pkg {
function bit[31:0] alloc addr (bit[31:0] size);
function void transfer mem(
bit[31:0] src, bit[31:0] dst, bit[31:0] size
)i
package pregen tests pkg {
import solve function external functions pkg::alloc addr;

import target function external functions pkg::transfer mem;

26 Example 253—Function availability
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1Example 254 demonstrates an activity with reactive control flow based on values returned from a target
2 function called in an exec body block.

component my ip c {
import target C function int sample DUT state();
// specify mapping to target C function by that same name

action check state {
int curr val;
exec body {
curr val = comp.sample DUT state();
// value only known during execution on target platform
}
}i

action A { };
action B { };

action my test ({
check state cs;
activity {
repeat {
cs;
if (cs.curr val $ 2 == 0) {
do A;
} else {
do B;
}

} while (cs.curr val < 10);

4 Example 254—Reactive control flow

622.2.2 Parameters and return types

7 A function shall explicitly specify a data type as its return type or use the keyword veid to indicate that the
g function does not return a value. Function return values shall be either plain-data types (scalars and
9 aggregates thereof) or reference types. Functions shall not return action types, component types, or flow/
10 resource object types without the ref modifier.

11 A function may specify any number of formal parameters, stating their types and names. Function
12 parameters shall be either plain-data types or reference types. Functions shall not have parameters of action
13 types, component types, or flow/resource object types without the ref modifier. Functions may also declare
14 generic parameters without stating their specific type, and may declare a variable number of parameters—
15 see 22.2.5. Note that the set of types allowed for imported foreign functions is restricted (see 22.4).

16 Parameter direction modifiers (input, output, or inout) are optional in the function declaration. However, if
17 they are specified in the function declaration, such a function may only be imported (see 22.4). Functions
18 whose definition is built into implementations, such as functions included in the PSS core library (see
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1Clause 24), may also have output or inout parameters. In the declaration of native functions and target-
2 template functions, direction modifiers shall not be used.

3 Example 255 declares a function in a package scope. In this case, the function compute value returns
4an int, accepts an input value (val), and returns an output value via the out val parameter.

package generic_ functions {
function int compute value (
int val,
output int out val);

6 Example 255—Function declaration

722.2.3 Const parameters

8 const is an optional qualifier that may be associated with one of the function parameters and can be specified
9 for native functions only.

10 A function parameter declared with the const qualifier is considered constant in the scope of the function,
111.e., this parameter value cannot be changed in the function body. A constant of an aggregate data type can
12 be passed as an argument only to functions in which the corresponding parameter has a const qualifier.

13 An aggregate literal passed as an argument is a constant in the context of the function call, regardless of
14 whether the fields of the aggregate literal are themselves constant expressions. Therefore, the argument in
15 the function prototype requires the const qualifier.

16 The following also apply:
17 a) It shall be illegal to provide both const and function _parameter_dir qualifiers.
18 b) It shall not be allowed to add the const qualifier on reference types or collections thereof.

19 ¢) The const qualifier is an essential part of the function signature and must appear in redeclarations
20 (and overrides) of a function.

21 Example 256 demonstrates declarations and usage of const parameters.
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struct s {
int a, b;
}
static const array<int, 3> MY ARR = {1,2,3};
static const s MY STRUCT = {.a =1, .b =2};
function void copy array(const array<int, 3> src, array<int, 3> dst) {

foreach (dst[i]) {
dst[i] = srcl[i];
// src[i] = dst[i]; // ERROR - src is const and its value cannot

// be changed

}
function void swap structs(s sl, s s2) {
s tmp = sl;
sl = s2;
s2 = tmp;
}
component pss top {
array<int, 3> my arr;
s sl, s2;
exec init {
copy array(my arr, MY ARR); // ERROR: dst parameter is not const
copy array(my arr, {1,2,3}); // ERROR: dst parameter is not const
copy_array (MY ARR, my_ arr); // OK

swap_structs(sl, MY STRUCT); // ERROR: s2 parameter is not const
swap_structs(sl, s2); // OK
}
}
2 Example 256—const parameter declaration

3In Example 256 above, the function copy array accepts two array parameters src and dst. src is
4 declared with the const qualifier; therefore, inside the function body, its elements cannot be modified. dst
5is not declared as const. The first call of copy array in the exec init is illegal because MY ARRis a
6 static constant but passed as the second argument, the non-const dst parameter. Similarly, the second call
7of copy array in the exec init is illegal because the literal expression {1,2, 3} is treated as a
g constant in the context of the function call.

9 The first call to the swap structs function is illegal because the static constant struct MY STRUCT is
10 passed as an argument to a function whose parameters are declared non-const.

1122.2.4 Default parameter values

12 Default parameter values serve as the actual values for the respective parameters if explicit actual
13 parameters are missing in the function call.

14 The following also apply:

15 a) A default parameter value shall be specified as a constant expression, and therefore can only be
16 specified for a parameter of a plain-data type.

17 b) In a function declaration, following a parameter with a specified default value, all subsequent

18 parameters must also have default values specified.

19 ¢) A default parameter value is in effect for redeclarations (and overrides) of a function. A default
20 parameter value shall not be specified in the redeclaration of a function if already declared for the
21 same parameter in a previous declaration, even if the value is the same.
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In an import function declaration, default parameters are not allowed on output or inout arguments.

2 Example 257 demonstrates the declaration and use of a default parameter value.

function void foo(int x, int y = 100);

function void bar () {
foo(3,200); // the value 200 is used for parameter y
foo (3); // the value 100 is used for parameter y

Example 257—Default parameter value

522.2.5 Generic and varargs parameters

6 Generic parameters and varargs parameters are means to declare functions that are generic or variadic with
7 respect to their parameters. Examples are functions that apply to all actions or objects as such, and functions
g that involve string formatting.

9 Generic and varargs parameters are used for the declaration of functions whose definition is built into
10 implementations. In particular, they are used to declare functions included in the PSS core library (see
11 Clause 24). PSS does not provide a native mechanism to operate on an unspecified number of parameters or
12 on parameters with no declared type, nor does PSS define mapping of functions with generic/varargs
13 parameters to foreign languages.

14 The following also apply:

15
16
7
18
19
20

21

22
23
24

25
26
27
28
29

a)

b)

d)

A generic parameter is declared either with the keyword type or with a #ype category, rather than
with a specific type. A value of any type (if type was specified), or any type that belongs to the spec-
ified category (if a type category was specified), is accepted in the function call. In the case of the
struct category, the ref modifier shall not be used, but for the other categories (component, action,
one of the object kinds), the ref modifier shall be used. See more on the use of type categories in
11.3.2.

Default values may not be specified for generic parameters.

The varargs parameter (ellipsis notation — . . .”) signifies that zero or more trailing values may be
passed as actual parameters in the function call. Note that a varargs parameter may only occur as the
last parameter in the parameter list.

In a function call, the expressions corresponding to a varargs parameter must all be of the declared
type if a type is specified, or belong to the same type category if one is specified. Note that in the
case of a type category, the types of the actual parameter expressions may vary, so long as they all
belong to the specified category. When a varags parameter is declared with the keyword type, actual
parameters types may vary with no restriction.

30 Example 258 demonstrates the declaration and use of a generic parameter.
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function void foo(struct x);
struct my struct {};
struct your struct {};
function void bar () {

my struct sl;

your struct s2;

foo(sl);

foo(s2);

2 Example 258—Generic parameter

3 Example 259 demonstrates the declaration and use of a varargs parameter.

4
function string format string(string format, type ... args);
function void bar () {

string name = "John";
int age = 55;
string result;
result = format string("name %s: age %d", name, age);
}
5 Example 259—Varargs parameter

622.2.6 Pure functions

7 Pure functions are functions for which the return value depends only on the values of their parameters, and
8 their evaluation has no side-effects. Declaring a function as pure may provide the PSS implementation with
9 opportunities for optimization. Note that a function declared as pure may lead to unexpected behavior if it
10 fails to obey these rules.

11 The following rules apply to pure functions, that is, functions declared with the pure modifier:
12 a) Only non-void functions with no output or inout parameters may be declared pure.

13 b) The pure keyword may be omitted in a function definition if its original declaration contains the
14 pure keyword; it is still considered pure.

15 A non-pure function shall not be declared as pure in derived types.
16 22.2.6.1 Examples

17 Example 260 demonstrates declaration and use of pure functions.
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pure function int factorial (int n);
action A {

rand int wvals[10];

int factorial vals[10];

exec post solve {

foreach (vals[i]) {
factorial vals[i] = factorial(vals[i]);
}
}
}
2 Example 260—~Pure function

3In the example above, the function factorial () is pure and therefore will not necessarily be re-
4 evaluated for each element in the array. If some elements in the array are equal, the PSS implementation
5 may choose to use the result of a previous evaluation, and not evaluate the function again.

622.2.7 Calling functions

7 Functions may be called directly from exec blocks or from other functions using procedural constructs (see
822.7). Recursive function calls are allowed.

9 Functions not returning a value (declared with veid return type) may only be called as standalone procedural
10 statements. Functions returning a value may be used as operands in expressions; the value of that operand is
11the value returned by the function. The function can be used as a standalone statement and the return value
12 discarded by casting the function call to void:

13

14 (void) function call();

15 Calling a nonvoid function as if has no return value shall be legal, but it is recommended to explicitly
16 discard the return value by casting the function call to void, as shown above.

17 Example 261 demonstrates calling various functions. In this example, the mem segment s buffer object
18 captures information about a memory buffer with a random size. The specific address in an instance of the
19mem segment s object is computed using the alloc addr function. alloc addr is called after the
20 solver has selected random values for the rand fields (specifically, size in this case) to select a specific
21address for the addr field.
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package external functions pkg {

function void transfer mem(

)i

buffer mem segment s {
rand bit[31:0] size;
bit[31:0] addr;

exec post solve {
addr = alloc_addr (size);

}

component mem xfer {

action xfer a {

exec body {

}

import external functions pkg:

function bit[31:0] alloc_addr (bit[31:0]

constraint size in [8..4096];

ok .
<

input mem segment s in buff;
output mem segment s out buff;

size);

bit[31:0] src, bit[31:0] dst, bit[31:0] size

constraint in buff.size == out buff.size;

transfer mem(in buff.addr, out buff.addr,

in buff.size);

2 Example 261—Calling functions

3 A function call shall only be valid if the function has an existing definition available on the relevant
4platform. In case of an instance function, a function call shall be valid if the function has an existing
5 definition available on the relevant platform, defined in context of the relevant component instance type. It is
6 possible to declare an instance function in context of a component base type but provide a definition only in

7 context of its subtypes, as long as no function call is done in context of a base type instance.

8 Example 262 demonstrates the function call restrictions when a function is declared but not defined. It
9 declares various functions in the global package or in a component, some of them restricted to a solve or
10 target platform. Then various definitions are provided to these functions, some add a platform restriction
11not specified in the original declaration. Some of the function calls within the post_solve and body exec

12 blocks are valid, some are invalid, according to these restrictions.
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import std pkg::*;

function int funcl (int a, int b);
function int func2(int a, int b);
solve function int func3(int a);

target function void func4d (int a);

function int funcl (int a, int b) { // definition for any platform
return a+b;

}

solve function int func2 (int a, int b) { // solve-only definition
return atb;

}

function int func3(int a) { // definition for the solve function
int res;
randomize res with {

res > ay

}i
return res;

}

function void func4 (int a) { // definition for the target function
message (LOW, "The value is %d", a);

component base comp {
function void func5();

action do it {
int a, b, ¢, x, y, z;
exec post solve {

x = funcl(1,2);

y = func2(3,4);

z = func3(5);

funcd (6) ; // ERROR: calling a target function

comp.func5(); // OK under compl, ERROR under comp2
}
exec body {
a funcl (1,2);
b func2 (3,4); // ERROR: calling a solve function
c = func3(5); // ERROR: calling a function
// with a solve-only definition

funcd (6) ;
comp. func5 () ; // OK under comp2, ERROR under compl

}
component compl: base comp {
solve function void func5() { // solve-only definition
print ("I am compl::func5");

}
component comp2: base comp {
target function void func5() { // target-only definition
message (LOW, "I am comp2::funcb");

Example 262—Function calls restrictions

Copyright © 2024 Accellera. All rights reserved.
344




Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

222.3 Native PSS functions

3 It is possible to specify the definition for native PSS functions using the procedural constructs described in
422.7.

s For an instance function, the definition (if provided) shall be in the same component type as the original
6 declaration (either in its initial definition or in an extension) or in a derived component. For a static
7 function, the definition shall be in the same package or component as the original declaration (in case of a
8 component, either in its initial definition or in an extension).

922.3.1 Syntax

10

procedural function ::= [ platform qualifier ] [ pure ] [ static ] functio
function_prototype { { procedural stmt } }

platform_qualifier ::=
target
| solve
function_prototype ::= function_return_type function identifier function_parameter list prototype
function_return_type ::=
void
| data_type
function_parameter list prototype ::=
([ function_parameter { , function parameter } ] )
| ( { function_parameter , } varargs parameter )
function_parameter ::=
[ function_parameter dir | data_type identifier [ = constant_expression ]
| ( type | ref type category | struct ) identifier
function_parameter dir ::=
input
| output
| inout
varargs parameter ::= ( data_type | type | ref type category | struct ) ... identifier
type category ::=
action

| component

| struct_kind
11 Syntax 85—Function definition

12 The optional platform_qualifier (either solve or target) specifies function availability. If the function
13 declaration is provided separately and is qualified, platform_qualifier must be the same, or it may be
14 omitted. If the function declaration is unqualified, platform_qualifier restricts the function availability for
15 the PSS model. If no separate function declaration exists, this definition also serves as the declaration, and
16 platform_qualifier or its absence is treated accordingly (see 22.2.1 and Example 262).
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1 For native PSS functions, function_parameter_dir shall be left unspecified for all parameters of the function,
2 both in the original function declaration (if provided) and in the native PSS function definition.

322.3.2 Parameter passing semantics
4 Parameter direction shall be unspecified in the function prototype for native PSS functions. This implies that
sthe parameter direction (input, output, or inout) shall not be used. If the function declaration contains

6 directions for parameters, this function shall not have a native implementation.

7 In the implementation of these functions, the following apply:

8 — Parameters of scalar data types are passed by value. Any changes to these parameters in the callee do
9 not update the values in the caller.

10 — Parameters of aggregate data types are passed as a handle to the instance in the caller. Updates to
1 these parameters in the callee will modify the instances in the caller. When a variable of inherited
12 type is passed as a parameter of base type, only the fields present in the base type are visible within
13 the function. Note that as variables, parameters of aggregate data types have value semantics in
14 assignment and equality expressions (see 8.3 and 8.5.3).

15— Parameters of reference data types are passed as reference assignments. The parameter points to (is
16 an alias to) the entity referred to in the actual parameter expression. Note that as variables, parame-
17 ters of reference types have reference semantics in assignment and equality expressions (see 8.3 and
18 8.5.3), and may evaluate to null.

19 Example 263 shows the parameter passing semantics.
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package generic func
struct params_ s {
int x;

}i

tions {

struct params inh s : params_s {

int y;
}

// Prototypes

function void set
function void set
function params_s

// Definitions
function void set
{
p.x = a;
a = 0;
}
function void set
{
p dst.x = p sr
}
function params_s
{
params s s;
s.x = 0;
return s;

component A {
params s p;
params inh s p
int a;

exec init up {
a = 10;
p.x = 20;
set valO (p,
// p.x is s

set vall(p,
// p.x is s

// Variable
// function
p_inhl.x =
p_inhl.y =
p_inh2.x =
p_inh2.y =
set vall(p_

~valO(params_s p, int a);
~vall (params_s p dst, params s p src);

zero attributes();

~valO (params_s p, int a)

~vall (params s p dst, params s p src)

Cc.X;

zero attributes ()

inhl, p inh2;

a);
et to 10 at this point and a is unchanged

zero_ attributes());
et to 0 at this point

s of inherited type may be passed as
parameters of base type

5;

15;

10;

20;

inhl, p_inh2);

// The value of p inhl.y can never be changed by set vall because

// set_vall

can only access fields of params s (i.e.,

X)

Example 263—Parameter passing semantics
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122.4 Foreign procedural interface

2 Static function declarations in PSS may expose, and ultimately be bound to, foreign language APIs
3 (functions, tasks, procedures, etc.) available on the target platform and/or on the solve platform. A function
4that was previously declared in the PSS description can be designated as imported. Calling an imported
s function from a PSS procedural context invokes the respective API in the foreign language. Parameters and
6 result passing are subject to the type mapping defined for that language.

7 Instance functions cannot be imported.

8 22.4.1 Definition using imported functions

9 Additional language qualifiers are added to imported functions to provide more information to the tool about
10 the way the function is implemented. In typical use, such qualifiers are specified in an environment-specific
11 package (e.g., a UVM environment-specific package or C-test-specific package).

12 A static function declared in a component can only be imported in the scope of the same component type. It
13 shall be illegal to import a function declared in a base component type within a derived or unrelated
14 component type.

15 It shall be illegal to import a function declared in a template component type.

16 22.4.1.1 Syntax

17

import_function ::=
import [ platform_qualifier | [ language_identifier ] function type identifier ;
| import [ platform qualifier | [ language identifier ] [ static ] function function_prototype ;
platform_qualifier ::=
target
| solve
function_parameter ::=
[ function_parameter dir | const ] data_type identifier [ = constant expression ]

| [const] ( type | ref type category | struct ) identifier

18 Syntax 86—Imported function qualifiers

19 The following also apply:
20 a) The first form of import function can only be used when a separate function declaration is provided.
21 b) The optional platform_qualifier (either solve or target) specifies function availability. If the func-

22 tion declaration is provided separately and is qualified, platform_qualifier must be the same, or it
23 may be omitted. If the function declaration is unqualified, platform_qualifier restricts the function
24 availability for the current PSS model. If no separate function declaration exists, this definition also
25 serves as the declaration, and platform_qualifier or its absence is treated accordingly (see 22.2.1 and
26 Example 262).

27 ¢) Return values and parameter values of imported functions are restricted to the following types:

28 1) Dbit or int, provided width is no more than 64 bits

29 2) bool

30 3) enum

31 4) string
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1 5) chandle

2 6) struct

3 7) array whose element type is one of those listed in 1-6 above, including a sub-array

4 8) list whose element type is one of those listed in 1-6 above, except string or chandle

5 See Annex D for type-mapping rules to C, C++, and SystemVerilog.

6 d) Parameter direction modifiers may be used in the function declaration or in the import declaration
7 to specify the passing semantics between PSS and the foreign language:

8 1) If the value of an input parameter is modified by the foreign language implementation, the
9 updated value is not reflected back to the PSS model.
10 2) An output parameter sets the value of a PSS model variable. The foreign language implemen-
1 tation shall consider the value of an output parameter to be unknown on entry; it shall specify a
12 value for an output parameter.
13 3) An inout parameter takes an initial value from a variable in the PSS model and reflects the
14 value specified by the foreign language implementation back to the PSS model.

15 ¢) Inthe absence of an explicit direction modifier, parameters default to input.

16 In addition, the following apply when the second form of import function is used (with the function
17 prototype specified):

18 a) Ifthe direction for a parameter is left unspecified in the import declaration, it defaults to input.

19 b) The prototype specified in the import declaration shall match the prototype specified in the func-
20 tion declaration in the following ways:

21 1) For a static function declared in a component, the static qualifier shall be used.
22 2) The number of parameters shall be identical.

23 3) The parameter names, types, and directions shall be identical.

24 4) The return types shall be identical.

2522.4.1.2 Specifying an implementation language

26 The implementation language for an imported function can be specified implicitly or explicitly. In many
27 cases, the implementation language need not be explicitly specified because the PSS processing tool can use
28 sensible defaults (e.g., all imported functions are implemented in C++). Explicitly specifying the
29 implementation language using a separate statement allows different imported functions to be implemented
30 in different languages, however (e.g., reference model functions are implemented in C++, while functions to
31drive stimulus are implemented in SystemVerilog).

32 Example 264 shows explicit specification of the foreign language in which the imported function is
33 implemented. In this case, the function is implemented in C. Notice that only the name of the imported
34 function is specified and not the full function prototype.

35
package known c functions {
import C function generic functions::compute expected value;
}
36 Example 264—Explicit specification of the implementation language

3722.4.2 Imported classes

38 In addition to interfacing with external foreign language functions, the PSS description can interface with
39 foreign language classes. See also Syntax 87.
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122.4.2.1 Syntax

import_class_decl := import class import class identifier [ import class extends |
{ { import_class_function_decl } }

import_class_extends ::=: type_identifier { , type identifier }

import_class_function_decl ::= function_prototype ;

3 Syntax 87—Import class declaration

4 The following also apply:
5 a) Imported class functions support the same return and parameter types as imported functions. import

6 class declarations also support capturing the class hierarchy of the foreign language classes.

7 b) Fields of import class type can be instantiated in package and component scopes. An import class
8 field in a package scope is a global instance. A unique instance of an import class field in a compo-
9 nent exists for each component instance.

10 c¢) Imported class functions are called from an exec block just as imported functions are.
1122.4.2.2 Examples

12 Example 265 declares two imported classes. import class base declares a function base function,
13 while import class ext extends from import class base and adds a function named ext function.

14

import class base {
void base function();

}

import class ext : base ({
void ext function();

}
15 Example 265—Import class

16 22.5 Target-template implementation of exec blocks

17 Implementation of exees may be specified using a target template—a string literal containing code in a
18 specific foreign language, optionally embedding references to fields in the PSS description. Target-template
19 implementation is restricted to farget exec kinds (body, run_start, run_end, header, and declaration). In
20 addition, target templates can be used to generate other text files using exec file. Target-template
21implementations may not be used for solve execs (init_down, init up, pre_solve, post_solve, and
22 pre_body).

23 Target-template execs are inserted by the PSS tool verbatim into the generated test code, with embedded
24 expressions substituted with their actual values. Multiple target-template exec blocks of the same kind are
25 allowed for a given action, flow/resource object, or struct. They are (logically) concatenated in the target
26 file, as if they were all concatenated in the PSS source.

2722.5.1 Target language
28 A language_identifier serves to specify the intended target programming language of the code block.

29 Clearly, a tool supporting PSS must be aware of the target language to implement the runtime semantics.
30 PSS does not enforce any specific target language support, but recommends implementations reserve the
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1identifiers C, CPP, and SV to denote the languages C, C++, and SystemVerilog respectively. Other target
2 languages may be supported by tools, given that the abstract runtime semantics are kept. PSS does not define
3 any specific behavior if an unrecognized language identifier is encountered.

4 Each target-template exec block is restricted to one target language in the context of a specific generated
s test. However, the same action may have target-template exec blocks in different languages under different
6 packages, given that these packages are not used for the same test.

722.5.2 exec file

8 Not all the artifacts needed for the implementation of tests are coded in a programming language that tools
9 are expected to support as such. Tests may require scripts, command files, make files, data files, and files in
10 other formats. The exec file construct (see 22.1) specifies text to be generated out to a given file. exec file
11 constructs of different actions/objects with the same target are concatenated in the target file in their
12 respective scenario flow order.

1322.5.3 Referencing PSS fields in target-template exec blocks

14 Implementing test intent requires using data from the PSS model in the code created from target-template
15 exec blocks. PSS variables are referenced using mustache notation: { {expression}}. A reference is to
16 an expression involving variables declared in the scope in which the exec block is declared. Only scalar
17 variables (except chandle) can be referenced in a target-template exec block.

18 22.5.3.1 Examples

19 Example 266 shows referencing PSS variables inside a target-template exec block using mustache notation.

20
component top {
struct S {
rand int b;
}
action A {
rand int a;
rand S sl;
exec body C = """
printf ("a={{a}} sl.b={{sl.b}} at+b={{a+sl.b}}\n");
}
}
21 Example 266—Referencing PSS variables using mustache notation
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1A variable reference can be used in any position in the generated code. Example 267 shows a variable
2 reference used to select the function being called.

component top {
action A {
rand bit[1:0] func id;
rand bit[3:0] a;
exec body C = """
func_{{func_id}} ({{a}});

wuww .,
’

4 Example 267—Variable reference used to select the function

5 One implication of this is that a mustache reference cannot be used to assign a value to a PSS variable.

6 Example 267 also declares a random func_id variable that identifies a C function to call. When a PSS tool

7 processes this description, the following output shall result, assuming func_id==1 and a==4:
8
9 func 1(4);

10 Example 268 shows how a procedural pre_solve exec block is used along with a target-template declaration
11 exec block to allow programmatic declaration of a target variable declaration.

12

enum obj type e {my int8,my intl6,my int32,my int64};
function string get unique obj name();
import solve function get unique obj name;

buffer mem buff s {
rand obj type e obj type;
string obj name;

exec post solve {
obj name = get unique obj name();

}

// declare an object in global space
exec declaration C = """
static {{obj type}} {{obj name}};

bi
13 Example 268—Allowing programmatic declaration of a target variable declaration

14 Assume that the solver selects my int16 as the value of the obj type field and that the
15get _unique obj name () function returns field 0. In this case, the PSS processing tool shall
16 generate the following content in the declaration section:

17

18 static my intl6 field O0;
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122.5.3.2 Formatting

2 When a variable reference is converted to a string, the result is formatted as follows:

3 — int signed decimal (%d)

4 — bit unsigned decimal (%ud)
5 — bool "true" |"false"

6 — string string (%s)

7 — chandle pointer ($p)

g8 — float32, float64 floating-point ($£)

922.5.4 Capturing comments in target-template exec blocks

10 To retain implementations inside a template exec block as PSS comments and prevent the code from
11appearing in the target code, the language allows a special commenting notation with a hash inside braces
12 (without whitespace). The token {# introduces a comment, which ends with the successive occurrence of
13 # }, enabling a multi-line comments capture. And the notation { # } introduces a comment that ends with the
14 current line.

1522.5.4.1 Examples

16 Example 269 demonstrates the usage of a multi-line comment where an implementation with an individual
17 mode-based API declaration is commented and replaced with a declaration based on the action usage. The
18 example also captures the usage of a single-line comment where a constant variable implementation is
19 commented and replaced with a static one.
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enum op mode e {rx,tx,copy};
component transactor {
list <op mode e> op mode 1;
exec init up {
op mode 1 = {rx, tx};

}

action read a {
rand op _mode e opmode;
rand int trans size;

constraint opmode in comp.op mode 1;

exec declaration C = """
//This comment will appear in the target code.

{#
This comment block will not appear in target code.
static void transactor init rx init();
static void transactor init tx init();
static void transactor init copy init();

#}
static void transactor init {{opmode}} init();

{#} const int trans _size = {{trans_size}};
static int trans size = {{trans_size}};

wwn o,
’

//{{opmode}} - Solved value will appear in the target code.

2 Example 269—Denoting multi- and single-line comments

322.6 Target-template implementation for functions

4 When integrating with languages that do not have the concept of a “function,” such as assembly language,

5 the implementation for functions can be provided by target-template code strings.

6 The target-template form of functions (see Syntax 88) allows interactions with a foreign language that do
7not involve a procedural interface. Examples are injecting assembly code or global variables into generated
g tests. The target-template forms of functions are always target implementations. Variable references may
9 only be used in expression positions. Function return values shall not be provided, i.e., only functions that
10 return void are supported. If a target-template function is an instance (non-static) function, PSS expressions
11embedded in the target code (using mustache notation) may make reference to the instance attributes,

12 optionally using this. PSS comments can be added using the hash-inside-braces notation.
13 See also 22.5.3 and 22.5.4.

1422.6.1 Syntax

15

target template function ::= target language identifier [ static ]
function function prototype = string_literal ;

16 Syntax 88— Target-template function implementation
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1 The following also apply:

2 a) Parameter direction shall be unspecified in the function prototype for target-template functions. This
3 implies that the parameter direction (input, output, or inout) shall not be used. If the function dec-
4 laration contains directions for parameters, this function shall not have a target-template implemen-
5 tation.

6 b) The prototype specified in the target template declaration must match the prototype specified in the
function declaration in the following way:

8 1) The number of parameters must be identical.
9 2) The parameter names and types must be identical.
10 3) The return types must be identical.

1122.6.2 Examples

12 Example 270 provides an assembly-language target-template code block implementation for the do_stw
13 function. Function parameters are referenced using mustache notation ({ {variable}}).

14

package thread ops asm pkg {
target ASM function void do stw(bit[31:0] val, bit[31:0] vaddr) = """
loadi RA {{val}}
store RA {{vaddr}}

wwn .,
’

15 Example 270—Target-template function implementation

1622.7 Procedural constructs

17 This section specifies the procedural control flow constructs. When relevant, these constructs have the same
18 syntax and execution semantics as the corresponding activity control flow statements (see 12.4).

1922.7.1 Scoped blocks
20 A scoped block creates a new unnamed nested scope, similar to C-style blocks.

2122.7.1.1 Syntax

22
procedural stmt ::=
procedural sequence block stmt
...
procedural_sequence block stmt ::=[ sequence | { { procedural stmt } }
23 Syntax 89—Procedural block statement

24 The sequence keyword before the block statement is optional, and is provided to let users state explicitly
25 that the statements are executed in sequence.

26 Typically, blocks are used to group multiple statements that are part of a control flow statement (such as
27 repeat, if-else, etc.). It is also valid to have a stand-alone block that is not part of a control flow statement, in
28 which case the following equivalencies apply:
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A stand-alone block that does not create new variables (and hence does not destroy any variables
when the scope ends) is equivalent (in so far as to the AST constructed) to the case where the con-
tents of the code block are merged with the enclosing parent block. For example:
{
int a;
int b;

is equivalent to
{
int a;
int b;
b = a;
}
If the start of an enclosing block coincides with the start of the stand-alone nested block (i.e., with no
statements in between) and similarly the end of that enclosing block coincides with the end of the
stand-alone nested block, it is then equivalent to the case where there is just a single code-block with

the contents of the nested block. For example:
{
{
int a;
int b;
//

}
is equivalent to

{
int a;
int b;
//

}

3422.7.2 Variable declarations

35 Variables may be declared with the same notation used in other declarative constructs (e.g., action). The
36 declaration may be placed at any point in a scope (i.e., C++ style) and does not necessarily have to be
37 declared at the beginning of a scope. However, the declaration shall precede any reference to the variable.

38 All data types listed in Clause 7 may be used for variable types. It shall be an error to instantiate rand
39 variables in a procedural context.
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122.7.2.1 Syntax

procedural_stmt ::=
procedural sequence block stmt
| procedural data declaration

procedural data declaration = data_type procedural data_instantiation
{, procedural data_instantiation } ;

procedural data_instantiation ::= identifier [ array dim ] [ = expression |

Syntax 90—Procedural variable declaration

422.7.3 Assignments

5 Assignments to variables in the scope may be made.

622.7.3.1 Syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment_stmt

procedural assignment stmt ::=ref path assign_op expression ;

Syntax 91—Procedural assignment statement

9 The following rules apply to assignments in native PSS functions and execs:

10
n

12
13
14
15
16

7
18

19
20
21

22
23
24
25
26
27
28
29

a)

b)

¢)

d)

A plain-data variable declared within a function/exec scope may be assigned in the scope where it is
visible with no restriction.

A native PSS function definition may set data attributes of component instances through
component references passed as parameters. Instance functions may similarly set data attributes of
their context component directly. Since component attributes can only be set during the
initialization phase, a function that sets such data attributes shall be called only from within exec
init_down or init_up.

An exec init_down or init_up block may set the data attributes of the component instance directly
in the body of the exec.

Data attributes of a struct instance may be set using the handle passed as a parameter. Similarly,
data attributes of actions and flow/resource objects may be set using the reference passed as a
parameter. A function that sets such data attributes may be invoked in init, solve or body execs.

A struct instance may be assigned to another struct instance of the same type, which results in a
deep-copy operation of the data attributes. That is, this single assignment is equivalent to
individually setting data attributes of the left-side instance to the corresponding right-side instance,
for all the data attributes directly present in that type or in a contained struct type. A struct instance
may be assigned from another struct instance that is of a type that inherits from the type of the left-
hand side of the assignment. This results in a deep copy of all data attributes present in the base
struct type (left-hand type) from the right-hand struct instance to the left-hand struct instance. See
8.3.
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122.7.4 Void function calls

2 Functions not returning a value (declared with veid return type) may only be called as standalone procedural
3 statements. Functions returning a value may be used as a standalone statement and the return value
4 discarded by casting the function call to veid:

5

6 (void) function call();

7 Calling a nonvoid function as if has no return value shall be legal, but it is recommended to explicitly
8 discard the return value by casting the function call to veid, as shown above.

922.7.4.1 Syntax

10

procedural stmt ::=
procedural sequence block stmt

| procedural data declaration

| procedural assignment_stmt

| procedural void function call stmt

[ ...
procedural void_function_call_stmt ::=[ ( void ) ] function_call ;
11 Syntax 92—Void function call

12 22.7.5 return statement

13 PSS functions shall return a value to the caller using the return statement. In PSS functions that do not
14 return a value, the return statement without an argument shall be used.

15 The return statement without an argument can also be used in execs. The return signifies end of
16 execution—no further statements in the exec are executed.

17 22.7.5.1 Syntax

18

procedural stmt ::=
procedural_sequence block stmt
| procedural data_declaration
| procedural assignment_stmt
| procedural void_function_call_stmt
| procedural return_stmt

procedural return_stmt ::= return [ expression ] ;

19 Syntax 93—Procedural return statement
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122.7.5.2 Examples

target function int add(int a, int b) {

}

return (a+tb);

Example 271—~Procedural return statement

422.7.6 repeat (count) statement

5 The procedural repeat statement allows the specification of a loop consisting of one or more procedural
6 statements. This section describes the count-expression variant (see Syntax 94) and 22.7.7 describes the
7 while-expression variants.

822.7.6.1 Syntax

10

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt
[ ...
procedural repeat stmt ::=

repeat ( [ index_identifier : ] expression ) procedural stmt

Syntax 94—Procedural repeat-count statement

11 The following also apply:

12

13
14
15

a)
b)

expression shall be a non-negative integer expression (int or bit).

Intuitively, the procedural stmt is iterated the number of times specified in the expression. An
optional index-variable identifier can be specified that ranges between O and one less than the itera-
tion count. If the expression evaluates to O, the procedural stmt is not evaluated at all.
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122.7.6.2 Examples

target function int sum(int a, int b) {
int res;

res = 0;
repeat (b) {
res = res + a;

}

return res;

3 Example 272—Procedural repeat-count statement

422.7.7 repeat-while statement

5 The procedural repeat statement allows the specification of a loop consisting of one or more procedural

6 statements. This section describes the while-expression variants (see Syntax 95).

722.7.7.1 Syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt

procedural repeat stmt ::=

| repeat procedural stmt while ( expression ) ;

| while ( expression ) procedural stmt

9 Syntax 95—Procedural repeat-while statement

10 The following also apply:
11 a) expression shall be of type bool.

12 b) Intuitively, the procedural stmt is iterated so long as the expression condition is true, as sampled

13 before the procedural stmt (in the while variant) or after (in the repeat-while variant).
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122.7.7.2 Examples

target function bool get parity(int n) {
bool parity;

parity = false;

while (n != 0) {
parity = !parity;
n=mné& (n-1);

}

return parity;

Example 273—Procedural while statement

422.7.8 foreach statement

5 The procedural foreach statement allows the specification of a loop that iterates over the elements of a
6 collection (see Syntax 96).

722.7.8.1 Syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt
[ ...
procedural foreach stmt ::=

foreach ([ iterator_identifier : ] expression [ [ index_identifier | ]) procedural stmt

Syntax 96—Procedural foreach statement

10 The following also apply:

Il
12

13
14

15
16
7

18
19

20
21

a)
b)

¢)

d)

expression shall be of a collection type (i.e., array, list, map or set). expression may also be an
array of action handles, components, or flow and resource object references.

The body of the foreach statement is a sequential block in which procedural stmt is evaluated once
for each element in the collection.

iterator_identifier specifies the name of an iterator variable of the collection element type. Within
procedural_stmt, the iterator variable, when specified, is an alias to the collection element of the
current iteration.

index_identifier specifies the name of an index variable. Within procedural stmt, the index variable,
when specified, corresponds to the element index of the current iteration.

1) For arrays and lists, the index variable shall be a variable of type int, ranging from O to one
less than the size of the collection variable, in that order.
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2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys. The order of key traversal is undetermined.

3) For sets, an index variable shall not be specified.

Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

The index and iterator variables are read-only. Their values shall not be changed within the foreach
body. It shall be an error to change the contents of the iterated collection variable with the foreach
body.

14 22.7.9 if-else statement

15 The procedural if-else statement introduces a branch point (see Syntax 97).

16 22.7.9.1 Syntax

7

18

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment_stmt
| procedural void_function call stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt
| procedural if else stmt

procedural if else stmt ::= if ( expression ) procedural stmt [ else procedural stmt ]

Syntax 97—Procedural if-else statement

19 expression shall be of type bool.
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122.7.9.2 Examples

target function int max(int a, int b) {
int c;

if (a > b) {

c = a;
} else {
c = b;

}

return c;

3 Example 274—Procedural if-else statement

422.7.10 match statement

5 The procedural match statement specifies a multi-way decision point that tests whether an expression
6 matches one of a number of other expressions and executes the matching branch accordingly (see

7 Syntax 98).

822.7.10.1 Syntax

procedural stmt ::=
procedural _sequence block stmt

| procedural data_declaration

| procedural assignment stmt

| procedural void function_call stmt

| procedural return_stmt

| procedural repeat stmt

| procedural foreach stmt

| procedural if else stmt

| procedural match_stmt

[ ...
procedural match_stmt ::=

match ( match_expression ) { procedural match _choice { procedural match choice } }
match_expression ::= expression
procedural _match choice ::=

| open range list | : procedural stmt

| default : procedural stmt

10 Syntax 98—Procedural match statement

11 The following also apply:
12 a)  When the match statement is evaluated, the match_expression is evaluated.

13 b) After the match expression is evaluated, the open_range_list of each procedural match choice
14 shall be compared to the match_expression. open_range_lists are described in 8.5.9.1.

Copyright © 2024 Accellera. All rights reserved.
363



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1 ¢) Ifthere is exactly one match, then the corresponding branch shall be evaluated.

2 d) It shall be an error if more than one match is found for the match_expression.

3 e) Ifthere are no matches, then the default branch, if provided, shall be evaluated.

4 f)  The default branch is optional. There may be at most one default branch in the match statement.

5 g) Ifadefault branch is not provided and there are no matches, it shall be an error.

622.7.10.2 Examples

target function int bucketize (int a) {
int res;
match (a)
[0..3]: res = 1;
[4..7]: res = 2;
[8..15]: res = 3;
default: res = 4;
}
return res;
}
8 Example 275—Procedural match statement

922.7.11 break/continue statement

10 The procedural break and continue statements allow for additional control in loop termination (see
11 Syntax 99).

1222.7.11.1 Syntax

13

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt
| procedural if else stmt
| procedural match stmt
| procedural break stmt
| procedural continue stmt
[ ...
procedural break stmt ::= break ;

procedural continue_stmt ::= continue ;

14 Syntax 99—Procedural break/continue statement
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1 The following also apply:
2 a) The semantics are similar to break and continue in C++.

3 b) break and continue may only appear within loop statements (repeat-count, repeat-while or
4 foreach). Within a loop, break and continue may be nested in conditional branch or match state-
5 ments.

6 ¢) break and continue affect the innermost loop statement they are nested within.

7 d) break signifies that execution should continue from the statement after the enclosing loop construct.
8 continue signifies that execution should proceed to the next loop iteration.

922.7.11.2 Examples

10

// Sum all elements of 'a' that are even, starting from a[0], except those
// that are equal to 42. Stop summation if the value of an element is 0.

function int sum(array<int, 100> a) {
int res;

res = 0;

foreach (el : a) {
if (el == 0)
break;
if (el == 42)
continue;
if ((el & 2) == 0) {
res = res + el;

return res;

11 Example 276—Procedural foreach statement with break/continue

1222.7.12 randomize statement

13 The procedural randomize statement shall randomize the specified data attributes or variables.
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122.7.12.1 Syntax

procedural_stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function_ call stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt
| procedural if else stmt
| procedural match_stmt
| procedural break stmt
| procedural continue stmt
| procedural randomization stmt
| procedural compile if
| stmt_terminator
procedural randomization stmt ::=
randomize procedural randomization_target procedural randomization term
procedural randomization target ::= hierarchical id { , hierarchical id }
procedural randomization term ::=

with constraint_set

|5

3 Syntax 100—Procedural randomize statement

4 The rules and semantics of the randomize statement are described in 16.4.6.
522.7.13 exec block

6 Example 277 shows how an exec body can be specified using procedural constructs in PSS.

action A {
rand bool flag;

exec body {
int var;

// send _cmd is an imported function
send cmd (var) ;

8 Example 277—exec block using procedural control flow statements
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122.7.14 Yield Statement

2 The target exec blocks of all actions assigned to a single executor execute in a cooperative manner. The
3yield statement temporarily suspends the currently-running exec block, allowing other exec code running in
4 parallel on the same executor to be executed.

522.7.14.1 Syntax

procedural_stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
...
| procedural yield stmt
| stmt_terminator

procedural yield stmt ::=

yield ;

Syntax 101—Procedural yield statement

8 The following also apply:

9
10

n
12

a)
b)
¢)

The yield statement may only be used in target exec blocks and functions.
If no other exec code is currently being executed in parallel, this statement has no effect.

If other exec code is currently being executed in parallel, code in at least one other exec block will
be executed before the statement after this one executes.

1322.8 Comparison between mapping mechanisms

14 Previous sections describe three mechanisms for mapping PSS entities to external (non-PSS) definitions:
15 functions that directly map to foreign API (see 22.4), functions that map to foreign language procedural code
16 using target code templates (see 22.6), and exec blocks where arbitrary target code templates are in-lined
17 (see 22.5). These mechanisms differ in certain respects and are applicable in different flows and situations.
18 This section summarizes their differences.

19 PSS tests may need to be realized in different ways in different flows:

20

21
22

23

by directly exercising separately-existing environment APIs via procedural linking/binding;

by generating code once for a given model, corresponding to entity types, and using it to execute
scenarios; or

by generating dedicated target code for a given scenario instance.
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1 Table 25 shows how these relate to the mapping constructs.

Table 25—Flows supported for mapping mechanisms

No target code Per-model Per-test target Non-procedural
. target code : ..
generation . code generation binding
generation
Direct-mapped X X X
functions
Target-template X X
functions
Target-template X X
exec-blocks

2 Not all mapping forms can be used for every exec kind. Solving/generation-related code must have direct
3procedural binding since it is executed prior to possible code generation. exec blocks that expand
4 declarations and auxiliary files shall be specified as target-templates since they expand non-procedural code.
5 The run_start exec block is procedural in nature, but involves up-front commitment to the behavior that is
6 expected to run.

7 Table 26 summarizes these rules.

Table 26—exec block kinds supported for mapping mechanisms

Action runtime Non-procedural Global test Solve exec blocks:
behavior exec blocks: exec blocks: init_down, init_up,
exec blocks: header, run_start, pre_solve, post_solve,
body declaration, file run_end pre_body

Direct-mapped X X (only in pre- X
functions generation)
Target-template X X (only in pre-
Sfunctions generation)
Target-template X X X
exec-blocks

8 The possible use of action and struct attributes differs between mapping constructs. Explicitly declared
9 prototypes of functions enable the type-aware exchange of values of all data types. On the other hand, free
10 parameterization of uninterpreted target code provides a way to use attribute values as target-language meta-
11 level parameters, such as types, variables, functions, and even preprocessor constants.

12 Table 27 summarizes the parameter passing rules for the different constructs.

13
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Table 27—Data passing supported for mapping mechanisms

Back assignment to PSS | Passing user-defined and Using PSS attributes in
attributes aggregate data types non-expression positions

Direct-mapped X X
functions
Target-template X
functions
Target-template X
exec-blocks

122.9 Exported actions

2 Imported functions and classes specify functions and classes external to the PSS description that can be
3 called from the PSS description. Exported actions specify actions that can be called from a foreign language.
4 See also Syntax 102.

522.9.1 Syntax

export_action n= export [ platform_qualifier ] action_type_identifier
function_parameter list prototype ;

7 Syntax 102—Export action declaration

8 The export statement for an action specifies the action to export and the parameters of the action to make
9 available to the foreign language, where the parameters of the exported action are associated by name with
10 the action being exported. The export statement also optionally specifies in which phases of test generation
11and execution the exported action will be available.

12 The following also apply:

13 a) As with imported functions (see 22.2.1), the exported action is assumed to always be available if the
14 function availability is not specified.

15 b) Each call into an export action infers an independent tree of actions, components, and resources.

16 ¢) Constraints and resource allocation are considered within the inferred action tree and are not consid-
17 ered across imported function / exported action call chains.

18 22.9.2 Examples

19 Example 278 shows an exported action. In this case, the action comp: :A1l is exported. The foreign
20 language invocation of the exported action supplies the value for the mode field of action A1. The PSS
21 processing tool is responsible for selecting a value for the val field. Note that comp: : A1 is exported to the
22 target, indicating the target code can invoke it.
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component comp {

action Al {
rand bit mode;
rand bit[31:0] val;

constraint {
if (mode!=0) {
val in [0..10];
} else {
val in [10..1007];

package pkg {
// Export Al, providing a mapping to field 'mode’
export target comp::Al (bit mode);

2 Example 278—Export action

322.9.3 Export action foreign language binding

4 An exported action is exposed as a function in the target foreign language (see Example 279). The
5 component namespace is reflected using a language-specific mechanism: C++ namespaces, SystemVerilog
6 packages. Parameters to the exported action are implemented as parameters to the foreign language function.

namespace comp {
void Al (unsigned char mode);

}
8 Example 279—Export action foreign language implementation
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123. Conditional code processing

2 It is often useful to conditionally process portions of a PSS model based on some configuration parameters.
3 This clause details a compile if construct that can be evaluated as part of the elaboration process.

423.1 Overview

5 This section covers general considerations for using compile statements.

623.1.1 Statically-evaluated statements

7 A statically-evaluated statement marks content that may or may not be elaborated. The description within a
8 statically-evaluated statement shall be syntactically correct, but need not be semantically correct when the

9 static scope is disabled for evaluation.

10 A statically-evaluated statement may specify a block of statements. However, this does not introduce a new
11 scope in the resulting description.

12 23.1.2 Elaboration procedure

13 Compile statements are processed top-to-bottom within a given source unit. The following steps are
14 performed in processing source code in the presence of conditional compilation directives:

15 a)  Syntactic code analysis is performed.

16 b) Compile-time expressions are evaluated in order within the following contexts:

17 1) static const initializers

18 2) compile if conditions (see 23.2)

19 These expressions are evaluated based on types and static constants declared:

20 1) Unconditionally, or in an enabled compile if branch, within a previously-processed source unit
21 2) Unconditionally, or in an enabled compile if branch, previously processed within the current
22 source unit

23 ¢) Globally-visible content and the content within enabled compile if branches is elaborated.
2423.1.3 Compile-time expressions

25 The value of any compile if expressions must be determinable at compile time. Because compile if
26 statements are evaluated early in PSS source processing, only types and constants declared in package
27 scopes may be referenced. Types and constants declared in type scopes (e.g., an action type declared within
28 a component type) may not be referenced.

29 The example below highlights the reference rules for conditional compilation directives:
30 a) Conditional compilation directives are evaluated based on previously defined elements.

31 1) Consequently, the first directive (compile has (s)) evaluates true because pl: : s is visi-
32 ble at this point in the evaluation.
33 2) The second directive (compile has (t)) also evaluates true because p2 : : t has been previ-
34 ously declared in the source unit.

35 b) Conditional compilation directives may not reference inner members of types. Consequently,
36 attempting to reference t : : A is an error, since t is a type and A is an inner member of type t.
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package pl {
struct s {
static const int A = 3;
}i
b

package p2 {
import pl::*;

// derived from p2::s defined later in this file
struct t : s { };

// evaluates to true because such a type has been previously defined,
// namely pl::s
compile if (compile has (s)) { .. }

// evaluates to true because such a type has been previously defined,
// namely p2::t (even though its supertype is not yet known)

compile if (compile has (t)) { .. }

// Illegal! Cannot reference a member of a struct in compile-if context
compile if (t::A == 2) { . }

struct s {};

Example 280—Conditional compilation evaluation

323.2 compile if

423.2.1 Scope

s compile if statements may appear in the following scopes:

6
7
8
9
10
1
12

13

Global/package

Action

Component

Struct

Procedural Scopes (Execs8 and Functions)
Constraints

Covergroups

Overrides

8Excluding target-template exec-body blocks
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123.2.2 Syntax

2 Syntax 103 shows the grammar for a compile if statement.

package body compile if = compile if ( constant_expression )
package body compile if item [ else package body compile if item ]

action_body compile_if = compile if ( constant_expression )
action_body compile if item [ else action_body compile if item ]

component_body compile if = compile if ( constant_expression )
component_body compile if item [ else component body compile if item ]

struct_body compile_if = compile if ( constant_expression )
struct_body compile if item [ else struct body compile if item ]

procedural compile if = compile if ( constant_expression )
procedural compile if stmt [ else procedural compile if stmt ]

constraint_body compile_if = compile if ( constant_expression )
constraint body compile if item [ else constraint body compile if item ]

covergroup_body compile if = compile if ( constant_expression )
covergroup_body compile if item [ else covergroup body compile if item ]

override compile if = compile if ( constant_expression )
override compile if stmt [ else override compile if stmt ]

package body compile if item ::= { { package body item } }
action_body compile if item ::= { { action_body item } }
component_body compile if item ::= { { component body item } }
struct_body compile if item ::= { { struct_body item } }
procedural _compile if stmt ::= { { procedural stmt } }
constraint body compile if item ::= { { constraint body item } }
covergroup_body compile if item ::= { { covergroup body item } }

override_compile if stmt::= { { override stmt } }

4 Syntax 103—compile if declaration

5 NOTE—In previous versions of PSS, a compile if branch consisting of a single item, such as a single
6 package_body_item, did not have to be enclosed in curly braces. That syntax has been deprecated.

723.2.3 Examples

8 Example 281 shows an example of conditional processing if PSS were to use C pre-processor directives. If
9the PROTOCOL VER 1 2 directive is defined, then action new flow is evaluated. Otherwise, action
100ld_ flow is processed.

11 NOTE—Example 281 is only shown here to illustrate the functionality of C pre-processor directives in a familiar for-
12 mat. It is not part of PSS.
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#ifdef PROTOCOL VER 1 2

action new flow {
activity { ... }

}

#else

action old flow {
activity { ... }

}

#endif

2 Example 281—Conditional processing (C pre-processor)

3 Example 282 shows a PSS version of Example 281 using a compile if statement instead.

package config pkg {
const bool PROTOCOL VER 1 2 = false;
}
compile if (config pkg::PROTOCOL VER 1 2) {
action new flow {
activity { ... }
}
} else {
action old flow {
activity { ... }
}

5 Example 282—Conditional processing (compile if)

6 When the frue case is triggered, the code in Example 282 is equivalent to:
7

8 action new flow {

9 activity { ... }

10 }

11 When the false case is triggered, the code in Example 282 is equivalent to:
12

13 action old flow {

14 activity { ... }

15 }

1623.3 compile has

17 compile has allows conditional elaboration to reason about the existence of types and constants. The
18 compile has expression evaluates to frue if a type or constant has been previously declared unconditionally
19 or within an enabled conditional block (see 23.1.2); otherwise, it evaluates to false.

2023.3.1 Syntax

21 Syntax 104 shows the grammar for a compile has expression.
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compile has expr ::= compile has ( static_ref path)

static_ref path ::=[ ::] { type_identifier elem :: } member path elem

2 Syntax 104—compile has expression

323.3.2 Examples

4 Example 283 checks whether the config pkg: :PROTOCOL VER 1 2 field exists and tests its value if
5it does. In this example, o1d flow will be used because config pkg::PROTOCOL VER 1 2 does
6 not exist.

package config pkg {
}

compile if (compile has(config pkg::PROTOCOL VER 1 2) &&
config pkg::PROTOCOL VER 1 2) {
action new flow {

activity { ... }
}
} else {
action old flow {
activity { ... }
t
}
8 Example 283—compile has

9 Example 284 is composed of a single source unit.

10— The first top-level compile if block checks for the existence of X. This evaluates to false, since X is
1 only subsequently declared within the source unit.

12— The second top-level compile if block checks for the non-existence of Y. This evaluates to true, since
13 Y was not previously declared (the first compile if block was not expanded). As a consequence, Y is
14 declared with a value of 0.

15

compile if (compile has (X)) {
const int Y = 2;
compile if (compile has(Y)) {
const int Z;
}
}

const int X = 1;

compile if (! (compile has(Y))) {
const int Y=0;

} else {

compile if (compile has(Z)) {
const int A;

}

16 Example 284—Nested conditions
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123.4 compile assert

2 compile assert assists in flagging errors when the source is incorrectly configured. This construct is
3 evaluated during elaboration. A tool shall report a failure if constant _expression does not evaluate to true,

4 and report the user-provided message, if specified.

523.4.1 Syntax

6 Syntax 105 shows the grammar for a compile assert statement.

compile assert stmt ::= compile assert ( constant expression [, string_ literal ] ) ;

Syntax 105—compile assert statement

923.4.2 Examples

10 Example 285 shows a compile assert example.

n

12

13

compile if (compile has (FIELD2)) {
static const FIELD1l = 1;
}

compile if (compile has (FIELD1l)) {
static const FIELD2 = 2;
}
compile assert (compile has (FIELD1l), "FIELDl1 not found");

Example 285—compile assert
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124. PSS core library

2 The PSS core library provides standard portable functionality and utilities for common PSS applications. It
3 defines a set of component types, data types, functions, and attributes. The interface of the core library is
4 specified in PSS-language terms, and its use conforms to the rules of the language. However, the full
s semantics of its entities involve reference to type information, solving, scheduling, and runtime services.
6 Hence, the implementation of the core library depends on inner workings of PSS processing tools and is
7 expected to be coupled with them.

8 The core library currently covers functionality in the following areas:

9 — String formatting and output operations

10 — File operations

11—  Error reporting

12— Randomization

13— Manipulation and storage of floating-point values

14— Representation of execution contexts in the target environment
15—  Assignments of actions and flow/resource objects to execution contexts
16— Representation of target address spaces

17— Allocation from and management of target address spaces
18—  Access to target address spaces

19 — Representation of and access to registers

20 The core library functionality is defined in three packages:

21— std_pkg, covering string formatting, file operations, error reporting, randomization, and core data
22 types

23 — executor_pkg, covering representation of execution contexts and assignment of actions and
24 flow/resource objects to execution contexts

25 — addr_reg_pkg, covering representation of address spaces and access to memory, and representa-
26 tion and access to registers

27 This section covers the interface, semantics, and intended use of core library entities in the areas listed
28 above. Note that it defines a library interface, not new language constructs. The code for the built-in library
29 package contents appears in Annex C.

30In the following sections, library code definitions may omit reiterating the surrounding package, and
31example code may omit importing core library packages for brevity.

32 24.1 String formatting and output

33 The PSS core library provides means for string formatting and output operations. The built-in package
34 std_pkg defines functions and types for these purposes, as well as for file operations and error reporting,
35 introduced in the next two sections of this document.

36 On solve platforms, a complete set of input/output and file operations is provided, similar to other
37 programming languages. Functions are defined for string formatting, printing, and reading from and writing
38 to text files.

39 On target platforms, a limited portable messaging capability is provided, because some target environments
40 may not have a file system or access to string manipulation libraries such as in C.
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124.1.1 String formatting

2 Several output functions involve a string formatting capability. They are based on an approach similar to C
3 printf()-style string formatting. Each of these functions gets a format string parameter format_str of
4type string, followed by a generic varargs parameter args.

5 The format string is used as a template, where all characters are taken literally except when the character %
6 appears. A % followed by another % denotes a single literal $. Otherwise, a % starts a format specifier.

7 A format specifier determines how data passed in each subsequent function parameter (passed as varargs)
8 should be embedded in the resulting string. It consists of the following optional parts followed by a

9 formatting character:

10

Il % [ flags] [width] [ .precision] format

12 The optional flags, if specified, denote the following:

13

- Left justification (default is right justification)

Force a sign (+ or -) to precede numeric values.
By default, positive numbers are not preceded with +.

If a numeric value is not preceded by a sign,

space it is preceded by a space.

For o, %, X, b or B format characters, the value is preceded with
0, 0x, 0X, Ob or OB, respectively, for values different from zero.
For floating-point formats, force a decimal point even if no more
digits follow the decimal point.

When left padding is used, pad a numeric value with zeros instead
of spaces.

14 The optional width, if specified, denotes the minimum number of characters to insert into the formatted
15 string. The inserted value is not truncated if larger than the specified width. width is typically used to pad
16 fixed-width fields in tabulated output.

17 The optional precision, if specified, denotes the following:

18—  For integer formats (including p), specifies the minimum number of digits to be inserted into the for-
19 matted string. If needed, the result is padded with leading zeros. The value is not truncated even if
20 the result is longer. A precision of 0 means that no character is inserted for the value 0.

21— For floating-point formats e, E, and £, specifies the number of digits to be inserted affer the decimal
22 point. By default, this is 6.

23— For floating-point formats g and G, specifies the maximum number of significant digits to be
24 inserted.

25 — For s and n formats, specifies the maximum number of characters to be inserted. By default, all
26 characters in the string, the enumeration item name, or the boolean name are used. Truncation, if
27 needed, is from the right.

28 If precision is empty (the period is specified without an explicit value for precision), O is assumed.
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1 The formatting character determines the expected data type of the corresponding function parameter and
2 how it is formatted, as follows:

d A signed integer in decimal radix.
u An unsigned integer in decimal radix.
An unsigned integer in hexadecimal radix.
x,X
x uses lowercase letters and X uses uppercase.
o An unsigned integer in octal radix.
b.B An unsigned integer in binary radix.
! If # flag is specified, b uses lowercase Ob and B uses uppercase 0B.
£ A floating-point value in decimal form. For example, 123.4567 .
A floating-point value in scientific form. For example, 1. 234567e+02.
e,E
e uses lowercase e for the exponent and E uses uppercase E .
G A floating-point value in the shortest form, decimal or scientific.
g If scientific form, g corresponds to €, and G corresponds to E..
n An enumeration item value in the form of its name, or a Boolean value in the form of
“false”or“true”.
s A string.
p A chandle as a pointer value in hexadecimal form, including the preceding 0x

(similar to $#x for integer numbers)

4 The following also apply:

w1

a)  Ifthe format string contains % followed neither by another % nor by a valid format specifier, an error
6 shall be generated.

7 b) The number of format specifiers in the format string shall be equal to the number of parameters in

8 the varargs. Otherwise, an error shall be generated.

9 ¢) Each format specifier in the format string shall match the type of the corresponding parameter in the
10 varargs. Implicit type conversions shall be allowed. For example: if %$d is used for a parameter of an
1 unsigned type, the value is converted to signed type before being formatted; if $£ is used for a
12 parameter of an integer type, the value is converted to floating-point before being formatted; if $d is
13 used for a parameter of a floating-point type, the value is converted to an integer before being for-
14 matted. There is one exception to this rule: unsigned integer formats (%u, $x, $X, $0, $b, $B) shall
15 not be allowed for floating-point values because there is no well-defined conversion from a negative
16 floating-point value to a positive integer without a specific width. If the type does not match and an
17 implicit type conversion is not applicable, an error shall be generated.

18 24.1.2 Solve-time string formatting and output

19 The functions format () and print () are used on the solve platform to facilitate the string formatting
20 functionality. The function format () returns a formatted string. The function print() outputs a
21 formatted string to the standard output and can be used to display and log certain information.
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package std pkg {
solve pure function string format (string format str, type... args);
solve function void print(string format str, type... args);

2 Syntax 106—String formatting and output functions

3 Example 286 demonstrates how native functions can be used to print or to return a formatted string of the
4 context of a given struct instance.

import std pkg::*;
struct my struct {
int value;
string name;
}
solve function void print foo(my struct s) {
print ("The context of the struct is:\n");
print ("value = $d\nname = '%$s'\n", s.value, s.name);
}
solve function string get foo context string(my struct s) {
return format ("value = %d\nname = '%s'\n", s.value, s.name);

}
6 Example 286—Printing or formatting the context of a struct

724.1.3 Runtime messaging

8 The function message () is used to log certain information during the execution of a test in a portable way.
9 It inserts a text line, including a trailing newline (‘\n’), into the execution log on the target platform.

10

package std pkg {
enum message verbosity e {NONE, LOW, MEDIUM, HIGH, FULL};
target function void message
(message verbosity e vrb level, string format str, type... args);

11 Syntax 107—Runtime messaging function

12 The PSS processing tool shall provide means for specifying a messaging verbosity level for a given test run.
13 For a higher test run verbosity level, more messages will be issued and more information will be provided.

14 The parameter vrb_level denotes the verbosity level of a particular message, and determines the
15 minimum test run verbosity level for which the message should be issued. Messages with verbosity higher
16 than the test run verbosity level shall be ignored.

17 For example, a message of verbosity level NONE is considered non-verbose; it is typically a critical message
18 which shall always be issued regardless of the verbosity level of the run. A message of verbosity level LOW
19 shall not be issued in a run whose verbosity level is NONE, but shall be issued in all other cases, because it is
20 typically an important, though not critical, message. A message of verbosity level FULL is considered very
21verbose, and it shall only be issued in a run whose verbosity level is FULL; it is typically a least important
22 message which may provide some additional details or information which is not essential in most runs.
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1The parameter vrb_level shall be an expression whose value is known at solve time, i.e., an expression
2 whose value is unchanged in target contexts. Implementations may leverage this fact to optimize generated
3 test code based on verbosity settings.

4 The parameter format_str shall be a string expression whose value is known at solve time. If any
5 subsequent args data parameters are strings (as opposed to numbers), their values must also be known at
6 solve time. In particular, string variables that are assigned in target contexts are not allowed. This is to
7 enable implementations to determine on the solve platform the target memory requirements for the string
8 formatting operation.

9 If expressions with side effects, such as non-pure function calls, are passed as parameters to message (),
10 their evaluation is not guaranteed, because the verbosity level of a particular test run may determine whether
11 or not they are evaluated. Therefore, users should avoid such expressions as parameters to message () .

12 Example 287 demonstrates the usage of message () in an exec body block. There are two messages: the
13 first message of verbosity level FULL, and the second message of verbosity level LOW. In test runs whose
14 verbosity level is NONE, no message is issued. In runs whose verbosity level is at least LOW but lower than
15 FULL, only the second message is issued. In runs with verbosity level FULL, both messages are issued.

16

import std pkg::*;
component C {
target function int my func() {..}
action A {
rand int x;
exec body {
y = my func();
message (FULL, "The values of the variables x and y are: ");
message (LOW, "%d, %d", x, Vy);

17 Example 287—Runtime messages

18 24.2 File operations

19 The PSS core library provides two flavors of text input/output operations on solve platform files. Files can
20 be opened separately to obtain a file handle, which can then be used when calling write and read functions.
21 Alternatively, write and read can be performed with a single function call that also opens and closes the file.

22 File read and write operations in both flavors use string values.

23 Syntax 108 specifies types and functions used for file operations that use file handles.
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package std pkg {
typedef chandle file handle t;

static const file handle t nullfilehandle = /* implementation-specific */;
enum file option e {TRUNCATE, APPEND, READ};

solve function file handle t file open(string filename, file option e
opt) ;

solve function void file close(file handle t file handle);
solve function bool file exists(string filename);

solve function void file write

(file handle t file handle, string format str, type... args);
solve function string file read(file handle t file handle, int size = -1);
}
2 Syntax 108—Text file operations using file handles

3The type file handle_t isused to represent a text file that is open for the purpose of reading or writing.
4 A file handle is obtained by calling function file_open ().

5 Values of the enumeration type £ile_option_e represent the purpose of the file, as follows:

6 — TRUNCATE Delete any existing content of the file and allow write operations.
7 — APPEND Allow write operations; text will be appended to the existing file content.
8§ — READ Allow read operations.

9 The function £ile open () returns a file handle to the file whose name is specified by £ilename. If the
10 file fails to open in the mode specified by opt, the special value nullfilehandle is returned.

1The function file close () closes the file represented by £ile handle, which must have been
12 previously opened and not closed. Once a file has been closed, the handle can no longer be used for reading
13 or writing.

14 The function £ile_exists () returns true if a file with the specified filename exists in the file system,
15 otherwise returns false.

16 The function £ile_write () writes a formatted string to a file represented by £ile_handle, which
17 must have been opened with the TRUNCATE or APPEND option. A newline is not added at the end.

18 The function £ile read() reads at most size number of characters from a file represented by
19 file handle, and returns a string containing those characters. It starts reading the characters from the
20 beginning of the file (if it is the first call after opening the file), or from the first position not read by a
21previous £ile read () invocation. If size is negative (or not specified), the content of the file is read till
22 the end. The file must have been opened with the READ option.

23 The functions £file write (), file read(), and file_close () shall trigger an appropriate error
24 if the operation cannot be performed.

25 Syntax 109 specifies functions used for file reading and writing in a single function call.
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package std pkg {
solve function void file write lines
(string filename, list<string> lines, file option e opt):;

solve function list<string> file read lines(string filename);

2 Syntax 109—Simple text file operations

3 The function file write_ lines () writes all strings in 1ines to the file whose name is specified by
4 filename. A newline character is inserted at the end of each string. opt must be either TRUNCATE or
s APPEND. If APPEND is used, a newline character is also inserted at the end of the existing file content,
6 unless the last character in it is already a newline character.

7 The function file_read lines () reads the entire file whose name is specified by £ilename, and
g returns a list of strings representing the text in the file. A string is terminated when a newline character in the
9 file is reached. The newline characters themselves are not included in the strings.

10 Both functions trigger an appropriate error if the operation cannot be performed.

1In principle, the string passed as the filename parameter to functions file open(),
12file_exists(),file_write_lines(),and file read lines () can include a directory path.
13 PSS processing tools may provide specific ways of mapping a physical file in the file system to a given
14 filename string. For example, a tool may use an environment variable to provide one or more search
15 paths for files (similar to a PATH environment variable used in many operating systems to search for
16 executable files).

17 Example 288 shows two functions that write the content of a given struct list into a text file in a certain
18 arbitrary format. Both functions achieve the same result, but the first function uses a file handle, and the
19 second function uses file write lines () directly.
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import std pkg::*;
struct my struct {

int value;

string name;
}
solve function void write my struct list using file handle

(string file name, list<my struct> s list)

{

file handle t f = file open(file name, TRUNCATE) ;

foreach (s: s _list) {

file write(f, "%d %s\n", s.value, s.name);

}

file close (f);
}
solve function void write my struct list using string list

(string file name, list<my struct> s list)

{

list<string> lines;

foreach (s: s list) {

lines.push back(format ("%d %s", s.value, s.name));
}
file write lines(file name, lines, TRUNCATE) ;

2 Example 288—File operations

324.3 Error reporting

4 The functions error () and fatal () are used to report an error during a test and/or to abort the rest of
s the run in a portable way. They are similarly used for the solving process.

6
package std pkg {
function void error(string format str, type... args);
function void fatal (int status, string format str, type... args);
}
7 Syntax 110—Error reporting functions

8 Both error () and fatal () insert the specified formatted text into the solving or execution log, with a
9 trailing newline character.

10 The parameter format_str shall be a string expression whose value is known at solve time. If there are
11 strings (as opposed to numbers) among the subsequent args data parameters, they must also be known at
12 solve time. In other words, when used in target contexts, the string values of those parameters must be
13 constant at run time.

14 The function £atal () shall terminate the solving or execution flow at the nearest possible point. The value
15 of the parameter status is returned to the calling environment.

16 The function error () may terminate the solving or execution flow, or it may not, depending on tool/
17 session-specific criteria.

18 Example 289 demonstrates reporting of a run-time error under a particular condition.
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component C {
function int get some id();
action A {
exec body {
int id = comp.get some id();
if (id > 1000) {
error ("Id is too large: %d", id);

2 Example 289—Error reporting

324.4 Randomization

4 Randomization functions are contained within the std_pkg package.

package std pkg {
function bit[32] urandom() ;
function bit[32] urandom range(bit[32] min, bit[32] max);

6 Syntax 111—Randomization functions

724.4.1 urandom()
8 The urandom () function returns an unsigned 32-bit integer.
924.4.2 urandom_range(min, max)

10 The urandom_range () function returns an unsigned 32-bit integer between the specified minimum and
11 maximum values.

1224.5 Floating-point

13 PSS defines a set of functions for manipulating floating-point values and representing various storage
14 formats of floating-point numbers. These functions and data types are defined in the std_pkg package.

15 24.5.1 Floating-point storage types

16

struct float base s <int Wm, int We, endianness e E=LITTLE ENDIAN>
packed s<E> {
rand bit[Wm] mantissa;
rand bit[We] exponent;
rand bit sign;

typedef float base s<23, 8> float32 s;
typedef float base s<52,11> float64 s;

17 Syntax 112—Floating-point storage types
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1The PSS core library defines a struct, £loat_base_s, to represent the in-memory layout of floating-
2 point numbers. Specific specializations of this templated type are used to capture specific storage layouts.
3The £loat_base_s struct inherits from the packed_s struct type, which is described in 24.10. Storage
4 formats for the two built-in computation types are defined as part of the core library package.

524.5.2 Floating-point computation functions

6 The PSS core library defines the following floating-point computation functions. All functions return
7float64 as a result, and accept parameters of type float64. Their behavior shall match the equivalent C
8 language standard math library function with the same name, since float64 is equivalent to the double type

9in C. Function prototypes may be found in Annex C.

10 Floating-point functions may not be used in constraints.

Table 28—Floating-point computation functions

Function Description
log (x) Natural logarithm
logl0 (x) Decimal logarithm
exp (x) Exponential
sgrt (x) Square root
pow (x,y) x
round (x) Round to nearest value
floor (x) Floor
ceil (x) Ceiling
sin(x) Sine
cos (x) Cosine
tan (x) Tangent
asin (x) Arc-sine
acos (x) Arc-cosine
atan (x) Arc-tangent
atan2 (y,x) | Arc-tangent of y/x
hypot (x,y) | sqrt(x*x+y*y)
sinh (x) Hyperbolic sine
cosh (x) Hyperbolic cosine
tanh (x) Hyperbolic tangent
asinh (x) Arc-hyperbolic sine
acosh (x) Arc-hyperbolic cosine
atanh (x) Arc-hyperbolic tangent
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124.5.3 Computation-type field extraction and composition

2 Floating-point computation and storage data types both have a sign, exponent, and mantissa component.
3 Floating-point types differ in the width of the exponent and mantissa components. PSS defines functions for
4 accessing the various components of computation types, and functions for forming a computation-type value
5 from floating-point component parts.

pure function bit[52] float mantissa(float6d fv);

7 Syntax 113—float_mantissa function

8 The £loat _mantissa () function extracts the mantissa bit image from the specified float64 value as is
9 with no conversion.

10

pure function bit[11] float exponent (float6d fv);

11 Syntax 114—float_exponent function

12The £loat_exponent () function extracts the exponent bit image from the specified float64 value as is
13 with no conversion.

14

pure function bit float sign(float64 fv);

15 Syntax 115—float_sign function

16 The £loat_sign () function extracts the sign bit of the specified float64 value.

7

pure function float64 to float (bit[52] mantissa, bit[11l] exp, bit sign);

18 Syntax 116—to_float function

19 The to_float () function composes a floaté4 value from the specified sign, exponent, and mantissa
20 component bit images.
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typedef float base s<7,8> bfloatl6_s;

struct S {
exec post solve {
floated f1 = 20.25;
bfloatl6 s f2;
float6d £3;
f2.sign = float sign(fl);

// Unbias from 1l-bit exponent, and bias for 8-bit
f2.exponent = float exponent (fl) - (2**(11-1)-1) + (2**(8-1)-1);

// Use the leftmost bits, so we lose some precision
// but preserve the correct value.
f2.mantissa = float mantissa (fl) >> (52-7);

f3 = to float(
f2.mantissa << (52-7),
f2.exponent - (2**(8-1)-1) + (2**(11-1)-1),
f2.sign);

2 Example 290—Conversion to and from storage type

3 Example 290 above shows conversion of the floating-point value 20.25 held in a float64 variable to a
4bfloatl6_s floating-point storage data type. The bfloat16 s storage type has an exponent of 8 bits
s and a mantissa of 7 bits, while the float64 variable has an exponent of 11 bits and a mantissa of 52 bits.

6 In this example, the exponent part is stored in the storage type in biased form. To achieve this, it is first
7unbiased from the original bit image representation of 11 bits (by subtracting 2'"-1.1) and then biased for 8
8 bits (by adding 28-1.1). For the mantissa part, the 7 left-most bits are used, which is achieved by left-shifting
9 by 52-7 bits.

10 Finally, the components of the bfloatl6 s type are converted back to a floaté4 value using the
1nto_£float () function.

1224.6 Executors

13 A PSS generated test calls foreign functions available in the target environment, executes target-language
14 code blocks, and performs target operations provided in the core-library. It does so in accordance with the
15 user-defined realization of actions and of flow/resource objects specified in the form of target exec blocks—
16 body, run_start, and run_end—and functions called from them. Foreign function calls, target-language
17 code blocks, and built-in target operations, all need to be performed under a certain agent of execution
18 available to the test in the runtime environment, or in short, an executor.

19 An executor is an abstract notion that may correspond to different kinds of entities in different
20 environments. For example:

21— An embedded processor core or HW thread in a bare-metal environment that executes code gener-
22 ated by the PSS tool

23— A BFM instantiated as a master on an interconnect of the DUT that exposes transactional APIs to the
24 PSS tool
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1 — A transactor, or testbench agent, connected to an I/O interface of the system that exposes transac-
2 tional APIs, or higher-level stimulus sequences, to the PSS tool

3 The PSS core library provides means to represent executors in the PSS description and to assign scenario
4 entities to them. Executors are characterized by user-defined properties called #raits, which serve to control
s the assignment of actions/objects to them. For example, the cluster of a CPU core could be represented as a
6 trait attribute. Related executors are grouped together so that scenario entities can be assigned to a random
7 instance out of a group. The selection of executors satisfies constraints on their trait attributes, if any are
8 specified.

9In addition, executors can be used to customize the implementation of target functions for specific
10 environments. Actions assigned to different executors can thereby employ different mappings of portable
11 operations.

12 The PSS built-in package executor_pkg defines types and functions related to the management of
13 executors. In subsequent sections, except Syntax 117, the enclosing executor_pkg is omitted for brevity.
14 Examples may also omit import of executor_pkg.

15 24.6.1 Executor representation

16 An executor is an execution agent or context available to the test in the runtime environment. Executors are
17 represented using a core-library component type instantiated in the PSS description. Actions and flow/
18 resource objects may subsequently be assigned to these executors. This assignment is controlled through an
19 executor claim struct (see 24.6.2).

20 Representing executors in a PSS description is optional. In the absence of executor instances, PSS tools are
21free to determine the execution context of entities based on other considerations, such as global defaults or
22 policies.

2324.6.1.1 Executor component type
24 An executor is represented using the template component executor_c, or a subtype of it. The template

25 parameter is used to tag the executor and possibly to provide additional selection attributes. Template
26 executor_cis derived from executor_base_c.

27
package executor pkg {

struct executor trait s ({};

struct empty executor trait s : executor trait s {};

component executor base c {};

component executor c

<struct TRAIT : executor trait s = empty executor trait s>
executor base c {
TRAIT trait;

i

28 Syntax 117—Executor component

29 An executor component is strictly a test-realization artifact. It shall be an error to declare in its scope
30 scenario model elements, namely: action types, pool instances, and pool binding directives.
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124.6.1.2 Executor group component type

2 Component executor_group_c is used to group one or more executors that serve similar purposes.
3 Actions and flow/resource objects that claim an executor are assigned to an executor selected out of one
4 specific group (see more on matching rules in 24.6.2.2).

component executor group cC
<struct TRAIT : executor trait s = empty executor trait s> {
solve function void add executor (ref executor c<TRAIT> exe);

bi
6 Syntax 118—Executor group component

7 An executor group component is strictly a test-realization artifact. It shall be an error to declare in its scope
g scenario model elements, namely: action types, pool instances, and pool binding directives.

924.6.1.2.1 add_executor function

10 Instance function add_executor (see Syntax 118) of executor_group_c is used to populate the
11 group with executor instances. Executors added to a group must all match with the group’s trait struct type.
12 The add_executor function may only be called in exec init_down and init_up blocks.

13 The following also apply:

14 a) Any executor can be added to a given group, regardless of where it is instantiated in the component
15 instance tree. This includes executors instantiated above the group, below it, or in a different sub-
16 tree.

17 b)  An executor instance may not be added more than once to the same group.

18 ¢) Anexecutor instance may be added to more than one group.

19 d) An executor does not have to be added to any group. An executor that is not part of any group would
20 be inactive—no exec blocks would ever be assigned to it.

21Example 291 demonstrates how executors are defined, instantiated, and added to an executor group. The
22 executor group my hybrid group c is populated with two different executor types. These two types
23 may vary in properties, but are both derived from the instantiation of template executor_c with the struct
24type master trait s. The executors in this group are treated symmetrically when assigning actions to
25 them.

Copyright © 2024 Accellera. All rights reserved.
390



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

struct master trait s : executor trait s ({};
component my core_executor_c : executor_ c<master_ trait s> { ... };
component my bus vip executor c : executor c<master trait s> { ... };

component my hybrid group c : executor group c<master trait s> {
my core executor c cores[4];
my bus vip executor ¢ bfms[2];

exec init down ({
foreach (c: cores) {
add_executor(c);
}
foreach (b: bfms) {
add executor (b) ;

2 Example 291—Defining an executor group

324.6.2 Executor assignment

4 An action or a flow/resource object can declare its claim for an executor by instantiating a claim struct. Each
5 claim instance is statically matched to an executor group that is nearest in the component instance tree and
6 parameterized by the same trait struct type. The entity is assigned to an executor out of the matching group,
7 which satisfies the trait constraints.

8 It is not required that scenario entities be explicitly assigned to an executor even if they contain target exec
9blocks. In the absence of explicit assignments, PSS tools are free to determine the execution context of
10 entities based on other considerations, such as global defaults or policies.

11 Executors do not generally limit concurrency of PSS behaviors in a test scenario. In cases where
12 concurrently scheduled actions are assigned to the same underlying executor, the PSS tool is responsible for
13 employing the means to enable concurrent execution, such as preemptive or cooperative multitasking.

14 24.6.2.1 Executor claim struct type

15 An action or a flow/resource object can control its assignment to an executor by declaring an executor claim
16 —an attribute of template struct type executor _claim_s. An executor claim can be a direct field of the
17 entity, a field of any of its nested structs, or in the case of flow/resource objects, the supertype from which
18 the object is derived. In all these cases, the assignment to an executor applies in the same way.

19 An action or a flow/resource object may be assigned to no more than one executor. Therefore, there can only
20 be one executor claim struct anywhere under a given action or object. Multiple executor claim structs within
21the same action or object shall be flagged as an error. Note that the assignment of executors per an executor
22 claim is not exclusive, and is generally unrelated to the relative scheduling of actions.

Copyright © 2024 Accellera. All rights reserved.
391



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

struct executor claim s
<struct TRAIT : executor trait s = empty executor trait s> {
rand TRAIT trait;
i
2 Syntax 119—Executor claim struct

3 Example 292 demonstrates the use of the executor_claim_s struct. In this case, action A declares an
4 executor claim. A’s executor claim is matched with executor group eg that is instantiated directly under its
5 context component C, as both are parameterized with the same (default) trait type. Consequently, action A
61is necessarily assigned to the executor e instantiated under its context component. Component C is
7 instantiated twice under pss_top. Under the entry action test, action A is invoked three times. The
8 generated test will call the function do_something () twice under the execution context associated with
9 executor c1.e, and subsequently once under the execution context associated with executor c2 . e.

10

component C {
executor c<> e;
executor group c<> eg;
exec init down {
eg.add executor (e);

action A {
rand executor claim s<> ec;
exec body C = """
do_something () ;
bi
}i

component pss top {
C cl,c2;

action test {
C::A al, a2, a3;
activity {

parallel {
al with { comp == this.comp.cl; };
a2 with { comp == this.comp.cl; };
a3 with { comp == this.comp.c2; };

}

}
}i
b
11 Example 292—Simple executor assignment

1224.6.2.2 Rules for matching an executor claim with an executor group

13 An executor claim is matched with an executor group for the purpose of selecting an executor. The matching
14 is based on the static structure of the model. A claim is resolved to an executor group that:

15 a) is parameterized by the same trait type as the claim;

16 b) is instantiated in a containing component of the declaring scenario entity (the context component
17 hierarchy of an action or the container component of a flow/resource object pool);

Copyright © 2024 Accellera. All rights reserved.
392



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1 ¢) and is nearest in the component hierarchy going up from the context component to the root compo-
2 nent.

3 It shall be an error if no executor group matches a claim per the above rules. Similarly, it shall be an error if
4 more than one executor group in the component context identified in b) matches a claim.

5 Note that given the above rules, instantiating a group within a group would be pointless, as no executor
6 claim could match the inner group.

724.6.2.3 Claim trait semantics

8 The trait type of an executor claim must be the same as that of the executor selected for the declaring entity.
9 In addition, the trait attribute values of the executor claim instance must be equal to the values of the
10 corresponding attributes of the executor trait. Hence, the selected executor shall satisfy the claim trait
11 constraints.

12 Example 293 demonstrates the use of the executor trait struct for the selection of executors. In this example,
13 executors in group my embedded cores group c, representing eight CPU cores, are classified into
14two clusters, each consisting of four cores. Action my ip c::op claims an executor. It constrains the
15selection of the executor, relating the executor cluster ID to other attributes. Action
16ops_on_ two clusters executes two op actions, one on each cluster. Note that the one assigned to
17 cluster O will have its input buffer mem kind not equal to DDR, due to the constraint in action op.
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struct my core trait s : executor trait s {
rand int in [0..1] cluster id;

}i

component my embedded cores group c : executor group c<my core trait s> {
executor c<my core trait s> cores[8];
exec init down {
foreach (c: cores[i]) {
c.trait.cluster_id = i/4;
add_executor (c);

}s

component my ip c {
action op {
input data buff in buff;
rand executor claim s<my core trait s> core;
constraint in buff.mem kind == DDR -> core.trait.cluster id != 0;
}s
}i

component pss top {
my embedded cores group c embedded core group;

my ip ¢ my ip;

action ops on two clusters {
activity {
do my ip c::op with { core.trait.cluster id == 0; };
do my ip c::op with { core.trait.cluster id == 1; };

}s
|

Example 293—Definition and use of executor trait
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124.6.2.4 Executor resources

2 In some cases, the assignment of certain actions to executors needs to be exclusive, ruling out the handling
3 of concurrent actions by the same execution agent. Resource claims and resource pools express such rules at
4 the scenario model level, guaranteeing that random schedules satisfy the resource consistency of executors.
sIn these cases, the executor assigned to actions needs to be in strict correspondence with the resource

6 instance claimed by them.

7 A resource object that is derived from template struct executor _claim_s is considered a claim not just
8 for the purpose of its own executor assignment, but also for that of the actions that claim it as a resource in
9 either lock or share mode. In other words, from the executor assignment point of view, a reference to a
10 resource object derived from struct executor_claim_s functions like an executor claim of the action

11 itself.

12In Example 294, resource object my core r represents a processor core at the scenario model level.
13 Action my ip c::opl needs to be assigned a core exclusively for its duration, and therefore locks a
14 resource instance. Actionmy ip c::op2 does not require exclusive use of a core, and therefore claims a
15 resource instance in share mode. Action test executes a random selection of op1 and op2, which need to
16 be scheduled consistently across the different cores.
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struct my core trait s : executor trait s {
rand int in [0..7] core id;

}i

resource my core r : executor claim s<my core trait s> {
constraint trait.core id == instance_ id;

)7

component my cores group C : executor group c<my core trait s> {
executor c<my core trait s> cores([8];
exec init down {
foreach (c: cores[i]) {
c.trait.core id = 1i;
add executor (c);

}i

component my ip c {
action opl {
lock my core r core;
exec body {
my ip blocking op();

}i

action op2 {
share my core r core;
exec body {
while (!my ip op2 done()) { yield(); }

}i
)7

component pss_top {
my cores_group_C core group;
pool [8] my core r core pool;
bind core pool *;

my ip ¢ my ip;

action test {
activity {
schedule {
replicate (10) {
select {
do my ip c::opl;
do my ip c::o0p2;

}7

Example 294—Use of resource objects as executor claims
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124.6.2.5 Executor query function

2 The function executor () returns a reference to the executor instance currently operative. When called
3 during the evaluation of exec blocks of an action or flow/resource object or of any function invoked by
4them, it returns the executor instance assigned to that entity. The function executor () can be used,
5 among other purposes, to delegate generic target functions to an executor-specific implementation.

function ref executor base c executor();

7 Syntax 120—Executor query function

8 Note that the reference returned from executor () for actions assigned to different executors would be
9 different, even if these actions are executing concurrently. The returned value shall be null if the evaluating
10 entity is not assigned to any executor. Since assignment to executors is only resolved as part of the solve
11 process, calling executor () in pre_solve exec blocks shall always return null.

12In Example 295, a call to the global function my target op () is delegated to the instance function
13my_ target op impl () of the currently operative executor, through a call to executor () . Function
1amy target op_ impl () is declared in component executor_base_c and implemented differently
15in two executor subtypes. Consequently, the call to my target op () in the exec body of action
16 call op will be implemented differently based on the executor assignment of call op.
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function void my target op(int param) {

if (executor () != null ) {
executor () .my target op impl (param);
} else {

// default implementation

extend component executor base c {
function void my target op impl (int param);

i

component A executor c : executor c<> {
function void my target op impl (int param) {
// implementation for execution agent of type A
}
bi

component B executor c : executor c<> {
function void my target op impl (int param) {
// implementation for execution agent of type B
}
}i

component pss_top {
executor group c<> exe g;
A executor c a_exe;
B executor c b exe;

exec init down ({
exe g.add executor (a_exe);
exe g.add executor (b _exe);

action call op {
rand executor claim s<> my exe;
exec body {
my target op(10);

2 Example 295—Function delegation to executor

324.7 Address spaces

4 The address space concept is introduced to model memory and other types of storage in a system. An
saddress space is a space of storage atoms accessible using unique addresses. System memory, external
6 storage, internal SRAM, routing tables, memory mapped 1/O, etc., are entities that can be modeled with
7 address spaces in PSS.

8 An address space is composed of regions. Regions are characterized by user-defined properties called traits.
9 For example, a trait could be the type of system memory of an SoC, which could be DRAM or SRAM.
10 Address claims can be made by scenario entities (actions/objects) on an address space with optional
11 constraints on user-defined properties. An address space handle is an opaque representation of an address
12 within an address space.
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1 Standard operations are provided to read data from and write data to a byte-addressable address space.
2 Registers and register groups are allocated within an address space and use address space regions and
3 handles to read and write register values. Data layout for packed PSS structs is defined for byte-addressable
4 address spaces.

5 The PSS built-in package addr_reg_pkg defines types and functions for registers, address spaces,
6 address allocation and operations on address spaces. In subsequent sections, except Syntax 121, the
7enclosing addr_reg_pkg is omitted for brevity. Examples may also omit import of addr_reg pkg and
8 std_pkg.

924.7.1 Address space categories

1024.7.1.1 Base address space type

11 An address space is a set of storage atoms accessible using unique addresses. Actions/objects may allocate
12 one or more atoms for their exclusive use.

13 Address spaces are declared as components. addr _space_base_c is the base type for all other address
14 space types. This component cannot be instantiated directly. The definition of addr_space_base_c is

15 shown in Syntax 121.

16

package addr reg pkg {
component addr space base c {};

17 Syntax 121—Generic address space component

18 24.7.1.2 Contiguous address spaces

19 A contiguous address space is an address space whose addresses are non-negative integer values. and whose
20 atoms are contiguously addressed. Multiple atoms can be allocated in one contiguous chunk.

21 Byte-addressable system memory and blocks of data on disk drive are examples of contiguous address
22 spaces.

23 A contiguous address space is defined by the built-in library component contiguous_addr space c
24 shown in Syntax 122 below. The meanings of the struct type addr_trait_s and the template parameter
25 TRAIT are defined in 24.7.2. Address space regions are described in 24.7.3.
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struct addr trait s {};
struct empty addr trait s : addr trait s {};
typedef chandle addr handle t;

component contiguous_ addr space c <struct TRAIT : addr trait s =
empty addr trait s> : addr space base c

{
solve function addr handle t add region(addr region s <TRAIT> r);
solve function addr handle t add nonallocatable region(addr region s <>
r);

bool byte addressable = true;

2 Syntax 122—Contiguous address space component

3A contiguous address space is created in a PSS model by creating an instance of component
4contiguous_addr_space_c in a top-level component or any other component instantiated under the
5 top-level component.

624.7.1.2.1 add_region function

7The add_region function of contiguous address space components is used to add allocatable address
8 space regions to a contiguous address space. The function returns an address handle corresponding to the
9 start of the region in the address space. Actions and objects can allocate space only from allocatable regions
10 of an address space.

11 Address space regions are defined in 24.7.3. Address space regions are part of the static component
12 hierarchy. The add_region function may only be called in exec init_down and init_up blocks. Address
13 handles are defined in 24.10.3.

1424.7.1.2.2 add_nonallocatable_region function

15 The add_nonallocatable_ region function of contiguous address space components is used to add
16 non-allocatable address space regions to a contiguous address space. The function returns an address handle
17 corresponding to the start of the region in the address space.

18 The address space allocation algorithm shall not use non-allocatable regions for allocation.

19 Address space regions are defined in 24.7.3. Address space regions are part of the static component

20 hierarchy. The add_nonallocatable_region function may only be called in exec init_down and
21init_up blocks. Address handles are defined in 24.10.3.
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124.7.1.2.3 Example

2 Example 296 demonstrates instantiating an address space and adding regions to it (for the definition of
3struct addr_region_s, see 24.7.3.2).

4
component pss_top {
import addr reg pkg::*;
my ip c ip;
contiguous addr space c<> sys mem;
exec init up {
// Add regions to space here
addr_region_s<> rl;
rl.size = 0x40000000; // 1 GB
(void) sys_mem.add region(rl);
addr region s<> mmio;
mmio.size = 4096;
(void) sys mem.add nonallocatable region (mmio) ;
}
}
5 Example 296—Contiguous address space in pss_top

624.7.1.3 Byte-addressable address spaces

7 A byte-addressable space is a contiguous address space whose storage atom is a byte and to/from which PSS
g data can be written/read using standard generic operations. The PSS core library standardizes generic APIs
9 to write data to or read data from any address value as bytes. The read/write API and data layout of PSS data
10 into a byte-addressable space are defined in 24.10.

1By default, component contiguous_addr space_c is a byte-addressable space unless the
12byte_addressable Boolean field is set to false.

1324.7.1.4 Transparent address spaces

14 Transparent address spaces are used to enable transparent claims—constraining and otherwise operating on
15 concrete address values on the solve platform. For more information on transparent address claims, see
1624.8.3.

17 All regions of a transparent space provide a concrete start address and the size of the region. Only
18 transparent regions (see 24.7.3.3) may be added to a transparent address space using function
19add_region (). Note however that transparent regions may be added to a non-transparent space.

20 Component transparent_addr_ space_c is used to create a transparent address space (see
21 Syntax 123). See Example 298.
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component transparent addr space c
<struct TRAIT: addr trait s = empty addr trait s>
contiguous addr space c<TRAIT> {};

2 Syntax 123—Transparent address space component

324.7.1.5 Other address spaces

4 Other kinds of address spaces, with different assumptions on allocations and generic operations, are
5 possible. These may be represented as derived types of the corresponding base space/region/claim types. An
6 example could be a space representing a routing table in a network router. PSS does not attempt to
7 standardize these.

8 24.7.2 Address space traits

9 An address space trait is a PSS struct. A trait struct describes properties of a contiguous address space and
10its regions. empty addr_trait_sis defined as an empty trait struct that is used as the default trait type
11 for address spaces, regions and claims.

12 All regions of an address space share a trait fype. Every region has its specific trait value.

13

package ip pkg {
struct mem trait s : addr trait s {
rand mem_kind e kind;
rand cache attr e ctype;
rand int in [0..3] sec_level;
rand bool mmio;
bi
bi
14 Example 297—Example address trait type
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kind = SRAM kind = SRAM kind = DRAM
ctype = WB ctype = WB ctype = WB

sec level = 0 sec_level = 0 sec_level = 0

mmio = false mmio = true mmio = false
size = 4K size = 1M size = 1G
address = 0x400 address = 0x1000 address = 0x1000000

struct mem trait_ s

addr_trait s {

rand mem kind e kind; Regions
rand cache attr e ctype;

rand int in [0..3] sec_level;

rand bool mmio;

Figure 52—Address space regions with trait values

component pss_ top {

import addr reg pkg::*;
import ip pkg::*;

// 1P component
my ip ¢ ip;

// mem trait s trait struct is used for sys mem address space
transparent addr space c<mem trait s> sys mem;

exec init up {

// Add regions to space here. All regions added to sys mem space
// must have trait type mem trait s

transparent addr region s<mem trait s> sram region;

sram_region.trait.kind

sram region.trait.ctype
sram region.trait.sec level
sram region.trait.mmio
sram_region.size
sram_region.addr

= SRAM;
= WB;

= 0;

= false;
= 4096;
= 0x400;

(void) sys mem.add region (sram region);

// add other regions
//

Example 298—Address space with trait
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124.7.3 Address space regions

2 An address space may be composed of regions. Regions map to parts of an address space. A region may be
3 characterized by values assigned to address space traits. Traits define properties of a region. Specific
4 constraints are placed on address claim traits to allocate addresses from regions with desired characteristics.
5 Regions with trait values that satisfy the claim's trait constraints are the candidate matching regions. An
6 address claim may span more than one region that satisfies claim trait constraints.

7 Address space regions are part of the static component hierarchy. The add region and
sadd nonallocatable region functions (see 24.7.1.2.1 and 24.7.1.2.2) may only be called in exec
9init_down and init_up blocks.

10 24.7.3.1 Base region type

1naddr_region_base_s is the base type for all address space regions (see Syntax 124). Specifying a
12 value for the size field is required. Specifying a value for the tag field is optional.

13

struct addr region base s {
bit[64] size;
string tag;
}i
14 Syntax 124—Base address region type

15 The tag associated with the region from which a memory claim is satisfied may be retrieved using the
16get_tag () function (see 24.10.8).

17 24.7.3.2 Contiguous address regions

18 The addr_region_s type represents a region in contiguous address space (see Syntax 125). The region type is
19 fully characterized by the template TRAIT parameter value and the size attribute of the base region type.

20
struct addr region s <struct TRAIT : addr trait s = empty addr trait s>
addr region base s {
TRAIT trait;
i
21 Syntax 1256—Contiguous address space region type

22 The values of the trait struct attributes describes the contiguous address region. The PSS tool will match the
23 trait attributes of regions to satisfy an address claim as described in 24.8. See an example of trait attribute
24 setting in 24.8.7.

2524.7.3.3 Transparent address regions
26 The transparent_addr region_s type defines a transparent region over a contiguous address
27 space. Transparent means that the region’s start (lower) address is known to the PSS tool for solve-time

28 resolution of a claim address within the address space.

29 The addr field of this region is assigned the start address of the region. The end address of the region is the
30 calculated value of the expression: addr + size - 1.

31 See Example 298 where a transparent region is added to a transparent address space.
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struct transparent addr region_ s
<struct TRAIT : addr_trait_s = empty addr_ trait_ s>
addr region s<TRAIT> ({
bit[64] addr;

}i
2 Syntax 126—Transparent region type

324.8 Allocation within address spaces

4 The PSS input model can allocate storage atoms from an address space for the exclusive use of certain
s behaviors. For example, a DMA controller action might allocate a buffer in system memory for output data.

6 All address space allocations are done in the declarative domain of a PSS input model. An address claim
7 struct, defined in the following sections, is used for allocation.

8 An instance of an address claim struct describes an address claim on an address space. A claim is matched to
9 the address space nearest in the component instance tree, whose trait type matches the claim trait type (see
1024.8.6). A claim is satisfied by allocation from a region (or regions) whose trait value satisfies the
11 constraints on the claim trait (see 24.8.4).

12 A claim struct can be instantiated under an action, a flow object or resource object, or any of their nested
13 structs. The declaration of a claim struct instance causes allocation to occur when the declaring object is
14 instantiated or the action is traversed.

15 24.8.1 Base claim type

16 The addr_claim base_s struct (see Syntax 127) is the base type for all address space claims.

7

struct addr claim base s {
rand bit[64] size;
rand bool permanent;
constraint default permanent == false;

}i
18 Syntax 127—Base address space claim type

1924.8.2 Contiguous claims

20 An address claim can be made on a contiguous address space by declaring a struct of type
2taddr_claim_s. This claim is also known as an opaque claim. The absolute address of the claim is not
22 assumed to be known at solve time.

23 This standard does not define any method by which the PSS tool might resolve address claims at solve time
24 or might generate code for runtime allocation. One possible method could be PSS tool-specific APIs for
25 solve-time and runtime allocation. The address space handle obtained from a claim shall fall within a region
26 or regions whose traits satisfy the claim constraints.

27 An address claim in contiguous address space is always a contiguous chunk of addresses, potentially
28 spanning multiple regions that are adjacent.

29 An address claim can be made on transparent (described below, in 24.8.3) or non-transparent address spaces.
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struct addr claim s <struct TRAIT : addr trait s = empty addr trait s>
addr claim base s {

rand TRAIT trait;

rand bit[64] in [64'd2**0, 64'd2**1, 64'd2**2, 64'd2**3 , 64'd2**4 ,
64'd2**5 , 64'd2**6 , 64'd2**7 , 64'd2**8 , 64'd2**9 , 64'd2**10,
64'd2**11, 64'd2**12, 64'd2**13, 64'd2**14, 64'd2**15, 64'd2**1le,
64'd2**17, 64'd2**18, 64'd2**19, 64'd2**20, 64'd2**21, 64'd2**22,
64'd2**23, 64'd2**24, 64'd2**25, 64'd2**26, 64'd2**27, 64'd2**28,
64'd2**29, 64'd2**30, 64'd2**31, 64'd2**32, 64'd2**33, 64'd2**34,
64'd2**35, 64'd2**36, 64'd2**37, 64'd2**38, 64'd2**39, 64'd2**40,
64'd2**41, 64'd2**42, 64'd2**43, 64'd2**44, 64'd2**45, 64'd2**4¢6,
64'd2**47, 64'd2**48, 64'd2**49, 64'd2**50, 64'd2**51, 64'd2**52,
64'd2**53, 64'd2**54, 64'd2**55, 64'd2**56, 64'd2**57, 64'd2**58,
64'd2**59, 64'd2**60, 64'd2**6l, 64'd2**62, 64'd2**63] alignment;

2 Syntax 128—Contiguous address space claim type

3 The alignment attribute specifies the address alignment of the resolved claim address.
424.8.3 Transparent claims

5A claim of type transparent addr_claim s (see Syntax 129) is required to make a transparent
6 claim on a transparent contiguous address space. A transparent claim is characterized by the absolute
7 allocation address attribute (addr) of the claim. A transparent claim is associated with the nearest address
8 space with the same trait type, in the same way that a non-transparent claim is. However, a transparent claim
9 that is thereby associated with a non-transparent space shall be flagged as an error. The PSS tool has all the
10 information at solve time about the transparent address space necessary to perform allocation within the
11 limits of the address space. More details about allocation and claim lifetime can be found in the following
12 section.

13 The addr field of this claim type can be used to put a constraint on an absolute address of a claim.

14

struct transparent addr claim s
<struct TRAIT : addr_ trait s = empty addr trait s>
addr_claim s<TRAIT> ({
rand bit[64] addr;

15 Syntax 129—Transparent contiguous address space claim type

16 Example 299 illustrates how a transparent claim is used. A transparent address claim is used in action
17my_op. A constraint is placed on the absolute resolved address of the claim. This is possible only because of
18 the transparent address space that contain transparent regions where the base address of the region is known
19 at solve time.
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component pss_top {
transparent addr space c<> mem;

action my op {
rand transparent addr claim s<> claim;
constraint claim.size == 20;

// Constraint on absolute address
constraint (claim.addr & 0x3) == 0x1;

b

exec init up {
transparent addr region s<> regionl, region2;
regionl.size = 50;
regionl.addr = 0x10000;
(void)mem.add region(regionl);

region2.size = 10;
region2.addr 0x20000;
(void)mem.add region(region2);

2 Example 299—Transparent address claim

324.8.4 Claim trait semantics

4 Constraints placed on the trait attribute of a claim instance must be satisfied by the allocated addresses.
5 Allocated addresses shall be in regions whose trait values satisfy claim trait constraints.

6 See an example in 24.8.7.
724.8.5 Allocation consistency

8 An address claim struct is resolved to represent the allocation of a set of storage atoms from the nearest
9 storage space, for the exclusive use of actions that can access the claim attribute. In the case of a contiguous
10 address space, the set is a contiguous segment, from the start address to the start address + size - 1. All
11 addresses in the set are uniquely assigned to that specific instance of the address claim struct for the duration
12 of its lifetime, as determined by the actions that can access it (see details below). Two instances of an
13 address claim struct shall resolve to mutually exclusive sets of addresses if

14— Both are taken from the same address space, and
15—  An action that has access to one may overlap in execution time with an action that has access to the
16 other.

17 The number of storage atoms in an allocation is represented by the attribute size.

18 The start address is represented directly by the attribute addr in transparent _addr claim s<>, or
19 otherwise obtained by calling the function addr_value () on the address space handle returned by
20make_handle from claim().
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1Following is the definition of the lifetime of scenario entities:

Table 29—Scenario entity lifetimes

Entity Lifetime

Atomic action From the time of exec body entry (immediately before executing the first statement) to the
time of the exec body exit (immediately after executing the last statement).

Compound action | From the start time of the first sub-action(s) to the end time of the last sub-action(s).

Flow object From the start time of the action outputting it (for the initial state, the start time of the first
action in the scenario) to the end time of the last action(s) inputting it (if any) or the end-
time of the last action outputting it (if no action inputs it).

Resource object From the start time of the first action(s) locking/sharing it to the end time of the last
action(s) locking/sharing it.

Struct Identical with the entity that instantiates it.

2 The lifetime of the allocation to which a claim struct resolves, and hence the exclusive use of the set of
3 addresses, may be extended beyond the scenario entity in which the claim is instantiated in one of two ways:

4 — A handle that originates in a claim is assigned to entities that have no direct access to the claim in
5 solve execs (for definition of address space handles, see 24.10.3). For example, if an action assigns a
6 handle field (of type addr_handle_t) of its output buffer object with a handle it obtained from
7 its own claim, the allocation lifetime is extended to the end of the last action that inputs that buffer
8 object.

9 — The attribute permanent is constrained to frue, in which case the lifetime of the claim is extended
10 to the end of the test.

1124.8.5.1 Example

12 The example below demonstrates how the scheduling of actions affects possible resolutions of address
13 claims. In this model, action my op claims 20 bytes from an address space, in which there is one region of
14size 50 bytes and another of size 10. In action testl, the three actions of type my op are scheduled
15 sequentially, as the iterations of a repeat statement. No execution of my op overlaps in time with another,
16 and therefore each one can be allocated any set of consecutive 20 bytes, irrespective of previous allocations.
17 Note that all three allocations must come from the 50-byte region, as the 10-byte region cannot fit any of
18them. In test?2, by contrast, the three actions of type my op expanded from the replicate statement are
19 scheduled in parallel. This means that they would overlap in execution time, and therefore need to be
20 assigned mutually exclusive sets of addresses. However, such allocation is not possible out of the 50 bytes
21available in the bigger region. Here too, the smaller region cannot fit any of the three allocations. Nor can it
22 fit part of an allocation, because it is not known to be strictly contiguous with the other region.
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component pss top {
action my op {
rand addr_claim s<> claim;
constraint claim.size == 20;

i
contiguous addr space c<> mem;

exec init up {
addr region s<> regionl, region2;

regionl.size = 50;
(void)mem.add region(regionl);
region2.size = 10;

(void)mem.add region (region2);

action testl {
activity {
repeat (3) {
do my op; // OK — allocations can be recycled
}
}
}i

action test2 {
activity {
parallel {
replicate (3) {
do my op; // error - cannot satisfy concurrent claims

Example 300—Address space allocation example
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124.8.6 Rules for matching a claim to an address space

o U

7
8

9
10

a)
b)

¢)

A claim is associated with a unique address space based on the static structure of the model.

A claim is resolved to an address space that:

1) matches the trait type of the claim

2) s instantiated in a containing component of the current scenario entity (the context compo-
nent hierarchy of an action or the container component of a flow/resource object pool)

3) is nearest in the component hierarchy going up from the context component to the root
component

It shall be an error if more than one address space matches a claim at the component context
identified in b).

1124.8.7 Allocation example

12 In following example, pss_top has instances of the sub_ip and great ip components. sub_ip is
13 composed of the good ip and great ip components. good ip and great ip allocate space with
14trait mem_trait s. Memory allocation in the top gr ip instance of pss_top will be matched to the
15 sys_mem address space that is instantiated in pss_top. Memory claims in gr _ip and go_ip from
16pss_top.sub_ system will be matched to the address space in sub_ip, as the sub_ip address_space
17 will be the nearest space with a matching trait in the component tree.

18 Note how within the two address spaces, there are regions with the same base address. Claims from actions
19 of the two instances of great ip may be satisfied with overlapping addresses even if they are concurrent,
20 since they are taken out of different address spaces.

Copyright © 2024 Accellera. All rights reserved.
410



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

import addr reg pkg::*;
import mem pkg::*;

package mem pkg {
enum cache attr e {UC, WB, WT, WC, WP};

struct mem trait s : addr trait s {
rand cache attr e ctype;
rand int in [0..3] sec level;

b

component good ip {
action write mem {
// Allocate from nearest address space matching TRAIT type and value
rand transparent addr claim s<mem trait s> mem claim;

constraint mem claim.size == 128;
constraint mem claim.trait.ctype == UC;

action write mem unconstrained ({
// Allocate from nearest address space matching TRAIT type and value

// Note that ctype field of the claim trait is unconstrained.

// However, given there is only a single region in the address space
// with ctype==UC, that region is chosen as it is the only match

// available that can satisfy the trait constraints.

// ctype cannot be randomized to have a value that is not UC because
// it i1s compelled to match with one of the regions, just like when
// an action wants to consume a buffer object, it needs to pick from
// the available objects in the pool.

rand transparent addr claim s mem claim;

constraint mem claim.size == 128;

b

component great ip {
action write mem {

// Allocate from nearest address space matching TRAIT type and value
rand transparent addr claim s<mem trait s> mem claim;

constraint mem claim.size == 256;
constraint mem claim.trait.ctype == UC;

b

component sub_ip {
// Subsystem has its own address space
transparent addr space c<mem trait s> mem;

good ip go ip;
great ip gr ip;
}i

Example 301—Address space allocation example

Copyright © 2024 Accellera. All rights reserved.
411




Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

component pss top {
sub_ip sub system;
great ip top gr ip;

transparent addr space c<mem trait s> sys mem;

exec init up {
transparent addr region s<mem trait s> region;

region.size = 1024;
region.addr = 0x8000;
region.trait.ctype = UC;
region.trait.sec level = 0;

transparent addr region s<mem trait s> great region;

great region.size = 1024;
great region.addr = 0x8000;
great region.trait.ctype = UC;
great region.trait.sec level = 2;

(void) sys mem.add region(region);

(void) sub system.mem.add region(great region);
}i
}i

2 Example 301—Address space allocation example (cont.)

324.9 Address space group

4 Different IP PSS models may have different usage models for claiming address space storage atoms. An
saddress space group defines the union of multiple individual address spaces that share common storage
6 elements. The PSS input model can allocate common storage elements for the exclusive use of certain
7 behaviors.

8 The usage model is determined by the address space trait type, the address space region types, etc. Address
9 space group enables the integration of IP PSS models such that each IP PSS model has a different view to
10 common storage atoms.

11 The component type addr space group_c is used to group one or more address spaces.

12

package addr reg pkg {
component addr space group c {
function void add addr space(ref addr space base c address space);

}

13 Syntax 130—Address space group

Copyright © 2024 Accellera. All rights reserved.
412



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

124.9.1 Function add_addr_space

2 Instance function add_addr space (see Syntax 130) of addr space group_ c is used to populate
3 the group with address space instances. The add addr space function may only be called in exec
4init downand init up blocks.

5 The following also apply:

6 a) Any address space can be added to a given group, regardless of where it is instantiated in the compo-
7 nent instance tree. This includes address spaces instantiated above the group, below it, or in a differ-
8 ent subtree.

9 b) Anaddress space instance may not be added more than once to the same group.
10 ¢) Anaddress space instance may not be added to more than one group.

11 d) An address space does not have to be added to any group. An address space not added to any group
12 will not share storage atoms with other groups and will follow address space semantics mentioned
13 above (will follow standalone address space semantics).

14 Example 302 demonstrates how two address claim usage models for two different IP PSS models are
15 integrated using an address space group. IP a address claim use-model is to get 8 or 16 bytes from an address
16 space with 256 bytes. IP a address space has 2 regions. Users can control which region is selected via the
17 trait attribute id. IP b address claim use-model gets 2 bytes from an address space with 256 bytes. IP b
18 address space has 128 regions. Users can control which region is selected via the trait attribute id. In
19pss_top there are two address space instances mema and memb, each using a different trait type. Actions
20in IP a memory claims will match with address space mema and actions in IP b memory claims will match
21with address space memb. mema and memb are added to the address space group instance mem group.
22 Both actions share 256 storage atoms. The test case in Example 302 schedules three actions in parallel;
23 therefore, they should all get exclusive storage atoms from the common 256 storage atoms.

24
IP-A = Address Space View mema
Region 0 Region 1
0 | 127 128 | 255
Region 0 Region 1
IP-B = Address Space View memb
25 Figure 53—Different IP views of common storage atoms

26 Figure 53 demonstrates how address claims can be satisfied coming from two IPs using common storage
27 atoms. When claims from two IPs overlap in time, exclusive storage atoms are provided.

28
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Table 30—Overlapping and sequential address claims examples

Time window A claim bytes B claim bytes A address B address
8 2 0x0-0x7 0x8-0x9
8 0x8-0xf
2 0x8-0x9
16 2 0x4-0x13 0x0-0x1

package ip_ a pkg {
import addr reg pkg::*;
struct trait ip a s addr trait s {
rand int in [0..1] id;
}
component ip a c {
action write a {
rand addr claim s<trait ip a s> claim;
constraint claim.size in [8, 16];
constraint claim.alignment == 4;
rand bit[32] data;
exec body {
addr handle t handle;
handle = make handle from claim(claim);
write32 (handle, data);

package ip b pkg {
import addr reg pkg::*;
struct trait ip b s : addr_ trait s {
rand int in [0..127] id;
}
component ip b c {
action write a {
rand addr claim s<trait ip b s> claim;
constraint claim.size in [2];
rand bit[32] data;
exec body {
addr_handle t handle;
handle = make handle from claim(claim);
write32 (handle, data):;

Example 302—Address space group
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component pss_ top {

ip a ¢ ip a;
ip b ¢ ip b;
transparent addr space c<trait ip a s> mema;
transparent addr space c<trait ip b s> memb;

addr space_group C mem group;
exec init {

transparent addr region s<trait ip a s> region ip a 0, region ip a 1;
region ip a O.size = 128;

region ip a 0O.addr = 0x0;

region ip a O.trait.id = 0;

(void)mema.add region(region ip a 0);

region ip a l.size = 128;
region ip a l.addr = 128;
region ip a l.trait.id = 1;
(void)mema.add region(region ip a 0);
mem group.add addr space (mema) ;

transparent addr region s<trait ip b s> region ip b[128];
repeat (1:128) {
region ip b[i].addr = i*2;
region ip bli]l.size = 2;
region ip b[i].trait.id = i;
(void)memb.add region(region ip b[i]);
}

mem group.add addr space (memb) ;

}
action entry a {
activity {
parallel {
replicate (1)
do ip a c::write a;
replicate (2)
do ip b c::write a;

2 Example 302—Address space group (cont.)

324.10 Data layout and access operations
424.10.1 Data layout

5 Many PSS use cases require writing structured data from the PSS model to byte-addressable space in a well-
6 defined layout. In PSS, structured data is represented with a struct. For example, a DMA engine might
7expect DMA descriptors that encapsulate DMA operation to be in memory in a known layout. Packed
8 structs may be beneficial to represent bit fields of hardware registers.
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1The built-in PSS library struct packed_s is used as a base struct to denote that a PSS struct is packed.

2 Any struct derived from built-in struct packed_s directly or indirectly is considered packed by the PSS
3 tool. Packed structs are only allowed to have fields of numeric types, Boolean types, enumerated types that
4have a base type, packed struct types, or arrays thereof. Following are the declarations of the endianness
s enum and packed struct in std_pkg’:

6

enum endianness_e {LITTLE ENDIAN, BIG ENDIAN};

struct packed s <endianness e e = LITTLE ENDIAN> {};
7 Syntax 131—packed_s base struct

8 Type extensions of packed structs shall not add new fields.
924.10.1.1 Packing rule

10 PSS uses the de facto packing algorithm from the GNU C/C++ compiler. The ordering of fields of structs
11 follows the rules of the C language. This means that fields declared first would go in lower addresses. For
12 this purpose, if a packed struct is derived from another packed struct, fields declared in the derived struct are
13 considered to be declared later than those declared in the base struct. The layout of fields in a packed struct
14 is defined by the endianness template parameter of the packed struct. Bit fields in PSS structs can be of any
15 size. For this purpose, Boolean fields are considered to be of 1 bit.

16 For the packing algorithm, a register of size N bytes is used, where N*8 is greater than or equal to the
17 number of bits in the packed struct.

18 For big-endian mode, fields are packed into registers from the most significant bit (MSB) to the least
19 significant bit (LSB) in the order in which they are defined. Fields are packed in memory from the most
20 significant byte (MSbyte) to the least significant byte (LSbyte) of the packed register. If the total size of the
21packed struct is not an integer multiple of bytes, don't-care bits are added at the LSB side of the packed
22 register.

23 For little-endian mode, fields are packed into registers from the LSB to the MSB in the order in which they
24 are defined and packed in memory from the LSbyte to the MSbyte of the packed register. If the total size of
25 the packed struct is not an integer multiple of bytes, don't-care bits are added at the MSB side of the packed
26 register.

2724.10.1.2 Little-endian packing example

28 A packed struct is shown in Example 303. This struct has 30 bits. A register for packing this struct would
29 have 4 bytes.

® In PSS 2.0, these declarations were in the addr_reg_pkg package. Referring to these declarations via addr_reg_pkg is
deprecated in PSS 2.1. To support backward compatibility, PSS tools shall support referencing these declarations in either std_pkg or
addr_reg_pkg as if they were the same types.
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struct my packed struct : packed_ s<LITTLE_ENDIAN> {
bit[6] A;
bit[2] B;
bit[9] C;
bit[7] D;
bit[6] E;

2 Example 303—Packed PSS little-endian struct

3 Register packing will start from field A. The least significant bit of A would go in the least significant bit of
4 the register, as shown in Figure 54. Field B would go after field A. The least significant bit of B would go in
s the lowest bit after A in the packed register, and so on. The layout of the packed struct in byte-addressable
6 space is shown in Figure 55. (X means “don’t-care bit” in Figure 54 and Figure 55.)

MSB LSB
XXEEEEEEDDDDDDDCCCCCCCCCBBAAARARAA
XX543210654321087654321010543210
8 Figure 54—L.ittle-endian struct packing in register
9
byte 0 byte 1 byte 2 byte 3
BBAAAAAA CCCCCCCC DDDDDDDC XXEEETETEFTE
10543210 76543210 65432108 XX543210
10 Figure 55—Little-endian struct packing in byte-addressable space

1124.10.1.3 Big-endian packing example

12 A packed struct is shown in Example 304. This struct has 30 bits. A register for packing this struct would
13 have 4 bytes.

14

struct my packed struct : packed s<BIG ENDIAN> ({
bit[6] A;
bit[2] B;
bit[9] C;
bit[7] D;
bit[6] E;

15 Example 304—Packed PSS big-endian struct

16 Register packing will start from field 2. The most significant bit of 2 would go in the most significant bit of
17 the register, as shown in Figure 56. Field B would go after field A. The most significant bit of B would go in
18 the highest bit after A in the packed register, and so on. The layout of the packed struct in byte-addressable
19 space is shown in Figure 57. (X means “don’t-care bit” in Figure 56 and Figure 57.)

20

Copyright © 2024 Accellera. All rights reserved.
417



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

MSB LSB
AAAAAABBCCCCCCCCCDDDDDDDEEEEEEZXHZX
543210108765432106543210543210XX
2 Figure 56—Big-endian struct packing in register
3
byte 0 byte 1 byte 2 byte 3
AAAAAABB CCCCCCCC CDDDDDDD EEEEEEZXX
54321010 87654321 06543210 543210XX
4 Figure 57—Big-endian struct packing in byte-addressable space

524.10.2 sizeof_s

6 The template struct sizeof_s is used to query the physical storage size of a PSS data type. It applies to
7 types that can be written to or read from a byte-addressable address space, namely numeric types, Booleans,
s enumerated types that have a base type, packed structs, and arrays thereof. The sizeof_ s struct is
9 declared in the std_pkg package.10

10 24.10.2.1 Definition

struct sizeof s<type T> {
static const int nbytes = /* implementation-specific */;
static const int nbits = /* implementation-specific */;
}i
2 Syntax 132—sizeof s struct

13 The static constant nbytes is initialized to the number of consecutive addresses required to store a value of
14type T in a byte-addressable address space. When using the read/write target functions (see 24.10.9), this
15 number of bytes is assumed to be taken up by the data in the target storage. For types that are not byte-
16 aligned in size, the number of bytes is rounded up. For the definition of packed struct layout in an address
17 space, see 24.10.1.

18 The static constant nbi ts is initialized to the exact number of bits that are taken up by the representation of
19 a value of type T in a byte-addressable address space.

20 sizeof_s<> shall not be parameterized with types other than numeric types, Booleans, enumerated types
21that have a base type, packed structs, and arrays thereof.

2224.10.2.2 Examples

23 The following code snippets show the value of nbytes of sizeof s<> instantiated for several different

24 types:

25 sizeof s<int>::nbytes == 4

26

27 sizeof s<int[3:0]>::nbytes == 1
28

10 1n PSS 2.0, these declarations were in the addr_reg_pkg package. Referring to these declarations via addr_reg_pkg is
deprecated in PSS 2.1. To support backward compatibility, PSS tools shall support referencing these declarations in either std_pkg or
addr_reg_pkg as if they were the same types.
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sizeof s<bit>::nbytes ==
sizeof s<bit[33]>::nbytes ==

sizeof s<array<int,10>>::nbytes == 40

struct my packed s : packed s<> {bit[2] kind; int data;};
sizeof s<my packed s>::nbytes == 5

~N o W N

824.10.3 Address space handles
9 The built-in package addr_reg pkg defines PSS types for address space handles.

10

typedef chandle addr handle t;
const addr handle t nullhandle = /* implementation-specific */;

struct sized addr handle s < int Sz, // in bits
int 1sb = 0,
endianness e e = LITTLE ENDIAN
> : packed s<e> {
addr handle t hndl;
b

11 Syntax 133—Address space handle

1224.10.3.1 Generic address space handle

13addr_handle_t is the generic type for address handles within an address space. A variable of type
14addr_handle_t resolves to a concrete address value during test execution, on the target platform.
15 However, the concrete value of an address handle cannot be obtained during the solve process, on the solve
16 platform. A field of type addr_handle_t cannot be declared directly in a packed struct type. Packed
17 structs are defined in 24.10.1.

18 24.10.3.2 nullhandle

19nullhandle represents the address value O within the target address space, regardless of the actual
20 mapping of regions.

2124.10.3.3 sized address space handle

22 The wrapper struct sized _addr_handle_s is used for specifying the size of an address handle in a
23packed struct. An address field within a packed struct shall only be declared using
24sized_addr_handle_s, and not directly as a field of type addr_handle_t.

25 The SZ parameter specifies the size of the handle itself in bits when used in a packed struct. Note that the SZ
26 parameter is not the size of the data it is pointing to.

27 The 1sb parameter defines the starting bit in the resolved address that would become bit 0 of sized address
28 handle in packed struct. For example, assume that the resolved address is 64 bits and the size of the handle is
29 30 bits, with the 1sb parameter set to 2. In this case, a sized handle in a packed struct would have bits 31 to
30 2 from the resolved address.

31 See an example in 24.10.10.

Copyright © 2024 Accellera. All rights reserved.
419



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

124.10.4 Obtaining an address space handle

2 A handle in an address space can be created from an address claim (with an optional offset value), from
3 another handle (with an offset value), or from a region in an address space. An address claim is made using
4 a claim struct declaration in actions and objects.

5 Some address space regions are non-allocatable. These regions can be used to represent memory-mapped
6 /O (MMIO) register spaces. A handle can be created from a region in an address space, in order to access
7 non-allocatable regions.

8 A handle to a region is obtained when the region is added to the address space, using the add_region (see
924.7.1.2.1) or add_nonallocatable_ region (see 24.7.1.2.2) functions. To create address handles
10 from address claims or from other handles, the following functions are defined in the built-in package
naddr_reg pkg.

1224.10.4.1 make_handle_from_claim function

13 The function make_handle from claim() creates an address handle from a claim, with an optional
14 offset value.

15

function addr handle t make handle from claim
(addr _claim base s claim, bit[64] offset = 0);

16 Syntax 134—make_handle_from_claim function

17 The make_handle from claim function arguments are:
18— A claim struct instance declared in an action or a flow/resource object

19— An optional offset value, of a 64-bit type

20 The returned handle's resolved address will be the sum of the claim’s resolved address and the offset. The
21return value of the function is of type addr_handle_t.

2224.10.4.1.1 Example

23
action my action {
rand transparent addr claim s<> claim;
constraint claim.size == 128;
constraint claim.alignment == 2**4;
exec body {
int offset = 16;
int data = 128;
addr handle t hO = make handle from claim(claim);
write32 (h0, data); // access API defined in 24.109.1
// Address handle from claim with an offset
addr handle t hl = make handle from claim(claim, offset);
write32 (hl, data);
}
}i
24 Example 305—make_handle_from_claim example
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124.10.4.2 make_handle_from_handle function

2 The function make_handle from handle () creates an address handle from another handle, given an
3 offset.

4
function addr handle t make handle from handle
(addr_handle t handle, bit[64] offset);
5 Syntax 135—make_handle_from_handle function

6 The make_handle_ from handle function arguments are:
7 — A handle that was created by a different call to a make_handle function

8 — An offset value, of a 64-bit type

9 The returned handle's resolved address will be the sum of the handle parameter’s resolved address and the
10 offset. The return value of the function is of type addr_handle_t.

1124.10.4.2.1 Example

12

action my action ({
transparent addr claim s<> claim;
constraint claim.alignment == 2**4;

exec body {
int offset = 16;
int data = 128;

addr handle t hO = make handle from claim(claim, offset);
write32 (h0, data);

// Make handle from another handle with an offset
addr_handle t hl = make handle from handle (h0O, sizeof s<int>::nbytes);
write32 (hl, data);

13 Example 306—make_handle_from_handle example

1424.10.5 addr_value function
15 The function addr_value () returns the resolved address of the parameter handle, as a numeric value.
16addr_value () is a target function and shall only be used in exec body, run_start, run_end, or functions

17 called from these exec blocks.

18

target function bit[64] addr value (addr handle t hndl);
19 Syntax 136—addr_value function

20 Per-executor custom implementations of the addr_value () function may be provided, much as custom
21implementations of read/write functions are (see 24.10.9.5).
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124.10.6 addr_value_solve function

solve function bit[64] addr value solve(addr handle t hndl);

3 Syntax 137—addr_value_solve function

4 The solve function addr_value_solve () returns either the full absolute address of the hnd1l parameter
s or the offset of the hnd1 parameter within its containing address region as a numeric value. If the hndl
6 parameter is within a transparent region, the returned value will be an absolute address. If the hndl
7 parameter is within an opaque region, the returned value may be an absolute address or an offset depending
8 on what tool-specific metadata has been supplied to the PSS processing tool. The addr_value_abs ()
9 function is used to determine what information will be returned by addr_value_solve () for a given
10 address handle.

1 Users may provide executor-specific implementations of addr _wvalue_solve () by overriding this
12 method in an executor implementation.

13The addr_value_solve () function may only be called in the context of a pre_body exec block. If
14addr_value_solve () is called from other contexts, the return value is undefined.

1524.10.7 addr_value_abs function

16

solve function bool addr value abs(addr handle t hndl);

17 Syntax 138—addr_value_abs function

18 The solve function addr_value_abs () returns ‘true’ if the absolute address value is available for the
19 specified address handle. The absolute address value is available if hnd1 is within a transparent region, and
20 may be available when hndl is within an opaque region depending on what tool-specific metadata has been
21supplied to the PSS processing tool.

22The addr_value_abs () function may only be called in the context of a pre_body exec block. If
23addr_value_abs () is called from other contexts, the return value is undefined.

2424.10.8 get_tag function
25 The function get_tag () returns the tag (see Syntax 124) of the region in which the specified address
26 handle is located. get_tag () shall only be used in exec pre_body, body, run_start, run_end, or in

27 functions called from these exec blocks.

28

function string get tag(addr handle t hndl);

29 Syntax 139—get tag function

3024.10.9 Access operations

31 Read/write operations of PSS data from/to byte-addressable address space are defined as a set of target
32 functions. Target exec blocks (exec body, run_start, run_end), and functions called from them, may call
33 these core library functions to access allocated addresses.
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1 Access functions use an address handle to designate the required location within an address space.

2 PSS provides a way to customize the implementation of access functions for different executors (see
324.10.9.5).

424.10.9.1 Primitive read operations

s Syntax 140 defines read operations for integer types from byte addressable address spaces to read one, two,
6 four or eight consecutive bytes starting at the address indicated by the addr_handle_t argument.

target function bit[8] read8 (addr handle t hndl);
target function bit[16] readl6(addr handle t hndl);
target function bit[32] read32(addr handle t hndl);
target function bit[64] read64 (addr handle t hndl);

8 Syntax 140—Primitive read operations for byte addressable spaces

9 The first byte goes into bits [7:0], then the next byte goes into bits [15:8], and so on.

10 24.10.9.2 Primitive write operations

11 Syntax 141 defines write operations for integer types to byte addressable address spaces to write one, two,
12 four or eight consecutive bytes from the data argument starting at the address indicated by the

13addr_handle_t argument.

14

’

target function void write8 (addr handle t hndl, bit[8] data) ;
target function void writel6 (addr handle t hndl, bit[16] data);
target function void write32 (addr handle t hndl, bit[32] data)

target function void write64 (addr handle t hndl, bit[64] data);

15 Syntax 141—~Primitive write operations for byte addressable spaces

’

16 Bits [7:0] of the input data go into the starting address specified by the addr _handle_t argument, bits
17 [15:8] go into the next address (starting address + 1), and so on.

18 24.10.9.3 Read and write N consecutive bytes

19 Syntax 142 defines operations to read and write a series of consecutive bytes from byte addressable space.
20 For a read operation, the read data is stored in the argument data. For function read bytes (), the
21size argument indicates the number of consecutive bytes to read. The returned list is resized accordingly,

22 and its previous values, if any, are overwritten.

23 For a write operation, the input data is taken from the argument data. For function write_ bytes (), the
24 number of bytes to write is determined by the list size of the data parameter.

25

target function void read bytes (addr handle t hndl, list<bit[8]> data,
int size);
target function void write bytes(addr handle t hndl, list<bit[8]> data);

26 Syntax 142—Read and write series of bytes
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1 The first byte read comes from the address indicated by the hndl argument. This byte is stored at the first
2 location (index 0) in the data list. The second byte comes from the address incremented by one and is
3stored at the second location (index 1) in the data list, and so on. The same semantics apply to
4write_bytes().

524.10.9.4 Read and write packed structs
6 Read and write operations to access packed structs are defined in Syntax 143. Argument packed struct

7 of functions read_struct () and write_struct () shall be a subtype of the packed_s struct. The
spacked_struct argument is read from or written to the address specified by the hnd1 argument.

target function void read struct (addr handle t hndl, struct packed struct);
target function void write struct(addr handle t hndl, struct packed struct);

10 Syntax 143—Read and write packed structs

11 The PSS implementation shall convert calls to read_struct () and write_struct() to one or more
12 invocations of the primitive read and write operations (see 24.10.9.1 and 24.10.9.2) or to an invocation of
13the read_bytes ()or write_bytes () function (see 24.10.9.3). Reading and writing of structs of size
14 8, 16, 32, or 64 bits stored at a correspondingly aligned address shall be implemented with a single primitive
15 operation of the corresponding size, and in other cases may be partitioned into one or more primitive
16 operations of any size, or a single call to the read _bytes () orwrite_bytes () function.

17 24.10.9.5 Executor-based customization of memory functions

18 PSS tools may provide built-in implementations of read, write, and addr_wvalue () operations for
19 mainstream execution contexts. However, users can optionally customize the implementation of these
20 operations for their own purposes and execution contexts.

21Calls to primitive read, write, and addr_value () functions (defined above in 24.10.9.1, 24.10.9.2, and
2224.10.5), and calls to byte list read/write functions (defined above in 24.10.9.3), are delegated to functions
23 with the identical prototype in the executor instance assigned to the evaluation action or flow/resource
24 object. Syntax 144 below shows the declarations of the executor implementation functions.

25
extend component executor base c {
target function bit[64] addr value(addr handle t hndl);
target function bit[8] read8 (addr handle t hndl);
target function bit[16] readl6 (addr handle t hndl);
target function bit[32] read32(addr handle t hndl);
target function bit[64] read64 (addr handle t hndl);
target function void write8 (addr handle t hndl, bit[8] data);
target function void writel6 (addr handle t hndl, bit[1l6] data);
target function void write32(addr handle t hndl, bit[32] data);
target function void write64 (addr handle t hndl, bit[64] data);
target function void read bytes (addr handle t hndl, list<bit[8]> data,
int size);
target function void write bytes(addr handle t hndl, list<bit[8]> data);
}7
26 Syntax 144—Primitive operation implementation functions
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1 Note that struct read/write functions (defined above in 24.10.9.4) and register read/write functions (defined
2below in 24.11.1) are implemented in terms of their respective primitive operations. Therefore, custom
3 implementations of the primitive operations in an executor apply similarly to struct and register read/write
4 functions.

5 The code in Example 307 below illustrates how a PSS implementation may define the delegation of one of
6the primitive read/write functions to the corresponding function in the current executor. The actual
7 implementation does not necessarily take this form, but should have equivalent observable behavior. See
824.6.2.5 for more on the semantics of function executor ().

function bit[32] read32(addr _handle t hndl) {

if (executor() != null ) {
return executor () .read32 (hndl);
} else {

// return value per default implementation

10 Example 307—Illustration of read32()

11 Example 308 below demonstrates how primitive operations read32 () and write32 () are mapped to
12 calls to functions of a C bus transactor in the context of a user-defined executor type.

13

function bit[32] my transactor read word(bit[64] addr);
import target C function my transactor read word;

function void my transactor write word(bit[64] addr, bit([32] data);
import target C function my transactor write word;

component my transactor executor c<struct TRAIT : executor trait s =
empty executor trait s> : executor c<TRAIT> ({
function bit[32] read32(addr handle t hndl) {
return my transactor read word(addr value (hndl)) :;

}

function void write32 (addr handle t hndl, bit[32] data) {
my_transactor_write_word?addr_vglue(hndl), data) ;
}
bi
14 Example 308—Mapping of primitive operations to foreign C functions

15 In Example 309 below, executor type uvm_ubus_executor c corresponds to a UVM bus master. The
16 write8 () function is defined in terms of a SystemVerilog imported function (task) that starts a write-byte
17 sequence on the agent designated by the path parameter. The executor type is instantiated twice under
18 pss_top, and each instance is associated with a different UVM agent in the target environment using the
19 UVM path.
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import target SV function void ubus write8(string uvm path, bit[64] addr,
bit[8] data);

component uvm ubus executor c : executor c<bus trait s> {
string uvm path;

function void write8 (addr handle t hndl, bit([8] data) {
ubus write8 (uvm path, addr value (hndl), data);
}
b

extend component pss top {
uvm_ubus_executor c masters[2];
executor group c<bus trait s> bus group;
exec init down ({
foreach (m: masters) {
bus group.add executor (m);

}

masters[0] .uvm _path = "uvm test top.env.ubus masterO0";
masters[1l].uvm path = "uvm test top.env.ubus masterl";
1
i
2 Example 309—Mapping of primitive operations to UVM sequences

3 In Example 310 below, an executor corresponding to a 32-bit architecture CPU customizes the read64 ()
4and write64 () operations to be implemented in terms of the built-in read32 () and write32()

5 operations.

component my 32bit cpu c : executor c<my core trait s> {
function bit[64] read64 (addr handle t hndl) {
bit[64] result;
result[31: 0] = read32 (hndl);
result[63:32] = read32 (make handle from handle (hndl,64));
return result;

}

function void write64 (addr handle t hndl, bit[64] data) {
write32 (hndl, data[31:0]1);
write32 (make handle from handle (hndl,4), data[63:32]);

}i
7 Example 310—Implementing primitive operations in terms of other operations

8 In the example below, the user has an address map where each of a set of executors is allocated a unique set
9 of addresses within the address space. While each executor is assigned a unique portion of the global address
10 space, the executor-specific address window is mapped at the same address from the perspective of the
11executor. Allocations are modeled using the global address map to ensure claims are globally unique.
12 However, depending on the executor, an address may need to be transformed to conform to the executor-

13 specific address map.
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Exec Shared Exec1 Map

Exec1 Shared
Exec2 Shared

Exec Shared Exec2 Map

Global Address Map

2 Figure 58—Executor address mapping

3Overriding the addr_wvalue() function can be used to perform such custom translations. The
4addr_window_exec_c executor shown below overrides the addr _wvalue () function and applies a
s translation if the address falls within a specific window that is configurable on a per-executor instance basis.

6 Let’s assume that the executor-specific address windows are located at 0x80000000 and 0x80001000 in
7 the global address map. Each executor maps this shared window at 0x1000. The executor instantiation and
g configuration below show how we could configure this translation scheme. When, for example, an action
9running on execl accesses address 0x8000 0100, the customized addr_walue () function will

10 convert the address to 0x0000_1100.

Il

component addr window exec c : executor base c {
bit[64] window base = 0x80000000;
bit[64] window size = 0x1000;
bit[64] window offset 0x80000000;

function bit[64] addr value(addr handle t hndl) {
bit[64] addr = super.addr value (hndl);
if (addr >= window base && addr < (window base+window size))
addr = (addr-window offset)+0x1000;
}

return addr;

component subsystem c {
addr_window_exec c execl;
addr_window_exec c exec2;

exec init down {
execl.window base = 0x8000_0000;
execl.window offset = 0x8000 _0000;
exec2.window base 0x8000_1000;
exec2.window offset 0x8000_1000;

{

12 Example 311—Customization of addr_value()

13
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124.10.10 Target data structure setup example

2 The following example demonstrates use of packed PSS data written to allocations on byte addressable
3 space. It also demonstrates the use of address handles to construct complex data structures in target memory.
4 Lifetime of allocation is extended by using address handles in flow objects.

buffer data buff ({
rand addr claim s<> mem seg;

b
component dma c {

struct descriptor s : packed s<> {
sized addr handle s<32> src_addr;
sized addr handle s<32> dst_addr;
int size;
sized addr handle s<32> next descr;
b7

state descr chain state {
list<addr_handle t> handle list;

}i

pool descr chain state descr chain statevar;
bind descr chain statevar *;

action alloc first descr {
output descr chain state out chain;

rand addr claim s<> next descr mem;
constraint next descr_mem.size == sizeof s<descriptor_ s>::nbytes;

exec post solve {
out chain.handle list.push back(
make handle from claim(next descr mem)) ;

6 Example 312—Example using complex data structures
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action chained xfer ({
input data buff src buff;
output data buff dst buff;
constraint dst buff.mem seg.size == src buff.mem seg.size;

input descr chain state in chain;
output descr chain state out chain;

rand bool last;
descriptor_ s descr;

rand addr claim s<> next descr mem;
constraint next descr mem.size == sizeof s<descriptor s>::nbytes;

addr handle t descr hndl;
exec post solve {

descr.src_addr.hndl = make handle from claim(src_buff.mem seq);
descr.dst addr.hndl = make handle from claim(dst buff.mem seq);

descr.size = src buff.mem seg.size;
if (last) {

descr.next descr.hndl = nullhandle;
} else {

descr.next descr.hndl = make handle from claim(next descr mem) ;

// tail of current list
descr hndl = in chain.handle list[in chain.handle list.size()-1];

// copy over list from input to output
out chain.handle list = in chain.handle list;
// add next pointer
out chain.handle list.push back(
make handle from claim(next descr mem));

exec body {
write struct (descr hndl,descr);

}i

action execute xfer ({
input descr chain state in chain;

addr handle t descr list head;
exec post solve {

descr list head = in chain.handle 1list[0]; // head of list

exec body {
// Initiate chained-transfer with descr list head
// Wait for the chained-transfer to complete

}i

Example 312—Example using complex data structures (cont.)
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action multi xfer ({
rand int in [1..10] num of xfers;

activity {
do alloc first descr;
repeat (i: num of xfers) ({
do chained xfer with {last == (i == num of xfers-1);};
}

do execute xfer;

2 Example 312—Example using complex data structures (cont.)

3In this example, the chained xfer action represents the data flow (source/destination buffers)
4 associated with this transaction. It populates the descriptor, including a pointer to the next descriptor, which
5 it allocates. Its runtime execution writes the full descriptor out to memory, in the location allocated for it by
6 the previous link in the chain.

724.11 Registers

8 A PSS model will often specify interaction with the hardware SUT to control how the PSS tool-generated
9 code will read/write to programmable registers of the SUT. This section shows how to associate meaningful
10 identifiers with register addresses that need to be specified in the PSS model description, as well as
11 manipulation of the value of register fields by name.

12 All the core library constructs in this section are declared in the addr_reg_pkg package. For brevity, the
13 definitions below do not include the package name.

14 24.11.1 PSS register definition
15 A register is a logical aggregation of fields that are addressed as a single unit.

16 The reg_c component is a base type for specifying the programmable registers of the DUT. Note that it is
17 a pure component (see 9.6). It shall be illegal to extend the reg_c class.
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enum reg access {READWRITE, READONLY, WRITEONLY};
pure component reg c < type R,
reg access ACC = READWRITE,
int SZ = (8*sizeof s<R>::nbytes)> {
target function R read();
target function void write(R r);
target function bit([SZ] read val();
target function void write val (bit[SZ] r);
target function void write masked(R mask, R val);
target function void write val masked(bit[SZ] mask, bit[SZ] wval);

target function void write field(string name, bit[SZ] val);

target function void write fields(list<string> names,
list<bit[SZ]> wvals);

2 Syntax 145—PSS register definition

3 Component reg_c is parameterized by:

4 a) A type R for the value (referred to as the register-value type) that can be read/written from/to the
5 register, which can be:

6 1) A packed structure type (that represents the register structure)
7 2) A bit-vector type (bit[N])
8 b) Kind of access allowed to the register, which by default is READWRITE

9 ¢) Width of the register (SZ) in number of bits, which by default equals the size of the register-value
10 type R (rounded up to a multiple of 8)

11 82, if specified by the user, shall be greater than or equal to the size of the register-value type R. If the size
12 of the register-value type R is less than the width of the register, it will be equivalent to having
138Z — sizeof s<R>::nbits reserved bits at the end of the structure.

14 The register access functions described in Syntax 145 may be called from the test-realization layer of a PSS
15 model. Being declared as target functions, these need to be called in an exec body context.

16 The read () and read_wval () functions return the value of the register in the DUT (the former returns an
17 instance of register-value type and the latter returns a bit vector). The write () and write_wval ()
18 functions update the value of a register in a DUT (the former accepting an instance of register-value type and
19the latter a bit vector). If the register-value type is a bit vector, then the functions read() and
20read_val () are equivalent, as are write () andwrite_val().

21The write masked() and write val masked() methods cause the register to be read, a write
22 value to be calculated from the current register value and the specified masked value, and the write value to
23 be written back to the register. The effect is the following:
24

25 REG_VAL (new) = (REG_VAL(current) & ~mask) | (val & mask)
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1If dedicated read-modify-write instructions are available on a platform, a PSS processing tool may, but is not
2 required to, implement these operations in terms of those instructions.

3The write_masked() and write_vwval masked () methods only differ in how the mask and value are
4 specified. In the case of write_wval masked (), both are specified as numeric quantities. In the case of
swrite_masked (), both are specified in terms of the register-value type used to define the register.

6 The write_field() and write_ fields () methods specify read-write-modify operations on a
7 register using named register fields. Note that these methods may only be used on registers specified in
gterms of a struct data type. The following restrictions apply to the field names specified to
swrite field() andwrite_ fields():

10 a) Only string literals may be used in specifying field names.
11 b) The names may only specify top-level fields, and may not specify dotted hierarchical references.
12 ¢) The field name may not refer to aggregate data type fields within the register.

13 d) The set of strings passed to write fields () must be unique.

14

struct CR : packed s<> {

bit en;
bit[11] pad;
bit[4] mode;
bit[16] coeff;
}
pure component dut regs c : reg group c {
reg c<CR> cr;

}

component dut c {
dut regs c regs;

action cfg a {
rand bit[4] mode;
rand bit[1l6] coeff;
exec body {
// Three equivalent ways to modify the 'mode' and 'coeff' fields
comp.regs.cr.write masked(
{.mode=~0, .coeff=~0}, {.mode=mode, .coeff=coeff});
comp.regs.cr.write val masked/(
OxXFFFFF000, (coeff << 16) | (mode << 12));
comp.regs.cr.write fields({"mode", "coeff"}, {mode, coeff});

action enable a {
exec body {
// Two equivalent ways to set the 'en' bit
comp.regs.cr.write masked({.en=~0}, {.en=1});
comp.regs.cr.write field("en", 1);

15 Example 313—Read-modify-write operations
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1In Example 313, a register is defined in terms of a packed struct with three operational fields and a reserved
2unused region (pad). In the action cfg_a, three different ways are shown to ensure that the mode and
3coeff fields are set to specific values while leaving the en field unmodified:

4 a) Mask and value parameters are formulated using struct literal expressions and passed to the
5 write_masked () method. Fields in the mask parameter are set to the negation of 0 (all bits set)
6 in order to cause the value of the corresponding register bits to be set. Unspecified fields in the mask
7 parameter take on the default value, which PSS specifies as 0 for integer data types.

[ee)

b) Numeric mask and value parameters are computed using shift and composition operations and
9 passed to the write_val masked () method.

10 c¢) Lists of field names and field values are passed to the write fields () method.

11 See 24.11.4 for a description of the implementation of these functions. It shall be an error to call a register
12 read or read-modify-write function on a register object whose access is set to WRITEONLY. It shall be an
13 error to call a register write or read-modify-write function on a register object whose access is set to
14 READONLY.

15 A template instantiation of the class reg_c (i.e., reg_c<R, ACC, S2z> for some concrete values for R,
16 ACC and SZ) or a component derived from such a template instantiation (directly or indirectly) is a register
17 type. An object of register type can be instantiated only in a register group (see 24.11.2).

18 Example 314 shows examples of register declarations.

19

struct my reg0 s : packed s<> { // (1)
bit [16] £1d0;
bit [16] fldl;

}i

pure component my reg0 c : reg c<my reg0 s> {} // (2)

struct my regl s : packed s<> {

bit £1d0;
bit [2] £1d1;
bit [2] fl1d2[5]; // (3)

}i

pure component my regl c : reg c<my regl s, READWRITE, 32> {} // (4)

20 Example 314—Examples of register declarations

21 Notes:

22 1) my reg0O_s is the register-value type. The endianness can be explicitly specified if needed.

23 2) my reg0_c is the register type. Since it derives from reg_c<my reg0_s>, it inherits the
24 reg_c read/write functions. Note that the access is READWRITE by default and the width
25 equals the size of the associated register-value type, my reg0_s.

26 3) Fixed-size arrays are allowed.

27 4) sizeof s<my regl s>::nbits = 13, which is less than the specified register width
28 (32). This is allowed and is equivalent to specifying a field of size 32 — 13 = 19 bits after
29 £1d2 [5]. This reserved field cannot be accessed using read () /write () functions on the
30 register object. In the numeric value passed to write_wval() and in the return value of
31 read_val (), the value of these bits is not defined by this standard.
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11t is recommended to declare the register type as pure. This allows the PSS implementation to optimally
2 handle large static register components.

324.11.2 PSS register group definition
4 A register group aggregates instances of registers and of other register groups.

5 The reg_group_c component is the base type for specifying register groups. Note that it is a pure
6 component (see 9.6). It shall be illegal to extend the reg_group_c class.

7
struct node s {
string name;
int index;
}i
pure component reg group c {
pure function bit[64] get offset of instance(string name);
pure function bit[64] get offset of instance array(string name,
int index);
pure function bit[64] get offset of path(list<node s> path);
solve function void set handle(addr handle t addr);
}i
8 Syntax 146—PSS register group definition

9 A register group may instantiate registers and instances of other register groups. An instance of a register
10 group may be created in another register group, or directly in a non-register-group component. In the latter
11 case, the register group can be associated with an address region. The set_handle () function associates
12 the register group with an address region. The definition of this function is implementation-defined. See
1324.11.3 for more details on use of this function.

14 Each element in a register group (whether an instance of a register or an instance of another group) has a
15 user-defined address offset relative to a notional base address of the register group.

16 The function get_offset_of instance () retrieves the offset of a non-array element in a register
17 group, by name of the element. The function get_offset of instance_array () retrieves the
18 offset of an array element in a register group, by name of the element and index in the array.

19 For example, suppose a is an instance of a register group that has the following elements:
20 — A register instance, r0

21— A register array instance, r1 [4]

22Calling a.get offset of instance("r0") returns the offset of the element r0. Calling a.
23get offset of instance array("rl", 2) returnsthe offset atindex 2 of element r1.

24 The function get_offset of path () retrieves the offset of a register from a hierarchical path of the
25 register, starting from a given register group. The hierarchical path of the register is specified as a list of
26node_s objects. Each node_s object provides the name of the element (as a string) and an index
27 (applicable if and only if the element is of array type). The first element of the list corresponds to an object
28 directly instantiated in the given register group. Successive elements of the list correspond to an object
29 instantiated in the register group referred by the predecessor node. The last element of the list corresponds to
30 the final register instance.
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1 For example, suppose b is an instance of a register group that has the following elements: a register group
2 array instance grpO [10], which in turn has a register group instance grpl, which in turn has a register
3 instance, r0. The hierarchical path of register r0 in grpl within grpO [5] within b will then be the list
4(e.g., path to_ r0) with the following elements in succession:

5 — [0]:node_s object with name = "grp0" and index =5
6 — [1]:node_s object with name = "grpl" (index is not used)
7 — [2]:node_s object with name = "r0" (index is not used)

gCalling b.get offset of path(path to_ r0) will return the offset of register r0 relative to the
9 base address of b.

10 For a given register group, users shall provide the implementation of either get_offset of path()or
1of both functions get_offset_of instance() and get_offset of instance_array().It
12 shall be an error to provide an 1mplementat10n of all three functions. These may be implemented as native
13 PSS functions, or foreign-language binding may be used. These functions (when implemented) shall provide
14 the relative offset of all the elements in the register group. These functions are called by a PSS tool to
15 compute the offset for a register access (as described later in 24.11.4). Note that these functions are declared
16 pure —the implementation shall not have side-effects.

17 Example 315 shows an example of a register group declaration.

18

pure component my reg grpO c : reg group c {
my readonly reg0 ¢ reg0; // (1)
my regl c regl[4]; /7 (2)
my sub_reg grp c sub; /7 (3)

reg c<my_ regx_ s, WRITEONLY, 32> regx; // (4)

// May be foreign, too
function bit[64] get offset of instance(string name) {
match (name) {

["reg0"]: return 0x0;
["sub"]: return 0x20;
["regx"]: return 0x0; // (5)

default: return -1; // Error case
}

function bit[64] get offset of instance array(string name, int index) {
match (name) {
["regl"]: return (0x4 + index*4);
default: return -1; // Error case

19 Example 315—Example of register group declaration

20 Notes:

21 1) my readonly reg0 c,my regl c,etc, are all register types (declarations not shown in
22 the example).

23 2) Arrays of registers are allowed.

24 3) Groups may contain other groups (declaration of my sub reg grp c not shown in the
25 example).
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A direct instance of reg_c<> may be created in a register group.

Offsets of two elements may be same. A typical use case for this is when a READONLY and a
WRITEONLY register share the same offset.

424.11.3 Association with address region

5 Before the read/write functions can be invoked on a register, the top-level register group (under which the
6 register object has been instantiated) must be associated with an address region, using the set_handle ()
7 function in that register group. This is done from within an exec init_up or init_down context. Only the top-
8 level register group shall be associated with an address region; it shall be an error to call set_handle ()
9 on other register group instances. An example is shown in Example 316.

10

component my component c

{

my reg grp0 c grp0; // Top-level group
transparent addr space c<> sys mem;

exec init up {

transparent addr region s<> mmio region;
addr_handle t h;

mmio region.size = 1024;

mmio region.addr 0xAQ0000000;

h = sys mem.add nonallocatable region(mmio region);

grp0.set handle(h);

Example 316—Top-level group and address region association

12 24.11.4 Translation of register read/write

13 The PSS implementation shall convert invocations of the register access functions described in Syntax 145
14to invocations of the primitive read/write operations on the address associated with the register (see
1524.10.9.1 and 24.10.9.2). The conversion shall proceed as follows:

16
7

18
19
20

21
22

23
24
25
26
27
28

29
30

a)

b)

The read/write function is selected based on the size of the register. For example, if the size of the
register is 32, the function read32 (addr_handle_t hndl) will be called for a register read.

The total offset is calculated by summing the offsets of all elements starting from the top-level regis-
ter group to the register itself.

)]

2)

If the function get_offset_of path() is available in any intermediate register group
instance, the PSS implementation will use that function to find the offset of the register relative
to the register group.

Otherwise, the function get_offset of instance_array() or get off-
set_of_instance () isused, depending on whether or not the register instance or register
group instance is an array.

For example, in the expression (where a, b, c, and d are all instances of register groups and req is
a register object):

comp.a.b.c.d[4].reg.write val(10)

if the function get_offset of path () is implemented in the type of element c, then the offset
is calculated as:
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1 offset = comp.a.get offset of instance("b") +

2 comp.a.b.get offset of instance("c") +

3 comp.a.b.c.get offset of path(path)

4 where path isthelist [ {"d", 4}, {"reg", 0} 1.

5 ¢) The handle for the access is calculated as make_handle from handle(h, offset), where
6 h is the handle set using set_handle () on the top-level register group.

724.11.5 Recommended packaging

8 It is recommended that all the register (and register group) definitions of a device be placed in a separate file
9 and in a separate package by themselves, as shown in Example 317.

10

// In my IP regs.pss
package my IP regs ({
import addr reg pkg::*;
struct my reg0 s : packed s<> { ... };
pure component my reg0 ¢ : reg c<my reg0 s, READWRITE, 32> { ... };
// ... etc: other registers
pure component my reg group C : reg group c {
my reg0 c r0O;
// ... etc: other registers
}i
}
1 Example 317—Recommended packaging

12 This ensures that the register file can be easily generated from a register specification (e.g., IP-XACT).
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1Annex A
2 (informative)
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1Annex B
2 (normative)

;Formal syntax

4 The PSS formal syntax is described using Backus-Naur Form (BNF). The syntax of the PSS source is
s derived from the starting symbol Model. If there is a conflict between a grammar element shown anywhere
6 in this standard and the material in this annex, the material shown in this annex shall take precedence.

7

8 Model ::= { portable stimulus description }
9

10 portable stimulus description ::=

il package body item

12 | package declaration

13 | component_declaration

14 B.1 Package declarations

15 package declaration ::= package package id path { { package body item } }
16

17 package id path ::= package identifier { :: package identifier }

18

19 package body item ::=

20 abstract action declaration

21 abstract monitor declaration

22 struct declaration

23 enum_declaration

24 covergroup declaration
25 function decl

26 import class decl

27 procedural function

28 import function

29 target template function

|
|
|
|
|
|
|
|
|
30 | export action
31 | typedef declaration
|
|
|
|
|
|
|
|

32 import stmt

33 extend stmt

34 const field declaration

35 component declaration

36 package declaration

37 compile assert stmt

38 package body compile if

39 stmt terminator

40

41 import stmt ::= import package import pattern ;
42

43 package import pattern ::= type identifier [ package import qualifier ]
44

45 package import qualifier ::=

46 package import wildcard

47 | package import alias

48

49 package import wildcard ::= i *
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1

2 package import alias ::= as package identifier

3

4 extend stmt ::=

5 extend action type identifier { { action body item } }

6 | extend component type identifier { { component body item } }
7 | extend struct kind type identifier { { struct body item } }
8 | extend enum type identifier { [ enum item { , enum item } ] }
9

10 const field declaration ::= [ static ] const data declaration

n

12 stmt_ terminator ::= §

13 B.2 Action declarations

14 action declaration ::= action action identifier

15 [ template param decl list ] [ action super spec ] { { action body item } }
16

17 abstract action declaration ::= abstractaction declaration
18

19 action super spec ::= : type identifier

20

21 action body item ::=

22 activity declaration

23 | override declaration

24 | constraint declaration

25 | action field declaration

26 | symbol declaration

27 | covergroup declaration

28 | exec block stmt

29 | activity scheduling constraint

30 | attr group

31 | compile assert stmt

32 | covergroup instantiation

33 | action body compile if

34 | stmt terminator

35

36 activity declaration ::= activity { { activity stmt } }

37

38 action field declaration ::=

39 attr field

40 | activity data field

41 | action handle declaration

42 | object ref field declaration

43

44 object ref field declaration ::=

45 flow ref field declaration

46 | resource ref field declaration

47

48 flow ref field declaration ::=

49 ( input | output ) flow object type object ref field {, object ref field } ;
50

51 resource ref field declaration ::=

52 ( lock | share ) resource object type object ref field {, object ref field } ;
53
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flow object type ::=

buffer type identifier
state type identifier
stream type identifier

resource object type ::= resource type identifier

object ref field ::= identifier [ array dim ]

action handle declaration ::= action type identifier action instantiation ;

action instantiation ::=

action handle identifier [ array dim ]

{ , action handle identifier [ array dim ] }
activity data field ::= action data declaration
activity scheduling constraint ::= constraint ( parallel | sequence )

{ hierarchical id , hierarchical id { , hierarchical id } };

20 B.3 Struct declarations

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/1
P
43
44
45
46

struct declaration ::= struct kind struct identifier
[ template param decl list ] [ struct super spec ] { { struct body item } }

struct kind ::=

struct
object kind

object kind ::=

buffer
stream
state
resource

struct super spec ::= ! type identifier

struct body item ::=

constraint declaration
attr field

typedef declaration

exec block stmt

attr group

compile assert stmt
covergroup declaration
covergroup instantiation
struct body compile if
stmt terminator
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1B.4 Exec blocks

exec block stmt ::=
exec block
| target code exec block
| target file exec block
| stmt terminator

exec_block ::= exec exec kind { { exec_stmt } }

exec kind ::=
pre_solve

| post_solve

| pre_body

| body

| header

| declaration

| run_start

| run_end

| init_down

| init_up

| init

exec_stmt ::=
procedural stmt
| exec super stmt

exec super stmt ::= super;
target code exec block ::= exec exec_kind language identifier = string literal;
target file exec block ::= exec file filename string = string literal ;

32 B.5 Functions

33
34
35
36
37
38
39
40
M
4
43
44
45
46
47
48
49
50
51
52

procedural function ::= [ platform qualifier ] [ pure ] [ static ] function
function prototype { { procedural stmt } }

function decl ::= [ platform qualifier ][ pure ] [ static ] function
function prototype ;
platform qualifier ::=
target
| solve

function prototype ::=
function return type function identifier function parameter list prototype

function return type ::=
void
| data type

function parameter list prototype ::=
( [ function parameter { , function parameter } ] )
| ( { function parameter , } varargs parameter )
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function parameter ::=
[ function parameter dir | const ]

data type identifier [ = constant expression ]
[const] ( type | ref type category | struct ) identifier

function parameter dir ::=

input

| output

inout

varargs parameter ::=

( data_type | type | ref type category | struct ) .. identifier

13 B.6 Foreign procedural interface

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import function ::=

import [ platform qualifier ] [ language identifier ]
function type identifier ;
import [ platform qualifier ] [ language identifier ] [ static ]

function function prototype ;

platform qualifier ::=

target
solve

target template function ::=

target language identifier [ static ]
function function prototype = string literal ;

import class decl ::= importclass import class identifier

[ import class extends ] { { import class function decl } }

import class extends ::= : type identifier { , type identifier }

import class_ function decl ::= function prototype ;

export action ::= export [ platform qualifier ] action type identifier

function parameter list prototype ;

37 B.7 Procedural statements

38
39
40
41
2
43
44
45
46
47
48
49
50

procedural stmt ::=

procedural sequence block stmt
procedural data declaration
procedural assignment stmt
procedural void function call stmt
procedural return stmt
procedural repeat stmt
procedural foreach stmt
procedural if else stmt
procedural match stmt
procedural break stmt
procedural continue stmt
procedural randomization stmt
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1 | procedural compile if

2 | procedural yield stmt

3 | stmt terminator

4

5 procedural sequence block stmt ::= [ sequence ] { { procedural stmt } }
6

7 procedural data declaration ::= data type procedural data instantiation
8 { , procedural data instantiation } ;

9

10 procedural data instantiation ::= identifier [ array dim ] [ = expression ]
Il

12 procedural assignment stmt ::= ref path assign op expression ;

13

14 procedural void function call stmt ::= [ (veid) ] function call ;

15

16 procedural return stmt ::= return [ expression ] ;

7

18 procedural repeat stmt ::=

19 repeat ( [ index identifier : ] expression ) procedural stmt

20 | repeat procedural stmt while ( expression ) ;

21 | while ( expression ) procedural stmt

22

23 procedural foreach stmt ::=

24 foreach ( [ iterator identifier : ] expression [ [ index identifier | 1)
25 procedural stmt

26

27 procedural if else stmt ::=

28 if ( expression ) procedural stmt [ else procedural stmt ]

29

30 procedural match stmt ::=

31 match ( match _expression )

32 { procedural match choice { procedural match choice } }

33

34 procedural match choice ::=

35 [ open range list | : procedural stmt

36 | default: procedural stmt

37

38 procedural break stmt ::= break;

39

40 procedural continue stmt ::= continue ;

A

42 procedural randomization stmt ::=

43 randomize procedural randomization target procedural randomization term
44

45 procedural randomization target ::= hierarchical id { , hierarchical id }
46

47 procedural randomization term ::=

48 with constraint set

49 |5

50 procedural yield stmt ::=

w1
iy

yield ;

s B.8 Component declarations

53 component declaration ::=
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pure ] component component identifier [ template param decl list ]

1

2 [ component super spec ] { { component body item } }
3

4 component super spec ::= ! type identifier

5

6 component body item ::=

7 override declaration

8 | component data declaration

9 | component pool declaration

10 | action declaration

il | abstract action declaration

12 | object bind stmt

13 | exec block

14 | struct declaration

15 | enum declaration

16 | covergroup declaration

17 | function decl

18 | import class decl

19 | procedural function

20 | import function

21 | target template function

22 | export action

23 | typedef declaration

24 | import stmt

25 | extend stmt

26 | compile assert stmt

27 | attr group

28 | component body compile if

29 | stmt terminator

30

31 component data declaration ::=

32 [ access modifier ] [ static const ] data declaration

33

34 component pool declaration ::=

35 pool [ [ expression | ] type identifier identifier ;

36

37 object bind stmt ::= bind hierarchical id object bind item or list ;
38

39 object bind item or list ::=

40 object bind item path

| | { object bind item path { , object bind item path } }
42

43 object bind item path ::= { component path elem . } object bind item
44

45 component path elem ::= component identifier [ [ domain open range list | ]
46

47 object bind item ::=

48 action type identifier . identifier [ [ domain open range list | ]
49 | *

s0 B.9 Activity statements

51 activity stmt ::=

52 [ lIabel identifier : ] labeled activity stmt

53 | activity action traversal stmt

54 | activity data field
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activity bind stmt

action handle declaration
activity constraint stmt
activity scheduling constraint
stmt terminator

labeled activity stmt ::=

activity sequence block stmt
activity parallel stmt
activity schedule stmt
activity repeat stmt
activity foreach stmt
activity select stmt
activity if else stmt
activity match stmt
activity replicate stmt
activity super stmt
activity atomic block stmt
symbol call

activity action traversal stmt ::=

identifier [ [ expression | ] inline constraints or empty
[ label identifier : ] do type identifier inline constraints or empty

inline constraints or empty ::=

activity sequence block stmt ::= [ sequence ] { { activity stmt } }
activity parallel stmt

activity schedule stmt ::= schedule [ activity join spec ] { { activity stmt } }

with constraint set

b

activity join spec ::=

activity join branch

activity join select

activity join branch
activity join select
activity join none
activity join first

activity join none ::= join_none

activity join first

activity repeat stmt ::=

activity foreach stmt

[

activity select stmt ::= select { select branch select branch { select branch } }

repeat ( [ index identifier : ] expression ) activity stmt
repeat activity stmt while ( expression ) ;

| index identifier ]| ] ) activity stmt

Copyright © 2024 Accellera. All rights reserved.
446

::= parallel [ activity join spec ] { { activity stmt } }

::= join_branch ( label identifier { , label identifier } )

::= join_select ( expression )

::= join_first ( expression )

::= foreach ( [ iterator identifier : ] expression



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1 select branch ::= [[ ( expression ) ][ | expression | ] : ] activity stmt
2

3 activity if else stmt ::= if ( expression ) activity stmt [ else activity stmt ]
4

5 activity match stmt ::=

6 match ( match expression ) { match choice { match choice } }

7

8 match expression ::= expression

9

10 match choice ::=

1 [ open _range list | : activity stmt

12 | default : activity stmt

13

14 activity replicate stmt ::= replicate ( [ index identifier:] expression)
15 [ label identifier[]:] labeled activity stmt

16

17 activity super stmt ::= super ;

18

19 activity atomic _block stmt ::= atomic { { activity stmt } }

20

21 activity bind stmt ::= bind hierarchical id activity bind item or list ;
22

23 activity bind item or list ::=

24 hierarchical id

25 | { hierarchical id list }

26

27 activity constraint stmt ::= constraint constraint set

28

29 symbol declaration ::=

30 symbol symbol identifier [ ( symbol paramlist ) ] { { activity stmt } }
31

32 symbol paramlist ::= [ symbol param { , symbol param } ]

33

34 symbol param ::= data type identifier

35 B.10 Overrides

36 override declaration ::= override { { override stmt } }

37

38 override stmt ::=

39 type override

40 | instance override

41 | override compile if

42 | stmt terminator

43

44 type override ::= type type identifier with type identifier ;
45

46 instance override ::= instance hierarchical id with type identifier ;

47 B.11 Data coverage specification

48 data declaration ::= data type data instantiation { , data instantiation } ;
49
50 data instantiation ::= identifier [ array dim ] [ = constant expression ]
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array dim ::= [ constant expression |

attr field ::= [ access modifier ] [ rand | static const ] data_declaration
access _modifier ::= public | protected | private

attr group ::= access modifier :

9 B.12 Behavioral coverage specification

cover_ stmt::=

[ label identifier: ] cover type identifier
| [ label identifier: ] cover { { monitor body item } }
monitor declaration ::= monitor monitor identifier
[ template param decl list ] [ monitor super spec ] { { monitor body item
abstract monitor declaration ::= abstract monitor declaration
monitor super spec ::= ! type identifier

monitor body item ::=
monitor activity declaration
| override declaration
| monitor constraint declaration
| monitor field declaration
| covergroup declaration
| attr group
| compile assert stmt
| covergroup instantiation
| monitor body compile if
| stmt terminator

monitor field declaration ::=
const field declaration
| action handle declaration
| monitor handle declaration

monitor activity declaration ::=

activity { { monitor activity stmt } }

monitor activity stmt ::=

[ label identifier : ] labeled monitor activity stmt

activity action traversal stmt

monitor activity monitor traversal stmt

monitor handle declaration

monitor activity constraint stmt

|
|
| action handle declaration
|
|
|

stmt terminator

labeled monitor activity stmt ::=

monitor activity sequence block stmt

| monitor activity concat stmt

| monitor activity eventually stmt

| monitor activity overlap stmt
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identifier [ [ expression | ] inline constraints or empty

| [ label identifier : ] do type
inline constraints or empty ::=
with constraint set

I3

monitor handle declaration ::= moni
monitor instantiation ;

monitor instantiation ::=
monitor identifier [ array dim ]

identifier inline constraints or empty

tor type identifier

{ , monitor identifier [ array dim ]}

monitor activity sequence block stm

t ::= [ sequence ] {{monitor activity stmt}}

monitor activity concat stmt ::= concat {{monitor activity stmt}}

monitor activity eventually stmt
monitor activity schedule stmt ::=

monitor activity select stmt ::= sel
monitor activity stmt { monitor act

monitor activity schedule stmt ::=

monitor activity monitor traversal

::= eventually monitor activity stmt

overlap {{monitor activity stmt}}

ect {monitor activity stmt
ivity stmt }}

schedule {{monitor activity stmt}}

stmt ::=

monitor identifier [ | expression | ] inline constraints or empty

| [ label identifier : ] do monit
inline constraints or empty

monitor inline constraints or empty
with monitor constraint_ set

(I
monitor activity constraint stmt

monitor constraint declaration ::=
constraint monitor constraint
| constraint identifier monitor con

monitor constraint set ::=
monitor constraint body item
| monitor constraint block

or type identifier

::= constraint monitor constraint set

_set
straint block

monitor constraint block ::= { { monitor constraint body item } }

monitor constraint body item ::=
expression constraint item
| foreach constraint item
| forall constraint item
| if constraint item
| implication constraint item
| unique constraint item
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1 | constraint compile if
2 | stmt terminator

3B.13 Template types

4 template param decl list ::= < template param decl { , template param decl } >
5

6 template param decl ::= type param decl | value param decl

7

8 type param decl ::= generic type param decl | category type param decl

9

10 generic type param decl ::= type identifier [ = type identifier ]

12 category type param decl ::=

13 type category identifier [ type restriction ] [ = type identifier ]
14
15 type restriction ::= ! type identifier

17 type category ::=

18 action

19 | component

20 | struct kind

21

22 value param decl ::= data type identifier [ = constant expression ]
23

24 template param value list ::=

25 < [ template param value { , template param value } ] >

26

27 template param value ::= constant expression | data type

23 B.14 Data types

29 data type ::=

30 scalar data type
31 | collection type
32 | reference type
33 | type identifier
34

35 scalar data type ::=
36 chandle type

37 | integer type

38 | string type

39 | bool type

40 | enum type

41 | float type

42

43 casting type ::=

44 integer type

45 | bool type

46 | enum type

47 | float type

48 | reference type
49 | type identifier
50

51 chandle type ::= chandle
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1

2 integer type ::= integer atom type

3 [ [ constant expression [ : 0 ] ] ]

4 [ in [ domain open range list | ]

5

6 integer atom type ::=

7 int

8 | bit

9

10 domain open range list ::=

M domain open range value { , domain open range value }
12

13 domain open range value ::=

14 constant expression [ .. constant expression ]
15 | constant_expression .

16 | e constant_expression

17

18 string type ::= string [ in [ string literal { , string literal } | ]
19

20 bool type ::= bool

21

22 enum declaration ::=

23 enum enum identifier [ : data type ] { [ enum item { , enum item } ] }
24

25 enum item ::= identifier [ = constant expression ]

26

27 enum_ type ::= enum type identifier [ in [ domain open range list | ]
28

29 float type ::=

30 float32

31 | float64

32

33 collection type ::=

34 array < data type , array size expression >

35 | list < data type >

36 | map < data type, data type >

37 | set < data_type >

38

39 array size expression ::= constant expression

40

41 reference type ::= ref entity type identifier

42

43 typedef declaration ::= typedef data type identifier ;

44 B.15 Constraints

45 constraint declaration ::=

46 constraint constraint set

47 | [ dynamic ] constraint identifier constraint block
48

49 constraint set ::=

50 constraint body item

51 | constraint block

52

53 constraint block ::= { { constraint body item } }
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1

2 constraint body item ::=

3 expression constraint item

4 | foreach constraint item

5 | forall constraint item

6 | if constraint item

7 | implication constraint item

8 | unique constraint item

9 | default hierarchical id == constant expression ;

10 | default disable hierarchical id ;

1 | dist directive

12 | constraint body compile if

13 | stmt terminator

14

15 expression constraint item ::= expression ;

16

17 foreach constraint item ::=

18 foreach ( [ iterator identifier : ] expression [ [ index identifier | ] )
19 constraint set

20

21 forall constraint item ::=

22 forall ( iterator identifier : type identifier [ in ref path ] ) constraint set
23

24 if constraint item ::= if ( expression ) constraint set [ else constraint set ]
25

26 implication constraint item ::= expression -> constraint set
27

28 unique constraint item ::= unique { hierarchical id list } ;
29

30 dist directive ::= dist expression in [ dist list | ;

31

32 dist list = dist item { , dist item }

33

34 dist item ::= open range value [ dist weight ]

35

36 dist weight ::=

37 = expression

38 | :/ expression

39 B.16 Coverage specification

40 covergroup declaration ::= covergroup covergroup identifier
41 ( covergroup port {, covergroup port } ) { { covergroup body item } }
42

43 covergroup port ::= data type identifier

44

45 covergroup body item ::=

46 covergroup option

47 | covergroup coverpoint

48 | covergroup cross

49 | covergroup body compile if

50 | stmt terminator

51

52 covergroup option ::=

53 option . identifier = constant expression ;

54
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covergroup instantiation ::=
covergroup type instantiation
| inline covergroup

inline covergroup

:= covergroup { { covergroup body item } } identifier ;

covergroup type instantiation ::=

covergroup type

identifier covergroup identifier

( covergroup portmap list ) covergroup options_or empty

covergroup portmap list ::=
covergroup portmap { , covergroup portmap }
| hierarchical id list

covergroup portmap

::= . identifier ( hierarchical id )

covergroup options or empty ::=
with { { covergroup option } }

I3

covergroup coverpoint ::= [ [ data type ] coverpoint identifier : ] coverpoint

expression [ iff

bins or empty ::=

( expression ) ] bins or empty

{ { covergroup coverpoint body item } }

I3

covergroup coverpoint body item ::=
covergroup option
| covergroup coverpoint binspec

covergroup coverpoint binspec ::= bins keyword identifier
[ [ [ constant expression ] | ] = coverpoint bins

coverpoint bins ::=

| covergroup range list | [ with ( covergroup expression ) ] ;

| coverpoint identifier with ( covergroup expression ) ;

| default ;

covergroup range list ::= covergroup value range { , covergroup value range }

covergroup value range ::=

expression
| expression .. [ expression ]
| [ expression ] .. expression
bins_keyword ::= bins | illegal _bins | ignore_bins
covergroup expression ::= expression

covergroup_ cCross

covercross identifier : €ross coverpoint identifier

{, coverpoint identifier }[ iff ( expression ) ] cross item or null

cross_item or null

{ { covergroup cross body item } }

I3
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covergroup cross _body item ::=
covergroup option
| covergroup cross_binspec

covergroup cross_binspec ::= bins keyword identifier = covercross identifier

(o) NN U, R N CU R |G R

with ( covergroup expression ) ;

7B.17 Conditional compilation

8 package body compile if ::= compileif ( constant expression )

9 package body compile if item [ else package body compile if item ]
10

11 monitor body compile if ::= compileif ( constant expression )

12 monitor body compile if item [ else monitor body compile if item ]
13

14 action body compile if ::= compileif ( constant expression )

15 action body compile if item [ else action body compile if item ]
16

17 component body compile if ::= compileif ( constant expression )

18 component body compile if item [ else component body compile if item ]
19

20 struct_body compile if ::= compileif ( constant expression )

21 struct_body compile if item [ else struct body compile if item ]
22

23 procedural compile if ::= compileif ( constant expression )

24 procedural compile if stmt [ else procedural compile if stmt ]
25

26 constraint body compile if ::= compileif ( constant expression )

27 constraint body compile if item [ else constraint body compile if item ]
28

29 covergroup body compile if ::= compileif ( constant expression )

30 covergroup body compile if item [ else covergroup body compile if item ]
31

32 override compile if ::= compileif ( constant expression )

33 override compile if stmt [ else override compile if stmt ]

34

35 package_body_compile_if_item11 ii={ | package body item } }

36

37 action body compile if item'! ::= { { action body item } }

38

39 monitor body compile if item!! ::= { { monitor body item } }

40

41 component_body_compile_if_itemll ::= { { component body item } }

42

43 struct_body_compile_if_itemll ::= { { struct body item } }

44

45 procedural compile if stmt!! ::= { { procedural stmt } }

46

47 constraint_body_compj_le_j_f_itemll ::= { { constraint body item } }
48

LS previous versions of PSS, a compile if branch consisting of a single item, such as a single package body item, did not have to be
enclosed in curly braces. That syntax has been deprecated.
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1

compile assert stmt ::=

1 covergroupibodyicompileiifiitem1 ::= { { covergroup body item } }
2

3 override compile if stmt!! ::= { { override stmt } }

4

5 compile has expr ::= compile has ( static ref path )

6

7

8

compile assert ( constant expression [, string literal ] ) ;

9B.18 Expressions

10 constant expression ::= expression
Il

12 expression ::=

13 primary

14 unary operator primary

|
15 | expression binary operator expression
16 | conditional expression
|

17 in expression

18

19 unary operator ::=- | ! | ~ | & || |

20

21 binary operator ::=

22 Ll % - << > == <<= > >= | && ||
23 | A & | **

24

25 assign op ::= = | += | = | <<= | >>= | |= | &=
26

27 conditional expression ::= cond predicate ? expression : expression
28

29 cond predicate ::= expression

30

31 in expression ::=

32 expression In | open range list |

33 | expression in collection expression

34

35 open _range list ::= open range value { , open range value }
36

37 open_range value ::= expression [ .. expression ]
38

39 collection expression ::= expression

40

41 primary ::=

42 number

43 | aggregate literal

44 | bool literal

45 | string literal

46 | null ref

47 | paren expr

48 | cast expression

49 | ref path

50 | compile has expr

51

52 paren_expr ::= ( expression )

53
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1 cast_expression ::= ( casting type ) expression

2

3 ref path ::=

4 static ref path [ . hierarchical id ] [ slice ]

5 | [ super. ] hierarchical id [ slice ]

6 slice ::= bit slice | string slice

7

8 static _ref path ::= [ i ] { type identifier elem :! } member path elem
9

10 bit slice ::= [ constant expression : constant expression |

1l

12 string slice ::=

13 expression [ .. expression ]

14 | expression

15 | .. expression

16

17 function call ::=

18 super . function ref path

19 | [ 2] { type identifier elem :: } function ref path

20

21 function ref path ::= { member path elem . } identifier function parameter list
22

23 symbol call ::= symbol identifier function parameter list ;

24

25 function parameter list ::= ( [ expression { , expression } ] )

26 B.19 Identifiers

27 identifier ::=

28 ID

29 | ESCAPED ID

30

31 hierarchical id list ::= hierarchical id { , hierarchical id }
32

33 hierarchical id ::= member path elem { . member path elem }
34

35 member path elem ::= identifier [ function parameter list ] { [ expression | }
36

37 action identifier ::= identifier

38

39 action handle identifier ::= identifier

40

41 component identifier ::= identifier

42

43 covercross_identifier ::= identifier

44

45 covergroup identifier ::= identifier

46

47 coverpoint identifier ::= identifier

48

49 enum identifier ::= identifier

50

51 function identifier ::= identifier

52

53 import class identifier ::= identifier

54
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identifier ::=
or identifier
identifier ::=
ge identifier

r identifier

package identifier

struct identifier

symbol identifier

type 1

type 1

action type identifier

buffer type identifier ::= type identifier
component type identifier ::= type identifier
covergroup type identifier ::= type identifier
enum type identifier ::= type identifier
monitor type identifier ::= type identifier
resource type identifier ::= type identifier

dentifier ::=

dentifier elem

identifier

:= identifier

identifier

::= identifier

[

state type identifier

stream type identifier ::= type identifier

identifier

identifier

identifier

identifier

] type identifer elem ({

type identifer elem }

:= identifier [ template param value list ]

:= type identifier

entity type identifier ::=
action type identifier
component type identifier
flow object type

resource object type

44 B.20 Numbers and literals

45
46
47
48
49
50
51
52
53
54
55

number

intege

integer number

floating point number

r number ::=
bin number
oct number
dec number
hex number

based bin number
based oct number

type identifier

Copyright © 2024 Accellera. All rights reserved.

457



O 0 N o U1 A W N

v LU L AR RN N DN AN RN AN W WWWWW W W W RN NDNRNNDNN DN 4 s s s
N oA W DO 0o N0tk DO 0N RN IO OONOoO A WN SISO OO0 ;s WO

Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

| based dec number
| based hex number

bin digit ::= [0-1]

oct digit ::= [0-7]

dec_digit ::= [0-9]

hex digit ::= [0-9] | [a-f] | [A-F]

bin number ::= 0[b|B] bin digit { bin digit | _ }
oct_number ::= 0 { oct digit | }

dec_number ::= [1-9] { dec digit | _ }

hex number ::= 0[x|X] hex digit { hex digit | _ }
BASED BIN LITERAL ::= '[s|S]b|B bin digit { bin digit | _ }

BASED OCT_LITERAL

BASED DEC LITERAL

BASED HEX LITERAL

based bin number ::= [
based oct number ::= [
based dec number ::= [
based hex number ::= [

floating point number ::=

dec number ]
dec number ]

dec number ]

'[sIS]0]0 oct _digit { oct digit | _ }
"[s1S1d|D dec_digit { dec digit | _ }
"[sISTh|H hex digit { hex digit | _ }

dec number ] BASED BIN LITERAL

BASED OCT LITERAL
BASED DEC_LITERAL

BASED HEX LITERAL

floating point dec number
| floating point sci number

unsigned number ::=
floating point dec number

floating point sci number
unsigned number

exp ::=¢ | E
sign ::= + | -

aggregate literal ::=

dec _digit

[ . unsigned number ] exp

empty aggregate literal

| value list literal
| map literal
| struct literal

empty aggregate literal

{ dec digit | _ }

unsigned number . unsigned number

[ sign ] unsigned number

{3
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1

2 value list literal ::= { expression { , expression } }

3

4 map_literal ::= { map literal item { , map literal item } }
5

6 map literal item ::= expression : expression

7

8 struct literal ::= { struct literal item { , struct literal item } }
9

10 struct literal item ::= . identifier = expression

n

12 bool literal ::=

13 true

14 | false

15

16 null ref ::= null

17 B.21 Additional lexical conventions

18 SL_COMMENT ::= //{any ASCII character except newline}\n

19

20 ML _COMMENT ::= /*{any ASCII character}®/

21

22 string literal ::=

23 QUOTED_STRING

24 | TRIPLE QUOTED STRING

25

26 QUOTED STRING ::= " { unescaped character | escaped character } "
27

28 unescaped character ::= any printable ASCII character

29

30 escaped character ::= \('|"|?|\|a|b|fin|r|t|v|[0-7][0-7][0-7])
31

32 TRIPLE QUOTED STRING ::= """{any ASCII character}"""

33

34 filename string ::= QUOTED STRING

35

36 ID ::= [a-Z] | [A-Z]|_ {[a-z]|[A-Z]|_I[0-9]}

37

38 ESCAPED ID ::= \{any printable ASCII character except whitespace} whitespace
39

40 whitespace ::= space | tab | newline | end of file
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1Annex C

2 (normative)

;Core library package

4 This annex contains the contents of the built-in core library packages std _pkg, executor pkg and
saddr_reg pkg described in Clause 24. If there is a conflict between core library package contents shown
6 anywhere in this standard and the material in this annex, the material shown in this annex shall take
7 precedence.

s C.1 Package std_pkg

9
10

12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/1
2
43
44
45
46
47
48
49
50

package std pkg {

enum endianness e {LITTLE ENDIAN, BIG ENDIAN};
struct packed s<endianness e e = LITTLE ENDIAN> ({};

struct sizeof s<type T> ({
static const int nbytes = /* implementation-specific */;
static const int nbits = /* implementation-specific */;

b

// Functions available on solve platform only
solve pure function string format (string format str, type... args);
solve function void print(string format str, type... args);

enum message verbosity e {NONE, LOW, MEDIUM, HIGH, FULL};

// Function available on target platform only
target function void message
(message verbosity e vrb level, string format str, type... args);

typedef chandle file handle t;
static const file handle t nullfilehandle = /* implementation-specific */;

enum file option e {TRUNCATE, APPEND, READ};

// Functions available on solve platform only

solve function file handle t file open(string filename, file option e opt);
solve function void file close(file handle t file handle);

solve function bool file exists(string filename);

solve function void file write
(file handle t file handle, string format str, type... args);
solve function string file read(file handle t file handle, int size = -1);

solve function void file write lines
(string filename, list<string> lines, file option e opt):;
solve function list<string> file read lines(string filename);

function void error(string format str, type... args);

function void fatal (int status, string format str, type... args);
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// random functions

function bit[32]
function bit[32] urandom range (bit[32] min, bit[32] max);

urandom () ;

// Floating-point Storage Types

struct float base s <int Wm,

packed s<E> ({

// Pre-defined storage types to match computation types

rand bit [Wm]
rand bit[We]
rand bit

mantissa;
exponent;
sign;

typedef float base s<23, 8> float32 s;
typedef float base s<52,11> float64 s;

// Floating-point Functions

pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure
pure

pure
pure
pure
pure

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

function
function
function
function

floato64
floato4d
floato4d
floato4d
floato4
floatoe4d
floato64
floato4
floato4d
floato4d
floato4
floato64
floato64
floato4d
floato4d
floato4d
floato4
floato64
floato64
floato4d
floato4d
floato4d

bit[52]
bit[11]

log(float64d x);
loglO(float64d x);

exp (float6d x);

sqrt (float64d x);

pow (float64 x, floatbd vy);
round (float64d x);

floor (float6d x);

ceil (floatod x);

sin(float6d x);

cos (float6d x);

tan (float64 x);

asin(float64 x);

acos (float6d x);
atan(floatod x);

atan2 (float64 y, float6d x);
hypot (float64 x, float6d vy);
sinh (float64 x);

cosh (float64d x);

tanh (float64 x);
asinh(float6d x);

acosh (float6d x);

atanh (float64 x)

’

float mantissa(float6d fv);
float exponent (float6d fv);

bit float sign(float64 fv);

floato4

to float(bit[52] mantissa, bit[1l1l] exp, bit sign);
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1C.2 Package executor_pkg

package executor pkg f{

struct executor trait s {};

struct empty executor trait s : executor trait s {};

component executor base c {};

component executor c
<struct TRAIT : executor trait s
executor base c {
TRAIT trait;
b

component executor group c
<struct TRAIT : executor trait s

empty executor trait s>

empty executor trait s> {

solve function void add executor (ref executor c<TRAIT> exe);

)z

struct executor_claim_s
<struct TRAIT : executor trait s
rand TRAIT trait;
}i

function ref executor base c executor();

23 C.3 Package addr_reg_pkg

29
30
31
32
33
34
35
36
37
38
39
40
M
42
43
44
45
46
47
48
49
50
51
52
53
54

package addr reg pkg {
import std pkg::* ;
import executor pkg::* ;
component addr space base c {};
struct addr trait s {};
struct empty addr trait s : addr trait s {};

typedef chandle addr handle t;

component contiguous addr space c

<struct TRAIT : addr trait s

addr space base c {

empty executor trait s> {

= empty addr trait s>

solve function addr handle t add region(addr region s <TRAIT> r);

solve function addr handle t

add nonallocatable region (addr region s <> r);

bool byte addressable = true;
i

component transparent addr space c

<struct TRAIT: addr trait s
contiguous addr space c<TRAIT> {};

= empty addr trait s>
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component addr space group c {
function void add addr space(ref addr space base c address_ space);

}

struct addr region base s {
bit[64] size;
string tag;

b

struct addr region s <struct TRAIT : addr trait s = empty addr trait s>
addr region base s {
TRAIT trait;
i

struct transparent addr region s
<struct TRAIT : addr trait s = empty addr trait s>
addr region s<TRAIT> ({
bit[64] addr;
i

struct addr claim base s {
rand bit[64] size;
rand bool permanent;
constraint default permanent == false;

b

struct addr claim s <struct TRAIT : addr trait s = empty addr trait s>
addr claim base s {
rand TRAIT trait;
rand bit[64] in [64'd2**0, 64'd2**1, 64'd2**2, 64'd2**3 , 64'd2**4 ,
64'd2**5 , 64'd2**6 , 64'd2**7 , 64'd2**8 , 64'd2**9 , 64'd2**10,
64'd2**11, 64'd2**12, 64'd2**13, 64'd2**14, 64'd2**15, 64'd2**1le,
64'd2**17, 64'd2**18, 64'd2**19, 64'd2**20, 64'd2**21, 64'd2**22,
64'd2**23, 64'd2**24, 64'd2**25, 64'd2**26, 64'd2**27, 64'd2**28,
64'd2**29, 64'd2**30, 64'd2**31, 64'd2**32, 64'd2**33, 64'd2**34,
64'd2**35, 64'd2**36, 64'd2**37, 64'd2**38, 64'd2**39, 64'd2**40,
64'd2**41, 64'd2**42, 64'd2**43, 64'd2**44, 64'd2**45, 64'd2**4e6,
64'd2**47, 64'd2**48, 64'd2**49, 64'd2**50, 64'd2**51, 64'd2**52,
64'd2**53, 64'd2**54, 64'd2**55, 64'd2**56, 64'd2**57, 64'd2**58,
64'd2**59, 64'd2**60, 64'd2**6l, 64'd2**62, 64'd2**63] alignment;
i

struct transparent addr claim s
<struct TRAIT : addr_ trait s = empty addr trait s>
addr _claim s<TRAIT> ({
rand bit[64] addr;
i

const addr handle t nullhandle = /* implementation-specific */;

struct sized addr handle s < int Sz, // in bits
int 1sb = 0,
endianness e e = LITTLE ENDIAN >
packed s<e> {
addr handle t hndl;
i
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function addr handle t make handle from claim (addr claim base s claim,

bit[64] offset = 0);
function addr handle t make handle from handle (addr handle t handle,
bit[64] offset);
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target function bit[64]

addr value (addr_handle t hndl);

solve function bit[64] addr value solve(addr handle t hndl);

solve function bool

function string

target function bit[8] read8 (addr _handle t hndl);
target function bit[16] readl6(addr_handle t hndl);
target function bit[32] read32(addr_handle t hndl);
target function bit[64] read64 (addr handle t hndl);
target function void write8 (addr handle t hndl, bit[8] data);
target function void writel6 (addr handle t hndl, bit[16] data);
target function void write32(addr handle t hndl, bit[32] data);
target function void write64 (addr handle t hndl, bit[64] data);
target function void read bytes (addr handle t hndl, list<bit[8]> data,
int size);
target function void write bytes(addr handle t hndl, list<bit[8]> data);
target function void read struct (addr handle t hndl, struct
packed struct);
target function void write struct(addr handle t hndl, struct

addr value abs(addr handle t hndl);

get tag(addr handle t hndl);

packed struct);

extend component executor base c {
target function bit[64] addr value (addr handle t hndl);

solve function bit[64]

addr value solve (addr handle t hndl);

target function bit[8] read8 (addr_handle t hndl);
target function bit[16] readl6 (addr handle t hndl);
target function bit[32] read32(addr handle t hndl);
target function bit[64] readé64 (addr handle t hndl);
target function void write8 (addr handle t hndl, bit[8] data);
target function void writel6 (addr handle t hndl, bit[16] data);
target function void write32(addr handle t hndl, bit[32] data);
target function void write64 (addr handle t hndl, bit[64] data);

target function void read bytes (addr handle t hndl, list<bit[8]> data,

target function void write bytes(addr handle t hndl, list<bit[8]> data);

}i

enum reg access {READWRITE,

pure component reg c < type R,

reg access ACC =
int 87 =

target function R read();

target function void write(R r);

READONLY, WRITEONLY};

READWRITE,
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target
target
target
target
target
target

vals) ;

b

function

function

function

function

function

function

struct node s {
string name;

int

b

index;

bit[SZ] read val();

void

void

void

void

void

write val(bit[SZ] r);

write masked (R mask, R val);

write val masked(bit[SZ] mask, bit[SZ] wval);
write field(string name, bit([SZ] val);

write fields(list<string> names, list<bit[SZ]>

pure component reg group c {

pure function bit[64]
pure function bit[64]

get offset of instance(string name);
get offset of instance array(string name,
int index);

pure function bit[64] get offset of path(list<node s> path);

solve function void set handle(addr handle t addr);

b
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1Annex D
2 (normative)

;Foreign language bindings

4D.1 Function prototype mapping

s Let fbe a function declared under hierarchical path A in PSS with type signature as below (with D, as the
6 direction, T, as the type and p, as the parameter name):

7 JDogTopo D1 Tipyp - Dy T, py)s

8 When fis bound to a foreign language API (see 22.4), it is mapped to the following function in the target
9 language:

10 Hf (Topo T'1pr - Ty Py

11 If the foreign language supports parameter directions, their directions are the same as in PSS.

12 NOTE—See D.5 for exceptions when mapping PSS functions to SystemVerilog tasks.

13 Each parameter in the PSS function is mapped to a corresponding parameter in the mapped function. The
14 details of function name and data type binding are covered further below.

15 D.2 Data type mapping
16 PSS specifies data type bindings to C/C++ and SystemVerilog. The data type binding rules apply only to

17 parameter and return types referenced (directly or indirectly) in the declaration of functions in PSS that are
18 bound to foreign language APIs (see 22.4). The allowed types are specified in 22.4.1.1, namely:

19— Primitive types: bit or int (width no more than 64 bits), bool, string, chandle.

20 — User-defined types: enum and struct, excluding packed structs (see 24.8.1) and excluding flow/
21 resource objects. Fields of structs shall be of these allowed types (recursively).

22— Fixed-size arrays of these types.

23 The type binding is specified for parameter and return types.

24D.3 C language bindings

25 D.3.1 Function names

26 PSS implementations shall support mapping a PSS function name to an identical function name in C,
271ignoring the hierarchical path in PSS. PSS implementations may define additional mapping schemes for
28 function names.

Copyright © 2024 Accellera. All rights reserved.
466



Portable Test and Stimulus Standard 3.0 Draft for Public Review — May 6, 2024

1D.3.2 Primitive types

2 The mapping between the PSS primitive types and C types is specified in Table D.1.

Table D.1—Mapping PSS primitive types and C types

PSS type C input type C output/inout type C return type
string const char * char ** char *
bool unsigned int unsigned int * unsigned int
chandle const void * void ** void *

bit (1-8-bit domain)

unsigned char

unsigned char *

unsigned char

bit (9-16-bit domain)

unsigned short

unsigned short *

unsigned short

bit (17-32-bit domain)

unsigned int

unsigned int *

unsigned int

bit (33-64-bit domain)

unsigned long long

unsigned long long *

unsigned long long

int (1-8-bit domain) char char * char

int (9-16-bit domain) short short * short

int (17-32-bit domain) int int * int

int (33-64-bit domain) long long long long * long long

3 Where pointers are used, the callee shall not allocate or de-allocate the memory region referenced by the
4 pointer. Further, for non-void pointers, the callee shall assume that the memory location is valid only for the
s duration of the function execution, and shall not retain a reference to the parameter after the function call
6 returns. For strings and chandles, in the case of inout/output directions, the callee may return a pointer to
7 storage it owns.

8 D.3.3 Arrays

9 Fixed-sized arrays are mapped to fixed-size arrays in C for function arguments. Mapping PSS fixed-sized
10 arrays to C is not supported for function return types.

1D.3.4 Structs
12 D.3.4.1 Name mapping

13 The mapping between a PSS struct type (7pgs) defined in a hierarchical path / and a C type (T) is shown
14 in Table D.2.

Table D.2—Mapping PSS struct types and C types

PSS type C input type C output/inout type C return type

H::Tpgg const T * Tc* Tc
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1In the general case, the name of the type in C (T), is derived from the PSS type name (Tpgg) and its
2 hierarchical path (H). A PSS implementation shall support the name mapping scheme where the name of the
3 C type is identical to the PSS type (ignoring the hierarchical path), i.e., T- == Tpgg. A PSS implementation
4 may support additional name mapping schemes.

5D.3.4.2 Field mapping
6 Each PSS struct field is mapped to a corresponding field in C of the corresponding type and name in the
7same order. If the field type is itself a user-defined type (e.g., struct or enum), the mapping of the field

g entails the corresponding mapping of the type (recursively). For primitive types, the field is mapped as
9 shown in Table D.3.

Table D.3—Mapping PSS struct field primitive types and C types

PSS field type C field type
string char *
bool unsigned int
chandle void *

bit (1-8-bit domain)

unsigned char

bit (9-16-bit domain)

unsigned short

bit (17-32-bit domain)

unsigned int

bit (33-64-bit domain)

unsigned long long

int (1-8-bit domain)

char

int (9-16-bit domain)

short

int (17-32-bit domain) int

int (33-64-bit domain) long long
float32 float
float64 double

10 Since the C language does not support type inheritance, if the PSS struct 7pgg derives from a PSS base type,
11 then the fields of that base type are mapped directly into the mapped type 7. The code listing below shows
12 an example of struct type mapping in C.
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// PSS code

struct base s {
string £0;
i

struct sub s {
int in [0..99] f1 = 2;
string £2;

b

struct my struct s : base s {
sub_s f£3;
bit[1l6] f4;

bi

my struct s function foo
(input my struct s x,
output my struct s y);

// C code

struct sub s {
char f1;
char *f2;

b

struct my struct s {
char *£0;
sub_s f£3;
unsigned short f4;
bi

my struct s foo
(const my struct s *x,
my struct s *y);

2 Example D.1—PSS struct mapping into C

3 Only the field name, its type and the position of the field inside a struct is relevant for mapping to the C
4 type. Other field properties (such as initial value) and struct properties (such as constraints) are ignored.

5 D.3.4.3 Other mapping aspects

6 Tools may automatically generate C definitions for the required types, given PSS source code. Or, tools may
7utilize existing C declarations of the types. Regardless of whether these definitions are automatically
g generated or obtained in another way, PSS test generation tools may assume that these definitions are

9 operative in the compilation of the C user implementation of the imported functions.

10 Note that the C declaration of a struct data type may have additional fields that are not reflected in the PSS
11 type declaration. A PSS implementation may not assume that the C struct is size-compatible to the PSS

12 struct type.

13 D.3.5 Enumeration types

14 A PSS enumeration type E is mapped to C as a plain integer type N as follows:

Table D.4—Mapping PSS enum types and C types

PSS type C input type

C output/inout type C return type

E N

N* N

15 where N is:

16 a) one of: char, short, int, or long long

17 b) IfE has a base type: the mapping for the base type, according to D.3.2. Otherwise: the smallest type

18 that includes the values of all the enum items in its domain
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1A PSS implementation will pass the value of the enumeration as an argument in the generated call to the
2 function. These values can be either explicitly user-defined or assigned by a PSS implementation.

;D.4 C++ language bindings

4D.4.1 Function name mapping and namespaces

5 Generally, PSS user-defined types correspond to C++ types with identical names. In PSS, packages and
6 components constitute namespaces for types declared in their scopes. The C++ type definition
7 corresponding to a PSS type declared in a package or component scope shall be inside the namespace
8 statement scope having the same name as the PSS component/package. Consequently, both the unqualified
9 and qualified names of the C++ mapped type are the same as in PSS.

10 PSS implementations shall support mapping a PSS function name to an identical function name in C++, in
11the same namespace hierarchical path. PSS implementations may define additional mapping schemes for
12 function names.

13 D.4.2 Primitive types

14 a)

15 b) A PSS bool is a C++ bool and the values: false, true are mapped respectively from PSS to
16 their C++ equivalents.

C++ type mapping for primitive numeric types is the same as that for C.

17 ¢) C++ mapping of a PSS string is std: : string (typedef-ed by the Standard Template Library
18 (STL) to std: :basic_string<char> with default template parameters).

19 Table D.5 provides the mapping between PSS primitive types and C++ types. Note that string is passed as a
20 reference.

Table D.5—Mapping PSS primitive types and C++ types

PSS type C++ input type C++ output/inout type C++ return type
string const std::string & std::string & std::string
bool bool bool * bool
chandle const void * void ** void *
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Table D.5—Mapping PSS primitive types and C++ types (Continued)

PSS type

C++ input type

C++ output/inout type

C++ return type

bit (1-8-bit domain)

unsigned char

unsigned char *

unsigned char

bit (9-16-bit domain)

unsigned short

unsigned short *

unsigned short

bit (17-32-bit domain)

unsigned int

unsigned int *

unsigned int

bit (33-64-bit domain)

unsigned long long

unsigned long long *

unsigned long long

int (1-8-bit domain) char char * char

int (9-16-bit domain) short short * short

int (17-32-bit domain) int int * int

int (33-64-bit domain) long long long long * long long

float32 float float * float

float64 double double * double
1D.4.3 Arrays

2 The C++ mapping of a PSS array is std: : vector of the C++ mapping of the respective element type
3 (using the default allocator class). Fixed-sized arrays in PSS are mapped to the corresponding STL vector
4 class, just like arrays of an unspecified size. However, if modified, they are resized to the original size upon
s return, filling the default values of the respective element type as needed.

6 D.4.4 Structs
7D.4.4.1 Name mapping

8 The mapping between a PSS struct type (7pgg) and a C++ type (T¢pp) is shown in Table D.6.

Table D.6—Mapping PSS struct types and C++ types

PSS type C++_input type C++ output/inout type C++ return type

Tpss const Tcpp & Tepp& Tcpp

9 PSS struct types are mapped to C++ structs, along with their field structure and inherited base type, if
10 specified.

11 The base type declaration of the struct, if any, is mapped to the (public) base struct type declaration in C++
12 and entails the mapping of its base type (recursively).

13D.4.4.2 Field mapping
14 Each PSS field is mapped to a corresponding (public, non-static) field in C++ of the corresponding type and

15 in the same order. If the field type is itself a user-defined type (struct or enum), the mapping of the field
16 entails the corresponding mapping of the type (recursively).
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1For example, given the following imported function definitions:
2

3 function void foo(derived s d);

4 import solve CPP function foo;

5 with the corresponding PSS definitions:
6

7 struct base s {

8 int in [0..99] f1;

9 }i

10 struct sub s {

1 string £2;

12 i

13 struct derived s : base s {
14 sub s f3;

15 bit[15:0] £4[4];

16 b

17 mapping type derived_s to C++ involves the following definitions:
18

19 struct base s {

20 int f1;

21 }i

22 struct sub s {

23 std::string £2;

24 b

25 struct derived s : base s {

26 sub s f3;

27 std::vector<unsigned short> f4;
28 }i

29 Nested structs in PSS are instantiated directly under the containing struct, that is, they have value
30 semantics. Mapped struct types have no member functions and, in particular, are confined to the default
31 constructor and implicit copy constructor.

32 Mapping a struct type does not entail the mapping of any of its subtypes. However, struct instances are
33 passed according to the type of the actual parameter expression used in an import function call. Therefore,
34 the ultimate set of C++ mapped types for a given PSS model depends on its function calls, not just the
35 function prototypes.

36 D.4.4.3 Other mapping aspects

37 In the case of output and inout composite parameters, if a different memory representation is used for
38 the PSS tool vs. C++, the inner state shall be copied in upon calling it and any change shall be copied back
39 out onto the PSS entity upon return.

40 D.4.5 Enumeration types

41 PSS enumeration types are mapped to C++ unscoped enumeration types (as opposed to enum classes), with
42 the corresponding base type, if any, and with the same set of enum items in the same order and identical
43 names. When specified, explicit numeric constant values for an enum item correspond to the same value in
44 the C++ definition.
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1For example, the PSS definition:
2
3 enum color e {red = 0x10, green = 0x20, blue = 0x30};

41s mapped to the C++ type as defined by this very same code.

5 Consequently, enum item names within types used in PSS-to-C++ type binding must be unique.

¢ D.5 SystemVerilog language bindings

7D.5.1 Function names
8 PSS implementations shall support mapping a PSS function name to an identical function or task name in

9 SystemVerilog, ignoring the hierarchical path in PSS. PSS implementations may define additional mapping
10 schemes for function names.

11D.5.2 Primitive types

12 The mapping between the PSS primitive types and SystemVerilog types for both parameter and return types
13 is specified in Table D.7.

Table D.7—Mapping PSS primitive types and SystemVerilog types

PSS type SystemVerilog type
string string
bool bit
chandle chandle
bit (1-8-bit domain) byte unsigned

bit (9-16-bit domain)

shortint unsigned

bit (17-32-bit domain)

int unsigned

bit (33-64-bit domain)

longint unsigned

int (1-8-bit domain) byte

int (9-16-bit domain) shortint
int (17-32-bit domain) int

int (33-64-bit domain) longint
float32 shortreal
float64 real

14 PSS functions designated with the target qualifier (see 22.4.1) may be mapped either to tasks or functions in
15 SystemVerilog, and shall be mapped to tasks by default. PSS solve functions shall be mapped to
16 SystemVerilog functions. If neither platform qualifier is used, the default mapping shall be to a function.
17 PSS functions that are mapped to SystemVerilog tasks may not be called on the solve platform.
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1 When a PSS function is mapped to a SystemVerilog function, the return type (if any) and arguments of the
2 SystemVerilog function shall correspond to those of the PSS function prototype.

3 When a PSS function is mapped to a SystemVerilog task, the following apply:
4 a) Ifthe PSS function is a void function, then all arguments of the SystemVerilog task shall correspond

5 to the PSS prototype:
6

7 /Dy Ty pp Dy T; Py - - Dy Ty py); => Dy T'g pp Dy T’y pp - - o Dy Ty py)s
8

9 b) Ifthe PSS function returns a value, then the first argument of the SystemVerilog task shall be an out-
10 put of the type corresponding to the return value. All other arguments shall correspond accordingly:
1

12 T.f(Dy Typop Dy Ty py, - - - Dy Ty pp); => tloutput T'.p, Do Tgpo Dy T’y py, - - . Dy Ty py);

13 D.5.3 Numeric value mapping

14 When a numeric type or value is passed from PSS to SystemVerilog, the value shall be expanded or
15 truncated according to SystemVerilog rules (IEEE 1800-2017, section 10.7), treating the SystemVerilog
16 type as the left-hand side of an assignment statement where the PSS value is the right-hand side.

17 When a numeric type of value is passed from SystemVerilog to PSS, the value shall be expanded or

18 truncated according to the rules in 8.7 and 8.8, treating the SystemVerilog type as the right-hand side of an
19 assignment statement where the PSS value is the left-hand side.

20D.5.4 Arrays

21Fixed-size arrays in PSS are mapped to SystemVerilog dynamic arrays of corresponding type. Arrays are
22 passed by value between PSS and SystemVerilog.

23D.5.5 Lists
24 Lists in PSS are mapped to SystemVerilog queues of the corresponding type. As with arrays (D.5.4), lists are

25 passed by value between PSS and SystemVerilog. The list may contain any of the primitive types (D.5.2) as
26 well as structs (D.5.6) and enumeration types (D.5.7).

27D.5.6 Structs

28 PSS struct types are mapped to classes in SystemVerilog with fields whose types correspond and whose
29 names match. Values of all fields are deep-copied between mapped elements.

30 The following also apply:
31 a) The target SystemVerilog class must contain all fields present in the PSS struct. The target System-

32 Verilog class may be derived from a base class type.

33 b) Inheritance relationships may or may not be the same across the boundary. Whether the PSS struct
34 is derived from a base type has no bearing on whether the SystemVerilog class to which it is mapped
35 is derived from a similar (or any) type.

36 c¢) Passing inheritance hierarchies with shadowed fields is not supported.

37 d) Tools shall ignore the containing namespace of mapped structs.
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1D.5.7 Enumeration types

2 A PSS enumeration type is mapped to a SystemVerilog enum type. The integer values of the enum_items
3 must match, but it is not required that the names of the enum_items match.

41f a PSS enumeration type is passed to or from SystemVerilog, the enum value is passed as its integer

5 equivalent, according to D.5.3.
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;Solution space

4 0Once a PSS model has been specified, the elements of the model must be processed in some way to ensure
sthat resulting scenarios accurately reflect the specified behaviors. This annex describes the steps a
6 processing tool may take to analyze a portable stimulus description and create a (set of) scenario(s). See also
7 Clause 17.

8
9

10
il

12
13

14

15
16

17
18

19
20

21
22

23
24
25
26
27
28

29
30
31

32
33

34
35

36
37

38
39

40

M
2

a)  Identify root action:

1) Specified by the user.

2) Unless otherwise specified, the designated root action shall be located in the root component.
By default, the root component shall be pss_top.

3) If the specified root action is an atomic action, consider it to be the initial action traversed in an
implicit activity statement.

4) If the specified root action is a compound action:

)
ii)

iii)

Identify all bind statements in the activity and bind the associated object(s) accordingly.
Identify all resulting scheduling dependencies between bound actions.

For every compound action traversed in the activity, expand its activity to include each
sub-action traversal in the overall activity to be analyzed.

Identify scheduling dependencies among all action traversals declared in the activity and
add to the scheduling dependency list identified in a.4.i.

b) For each action traversed in the activity:

1) For each resource locked or shared (i.e., claimed) by the action:

Identify the resource pool of the appropriate type to which the resource reference may be
bound.

Identify all other action(s) claiming a resource of the same type that is bound to the same
pool.

Each resource object instance in the resource pool has an built-in instance_id field
that is unique for that pool.

The algebraic constraints for evaluating field(s) of the resource object are the union of the
constraints defined in the resource object type and the constraints in all actions ultimately
connected to the resource object.

Identify scheduling dependencies enforced by the claimed resource and add these to the

set of dependencies identified in a.4.1.

1. If an action locks a resource instance, no other action claiming that same resource
instance may be scheduled concurrent with the locking action.

2. If actions scheduled concurrently collectively attempt to lock more resource instances
than are available in the pool, an error shall be generated.

3. If the resource instance is not locked, there are no scheduling implications of sharing a
resource instance.

2) For each flow object declared in the action that is not already bound:

)

If the flow object is not explicitly bound to a corresponding flow object, identify the object
pool(s) of the appropriate type to which the flow object may be bound.
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12
13

14
15

16

18

19

20

21

¢)

iii)

iv)

v)

Vi)

vii)
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The algebraic constraints for evaluating field(s) of the flow object are the union of the
constraints defined in flow object type and the constraints in all actions ultimately con-
nected to the flow object.

Identify all other explicitly-traversed actions bound to the same pool that:
1. Declare a matching object type with consistent data constraints,
2. Meet the scheduling constraints from b.1.v, and

3. Are scheduled consistent with the scheduling constraints implied by the type of the flow
object.

The set of explicitly-traversed actions from b.2.iii shall compose the inferencing candi-
date list (ICL).

If no explicitly traversed action appears in the ICL, then an anonymous instance of each
action type bound to the pool from b.2.i shall be added to the ICL.

If the ICL is empty, an error shall be generated.

For each element in the ICL, perform step b.2 until no actions in the ICL have any
unbound flow object references or the tool’s inferencing limit is reached (see c).

If the tool reaches the maximum inferencing depth, it shall infer a terminating action if one is avail-
able. Given the set of actions, flow and resource objects, scheduling and data constraints, and associ-
ated ICLs, pick an instance from the ICL and a value for each data field in the flow object that
satisfies the constraints and bind the flow object reference from the action to the corresponding
instance from the ICL.
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1Annex F
2 (normative)

;Formal semantics of behavioral coverage

4+F.1 General

5 This annex describes the formal semantics of PSS behavioral coverage. PSS data coverage is not discussed
6 here.

7 The semantics description is based on the abstract syntax, which includes only basic constructs and ignores
8 the metalanguage features, such as monitor extension, overriding, and inheritance.

9 It is assumed that all action and monitor handles are unique and defined at the top level. The handles become
10 unique if their scope and constant indexing (if any) are considered part of their name.

11 The semantics of expressions, foreach and forall constraints is assumed to be known.

12 covergroup semantics is completely defined by a mapping of action handles into action executions at the
13 first match point of the top-level monitor attempts of a cover statement; this is why there is no need to
14 describe the covergroup construct separately.

15 F.2 Definitions and notation

16 Throughout this annex, the notation described in this subclause will be used.

17— A cover statement is denoted by C. The top-level scenario of a cover statement is denoted as
18 scenario(C).

19— A scenario is denoted by s,5,,55,....

20 — The set of all action executions is denoted by7% .

21— Individual action executions are denoted by x,x;,X,....

22— Sets of action executions are denoted by X, X, X,,....

23— An action handle is denoted as h,hyhj,... An action handle may be explicitly defined (action_type
24 h,) or anonymous (do action_type).

25— Sets of action handles are denoted by H H;,H),....

26— Monitor handle is denoted by m (also includes an anonymous handle do M, where M is monitor
27 type). scenario(m) denotes the monitor scenario.

28— Boolean predicates on action executions are denoted by p,pg.p;.....

29— A scenario realization is denoted by 7,7;,75,....

30 — Sets of scenario realizations are denoted by R,R,R,,....

31— A time instant (non-negative integer number) is denoted by #,#,,¢;,....

32— A start time of an action execution x or of a scenario realization r is denoted by begin(x) and
33 begin(r), respectively.

34— An end time of an action execution x or of a scenario realization 7 is denoted by end(x) and end(r),
35 respectively.

36 — A domain of function f'is denoted by dom(¥).
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1 — Animage (codomain) of function fis denoted by im(f).

2 — A scenario realization function is denoted by realizations(s,t,R), where s is a scenario, ¢ is a check-
3 point and R is an input set of action realizations (see F.4.2).
4+F.3 Abstract syntax

5 The formal semantics is based on an abstract syntax of behavioral coverage rather than on the full PSS BNF.
6 The abstract syntax facilitates separation of derived monitor activity statements from the basic ones. The
7 scenario realization is defined explicitly only for basic statements.

8 F.3.1 Abstract grammar

9 The abstract grammar is based on the following symbols considered as terminals:
10 — his an action handle, either explicit or anonymous.

11— pis a Boolean expression corresponding to an atomic algebraic constraint.

12 Every action handle in an action traversal has an inline constraint. Inline constraint expression true is
13 equivalent to the omitted inline constraint.

14 Scenario:
15 {}
16 | hwithp

17 | concat { s; s, }

18 | eventually s;

19 |select {s, s; }

20 | schedule {s,s,}

21 | overlap {scenario_set }

22 |mwithp

23 | s constraint { p }

24

25 scenario_set::=s; s, | scenario_set; s

26 {} above denotes an empty sequence.

27F.3.2 Derived forms
28 Derived forms are considered shortcuts. Their rewriting below is defined using = notation.

29
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1F.3.2.1 Constraints

2 The constraints are Boolean predicates on action executions (see F.4.1).

3 — Implication constraint:
4 r1— P2 = pillpy
5 — If-else constraints:
6 if(p)p2=p1llp2

~

1f(p1) prelsep3=pi&& poll'lp1&& p3

8 A set of internal constraints {p;,p,,...} is interpreted as p;&& p,&&....

9 A set of standalone constraints constraint {p;,p,,...} is interpreted as constraint p;; constraint
10pr; ...

11F.3.2.2 Scenarios

12 concat { s; } = s

13 concat {sy; ...,Sp.1; Spi} = concat { concat { sy; ...,S,.1}; Spi}, n 2 3

14 select {sy; ...,Sp.17 Spi} = select { select { sy ...,Sp1}; Spi}, n 23

15 schedule { s5; } = s

16 schedule {s;; ...,Sp-1; Spi} = schedule { schedule { s;; ...,S,1}7 Spi}, n 23
17 overlap { s; } = s

18 overlap {{}, sy,...} = overlap {s,,...}

19 overlap { ...,s, {}} = overlap {...,s}

20 overlap {...,s1, {}, syp,...} = overlap {...,51,Sy,...}

21 sequence { s; {} } = s

22 sequence { s1;S,; } = concat { s;; eventually s,;}

23 sequence {Sy; ...,Sp1; Sp;} = sequence { sequence { S;; ...,S,.1}; Spi}, n 23

24 F.4 Semantics

25 F.4.1 Action execution model

26 All action executions form a set . Attribute f of type T (e.g., bool, int) of an action of type a may be
27 considered as a function of a signature fia—T, i.c., as a function receiving an argument of type a, and
28 returning a value of type 7. In the following example:

29

30 action write { rand int core; }

31action type write defines attribute core with the integer domain. Here /= core, a= write, and
32 7= int. The function core is interpreted on specific executions of action write, and may assume values
330, 1, ...

34 Action type a defines a set of this action attributes f;:a—T17, ..., fi:a—T}, k=1, 2, ...
35 An algebraic constraint may be considered as a predicate p:a;—a,—...—a,— bool, i.e., as a Boolean
36 function whose arguments are action types ay, a,, ..., a,, n=1, 2, .... More precisely, a predicate is a function

37 of the following form:

38

Py, by, o) = P (Fia () o iy (), for (B, o foiey (2D, o fin (), o f (B, )) Kt Ky e = 1,2,
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11n this case, 4y,...,h, are action handles (explicit or anonymous) of the following types:
ay, ..., ay, i=1,..,nand f;q, ---:fiki

2 are thelir attributes.

3 In the following example:

4
5 action read { rand int core; rand bit[32] addr; rand bool locked; }

6 monitor m { write w; read r;

7 activity { w; r with core == 1 && locked && addr == w.addr; }

8 }

gthe predicate core == 1 && locked && addr == w.addr has the form p(fi; (h; ), 51 (), foo

10 (hy), fa3(hy)), where hy=write, hy= read, f1; (h})=w.addr, 5, (hy)=r.core, fr; (h)) = r.locked,
1fp3 (hy)= r.addr, and p(x,y,z,6)=(0==1 && z && t==x). Here x,y,z,t are arguments of predicate p.

12 An action object x has its type a, and thus all attributes defined by a, and also its beginning and end times,
13 denoted by begin(x) and end(x), correspondingly. The beginning and end times are non-negative integers,
14 begin(x) < end(x). Intuitively, action execution x spans from begin(x) until and not including end(x).

15 F.4.2 Scenario realization

16 A scenario realization is a one-to-one function » (map) from a set of action handles H={A,,....h,} into a set
17 of action executions X={x,....x,, } € &,n>0: {hy,....h, } —={x1,....x, }; X is a scenario realization domain, H
18 is a scenario realization codomain or image. For scenario realizations the following notation will be used: »
19={x; & hy,..x, = h,}.

20 As an example, consider a scenario defined by monitor m (F.4.1) and the action execution trace shown in
21 Figure 59.

22
X3: write
addr=0x3000 X,: read
addr=0x2000
Xsead X, write core=1
addr=0x1000 Z'_ ; : - Xs: write
core=0 addr—OxZOOO: : locked SddF=052000
10 30 35 45 50 70 73 85 90 110

23 Figure 59—Action execution trace (Figure F.4.2)

24 Here, the set of all action execution &={x;,x,,X3,%4,X5}. One scenario realization r is {do write » xp,
251 = x4}p. The scenario realization domain dom (r)= H= {do write,r} contains one anonymous
26 (do write) and one explicit handle (r); the scenario realization codomain contains two action executions:
271m (r)=X={xy,x4}.

28 By the disjoint union of two sets ALB is understood their union 4UB provided these sets do not intersect:
29 ANB=@. The notion of the disjoint union may be extended into two functions f and g, denoted as fLig,
30 provided their domains are disjoint (dom(f)Ndom(g)=@) as follows: dom(fLig)=dom(f)Lidom(g) and
31fUg(x)= flx) if x€ dom(f) and fUg(x)= g(x) if x€ dom(g). The disjoint union of scenario realizations | Li7, is
32 a special case of the disjoint union of functions.
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1 An application of a predicate p to a scenario realization r, denoted as p[r] is defined by replacing handle
2 attributes with their values in the corresponding action executions. Thus for the constraint
3p = (core == 1) (&& locked && addr == w.addr) in the monitor m above and the above
4realizationr, p[r] = (1 == 1) && locked && (0x2000 == 0x2000) (which evaluates to true).

s The start time of a scenario realization r is the minimal begin time of all its action executions:

begin(r) = rél_in begin(x)

6 The end (or match) time of a scenario realization r is the maximal time of all its action executions:

end(r) = max end(x)

7F.4.3 Coverage semantics

8 The set of action objects is covered by cover statement C iff there exists /=0,1,... such that there is a
9 successful top-level attempt starting at time ¢. The latter means R={r |r € realizations(scenario(C),t,@) and
10 =begin(r)} # @. In other words, the attempt scenario has at least one realization starting at time ¢.

11 The scenario realization function realizations(s,t, R) defines the set of realizations of scenario s with the
12 checkpoint # with the input set of realizations R. It is defined recursively as follows (with the convention that
13 a union of zero number of sets is @):

realizations({}) = {0}

i.e., the only realization of an empty sequence is empty (does not contain any action executions).

realizations(h withp,t,R) = U,¢p U{(h = x)|p[r u {h » x}]}

where rER, x€X, begin(x) = t and there is no y€X, ¢ < begin(y) < begin(x). This means that the realization
of an action traversal scenario corresponds to all action executions of an appropriate type and appropriately
constrained and closest to the checkpoint . It is a syntax error if supp(p) & dom(r) U {h}. Here supp(p)
denotes the set of variables on which the constraint p depends.

realizations(concat{s;, s;},t,R) = U,, U{n unr}

2

where r| € realizations(sy, t, R), r, € realizations(s,, end(ry ), {r; })) if r| # @, and

ry € realizations(s,, t, R), otherwise. This means that every realization of concat is a realization of its first
argument combined with a realization of its second argument with the checkpoint at the end time of the
realization of the first argument.

realizations(eventually s, t,R) = U{realizations(s, 7,R)}

=t

This means that the realizations of scenario s are collected at each time instant starting from ¢.
realizations(select{sy, s;},t,R) = realizations(sy,t,R) U realizations(s,,t,R)

This means that the realizations of select are realizations of one of its scenarios.

realizations(schedule{s;,s,},t,R) = U{n Uur}

1.2

where 7| € realizations(eventually sy,t, R), r, € realizations(eventually s,,t, R) and dom(r; ) N dom(r, ) =
@. This means that the realizations of schedule are combinations of realizations of its arguments with the
checkpoints at ¢ or in the future; the combined realizations do not have common action executions.
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realizations(overlap{sy, ..., s, },t,R) = U {nu..un}

T1,9Tn

where r| € realizations(s.t, R)....,r,, € realizations(s,,t,R), n =2 2 and for all 1 <i<j < n dom(r; ) N dom(r;
) = @ and max(begin(ry),....begin(r,)) < min (end(ry),....end(r_n)). Here it is assumed for empty
realizations that begin(@) = -co and end(@) = +oo. This definition is similar to the definition of schedule,
but in addition, it requires that the member realization windows overlap.

realizations(m, t, R) = realizations(scenario(m),t,R)

i.e., the realizations of a monitor are the realizations of its top-level scenario.

realizations(s constraint {p},t,R} = U (r}

rerealizations(s,t,R)

where either supp(p) ¢ dom(r) or p[r] evaluates to true. Here supp(p) denotes the set of handles mentioned
in p. This means that the realization should satisfy the imposed constraint, maybe vacuously.

1Note that the scenario realization function is defined only when the beginning and the end times of its
2 appropriate member realizations are defined.

3 As an illustration, consider the set of the realizations of the top-level scenario of monitor cover statement
4 cov: cover { m}

5 where m is defined in F.4.1 as

6 monitor m { write w; read r;
7 activity { w; r with core == 1 && locked && addr == w.addr; }
8 }

9 for the action execution trace shown in Figure 60 (reproduction of Figure 59) for the checkpoint =35.

10
X3: write
addr=0x3000 X,: read
addr=0x2000
Xiziread X,: Write core=1
addr=0x1000 Z'_ ; : - Xs: write
core=0 addr—OxZOOO: : locked SddF=052000
10 30 35 45 50 70 73 85 90 110
11 Figure 60—Action execution trace (F.4.3)

12 To be brief, we will write a instead of
13 r with core == 1 && locked && addr == w.addr

14 realizations(m,35,0) = realizations(sequence {w; r with core == 1 && locked && addr
15== w.addr; },35,0) = (abbreviation)

16 realizations(sequence {w;a }) = (definition of sequence)

17 realizations(concat { w; eventually a;},35,0).
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1 According to the definition of concat, its scenario realization function is computed as:

U | o um
2

2 where r| € realizations(w,t,Q),r, € realizations(eventually a,end(r; ),{r})).

3 realizations(w,t,0) = {wwx,}. Indeed, action executions of type write are x,, x3, and x5, 35=begin(x,) <
4 begin(x3) < begin(xs) and the inline constraint is void. Thus, realizations(w,t,§) consists of the only
s realization 7| = w = x, and its endpoint begin(r; ) = begin(x,) = 50.

6 According to the definition:

realizations(eventually a,50,w - x;) = U realizations(a,T,w = Xx;).
7=>50

71t is easy to see that realizations(a, 50, w = x, ) = {r = x4}. Indeed, x4 is the only read action execution
g starting at or after time 50 and r.core == 1 && r.locked && r.addr == w.addr evaluates to
gtrue when » maps into x, and w maps into x,. It is obvious that
10 realizations(a,50,w = x,) = ... = realizations(a,73,w » x,) = realizations(a,50,w = x,) = {r = x4} and
nrealizations(a,74,w = xp) =p(a,75,w = x,)=...=@ (no more read actions after time 73). Thus,
12 realizations(eventually,50,w = x5) = {r = x4}={rp}. The final result is {w = x,,r = x4}.
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